
Distributed Construction of Connected Dominating Set in Wireless

Ad Hoc Networks

Khaled M. Alzoubi Peng-Jun Wan Ophir Frieder
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
Email: {alzoubi, wan, ophir }@cs.iit.edu

Abstract

Connected dominating set (CDS) has been proposed as virtual backbone or spine of wire-
less ad hoc networks. Three distributed approximation algorithms have been proposed in the
literature for minimum CDS. In this paper, we first reinvestigate their performances. None of
these algorithms have constant approximation factors. Thus these algorithms can not guar-
antee to generate a CDS of small size. Their message complexities can be as high as O

(
n2

)
,

and their time complexities may also be as large as O
(
n2

)
and O

(
n3

)
. We then present our

own distributed algorithm that outperforms the existing algorithms. This algorithm has an ap-
proximation factor of at most 8, O (n) time complexity and O (n log n) message complexity. By
establishing the Ω (n log n) lower bound on the message complexity of any distributed algorithm
for nontrivial CDS, our algorithm is thus message-optimal.

Keywords: wireless ad hoc networks, distributed algorithm, connected dominating set,
independent set, leader election, spanning tree.

1 Introduction

Wireless ad hoc networks can be flexibly and quickly deployed for many applications such as auto-
mated battlefield, search and rescue, and disaster relief. Unlike wired networks or cellular networks,
no physical backbone infrastructure is installed in wireless ad hoc networks. A communication ses-
sion is achieved either through a single-hop radio transmission if the communication parties are
close enough, or through relaying by intermediate nodes otherwise. In this paper, we assume that
all nodes in a wireless ad hoc network are distributed in a two-dimensional plane and have an equal
maximum transmission range of one unit. The topology of such wireless ad hoc network can be
modeled as a unit-disk graph [6], a geometric graph in which there is an edge between two nodes if
and only if their distance is at most one (see Figure 1).

Although a wireless ad hoc network has no physical backbone infrastructure, a virtual backbone
can be formed by nodes in a connected dominating set of the corresponding unit-disk graph [1][7][10].
Such virtual backbone, also referred to as spine, plays a very important role in routing, broadcasting
and connectivity management in wireless ad hoc networks [1]. In general, a dominating set (DS)
of a graph G = (V,E) is a subset V ′ ⊂ V such that each node in V − V ′ is adjacent to some node
in V ′, and a connected dominating set (CDS) is a dominating set which also induces a connected

1

Figure 1: Model the topology of wireless ad hoc networks by unit-disk graphs.

subgraph. A (connected) dominating set of a wireless ad hoc network is a (connected) dominating
set of the corresponding unit-disk graph. To simplify the connectivity management, it is desirable
to find a minimum connected dominating set (MCDS) of a given set of nodes. However, finding
an MCDS in unit-disk graphs is NP-hard [6], and thus only distributed approximation algorithms
in polynomial time are practical for wireless ad hoc networks. In this paper, we further show that
any distributed algorithm for nontrivial CDS requires at least O (n logn) messages, where n is the
number of nodes and the message size is a constant multiple of the number of bits representing the
node IDs (a CDS is said to be trivial if it consists of all nodes).

Since the networking nodes in wireless ad hoc networks are very limited in resources, a virtual
backbone should not only be “thinner”, but should also be constructed with low communication
and computation costs. In addition, the communication and computation costs should be scalable
as the wireless ad hoc networks are typically deployed with large network size. In this paper, we
first reinvestigate the performance of the three known distributed approximation algorithms for
MCDS, proposed by Das et al. in [1][7][10], by Wu and Li in [12], and by Stojmenovic et al. in [11],
respectively. While the first one has a Θ (log n) approximation factor, the other two both have Θ (n)
approximation factors. Thus none of them can guarantee to generate a CDS of small size. The
algorithms also have very high implementation cost in terms of message complexity and/or time
complexity. We thus present our own distributed algorithm that always outputs a nontrivial CDS.
This algorithm has an approximation factor of at most 8, O (n) time complexity and O (n log n)
message complexity. As Ω (n logn) is a lower bound on the message complexity of any distributed
algorithm for nontrivial CDS, our algorithm is thus a message-optimal distributed algorithm for
nontrivial CDS.

The remaining of this paper is organized as follows. In Section 2, we establish a Ω (n log n)
lower bound on the message complexity of any distributed algorithm for nontrivial CDS. In Section
3, Section 4 and Section 5, we analyzes the performances of the three existing algorithms by Das
et al. in [1][7][10], by Wu and Li in [12], and by Stojmenovic et al. in [11], respectively. In Section
6, we present a better distributed algorithm and analyze its performance. Finally, we conclude this
paper in Section 7.

2

2 Lower Bound on Message Complexity

In this section, we establish the Ω (n logn) lower bound on the message complexity for distributed
algorithms for leader election, spanning tree and nontrivial CDS in wireless ad hoc networks. The
reduction is made from the following well-known bound on the message complexity of distributed
leader election in asynchronous ring networks with point-to-point transmission. A leader election
is a process to elect a unique node as the leader by all nodes.

Theorem 1 [2] In asynchronous rings with point-to-point transmission, any distributed algorithm
for leader election sends at least Ω (n log n) messages.

Theorem 2 In asynchronous wireless ad hoc networks whose unit-disk graph is a ring, any dis-
tributed algorithm for leader election sends at least Ω (n logn) messages.

Proof. Let A be any distributed algorithm for leader election in wireless ad hoc networks whose
unit-disk graph is a ring. Let A∗ be the algorithm by replacing each wireless transmission by two
point-to-point transmissions. Then A∗ is a distributed algorithm for leader election in asynchronous
rings with point-to-point transmission. Note that the algorithm A∗ sends twice messages of that
sent by A. Thus from Theorem 1, A must also send at least Ω (n logn) messages.

Theorem 3 In asynchronous wireless ad hoc networks whose unit-disk graph is a ring, any dis-
tributed algorithm for spanning tree sends at least Ω (n log n) messages.

Proof. Let A be any distributed algorithm for spanning tree in wireless ad hoc networks whose
unit-disk graph is a ring. Note that any spanning tree of a ring consists of all edges in the ring
except one. Thus it has exactly two leaves which are also neighbors. Thus after an spanning tree
is completed, the two leaves can exchange a message to select the leader between them according
to some symmetry-breaking criterion, for example by their IDs. After the leader is identified, it
then notifies all other nodes in linear number of message. Thus from algorithm A, we can derive a
distributed algorithm for leader election whose message complexity is Θ (n) more than the number
of messages sent by A. From Theorem 2, the message complexity of A is at least Ω (n logn) .

A distributed algorithm for leader election in wireless ad hoc networks has been proposed in
[5]. This algorithm has message complexity O (n logn) and therefore is message-efficient. Its actual
implementation also constructs a spanning tree rooted at the leader.

Theorem 4 In asynchronous wireless ad hoc networks whose unit-disk graph is a ring, any dis-
tributed algorithm for nontrivial CDS sends at least Ω (n log n) messages.

3

Proof. Let A be any distributed algorithm for CDS in wireless ad hoc networks whose unit-disk
graph is a ring. Note that for any nontrivial CDS of a ring consists of all nodes except either a
unique node or two neighboring nodes. So after an nontrivial CDS is completed, the leader can be
elected as follows. A dominatee declares itself as the leader if both its neighbors are dominators,
or one of its neighbor is a dominatee but has larger ID. The leader then notifies all other nodes
in linear number of message. Thus from algorithm A, we can derive a distributed algorithm for
leader election whose message complexity is Θ (n) more than the number of messages sent by A.
From Theorem 2, the message complexity of A is at least Ω (n logn) .

3 Das et al.’s Algorithm

The centralized version of the distributed algorithm proposed by Das et al. consists of three stages.
The first stage finds an approximation to Minimum Dominating Set, which is essentially the well-
studied Set Cover problem. Not surprisingly, the heuristic proposed by Das et al. in [1][7][10] is a
translation of Chvatal’s greedy algorithm [4] for Set Cover, and thus guarantees an approximation
factor of H (∆), where ∆ is the maximum degree and H is the harmonic function. Let U denote the
dominating set output in this stage. The second stage constructs a spanning forest F . Each tree
component in F is a union of stars centered at the nodes in U . The stars are generated by letting
each dominatee node pick up an arbitrary neighbor in U . The third stage expands the spanning
forest F to a spanning tree T . All internal nodes in T form a CDS. It is easy to show that the
CDS generated in this way contains at most 3 |U | nodes, and therefore is a 3H (∆)-approximation
of MCDS.

Figure 2 shows a family of instances for which the size of the solution computed by the above
greedy algorithm is larger than the optimum solution by a logarithm factor. All points lie in a

rectangle whose horizontal side has length one and whose vertical side has length 2

√
1 −

(
1

2(k−1)

)2

(the selection of the value 2

√
1 −

(
1

2(k−1)

)2
is based on the fact for any two points whose y-

coordinates are differed by

√
1 −

(
1

2(k−1)

)2
, they are connected if and only if their x-coordinates

are differed by at most 1
2(k−1)). The two nodes v1 and vk are the centers of the left and right

vertical sides respectively. The k − 2 nodes v2, v3, · · · , vk−1 are evenly distributed within the line
segment between v1and vk from left to right. The two nodes u1and u2 are the centers of the two
sub-rectangles above and below the segment between v1and vk respectively. The rest points lie in
the two horizontal sides. In each horizontal side, 20 = 1 node lies to the left of (and excluding)
the perpendicular bisector of v1v2, 2k−1 nodes lie to the right of (and excluding) the perpendicular
bisector of vk−1vk, and 2i−1 nodes lie between (and excluding) the perpendicular bisector of vi−1vi

and the perpendicular bisector of vivi+1. Thus, the total number of nodes is

n = k + 2 + 2
k∑

i=1

2i−1 = k + 2k+1.

Note that u1 is adjacent to all nodes lying in the top sub-rectangle, u2 is adjacent to all nodes
lying in the bottom sub-rectangle, and they are adjacent to each other. Thus, {u1, u2} forms an
MCDS. On the other hand, the above greedy algorithm would add vk, vk−1, · · · , v1 sequentially to

4

2

u

u2

v2
vkv1

1

k-120 21

20 2k-121

of nodes

of nodes

Figure 2: Instance for which the size of the solution output by Das et al.’s algorithm,
{v1, v2, · · · , vk}, is larger than the optimum solution, {u1, u2}, by a logarithm factor.

the dominating set in the first stage and output the set {v1, v2, · · · , vk} as the CDS at the end of
the second stage. This can be proven by induction as follows.

Initially, the degree of node vi is

2 · 2i−1 + (k − 1) + 2 = 2i + k + 1;

the degrees of the node u1 and u2 are both

k∑
i=1

2i−1 + k + 1 = 2k + k;

and the degree of any other node is

k∑
i=1

2i−1 − 1 + 1 + 1 = 2k.

So vk is the first node to be selected. Now we assume that the nodes vk, vk−1, · · · , vj have been
added to the dominating set. For any node vi with i < j, the number of its neighbors that have
not been dominated yet is 2 · 2i−1 = 2i; for the node u1 or u2, the number of its neighbors that
have not been dominated yet is

j−1∑
i=1

2i−1 = 2j−1 − 1;

5

and for any other rest node, the number of its neighbors that have not been dominated yet is

j−1∑
i=1

2i−1 − 1 = 2j−1 − 2.

So the node vj−1 is then added to the dominating set. Therefore, by induction, the nodes
vk, vk−1, · · · , v1 are added sequentially to the dominating set. Note that {v1, v2, · · · , vk} is a CDS.
The first stage will stop after v1 is added, and the second stage would add no more nodes.

Since n = k+ 2k+1 and ∆ = 2k +k+ 1, we have k > log n−2 and k > log ∆−1. Therefore, the
instance shown in Figure 2 implies the lower bounds log n

2 − 1 and log ∆
2 − 1

2 on the approximation
factor of the greedy algorithm.

The distributed implementation of the above greedy algorithm proposed in [1][7][10] has very
high time complexity and message complexity. Indeed, both time complexity and message com-
plexity can be as high as Θ

(
n2

)
. We also notice that such distributed implementation is technically

incomplete. For example, the distributed implementation consists of multiple stages, but the im-
plementation lacks mechanisms to bridge two consecutive stages. Thus, individual nodes have no
way to tell when the next stage should begin. While these technical incompleteness are possibly to
be fixed, we will not take such effort here as the approximation factor of the greedy algorithm is
intrinsically poor.

In summary, we have the following performance results of the distributed algorithm in [1][7][10].

Theorem 5 The approximation factor of the distributed algorithm proposed by Das et al. in
[1][7][10] is between log ∆

2 − 1
2 and 3H (∆). Both its message complexity and time complexity are

O
(
n2

)
.

4 Wu and Li’s Algorithm

While the algorithm proposed by Das et al. first finds a DS and then grow this DS into a CDS, the
algorithm proposed by Wu and Li in [12] takes an opposite approach. The algorithm in [12] first
finds a CDS and then prune certain redundant nodes from the CDS. The initial CDS U consists of
all nodes which have at least two non-adjacent neighbors. A node u in U is considered as locally
redundant if it has either a neighbor in U with larger ID which dominates all other neighbors of
u, or two adjacent neighbors with larger IDs which together dominate all other neighbors of u.
The algorithm then removes all locally redundant nodes from U . This algorithm applies only to
wireless ad hoc networks whose unit-disk graph is not a complete graph. As indicated in [12], the
approximation factor of this algorithm remains unspecified. Obviously, the MCDS of any wireless
ad hoc network whose unit-disk graph is not complete graph consists of at least two nodes. On
the other hand, any CDS contains at most n nodes. Thus, the approximation factor of the above
algorithm is at most n

2 where n is the number of nodes. Next, we show that the approximation
factor of the above algorithm is exactly n

2 . This means that the above algorithm does perform
extremely poorly over certain instances.

6

When n is even, we consider the instance illustrated in Figure 3(a). These nodes are evenly
distributed over the two horizontal sides of a unit-square. Each node has exactly m neighbors, one
in the opposite horizontal side and the rest in the same horizontal side. The two nodes at the left
two corners of the unit-square form an MCDS. However, the CDS output by the algorithm in [12]
consists of all nodes. Indeed, for each node u, the unique neighbor lying in the opposite horizontal
side is not adjacent to all other neighbors of u. Thus, the initial CDS U consists of all nodes. In
addition, no single neighbor of a node u can dominate all other neighbors of u. Furthermore, if a
pair of neighbors of u are adjacent, they must lie in the same horizontal side as u, and therefore
neither of them is adjacent to the unique neighbor of u lying in the opposite horizontal side. So no
node is locally redundant. Consequently the output CDS still consists of all nodes.

*

(b)(a)

u

Figure 3: Instance for which the CDS output by Wu and Li’s algorithm consists of all nodes but
the MCDS consists of only two nodes.

When n is odd, we consider the instance illustrated in Figure 3(b). The node with the largest
ID, denoted by u∗, is the center of the left vertical side of a unit-square, and all other n−1 nodes are
evenly distributed over the two horizontal sides of the unit-square. The two nodes at the left two
corners of the unit-square form an MCDS. On the other hand, the CDS output by the algorithm
in [12] also consists of all nodes. In fact, following the same argument as in the even case, all nodes
other than u∗ are in the initial CDS U . The node u∗ is also in the initial CDS U as well. Since
u∗ is not adjacent to the two nodes at the right corners of the unit-square, all nodes other than u∗

are not locally redundant. The u∗ itself is also not locally redundant as it has the maximum ID.
Therefore, the output CDS still consists of all nodes.

The distributed implementation of the above algorithm given in [12] runs in two phases. In
the first phase, each node first broadcasts to its neighbors the entire set of its neighbors, and after
receiving this adjacency information from all neighbors it declares itself as dominator if and only
if it has two nonadjacent neighbors. These dominators form the initial CDS. In the second phase,
a dominator declares itself as a dominatee if it is locally redundant. Note a dominator can find
whether it is locally redundant from the adjacency information of all its neighbors. It is claimed in
[12] that the total message complexity is O (n∆) and the time complexity at each node is O

(
∆2

)
.

A more accurate message complexity is Θ (m) where m is the number of edges in the unit-disk
graph, as each edge contributes two messages in the first phase. The O

(
∆2

)
time complexity,

however, is not correct. In fact, in order to decide whether it is locally redundant in the second
phase, a node u in the initial CDS may have to examine as many as O

(
∆2

)
pairs of neighbors,

and for each pair of neighbors, as much as O (∆) time may be taken to find out whether such pair

7

of neighbors together dominates all other neighbors of u. Therefore, the time complexity at each
node may be as high as O

(
∆3

)
, instead of O

(
∆2

)
. Note that m and ∆ can be as many as O

(
n2

)
and O (n) respectively. Thus, the message complexity and the time complexity of the distributed
algorithm in [12] are O

(
n2

)
and O

(
n3

)
respectively. The instances shown in Figure 3 do require

such complexities.

In summary, we have the following performance results of the distributed algorithm in [12].

Theorem 6 The approximation factor of the distributed algorithm proposed by Wu and Li in [12]
is exactly n

2 . Its message complexity is Θ (m) and its time complexity is O
(
∆3

)
.

5 Stojmenovic et al.’s Algorithm

In the context of clustering and broadcasting, Stojmenovic et al. [11] presented three synchronized
distributed constructions of CDS. In each of the three constructions, the CDS consists of two types
of nodes: the cluster-heads and the border-nodes. The cluster-heads form a maximal independent
set (MIS), i.e., a dominating set in which any pair nodes are non-adjacent. A node is a border-node
if it is not a cluster-head and there are at least two cluster-heads within its 2-hop neighborhood.
The set of cluster-heads is induced by a ranking of nodes which give rise to a total ordering of all
nodes. Three rankings are used: the ID only [8][9], an ordered pair of degree and ID [3], and an
order pair of degree and location [11]. The selection of the cluster-heads is given by a synchronized
distributed algorithm, which can be generalized to the following framework. Initially all nodes are
colored white. In each stage of the synchronized distributed algorithm, all white nodes which have
the lowest rank among all white neighbors are colored black; then all white nodes adjacent to the
these black nodes are colored gray; finally the ranks of the remaining white nodes are updated.
The algorithm ends when all nodes are colored either black or gray. All black nodes then form the
cluster-heads.

Regardless of the choice of the ranking, the algorithms in [11] have a Θ (n)approximation factor.
Such inefficiency stems from the non-selective inclusion of all border-nodes. In fact, if the rank is
ID only, Figure 4 shows a family of instances which would imply the approximation factor to be
exactly n, the worst possible. In these instances, the node with the largest ID is located at the
center of a unit-disk and all other nodes are evenly distributed in the boundary of the unit-disk.
After the cluster-heads are selected, all other nodes become border-nodes. Thus the CDS would
consist of all nodes. On the other hand, the node at the center dominates all other nodes. If the
rank is an ordered pair of degree and ID or an order pair of degree and location, the instances
shown in Figure 3 imply that their approximation factors are at least n

2 .

All algorithms in [11] have O
(
n2

)
message complexity and Ω (n) time complexity. This can

be illustrated in the following instance: All n nodes are evenly distributed in an interval of length
n − 1 with two nodes being the endpoints of the interval. The ith node from the left endpoint of
interval has ID i (i.e., the IDs increase from left to right).

In summary, we have the following performance results of the distributed algorithm in [11].

8

Figure 4: Instance for which the CDS output by Stojmenovic et al.’s algorithm consists of all nodes
but the MCDS consists of only one node.

Theorem 7 The distributed algorithms proposed by Stojmenovic et al. in [11] have an approxima-
tion factor of n

2 or n, O
(
n2

)
message complexity, and Ω (n) time complexity.

6 A Better Distributed Algorithm

Our distributed algorithm for CDS consists of two phases. These two phases construct a maximal
independent set (MIS), and a dominating tree, respectively. They are described and analyzed in
the next three subsections.

6.1 MIS Construction

By definition, any pair of nodes in an MIS are separated by at least two hops. However, a subset of
nodes in an MIS may be three hops away from the subset of the rest nodes in this MIS. The MIS
constructed in this section guarantees that the distance between any pair of its complementary
subsets is exactly two hops. Our construction uses a carefully chosen rank definition. The ranking
is induced by an arbitrary rooted spanning tree T , which can be constructed by the distributed
leader-election algorithm in [5] with O (n) time complexity and O (n logn) message complexity.
Given a rooted spanning tree T , the (tree) level of a node is the number of hops in T between
itself and the root of T . (Thus the level of the root is 0.) The rank of a node is then given by the
ordered pair of its level and its ID. Such ranking gives rise to a total ordering of the nodes in the
lexicographic order. The following distributed process enables each node to calculate its own rank
and the number of lower-ranked neighbors.

Each node maintains two local metering variables x1 and x2. The variable x1 counts the number
of neighbors whose levels have not yet been identified and is thus initialized to the number of
neighbors. The variable x2 counts the number of children who have not yet reported the completion
and is thus initialized to the number of children. Each node also maintains a levelList that records
the levels of its neighbors and is initially empty, and a local variable y which stores the number
of lower-ranked neighbors. After the rooted spanning tree T is constructed, the root announces
its level 0 by broadcasting a LEVEL message. Upon receiving a LEVEL message, a node appends

9

an entry consisting of the sender’s ID and level to levelList and then decrements x1 by 1. If the
sender is its parent in T , it sets its own level to one plus the sender’s level, and then announce
this level by broadcasting a LEVEL message. If x1 = 0, it sets y to the number of lower-ranked
neighbors which can be calculated from levelList. If it is a leaf in T (i.e. x2 = 0 initially) and its
own level has been determined, it transmits a LEVEL-COMPLETE message to its parent. Upon
receiving a LEVEL-COMPLETE message towards itself, a node decrements x2 by 1; if x2 = 0 after
the update and it is not the root, a node transmits a LEVEL-COMPLETE message to its parent
and then resets x2 to the number of children. When the local variable x2 = 0 at the root, the root
simply resets x2 to the number of children. By this time, all nodes know the ranks of its own and
all its neighbors and thus the root will move on the construction of the MIS by a color-marking
process.

All nodes are initially marked with white color and will be marked with either gray or black
eventually. Each node also maintains a blackList which records the IDs of its black neighbors.
Note that the blackList can contain at most five black nodes. The root first marks itself black and
broadcasts a BLACK message. Upon receiving a BLACK message, a node adds the sender’s ID to
blackList, and if its color is still white, it marks itself gray and broadcasts a GRAY message which
contains its level. Upon receiving a GRAY message, if the rank of the sender is lower than its own,
a white node decrements y by 1; if y = 0 after the update, it marks itself black and broadcasts a
BLACK message. When a leaf node is marked with either gray or black, it transmits a MARK-
COMPLETE message to its parent. Upon receiving a MARK-COMPLETE message towards itself,
a node decrements x2 by 1; if x2 = 0 after the update and it is not the root, a node transmits a
MARK-COMPLETE message to its parent. By the time when the local variable x2 = 0 at the
root, all nodes have been marked with either gray of black and thus the root will move on the
construction of the CDS.

Figure 5 illustrates the algorithm for color marking in this phase. In the graph, the IDs of the
nodes are labelled beside the nodes, and node 0 is the leader elected in the first phase. The solid
lines represent the edges in the rooted spanning tree T , and the dashed lines represents other edges
in the unit-disk graph. The ordering of the nodes by rank is given by 0, 4, 12, 2, 5, 8, 10, 3, 6, 9,
11, 1, 7. A possible execution scenario is shown in Figure 5(a)–(g). The nodes 0, 5, 3, and 7 are
the black nodes and form a CDS.

The construction of the CDS in the next phase relies on the following property of the black
nodes.

Theorem 8 All black nodes form an MIS and any pair of complementary black subsets are separate
by exactly two hops.

Proof. Let U = {ui : 1 ≤ i ≤ k} where ui is the ith node which is marked black. From the
construction, any pair of black nodes are not adjacent to each other and thus U is an MIS. For
any 1 ≤ j ≤ k, let Hj be the graph over {ui : 1 ≤ i ≤ j} in which a pair of nodes is connected
by an edge if and only if their graph distance in G is two. We prove by induction on j that Hj

is connected. Since H1 consists of a single vertex, it is connected trivially. Assume that Hj−1 is
connected for some j ≥ 2. When the node uj is marked black, its parent in T must be already
marked gray. Thus, there is some node ui with 1 ≤ i < j which is adjacent to uj ’s parent in T . So
(ui, uj) is an edge in Hj . As Hj−1 is connected, so must be Hj . Therefore, Hj is connected for any
1 ≤ j ≤ k.

10

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

(a)

(h)

(e)

(g)

(b)

(i)

(c)

(f)(d)

(k)(j)

Figure 5: An example of the MIS construction (a)-(g) and dominating tree construction (h)-(k).

11

6.2 Dominating Tree Construction

The second phase constructs a dominating tree T ∗ whose internal nodes would become a CDS.
Each node maintains a local boolean variable z which is initialized to 0 and set to 1 after the node
joins the tree T ∗. Each node also maintains a local variable parent which stores the ID of its parent
in T ∗ and is initially empty, and a chidrenList which records the IDs of its children in T ∗ and is
initially empty. The root of T ∗ is a (gray) neighbor of the root of T which has the largest number
of black neighbors. To select the root for T ∗, the root of T also maintains a variable root and a
variable degree which is initialized to 0.

The root of T first resets the local variable x1 to the number of its neighbors and then broadcasts
a QUERY message. Upon receiving a QUERY message, a (gray) node transmits to the sender a
REPORT message which contains the number of its black neighbors. Upon receiving a REPORT
message towards itself, the root of T decrements x1 by one, and if the number of the black neighbors
of the sender is greater than the value of degree, it resets degree to the number of the black neighbors
of the sender and also resets the variable root to the ID of the sender. If x1 = 0 after the update,
the root of T transmits a ROOT message to the node whose ID is stored in the local variable root.
Upon receiving the ROOT message towards itself, a node becomes the root of T ∗. It sets z = 1 and
then broadcasts an INVITE2 message. All other nodes join the tree T ∗ according to the following
principle.

• Upon receiving an INVITE2 message, a black node with z = 0 sets z = 1 and parent to
the ID of the sender, transmits a JOIN message towards the sender, and then broadcasts an
INVITE1 message.

• Upon receiving an INVITE1 message, a gray node with z = 0 sets z = 1 and parent to
the ID of the sender, transmits a JOIN message towards the sender, and then broadcasts an
INVITE2 message.

• Upon receiving a JOIN message towards itself, a node adds the ID of the sender to chidrenList.

Theorem 8 guarantees that whenever there is any black node outside the current T ∗, at least
one black node would join T ∗. Thus eventually all black nodes will join T ∗. Consequently, all gray
nodes will join T ∗ eventually. The internal nodes of T ∗ are then output as the CDS.

Figure 5 (h)-(k) illustrates a possible scenario of the dominating tree construction. The thick
links are edges in the dominating tree. The internal nodes 12, 0, 5, 7, 2, 3 form a CDS.

6.3 Performance Analysis

We first analyze the message complexity and time complexity of our distributed algorithm. After
the rooted spanning tree T is constructed, the MIS construction in the first phase additionally uses
linear messages and takes at most linear time. The construction of the dominating tree T ∗ also
uses linear messages and takes at most linear time. Thus besides the construction of the tree T ,
our algorithm uses O (n) messages and takes O (n) time. Since the algorithm in [5] used for the
construction of T has O (n logn) message complexity and O (n) time complexity, our algorithm

12

has O (n logn) message complexity and O (n) time complexity in overall. Note that the message
complexity of our algorithm is dominated by the construction of a rooted spanning tree.

Next we analyze the size of the out CDS, which is the number of internal nodes in T ∗. Let OPT
be any minimum CDS and let opt denote the size of OPT . We begin with the following property
of the independent sets.

Lemma 9 The size of any independent set in a unit-disk graph G = (V,E) is at most 4opt + 1.

Proof. Let U be any independent set of V , and let T ′ be any spanning tree of OPT . Consider
an arbitrary preorder traversal of T ′ given by v1, v2, · · · , vopt. Let U1 be the set of nodes in U that
are adjacent to v1. For any 2 ≤ i ≤ opt, let Ui be the set of nodes in U that are adjacent to vi but
none of v1, v2, · · · , vi−1. Then U1, U2, · · · , Uopt form a partition of U . As v1 can be adjacent to at
most five independent nodes, |U1| ≤ 5. For any 2 ≤ i ≤ opt, at least one node in v1, v2, · · · , vi−1 is
adjacent to vi. Thus Ui lie in a sector of at most 240 degree within the coverage range of node vi

(see Figure 6). This implies that |Ui| ≤ 4. Therefore,

|U | =
opt∑
i=1

|Ui| ≤ 5 + 4 (opt− 1) = 4opt + 1.

This completes the proof.

Uiiv

Figure 6: Ui lie in a sector of at most 240 degree within the coverage range of node vi.

Lemma 9 and its proof implies the following upper-bound on the size of the CDS generated by
our algorithm.

Lemma 10 The number of internal nodes in T ∗ is at most 8opt− 2.

Proof. If there is a black node in OPT , then following the similar proof to Lemma 9 we can
show that the total number of black nodes is at most

1 + 4 (opt− 1) = 4opt− 3.

13

Since each internal gray node in T ∗ has at least one black child, the total number of internal gray
nodes in T ∗ is no more than the number of black nodes. Thus the total number of internal nodes
in T ∗ is at most

2 (4opt− 3) = 8opt− 6.

Now we assume that no black node is in OPT . Let k be the number of black nodes adjacent
to the root of T ∗. Then k ≤ 5, and following the similar proof to Lemma 9 we can show that the
total number of black nodes is at most k+ 4 (opt− 1). Note that the root of T ∗ has exactly k black
children and any internal gray node other than the root of T ∗ has at least one black child. Thus
the total number of internal gray nodes in T ∗ other than the root of T ∗ is at most 4 (opt− 1). So
the number of internal nodes in T ∗ is at most

4 (opt− 1) + k + 1 + 4 (opt− 1) = 8opt− 7 + k

≤ 8opt− 7 + 5 = 8opt− 2.

Thus the lemma is true in either case.

In summary, we have the following performance results of our distributed algorithm.

Theorem 11 Our distributed algorithm has an approximation factor of at most 8, O (n) time
complexity, and O (n logn) message complexity.

7 Conclusion

In this paper, we have established a Ω (n log n) lower bound on message complexity of any dis-
tributed algorithm for nontrivial CDS. We then reinvestigated three known distributed approx-
imation algorithms for MCDS. After that we presented our own algorithm. The performance
comparison of these four algorithms is listed in Table 1. From this table, we can conclude that our
algorithm outperforms the existing algorithms.

[1][7][10] [12] [11] This paper
Approx. factor Θ (logn) n n

2 , n ≤ 8
Msg. complexity O

(
n2

)
Θ (m) O

(
n2

)
O (n log n)

Time complexity O
(
n2

)
O

(
∆3

)
Ω (n) O (n)

Nontrivial Yes No No Yes

Table 1: Performance Comparison.

14

References

[1] V. Bharghavan and B. Das, “Routing in Ad Hoc Networks Using Minimum Connected Domi-
nating Sets”, International Conference on Communications’97, Montreal, Canada, June 1997,
pp. 376-380.

[2] J. Burns, “A Formal Model for Message Passing Systems”, Technical Report TR-91, Computer
Science Department, Indiana University, May 1980.

[3] G. Chen and I. Stojmenovic, “Clustering and routing in wireless ad hoc networks”, Technical
Report TR-99-05, Computer Science, SITE, University of Ottawa, June 1999.

[4] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operation Re-
search, 4(3):233–235, 1979.

[5] I. Cidon and O. Mokryn, “Propagation and Leader Election in Multihop Broadcast Environ-
ment”, 12th International Symposium on DIStributed Computing (DISC98), September 1998,
Greece. pp.104–119.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs”, Discrete Mathematics,
86:165–177, 1990.

[7] B. Das, R. Sivakumar, and V. Bharghavan, “Routing in Ad-Hoc Networks Using a Spine”,
International Conference on Computers and Communications Networks ’97, Las Vegas, NV.
September 1997.

[8] M. Gerla, and J. Tsai, “Multicluster, mobile, multimedia radio network”, ACM-Baltzer Journal
of Wireless Networks, Vol.1, No.3, pp.255-265(1995).

[9] C.R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Networks”, IEEE Journal
on Selected Areas in Communications, Vol. 15, No. 7, Sept. 1997, pp. 1265-1275

[10] R. Sivakumar, B. Das, and V. Bharghavan, “An Improved Spine-based Infrastructure for
Routing in Ad Hoc Networks”, IEEE Symposium on Computers and Communications ’98,
Athens, Greece. June 1998.

[11] I. Stojmenovic, M. Seddigh, J. Zunic, “Dominating sets and neighbor elimination based broad-
casting algorithms in wireless networks”, Proc. IEEE Hawaii Int. Conf. on System Sciences,
January 2001.

[12] J. Wu, and H.L. Li, “On calculating connected dominating set for efficient routing in ad hoc
wireless networks”, Proceedings of the 3rd ACM international workshop on Discrete algorithms
and methods for mobile computing and communications, 1999, Pages 7–14.

15

