
Measuring the Scalability of a XML-QL Relational Database Management
System

RebeccaJ. Cathey, Steven M. Beitzel,Eric C. Jensen,AngeloJ. Pilotto,
David Grossman

Information Retrieval Laboratory
Departmentof ComputerScience
Illin ois Instituteof Technology

Chicago, IL 60616

�
cathey, beitzel, jensen,pilotto, grossman� @ ir.iit .edu

Abstract

Theexplosive growth of XML has led to an increasing
needfor scalableXMLretrieval systems.Our XMLretrieval
system,the SQLGenerator, stores XML of any schemain
a fixed schema relational database and supports a full-
featuredsemistructuredquery language, XML-QL, through
optimized translation of its semantics to relational SQL
queries. This paper examinesthe scalability of this ap-
proach with respect to increasingdata size. We index four
XML collections ranging in sizefrom 500MB to 2GB that
were generatedusing a standard XML generator, XBench.
Wethencomparetheexecution timesof 11 standard XBench
queries,covering a widerangeof semistructuredquery fea-
tures, whosesemanticsweredirectly translatable fromtheir
original XQuery language to XML-QL. Although it is dif-
ficult to estimatethe theoretical baselinefor scalabilit y of
thesequery features in an RDBMS, many of the queries’
runtimesgrow linearly with respect to thesizeof thedocu-
ment collection.

1. Introduction

The eXtensible Markup Language(XML) is playing an
increasingly important role in the exchangeof a wide vari-
ety of data on the Web and elsewhere [4]. XML is a self-
describing language, whichmeansthat it candefineit’sown
schema.Furthermore,with dataof ahierarchical nature,de-
finedschemasallow XML to maintainhierarchical continu-
ity. Combined, the hierarchicalandself-describing aspects
of XML allow for tremendous flexibility when designing
XML collections.

Becauseof thegrowth of XML data,efficientmethodsto

store andsearchXML documentsareneeded. Our XML-
QL to SQL translator, SQLGenerator, indexes XML docu-
mentswith differing schemasinto astaticschemarelational
database.Then it takes an XML- QL query as input and
producesequivalentSQL for thatquery. By using SQL as
an intermediatestep, we avoid the complexities of build-
ing a full database engine such as index structures,storage
management, query optimization, andconcurrency control.
Additionally, thegeneratedSQL is not tiedexplicitly to any
XML schema, DTD, or any otherrigid XML specification.
This enablestheSQLGenerator to work with documentsof
arbitrary XML schemaswithout modification of the under-
lying relational schema.

In thispaper, wedemonstratethescalabilityof theSQL-
Generator by testingit against increasingly largeXML doc-
ument collections. In section2 we discussprevious work
in this area.Section3 givesa brief description of theSQL-
Generator. In section 4 we present the resultsof running
specific querieson different document collections of vary-
ing sizes.We provide analysis of theseresultsin section 5.
Finally, section 6 statesour conclusions.

2. Related Work

XML is a semistructureddataformat. Therefore, it has
no rigid, predefinedstructure or schema.In order to search
XML , a query languagedesignedto search semistructured
data is needed [9, 5]. Query languages have progressed
from simple path based languagesto complex query lan-
guagesthatoffer a wide range of functionality suchasand
XML -QL [3]. Most semistructured query languageshave
similar underlying semistructured query foundations. The
SQLGeneratorimplementsXML- QL, aquery languageini-
tially developedby AT&T ResearchLaboratories[10].



Due to it’s hierarchical nature, there is a diversebody
of prior work on methods of storing and indexing XML
data.We chooseto focuson the method thatutilizesa rela-
tional database managementsystem(RDBMS). Yoshikawa
and Amagasa classify methods for designing a database
schemafor XML into two categories: structured-mapping
approaches and model-mapping approaches [21]. In the
structure-mapping approach, a database schema is de-
fined for eachXML schemaor Document Type Descrip-
tor (DTD)[19, 20, 14]. The model-mapping approach ad-
dressesthe issueof mapping schemalessXML documents.
In this approach,a fixed database schemais usedto store
the structure of all XML documents. Examples of this in-
cludetheEdge-orientedapproachandthenode-orientedap-
proach.Theedge-orientedapproachdevelopedby Florescu
and Kossmanis a simple schemethatstoresall attributesin
a single table [12]. Another variant of the edge approach
is to store the attribute names in another table [11] or to
store all associations of the sametype in the same binary
relation[18]. Thenode-orientedapproachmaintainsnodes
ratherthanedges[21]. With the start andendpoints of a
node it maintainsa containment relationship for ancestor-
descendent relationships.

The wideuseof XML coupledwith themultiple storage
and querying techniquesavailablehasled to the develop-
ment of numerous XML searchsystems.The Agora Sys-
tem employs XML as the userinterfaceformat, while all
the input to the query processorconsists of relational tu-
ples [16]. Agora usesa subset of the Quilt query language
[17] andstoresXML into the relational databaseusingthe
structure-orientedapproach.Agorawasdemonstrated using
several collections of cooking recipes,nutritional informa-
tion, nutritional information and XML medical files. De-
haanet. al, discussesa systemthat translatesan XQuery
query into anSQL query [8]. TheXML documents are en-
coded using dynamic intervals which allow them to repre-
sent aniterated application of XQuery expressionson a se-
quenceof XML documentsby asingle relational query. The
performanceof two methodsutilizing dynamicintervalsare
compared with severalother XQuery processers andnative
XML database systems. Thetime over specific queriesus-
ing differentsystems is thencomparedto show thevalidity
of their system.Through experimentation, they determined
thatthedynamic interval-based plansscale(almost)linearly
whenenabledby merge-joinevaluationstrategies. Thiswas
a significant improvement over the quadratic behavior ex-
hibited by a number of other XQuery systems. However,
the method usedto determine lineartime isbasedsolely on
timings from one query and the methods usedto map and
query XML documents are XQuery dependent. To show
the scalability of our system, we evaluateit using varying
testcollection sizes.Wewere unable to locateanXML-QL
search engine that that fully supported the functionality of

XML -QL and attempts to be scalable. AT&T’ s reference
implementation was developed strictly to show the func-
tionality of XML-QL. Most XML -QL or XQuery engines
either did not support all the functionality of our XML -QL
systemor storedall of theXML datain memory and would
not havebeenable tosupport thesizeof our XML document
collections.

In addition to evaluation, therehas been research com-
paring the different methods usedto implement database
schemas. Kudrassanalyzesdifferent storageandretrieval
methodsfor schemalessXML documents [15]. By compar-
ing several structure-oriented approachesto storing the en-
tire XML document asonelargecharacterobject,it wasde-
termined that the feasibility of using thestructure-oriented
approachto mapdocumentsinto tablesis restrictedto data-
centric documentswith little prose. Yoshikawa and Ama-
gasashow advantagesof the node-orientedmethod for the
model-basedapproachof designingafixeddatabaseschema
[21]. Jiang et. al, comparesthe scalability of dif ferent
model-mapping approachesto avariant of theedge-oriented
approach[13]. Based on parent-child relationships, XPar-
ent wasfound to outperform XRel [21] andEdge[11].

Themajority of XML collections usedfor testingXML
search systems weretypically small, ranging from 7MB to
280MB. In addition, it is sometimesnecessaryto generate
XML documentsusingbenchmarks suchasXMark [2] and
XBench [1]. The sizeof collections that canbe generated
with thesetools ranges from 100KB to 10GB. Because of
the needto evaluateexisting XML systems, the INitiative
for the Evaluation of XML retrieval (INEX) [7] aims to
provide a large XML testcollection with appropriatescor-
ing methods. The INEX document collection consists of
12� 107 documents, totalling 494MB in size. The topicsas
well asthedocumentsusedin INEX are open to INEX par-
ticipantsonly, hence we were not able to usethemin this
study. In order to testthescalabil ity of the SQLGenerator,
we neededlarge XML document collections. Although ex-
perimentson smallerXML collectionscanhelp to measure
performance andrelative scalability against otherXML re-
trieval systems, they do not measure the overall scalability
of the system. Our evaluation differsfrom previousonesin
that we focus on the scalability aspect of performanceby
showing the ability of our system to handle large amounts
of XML efficiently.

3. System Description

The SQLGenerator is a scalable XML retrieval engine
that fully implements the XML -QL query language by
translatingit to SQL.In addition to its rangeof capabili ties,
XML -QL providesanintuitive meansof writing semistruc-
tured queries resembling SQL that use XML data bind-
ings in a format very similar to the XML documentsbe-



ing searched. Although we have chosento use XML -QL,
we believe thatour relational schemaand translationtech-
niques can be applied to similar query languages such as
XQuery. The SQLGenerator incorporatesXML documents
of any schema without requiring modifications to thefixed
underlying relational schemathey arestoredin. Becausethe
documentsdo not necessarily have definedDTDs or XML
schemas,weemploy themodel-mapping, edge-oriented ap-
proachto store theXML documentsin thedatabase.More
detail on the storageand translation processusedby the
SQLGeneratoraregivenin [6].

4. Results

Weranexperimentson aSun FireV880 with 4 750MHz
UltraSparc-III CPUs and 8GB of mainmemory. We imple-
mentedSQLGenerator usingJava 1.4 and stored the XML
document Collections using Mysql 4.0.16. The Mysql
database is storedon a10K RPM fibrechannel drive.

We generated our XML document collections using
XBench. XBench has an option to create data-centric or
topic-centric documents. A topic-centric document con-
tainssignificantly moretext thanelement tags, while adata-
centricdocument dedicatesmoreparts to tags.There is also
an option to createsingleor multiple document collections.
We chose to use data-centric documents asthey contained
datarelevant to databaseapplicationsratherthandocuments
marked up in XML . We also chose to implement multi-
ple document collections becausethey containedmultiple
XML schemas.XBench producesa number of XML doc-
uments in the e-business domain. Thereare customer, ad-
dress,country, item, author, andmultiple order XML doc-
uments. We generateda 2GB XML document collection.
Thenwe took random subsetsof the 2GB XML document
collection to obtain 500MB, 1GB, and 1� 5GB XML docu-
ment collections. Using the edge-orientedapproachmost
of the data is stored in a single table calledthe pinndx ta-
ble. Thenumberof rows for the 500MB, 1GB.1.5GB.and
2GB databasesare11.32, 22.64, 33.96, and45.28 million
respectively. XBench providesa setof XQuery queriesto
run against the generateddata. A subsetof their queries is
createdfor queries against the datacentric multiple docu-
ment collection. We createda corresponding query subset
of XML-QL queriesto runagainsttheXML collections.We
testedour querieson a smallXML collection to make sure
they returned the same resultsasa corresponding XQuery
query returns. Theresults were thesame for all thequeries
except Q10 which returnsthesameresults,however, it does
not return the results in thesameorder. Thereason for this
is because our Q10 usesskolem functions to group by cer-
tain attributes. In the original query, however, “order by”
was usedto order and group results. There were several
functionalities presentin XQuery that have no equivalent

in XML- QL. For example, XQuery contains the “exists”
keyword, whereasthereis no suchfunctionality for XML-
QL. Therefore,wedid not includequeriesthatcould not be
translatedcorrectly.

The queries test the functionality of our systemin dif-
ferent ways. The simplest query, Q1, returns a valuefrom
a document where a certainattribute has a specific value
(id=“1”). Q1teststheability of our systemto handle match-
ing of valueson a shallow level. Q3 usesskolem functions
to group orderswith total amount bigger than11000� 0, by
customer id and then calculatesthe total number of each
group using aggregatepredicates. This teststhe ability of
our systemto handle both skolem functions and aggregate
predicates.Q4queriesfor aspecificitemwheretheid of the
previous one wasa specific value. This teststhe ability of
thesystemto handle index expressions.Q5 is similar to Q4,
however, it returnsonly thefirst item,thusperforming abso-
lute ordering not relative. Q6 tests theability of the system
to determine whetherany item in aninvoicehasa discount
ratehigher than0� 02. If such an item exists, thewhole in-
voice is reconstructed, not just theparticular item. Q8 and
Q9 test the ability of the systemto query when the exact
pathof theitem is not known. This is accomplishedthrough
the useof regular expressions. Q10 uses skolem functions
to groupresultsby theshipping type. LikeQ3, this tests the
abilit y of our systemto handle skolem functions,however,
it also tests the ability of the system to reconstruct large
amounts of XML as the result set is large for this query.
Q12 and Q16 retrieve large sections of XML wherea spe-
cific criteria is met. Thesequeriestest the abili ty of the
systemto reconstruct largeportions of XML documentsby
storing theXML in avariable or usingCONTENT AS.Q17
teststhe ability of the systemto perform a uni-gramsearch
by only retrieving authors whosebiographies contain the
word “hockey”.

We measuredthetotal time to processaquery aswell as
the time to parsethe XML, generatethe SQL, execute the
SQL, andreconstruct the XML. We also show the number
of results returned. Thebreakdown of timesfor each query
and eachdatacollection are given in Figure 2. We omitted
thetimeto parsetheXML and generatetheSQLasthatwas
always lessthanone second. The total timesof execution
for eachquery on eachXML collectionarein Figure1. Fig-
ure3 shows theexecution timesof eachquery asa function
of the collection size.

5. Analysis

It is difficult to estimatethe theoretical baseline for the
scalabili ty of these query featuresin a RDBMS. However,
we expectlinearperformanceis satisfactory. From our ex-
perimentswe canseethat for many of the testqueries,ex-
ecution time grows linearly or super-linearly with respect



Q1 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q12 Q16 Q17
500MB 4.46 54.21 27.73 4.36 1980.84 3.57 10.42 196.27 0.99 9.79 2.35

1GB 9.50 108.41 58.37 13.54 3965.71 5.65 14.62 392.61 1.12 11.90 3.92
1.5GB 11.43 19.34 82.67 614.94 5920.28 9.57 22.17 585.49 2.72 12.74 5.57

2GB 16.69 211.56 114.60 592.03 7982.45 36.01 26.02 236.24 3.18 14.90 7.25

Figure 1. Execution times (in seconds)

(a)

(b)

(c)

(d)

Q1 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q12 Q16 Q17

XML Result Size 1 3508 1 1 52853 4 2 3517 1 1 2755
SQL Execution 3.92 52.61 27.20 212.47 18.37 10.82 9.98 194.70 0.45 9.26 1.35

XML Reconstruction 0.07 0.60 0.01 0.09 1947.49 0.01 0.01 0.85 0.07 0.10 1.35

XML Result size 1 6917 1 1 105760 2 3 6958 1 1 5476
SQL Execution 8.93 106.22 57.84 12.98 36.71 40.04 14.54 390.11 0.59 11.40 2.58

XML Reconstruction 0.07 1.09 0.01 0.08 3881.23 0.01 0.01 1.53 0.07 0.08 0.70

XML Result size 1 10356 1 1 158545 2 2 10448 1 1 8348
SQL Execution 10.87 16.26 82.15 614.25 56.03 22.63 21.74 582.16 2.16 12.74 3.86

XML Reconstruction 0.08 1.47 0.01 0.19 5821.98 0.01 0.01 1.91 0.07 0.01 0.82

XML Result size 1 13800 1 1 211884 4 4 13971 1 1 11139
SQL Execution 16.11 208.02 114.07 591.41 128.11 73.72 25.59 232.11 2.64 14.39 5.30

XML Reconstruction 0.08 1.92 0.01 0.09 7762.38 0.01 0.01 2.79 0.07 0.07 1.14

Figure 2. Breakdown of time for (a) 500MB (b)1GB (c) 1.5GB and (d)2GB collections (in seconds)

0.25

1

4

16

64

256

1024

4096

16384

500 1000 1500 2000

T
im

e 
(m

in
ut

es
)

�

Collection Size (MB)

Execution time (including I/O) / Collection Size

Q1
Q3
Q4
Q5
Q6
Q8
Q9
Q9

Q10
Q12
Q16
Q17

Figure 3. Execution Time per Query

to the size of the XML collection. Several queries had
some anomalies that needto be examined. For example,
the queriesQ3, Q8, and Q10 all run linearon threeof the
four databasesizes.Q3 runslinearlyon all of thedatabases
except the1.5GBdatabase.On this database,the changein
time drops. Similarly, Q10 runs linearly on the first three
databases. For the 2GB database, the change in time drops.

Another similar query isQ8,however on the 2GB database
thechangein time increases. Q9 is almostlinear. Thereis a
slight increasein linearity betweenthe1GB and the1.5GB
database,however, the other times grow linearly with re-
spect to the size of the XML collection. Q5 differs from
all the queries as it exhibits anomalous behavior on all the
databases.It runs with increasing time from the 500MB to
1.5GB databases,however, the change in time is exponen-
tial. Thenfor the2GB databasethe timedecreases.

Thetimerequired to rundifferentqueriesfluctuatesquite
a bit. For example, the time to run Q6 is muchhigher than
the time to run Q17. By looking at the breakdown of time
overall thesteps,wecanseethetimestoparsetheXML and
generatetheSQLarefairly staticthroughout all thequeries.
Thecauseof thetimefluctuations,therefore, lie in theSQL
generationand XML reconstruction steps.

The goal of using a relational database is to move
the processing functionality to the database. Becausethe
databasedoes most of the work, the SQL execution step
canbecome very time consuming. For example, anXML-
QL query convertedto anSQL query requiresa search and
sometimesmultiple self joins of the pinndx table. Since
the pinndx table consistsof 10-45 million rows, this can
often be a long process. However, optimization techniques
in thedatabase, suchastheproperuseof indexes,cansig-
nificantly speed up SQL execution time. Evenwith anop-



timizeddatabase,this stepcanbetime consuming. For ex-
ample,theSQLexecution timegrowsexponentially for Q6.
For all other queries,however, theSQL execution time fol-
lows thepattern of the behavior exhibitedover thetotal ex-
ecutiontimeasdescribedabove.

The XML reconstruction step is occasionally time con-
suming becausethe queries sometimesbind complex vari-
ables which require the subtrees of XML to be recon-
structed. Other queriesin which the XML reconstruction
stepdoesn’t takeasmuchtimedonot require largesections
of XML to be reconstructed. Another factorthateffectsthe
XML reconstructiontime is thenumber of resultsreturned.
Notice that the time to reconstruct XML is sometimeslin-
earand sometimesconstant. For example, Q1andQ10have
constant XML reconstruction timesover all theXML doc-
ument collections whereas, Q3 andQ12 experiencelinear
growth within theXML reconstruction step.Thereason for
the change in growth orderscanbeattributedto the size of
the resultsetreturned. TheXML reconstruction step grows
linearly for Q3, Q6, Q12, and Q17. Notice that these four
queriesall have aresultset thatalsogrows linearly with re-
spect to the document size. In addition, these four queries
are the only four queries in our collection that have non
constant result setsizes. Therefore, when a large number
of resultsarereturned, the XML reconstruction time grows
linearlywith respect to the sizeof the XML collection.

6. Conclusions

In this paper we show that our XML retrieval system,
SQLGenerator, is a reliableand scalablemethod for stor-
ing and searching a collection of XML documents. We
testedthescalabili ty of theSQLGenerator using collections
of XML documents ranging in sizefrom 500MB to 2GB.
From our experiments we determined that, for most of our
queries, thetime of our systemgrows linearly with respect
to thesize of theXML documentcollection.

Acknowledgements

This work is supported by BIT Systems, Inc. Special
thanks to FredInghamandTim Lewis for their assistance
with thedesignand testing of variouspartsof theSQLGen-
erator.

References

[1] Xbench - a family of benchmarks for xml dbmss.
http://db.uwaterloo.ca/ddbms/
projects/xbench/index.html.

[2] Xmark - an xml benchmark project.
http://monetdb.cwi.nl/xml/index.html.

[3] Xml-ql: A query language for xml.
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.

[4] Xml query requirements.http://www.w3.org/TR/xmlquery-
req.

[5] S. Abiteboul. Querying semi-structured data. In ICDT,
pages1–18, 1997.

[6] S. Beitzel, E. Jensen, A. Pilotto, R. Cathey, O. Frieder,
and D. Grossman. Xml retrieval in the class-
room. IIT IR Lab technical report, July 2003.
http://ir.iit.edu/publications/downloads/ SQLGenera-
torTechnicalReport.pdf.

[7] S. Dagstuhl. Proceedingsof thefirst workshopof theinitia-
tive for theevaluation of xml retrieval (inex).

[8] D. DeHaan,D. Toman, M. Consens, and M. Özsu. A com-
prehensive xquery to sql translation usingdynamicinterval
encoding. ACM SIGMOD/PODS2003Conference, 2003.

[9] A. Deutsch,M. Fernandez,D. Florescu,A. Levy, D. Maier,
andD. Suciu. Queryingxml data. IEEEData Engineering
Bulletin, 22(3):12–20, 1999.

[10] A. Deutsch, M. Fernandez,D. Florescu,A. Levy, and D. Su-
ciu. A query languagefor xml. International World Wide
WebConference, 1999.

[11] D. FlorescuandD. Kossman.A performanceevaluation of
alternative mapping schemesfor storingxml datain a rela-
tionaldatabase.Technical report, INRIA, France,1999.

[12] D. FlorescuandD. Kossman. Storing and queryingxml data
usinganrdbms. IEEE Data EngineeringBulletin, 22(3):27–
34,1999.

[13] H. Jiang,H. Lu, W. Wang, andJ.X. Yu. Pathmaterialization
revisited: An efficient storagemodel for xml data.Proceed-
ings of the ThirteenthAustralian Conference on Database
Technologies, 5:85–94, 2002.

[14] L. Khan and Y. Rao. A performance evaluationof storing
xml data in relational databasemanagement systems.Pro-
ceeding of the third international workshop on Web infor-
mationand datamanagement, pages31–38, 2001.

[15] T. Kudrass.Management of xml documentswithout schema
in relational database systems. Information & Software
Technology, 44(4):269–275, 2002.

[16] I. Manolescu,D. Florescu, D. Kossmann, F. Xhumari, and
D. Olteanu. Agora:Living with XML andrelational. In The
VLDB Journal, pages623–626,2000.

[17] J. Robie,D. Chamberlin,and D. Florescu. Thequil t query
languagefor semistructureddataandxml. In Proceedings
of the International Workshopon the Web and Databases,
2000.

[18] A. Schmidt,M. Kersten,M. Windhouwer, and F. Waas.Ef-
ficient relational storage andretrieval of XML documents.
Lecture Notesin ComputerScience, 1997:137+,2001.

[19] J. Shanmugasundaram,K. Tufte, G. He, C. Zhang, D. De-
Witt, and J. Naughton. Relational databasefor querying
xml documents:Limitationsandopportunities. In Proc.of
VLDB, 1999.

[20] F. Tian, D. DeWitt, J.Chen,and C. Zhang. The designand
performanceevaluation of alternativexml storagestrategies.
ACM SIGMODRecord, 31(1):5–10,2002.

[21] M. Yoshikawa and T. Amagasa. Xrel: A path-basedap-
proach to storageandretrieval of xml documentsusing rela-
tionaldatabases.ACM Transactions on InternetTechnology
(TOIT), 1(1):110–141, August2001.


