
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  9,  NO.  3,  MARCH  1998 283

Parallel Computation
in Biological Sequence Analysis
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Abstract —A massive volume of biological sequence data is available in over 36 different databases worldwide, including the
sequence data generated by the Human Genome project. These databases, which also contain biological and bibliographical
information, are growing at an exponential rate. Consequently, the computational demands needed to explore and analyze the data
contained in these databases is quickly becoming a great concern. To meet these demands, we must use high performance
computing systems, such as parallel computers and distributed networks of workstations. We present two parallel computational
methods for analyzing these biological sequences. The first method is used to retrieve sequences that are homologous to a query
sequence. The biological information associated with the homologous sequences found in the database may provide important
clues to the structure and function of the query sequence. The second method, which helps in the prediction of the function,
structure, and evolutionary history of biological sequences, is used to align a number of homologous sequences with each other.
These two parallel computational methods were implemented and evaluated on an Intel iPSC/860 parallel computer. The resulting
performance demonstrates that parallel computational methods can significantly reduce the computational time needed to analyze
the sequences contained in large databases.

Index Terms —Sequence, comparison, alignment, search, retrieval, database, algorithm, parallel, speculative, computation.

——————————   ✦   ——————————

1 INTRODUCTION

HE field of molecular biology has created many spe-
cialized databases which contain diverse information,

such as annotated biological sequences, three-dimensional
molecular structures, and both genetic and physical maps.
Keen et al. [31] have compiled a list of molecular biology
databases (LiMB database) which presently contains 189
entries and is continuing to grow. The LiMB database listed
36 sequence databases, including the internationally well-
known DNA sequence databases GenBank [5], EMBL [17],
and DDBJ [15], and the protein sequence databases PIR
[19], SWISS-PROT [1], and PDB [7].

Given the great deal of knowledge that can be derived
from analyzing biological sequences, we developed parallel
methods to reduce the time required to perform two com-
putationally intensive analyses: homologous sequence
searching and multiple sequence alignment. Our parallel
searching method reduces the retrieval time by nearly a
factor of N, where N is the number of processors. As shown
in this paper, a retrieval on the GenBank that took ap-
proximately 168 hours using a single processor was re-
duced to only 2.6 hours using 64 processors. Our parallel
alignment method also reduces the computation time sig-
nificantly. Again, as shown in this paper, to align 324 pro-

tein sequences, it took about 29 days on a single processor,
but only about 13 hours on a 64 processor system. These
parallel computational methods are also highly scalable.
That is, they can be implemented on either a small or a
large number of processors. They can also be implemented
on either a parallel computer or a network of workstations.

Retrieving homologous sequences from existing databases
is important to the biomedical research community. When
scientists discover new sequences, they are eager to search
these databases for sequences that are similar or related to
these discoveries. The biological information associated with
the similar sequences found in the databases may provide
important clues for determining the structure and function of
the newly discovered ones. The detail similarity patterns of
the retrieved sequences can be seen in a multiple sequence
alignment, which is obtained by stacking up sequences on
top of each other. A minimal number of gaps are introduced
in the sequences so that the number of matches is maximized
according to a given optimization function. This analysis has
been used successfully to predict the function, structure, and
evolutionary history of biological sequences. Multiple se-
quence alignment is also used in AIDS and cancer studies,
where it has, for example, been used to develop AIDS vac-
cine components [48].

The remainder of this paper is organized as follows:
First, we present algorithms used to perform biological se-
quence analysis. Then, we present the parallel computa-
tional methods for retrieving homologous sequences from
large biological databases. In the following section, we pre-
sent heuristic methods for aligning multiple sequences. We
conclude by summarizing the results of our methods in the
last section.
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2 BIOLOGICAL SEQUENCE ANALYSIS ALGORITHMS

To compare two DNA, RNA, or protein sequences, the
similarities between the individual residues (nucleic or
amino acids) in these sequences must first be defined. A
substitution scoring matrix that defines the similarity score
between all possible pairs of residues is required. Two dif-
ferent types of matrices are used: one for comparing the
nucleic acid sequences and the other for the amino acid
sequences. These matrices contain the score for substituting
or exchanging one residue by another. The substitution
matrices for amino acids were described in detail by Day-
hoff et al. [12]. These matrices were constructed based on a
combined effects of several biological factors. For the nu-
cleic acids, the identity matrix can be used [51]. That is, a
score of one unit is given for substituting one nucleic acid
by another identical one. Otherwise, a score of zero is
given.

A useful algorithm that gives a measure of similarity be-
tween two sequences must consider change (substitution),
deletion, and insertion of residues since biological sequences
are known to mutate as they evolved from one generation to
the next. To define the terms substitution, deletion, and in-
sertion more precisely, consider an example. Let sequence A
= CSTPGND and sequence B = CSDTND. One possible
comparison consists of the following substitutions, dele-
tions, and insertions.

CS-TPGND

CSDTN�-D

The process of comparing two sequences by writing one
sequence above the other is referred to as aligning the two
sequences. In the above alignment, we say that b3 = D is
inserted into the first sequence or it is deleted from the sec-
ond one, depending on the point of view. a4 = P is substi-
tuted by b5 = N or b5 by a4, again depending on the point of
view. Consecutive dashes in the sequences represent a gap.
Therefore, there is a gap of length one between a2 and a3 in
the first sequence and a gap of length two between b5 and b6
in the second sequence.

The first algorithm for determining the optimal biologi-
cal sequence alignment without enumerating all the possi-
ble solutions was introduced by Needleman and Wunsch
[41] in 1970. This algorithm defined the similarity score
between two sequences as the sum of all individual ele-
mentary similarities. The elementary similarities consist of
substitutions, deletions, and insertions. At the time, Nee-
dleman and Wunsch were not aware that their algorithm
belonged to a class of dynamic programming methods
which had been used in speech processing and computer
science, as well as other applications [33]. The solution to
this class of problems can be obtained by using a sequence
of smaller solutions to the same problem.

To describe the sequence analysis algorithms, let us first
define the following basic notation and terminology.

M = length of sequence A
N = length of sequence B
AM = a1a2a3 ... aM
BN = b1b2b3 ... bN
SM, N = optimal similarity score between sequences AM and BN
sub(ai, bj) = score for substituting bj for ai

sub(ai, -) = score for deleting ai
sub(-, bj) = score for inserting bj
g = sub(ai, -) = sub(-, bj) = gap score
Si,j = the accumulative similarity score between sequences A

and B up to the ith and jth positions

The original sequences AM and BN do not have any gaps.
To align the residues between these two sequences, gaps
are introduced. Let ¢AL  and ¢BL  be the two aligned se-

quences, where L = MAX{M + Na, N + Nb}, Na is the total
number of gaps (number of dashes) introduced in the
original sequence AM, and Nb is the total number of gaps

introduced in the original sequence BN. A gap (-) may be
introduced in and at the end of both sequences. Consider
the following aligned sequences.

¢ =
¢ =

A

B
L

L

CCTA--GA-

--TATGGAC

In the above alignment, M = 6, N = 7, L = 9, Na = 3, and

Nb = 2. ¢AL  has one internal gap of length two and one ex-
ternal gap of length one. ¢BL  has one external gap of length
two. The alignment score between two sequences is defined
by (1). Therefore, the above alignment has a score of -1 if
the identity substitution matrix is used. Usually, the exter-
nal gaps are not penalized in practice. Furthermore, con-
secutive dashes (a single gap) are penalized by a linear
function such as wk = u + vk instead of wk = vk, where k is the
length of the gap, u is the penalty for initiating a gap, and v
is the penalty for extending a gap and is less than u. Note
that u = g = sub(ai, -) = sub(-, bi), which can be obtained
from a substitution score matrix. If the external gaps are not
penalized, u = g = sub(ai, -) = sub(-, bi) = -1, and v = 0, the
score of the above alignment would be three.

S A B sub a bL L i i
i

L

¢ ¢ =
=
Â, ,2 7 2 7

1
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The Needleman and Wunsch algorithm uses a constant
gap penalty. That is, it gives the same penalty for each gap
regardless of its length. In reality, we want a higher penalty
for a longer gap than for a shorter one. The Needleman and
Wunsch algorithm was later generalized by Smith and
Waterman [44] to include this criterion. In addition, the
Smith and Waterman algorithm can be used for three dif-
ferent types of comparisons. This algorithm is represented
by (2). The gap penalty function is defined as wk = u + vk,
(u, v £ 0), where k is the gap length, u is the penalty for ini-
tiating a gap, and v is the penalty for extending a gap.
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The initial conditions for this algorithm depend on the
type of comparison that we wish to perform. There are
three types of comparison as described by Yap et al. [51]:
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1) sequence to sequence,
2) subsequence to sequence, and
3) subsequence to subsequence.

The Smith and Waterman [44] algorithm requires M2 ¥ N
computation steps, while the Needleman and Wunsch re-
quires only M ¥ N. For comparing long sequences, the
Smith and Waterman algorithm is computationally pro-
hibitive. To reduce the computation steps, Gotoh [21] modi-
fied the Smith and Waterman algorithm as shown in (3) to
(5), which requires only M ¥ N steps. Note that w1 = u + v,
since k = 1.
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The comparison score defines the degree of similarity
between two sequences. To see the similarity patterns be-
tween the two sequences, an alignment must be con-
structed. To obtain the alignment, we must keep track of all
the paths leading to this optimal score. That is, we must
save all the editing steps (substitutions, deletions, and in-
sertions). One way to keep track of all the editing steps is to
save the entire matrix S for backtracking [20].

The backtracking method is fast but it requires O(M ¥ N)
memory space, which limits its application. For example,
consider the longest sequence in GenBank which has
684,973 residues. At least 1,877 Gbytes of memory are re-
quired to align this sequence against itself, assuming that
an integer has four bytes. To overcome this problem, Myers
and Miller [40] applied the divide and conquer algorithm of
Hirschberg [26] to obtain the same alignment but require
only O(N) memory space. The main idea behind this
method is to determine the midpoint of an optimal align-
ment using a forward and a reverse application of the Go-
toh’s algorithm. Then, the optimal alignment can be ob-
tained by recursively determining optimal alignments on
both sides of this midpoint.

The dynamic programming algorithm discussed above
gives the maximum sensitivity for comparing two se-
quences. Sensitivity is a measure of how well a method can
detect the actual similarity between two sequences. At pre-
sent, there are three widely used fast heuristic algorithms
for comparing two sequences. These algorithms are faster
than the dynamic programming algorithm but they give
lower sensitivity. Yap et al. [54] discuss and compare three
programs, FASTA, BLAST, and FLASH, that use these heu-
ristic approaches. The performance of the parallel sequence
similarity searching methods that we discuss in this paper
is not dependent on the sequence comparison algorithm
used.

As more sequences were generated, researchers began to
use multiple sequence alignment to better study the relation-

ship between sequences. A multiple sequence alignment is
defined similarly to the pairwise alignment. It is a configu-
ration that is obtained by stacking up sequences on each
other. A minimal number of gaps is introduced in the se-
quences so that the number of matches or similarities in
each column is maximized. Mathematically, a multiple se-
quence alignment score is defined by (6), where n is the
number of sequences and L is the length of the longest
aligned sequence. Ai is the ith sequence and Ai,k is the resi-

due at the kth position of the ith sequence. G(Ai) is a gap

penalty function. Actually, Score(An) is the sum of all possi-
ble pairwise alignment scores that can be constructed from
n sequences. For n sequences, there are ( )n n-1

2  possible
pairwise alignment scores. The objective of multiple se-
quence alignment is to maximize Score(An).
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Many strategies have been developed to optimize this
function. In most strategies, two-group alignment is used
repetitively to obtain the multiple sequence alignment. In
two-group alignment, the sequences from one group are
aligned against those in the other group while freezing the
alignment within each group. To align two groups of se-
quences, the algorithm of two-sequence alignment ((3) to
(5)) can be extended as follows:
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where K is the number of sequences in the X group and L in
the Y group. Xi is referred to the ith position of all aligned
sequences in the X group and Xk,i is referred to a residue at
the ith position of the kth sequence in the X group. Pi,j, Qi,j,
and the initial conditions remain the same. Equations (3)
and (7) look the same, but the sub¢ function of (7) is more
complicated.

3 PARALLEL SIMILARITY SEQUENCE SEARCHING

We only present computational approaches, for the first
phase, that can be used to speed up the search for the most
similar sequence in the database. Only the sequence identi-
fication is retrieved. Once the identification of the similar
sequence has been retrieved, we can use any of a number of
available software tools to retrieve its complete entry.

There are two general parallel methods that can be used
to search sequence databases. One method is to parallelize
the comparison algorithm where all processors cooperate to
determine each similarity score [8], [16], [34]. The other
method is to parallelize the entire database comparison
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process where each processor performs a selected number
of comparisons independently [14], [22], [37], [43]. The first
method is more suitable for the single instruction stream,
multiple data stream (SIMD) parallel computer, where all
the processors execute the same instruction at the same
time, and the communication speed between processors is
fast relative to the performance of a single processor. The
second method is more suitable for the multiple instruction
stream, multiple data stream (MIMD) parallel computer,
where each processor is significantly more powerful than a
SIMD processor, and the processors execute their instruc-
tions independently. We only evaluate methods using
MIMD systems.

The second method uses a coarser grain parallelism ap-
proach, which has lower communication overhead. How-
ever, the overall performance of the coarser grain approach
depends on its load balancing technique. The load balanc-
ing technique must be able to assign approximately the
same amount of work to each processor. We examine and
later combine two previously developed load balancing
techniques. The first technique (portion method) was pre-
sented by Guan et al. [22] and the second one (master-
worker) by Sittig et al. [43], Miller et al. [37], and Desh-
pande et al. [14]. We compare our method with the master-
worker and the portion methods. This comparison is lim-
ited to the parallel computational methods, not the parallel
computing system or the sequence comparison algorithms
used for implementation.

To efficiently use a parallel computer system, a balanced
workload among the processors is required. To compare
the workload balancing effectiveness of a computational
method, let the percentage of load imbalance (PLIB) be de-
fined as

PLIB
LargestLoad SmallestLoad

LargestLoad=
-%

&
'

(
)
*

¥ 100 .      (8)

PLIB is the percentage of the overall processing time that
the first finished processor must wait for the last processor
to finish. This number also indicates the degree of parallel-
ism. For example, if PLIB is less than one, we achieve over a
99 percent degree of parallelism. Therefore, a computa-
tional method with a lower PLIB is more efficient than an-
other one with a higher PLIB. The workload is perfectly
balanced if PLIB is equal to zero.

To balance the workload, Guan et al. partition the data-
base into a number of portions according to the number of
processors allocated. To achieve ideal workload balance,
where PLIB = 0, the size of each portion must be equal to
the size of the database divided by the number of allocated
processors. However, obtaining this ideal size for each por-
tion is not easily attained since the database sequences have
greatly varying length. The last sequence assigned to each
portion does not always result in the perfect size for that
portion, with the sequence being either too short or too
long. If the last sequence assigned to portion P causes the
sum of the sequence lengths in this portion to exceed the
ideal size by more than X percent, it is reassigned to portion
P + 1. This process continues until all the sequences have
been assigned to one of the portions. In this method, each
processor is assigned to search each portion independently.

Consequently, this method has a low communication over-
head, but may result in a high PLIB as shown below.

To minimize the PLIB for the Guan et al. method, the
percentage value X should be set to zero. In a worst case
scenario, PLIB can be expressed as,

PLIB
X Psize N X Psize

X Psize
=

+ - - -
+

¥
1 1 1

1
100

0 5 0 52 7
0 5

,    (9)

where Psize is the ideal portion size, and N is the number of
compute nodes. In this scenario, we assume that the size of
every portion, except the last one, is equal to the allowable
maximum: (1 + X)Psize. Equation (9) can be simplified into
PLIB XN

X= +1 , which shows that, for any nonnegative value
of X, PLIB is minimal when X is zero.

In the Guan et al. method, the workload for each proces-
sor is determined prior to the commencement of the actual
execution. In the Sittig et al. method, the workload is as-
signed to each processor dynamically during query proc-
essing. Sittig et al. view the querying process as a job which
consists of a number of independent tasks (comparisons).
They use a processor as the master to distribute the se-
quences to the workers (the remaining processors) for com-
parison and to collect the similarity scores back from them.
The master’s main job is to keep all the workers busy as
long as there are sequences to be compared. That is, the
master assigns a new sequence, as soon as possible, to the
worker that completes its assigned comparison. This form
of dynamic load balancing continues until all the sequences
have been compared. To minimize PLIB, the database se-
quences are first sorted by their lengths in decreasing order
before they are distributed by the master to the workers.

The Sittig et al. master-worker method has the opposite
advantage and disadvantage from the Guan et al. portion
method. That is, the master-worker method has a low PLIB
but a high communication overhead. Although the workers
need to communicate with the master only to obtain new
sequences and to report new similarity scores, this method
still has significantly higher communication overhead than
the Guan et al. portion method. In addition, the master may
not have enough work to do if there are too few workers.
On the other hand, the master can become a system bottle-
neck if there are too many workers. If the master is over-
loaded, the workers’ idle times are increased.

To reduce the communication overhead, eliminate the
potential bottleneck from having a master processor, and
obtain a low PLIB, we combine the advantages from both
the Guan et al. and the Sittig et al. methods. In the com-
bined (bucket) method, a greedy allocation method (as
found in Sittig et al.) is performed statically (as in Guan et
al.). In the bucket method, the original sequences in the
database are placed into one of the N buckets (smaller da-
tabases), where N is the largest number of possible proces-
sors, so that the difference between the sum of the sequence
lengths in the smallest and the largest buckets is mini-
mized. That is, the PLIB is minimized.

The algorithm for placing the database sequences in
these buckets is as follows: First, the sequences are sorted in
decreasing length order. Then, starting from the longest
one, each sequence is placed into the bucket that has the
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current smallest sum of sequence lengths. In the case of a
tie, the smallest numbered bucket is selected. This, in fact, is
the static equivalency of the dynamic method of Sittig et al.
As in the Guan et al. method, each processor can search its
own bucket independently without communicating with
other processors. If only N

n  processors are used, each proc-
essor searches n buckets.

The bucket and the Guan et al. portion methods can be
compared analytically based on the PLIB since the only dif-
ference between the two methods is the workload on each
processor. Therefore, we compared the two methods analyti-
cally based on PLIB using the entire GenBank (release 86.0)
database. The PLIB is calculated for a varying number of proc-
essors based on our formula (8). The variables, LargestLoad and
SmallestLoad, in (8) are replaced by LargestBucket
(LargestPortion) and SmallestBucket (SmallestPortion), respec-
tively. The percentages of load imbalance for both methods
are shown in Table 1. The results in this table show that the
bucket method produced a smaller PLIB than the portion
method in all cases. For the portion method, we calculated
the PLIB for unsorted, ascending sorted, and descending
sorted databases to determine which one gives the best per-
formance. The database is sorted according to its sequence
lengths.

The main difference between the portion and the bucket
methods is the strategy used to decompose the domain of
the input data. In both methods, all processors execute the
same algorithm, but the data streams are different. Conse-
quently, we can easily compare the performance of these
two methods analytically based on the workload decompo-
sition. Unlike the portion and the bucket methods, the
master-worker method used a control decomposition strat-
egy which does not predetermine the workload for each
processor. Therefore, we cannot use the percentage of load
imbalance to compare the bucket and the master-worker
methods analytically.

To compare the bucket method with the master-worker
method, we implemented both of them on the Intel
iPSC/860 parallel computer. We then obtained run times
for six query sequence lengths using the entire GenBank
(release 86). Starting with the first sequence of 50 bases, the
lengths of the subsequent query sequences were repeatedly

increased by a factor of two. In the following tables, we
identify these sequences by their lengths. For example, the
query sequence with 50 bases is referred to as sequence 50.

The serial search times in seconds for the six query se-
quences are shown in Table 2. These serial search times are
obtained by executing a serial program on a single proces-
sor and are used to calculate the speedup factors for the
bucket and the master-worker methods. The speedup fac-
tors for the bucket and the master-worker methods based
on the implementation on the Intel iPSC/860, as shown in
Table 3 and Table 4, were calculated for all combinations of
the number of processors and the six query sequences. The
speedup factor is the ratio of the total run time of the serial
version of the program to the total run time of the parallel
version of the program. Table 3 and Table 4 show that the
bucket method also performed better than the master-
worker method in all cases.

The computation times used to calculate the speedup
factors included the I/O time, the computation time, and
the communication time required for each search. How-
ever, it did not include the preprocessing time involved in
sorting and placing the database sequences into the 128
buckets as this task was performed only once. For the cur-
rent release of GenBank (release 86.0), it took the host ma-
chine (SPARC station 2) only 80 seconds to sort the se-
quence indexes and 31 seconds to place these indexes into
the 128 buckets. Thus, for total fairness, we should include
an overhead of 111 seconds divided by the number of runs
per GenBank release. GenBank is usually updated every
two months.

The results in Table 3 show that the bucket method per-
formed consistently better than the master-worker method
in all cases. The bucket method achieved a near ideal
speedup for all six query sequences, except the shortest one.
The master-worker method achieved significantly lower
speedups than the ideal one when a large number of proc-
essors was used, as seen in Table 4. This was due to the fact
that the master was overloaded with a large number of
worker processors. Consequently, we expect the bucket
method to perform significantly better than the master-
worker method on a system that has a larger number of
processors (more than 128). If we keep increasing the number

TABLE 1
PERCENTAGE OF LOAD IMBALANCE FOR VARYING NUMBER OF PROCESSORS

No. of Processors Portion Method Bucket Method

Unsorted Ascending Sorted Descending Sorted Descending Sorted
2 0.00189 0.00246 0.00150 0.00000

4 0.13492 0.00587 0.01239 0.00000

8 0.28340 0.04476 0.03199 0.00001

16 0.60677 0.30807 0.56720 0.00003

32 5.23125 2.56729 1.50670 0.00007

64 9.68066 10.17033 6.76098 0.00011

128 15.52223 28.67652 23.93645 0.00044

TABLE 2
SERIAL SEARCH TIMES IN SECONDS FOR SIX QUERY SEQUENCES OF DIFFERENT LENGTHS

Seq Length 50 100 200 400 800 1,600
Time (sec) 16,357 32,342 66,389 138,510 300,125 606,162
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of processors, the master would eventually become a system
bottleneck (heavily overloaded), particularly when searching
using short sequences. This would not be a problem for the
bucket method provided that the number of sequences in the
database also increases. Since the number of sequences in the
GenBank is actually growing, the degree of scalability of the
bucket method will become of even greater importance. Scal-
ability is the ability to maintain good performance when the
number of processors is increased.

For short query sequences, the master method achieved
significantly lower speedups than the bucket method. This
is due to the fact that the master could not serve a large
number of workers efficiently when a given query sequence
was short. As the workload assigned to the master was too
great, the workers finished the tasks faster than the master
could distribute them. Thus, some workers had to wait idly
to receive another task from the master while it was serving
other workers. The master became the bottleneck when
greater than 16 processors were used. This is a serious
drawback, since, sometimes, query sequences are very
short. For example, recently, biologists designed DNA
primers with 30 to 50 bases to block Alu repetitive se-
quences from amplifying during polymerase chain reaction.

We discuss only the parallel computational methods that
compare a query sequence with all the sequences in the
database using the full dynamic programming algorithm.
To reduce the execution time, some researchers use heuris-
tic techniques to reduce the number of database sequences
before they apply the full dynamic programming algo-
rithm. Both Sittig et al. and Guan et al. showed that they
could reduce the search time by applying some heuristic
techniques. However, it is difficult to evaluate and compare
these heuristic techniques because they do not produce the
same set of answers, and no qualitative assessment of the
near optimality of the heuristic technique is available.

4 PARALLEL MULTIPLE SEQUENCE ALIGNMENT

A multiple sequence alignment is a configuration that is
obtained by stacking up sequences on top of each other. A
minimal number of gaps is introduced in the sequences so
that the number of matches is maximized according to a
given optimization function. The rigorous pairwise align-
ment algorithms [21], [41], [44], as described in Section 2,
can be extended to align more than two sequences. How-
ever, it is impractical to extend this rigorous algorithm to
align more than three sequences, since memory space and
computation time is proportional to the product of the se-
quence lengths. These algorithms have been extended to
align only three sequences [38], [39].

To practically align a large number of sequences, many
researchers use the tree-based methods which generate
multiple sequence alignments by aligning and combining a
number of pairwise alignments in a particular order. For a
simple tree, where there is only one branch at each level,
the order is linear [39], [36], [46]. These linear ordering
strategies start with the most similar sequence pair and
continue to add sequences in decreasing order of similarity.
The linear ordering strategies produce a good multiple
alignment if all the sequences belong to a single homolo-
gous family. However, as pointed out by Taylor [47], these
strategies can produce a poor alignment if the sequences
belong to two or more distinct subfamilies. To avoid this
situation, sophisticated ordering strategies [3], [11], [18],
[23], [24], [46] were introduced. These strategies apply vari-
ous clustering techniques to order groups of related se-
quences in a hierarchical tree. Then, the final multiple se-
quence alignment is obtained by aligning and combining
clusters of sequences, proceeding from the leaves to the
root of the tree.

The order in which the sequences are aligned and com-
bined has a great effect on the final multiple sequence
alignment. Consequently, a great deal of effort has been
spent on designing new ordering strategies that would
generate better alignment. However, a few researchers [6],
[29], [32], [35] took an opposite direction by not using any
ordering. Instead, they applied randomized techniques
with optimization functions to iteratively improve the mul-
tiple sequence alignment. The iterative methods have been
shown to produce better alignments than the tree-based
methods [25]. In addition, the randomized iterative algo-
rithms can be used to improve the alignment that were
generated from other algorithms. In this case, they can
never do worse. However, they require a much longer
computation time. In this paper, we use the Berger-Munson
algorithm [6] to illustrate that the computation times of
these methods can be reduced significantly by using a par-
allel speculative computation technique.

Fig. 1 shows the core part of the Berger-Munson algo-
rithm. The C language implementation contains approxi-
mately 1,900 statements. To implement a parallel version of
this algorithm, we separated the computational process into
three steps. In Step 1, the n input sequences are first ran-
domly partitioned into two groups. Then, the alignment
score between these two groups of sequences is calcu-
lated. In this step, the new gap positions are also saved for

TABLE 3
THE SPEEDUP FACTORS OF THE BUCKET METHOD

Query Sequence Lengths

N 50 100 200 400 800 1,600
2 2.00 1.99 1.97 2.00 2.00  2.00

4 3.99 3.97 3.94 3.99 3.99 4.00

8 7.96 7.98 7.96 7.99 7.98 8.00

16 15.95 15.96 15.92 15.98 15.98 16.00

32 30.93 31.57 31.81 31.96 31.97 31.99

64 61.68 63.33 63.09 63.80 63.93 63.96

128 122.05 126.73 126.94 127.69 127.71 127.76

TABLE 4
THE SPEEDUP FACTORS OF THE MANAGER-WORKER METHOD

Query Sequence Lengths

N 50 100 200 400 800 1,600
2 1.00 1.00 1.00 1.00 1.00 1.00

4 2.98 2.99 2.99 3.00 3.00 3.00

8 6.81 6.95 6.95 6.99 7.00 7.00

16 13.69 14.61 14.73 14.99 14.99 15.00

32 22.06 28.07 30.34 30.91 30.95 30.98

64 28.62 45.18 57.41 62.01 62.71 62.90

128 30.16 57.21 91.90 117.22 124.92 126.32
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performing the alignment in Step 3. In Step 2, a decision
flag is set to A (accepted) if the new resulting alignment is
accepted; otherwise, it is set to R (rejected). A new align-
ment is accepted if the current score is higher than the cur-
rent best score. If the decision flag in Step 2 is set to A, the
gap positions determined in Step 1 are used to modify the
current alignment in Step 3, and the best score is updated.
Then, the modified or unmodified alignment is used as the
input for the next iteration. This iterative improvement al-
gorithm continues until the stop criterion is met. We define
the stop criterion as follows: After q consecutive iterations
of rejections, the process is stopped where q is the number
of all possible partitions.

We adapted the restricted search space, as presented by
Ishikawa et al. [27], [28], who observed that the number of
sequences in the divided groups had a great effect on the
final alignment. They observed that, if only one or two se-
quences were allowed in the first group, a better alignment
was obtained. Our experiments yield the same observation.
We discovered that the reason was due to the fact that the
similarity among the sequences in one group decreases if
more than two sequences are allowed in that group. Thus,
the alignment between the two groups of sequences also
has a lower similarity score. If only one or two sequences
are allowed in one of the two groups, the number of possi-

ble partitions is reduced to n n n+ -( )1
2  from a total of 2n-1 - 1.

Therefore, q n n n= + -( )1
2 .

The Berger-Munson algorithm is highly sequential due
to a loop-carried dependence between iterations. Iteration i
depends on iteration (i - 1), since Step 3 may modify the
alignment during the (i - 1)th iteration and the modified
alignment must be used by the ith iteration. In addition, the
three steps within each iteration are also dependent on each
other. Step 1 uses seq, which may be modified by Step 3.
Step 2 uses current_score, which produces by Step 1. Step 3
uses flag variable, which is set in Step 2, and gap positions,
which are generated in Step 1. These dependencies make it
difficult to implement a parallel version of this algorithm
while preserving the behavior of the original sequential
version.

This algorithm was previously parallelized by Ishikawa
et al. [27], [28] on a parallel inference machine (PIM) using a
parallel logic programming language (KL1). However, as
pointed out by Yap et al. [53], their parallel version has a
few drawbacks. First, this version becomes impractical for
aligning a large number of sequences. Second, the parallel

version is no longer a randomized process and its resultant
alignment is not guaranteed to be as good as the one that is
obtained from the original sequential version. That is, the
quality of the derived alignment is unpredictable. There-
fore, it is difficult to evaluate its performance. Third, the
communication cost of the Ishikawa version can be reduced
significantly.

Speculative computation [45] has been applied effi-
ciently to parallelize sequential algorithms, such as simu-
lated annealing, an algorithm similar to the Berger-Munson
algorithm. By applying speculative computation to the par-
allelization of the Berger-Munson algorithm, we were able
to achieve a higher speedup and a more scalable imple-
mentation than the prior effort mentioned above. In addi-
tion, our parallel alignment is guaranteed to be the same as
the sequential one. The basic concept of speculative com-
putation is to speculate the future solutions based on the
current input parameters. Therefore, we can speculate (p - 1)
future solutions if we have p processors. In this application,
we can speculate the alignments for the next (p - 1) itera-
tions based on the current alignment.

In the original Berger-Munson algorithm, the final
alignment is obtained by performing a sequence of align-
ments between two groups of sequences. Each iteration is
accepted (A) if its alignment score is higher than the current
best score. Otherwise, it is rejected (R). An example of a
corresponding sequence of decisions is shown in Fig. 2.
Initially, every new alignment is accepted (e.g., iteration
numbers 1-5). However, fewer and fewer are accepted as
the alignment progresses. We stated earlier that the ith it-
eration may depend on the (i - 1)th iteration. To be exact, the
ith iteration depends on (i - 1)th iteration only if the (i - 1)th
iteration has accepted a new alignment; otherwise, it only
depends on the last accepted iteration.

Our parallel speculative computation approach is based
on the recognition of the fact that a consecutive sequence of
rejected iterations are not dependent on each other and can
be done in parallel. Therefore, we can speculate that the (p - 1)
previous iterations will be rejected so that they can be done
in parallel. If the speculations are correct, the computation
time could be reduced by a factor of p.

In the decision sequence of Fig. 2, the first 28 sequential
iterations can be reduced to 13 parallel steps if four proces-
sors are used. The parallel computation steps are shown in
Fig. 3. Three iterations (p - 1) are speculated at each parallel
step, where P1 speculates that P0 will reject its new align-
ment, P2 speculates that P0 and P1 will reject their new
alignments, and P3 speculates that P0 to P2 will reject their
new alignments. P0 does not speculate. The numbers in the
boxes of each row represent the speculated sequential it-
eration numbers for the processor in that row at each par-
allel step. The iteration numbers that are speculated cor-
rectly, which also correspond to the sequential iteration
number, are shown in bold. After each parallel step, the
alignment of the last iteration that was speculated correctly

best_score = initial_score();
While (stop criteria is not met){

1 current_score = calculate(seq, gap_positions);
2 flag = decide(current_score, best_score);
3 seq = modify(seq, flag, gap_positions);

}

Fig. 1. A Berger-Munson sequential algorithm.

Sequential Iteration number 1234567...

Decision sequence AAAAARAAARRARRRARRRARRRARRRRR...

Fig. 2. A possible sequential decision sequence.
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is used as the input for the next step as shown by the lines
leading from one parallel step to the next.

As the above illustration shows, we parallelized the
Berger-Munson algorithm while preserving its sequential
algorithmic behavior. The parallel alignment is guaranteed
to be the same as the sequential one. For a large number of
sequences, this algorithm can benefit significantly from a
parallel implementation. Our parallel algorithm, which is
implemented on every processor, is summarized in Fig. 4 as
C pseudocode, with minor details omitted to improve clarity.

The variable gi is the global or sequential iteration num-
ber; bgi is the iteration number when the best score was
obtained; q is the number of all possible partitions; partn is a
selected partition number for each individual processor; p is
the number of processors; pid is the processor ID ranging
from 0 to (p - 1); and ap is the ID of the processor that has
accepted the best alignment.

To reduce the I/O time, only Processor 0 reads the input
sequences and then broadcasts them to the other proces-
sors, since interprocessor data transfer is much faster than
the I/O data transfer. Initially, every new alignment is usu-
ally accepted. Consequently, we do not start to speculate

until we encounter a rejection, (see Lines 4 to 11). Every
processor evaluates the same partition by initializing the
same random seed. This strategy avoids the communication
cost associated with the parallel speculative computation.
The iteration number is used as the random seed so that we
can easily backtrack our steps when we make an incorrect
speculation. This technique is also used to guarantee that
the sequence of pairwise alignments is the same for both
the parallel and sequential implementations.

After a rejection is encountered, we start to speculate
and continue until q (number of all possible partitions) re-
jections have been encountered. A random partition is se-
lected only if it has not already been selected since the last
accepted partition. No partition is selected more than once
by any processor or by different processors simultaneously.
To ensure that no partition is selected more than once, each
processor must know two pieces of information: the parti-
tions that have already been selected and the partitions that
are currently being selected by other processors. To avoid
the costly interprocessor communication, these two pieces
of information are obtained as follows: Each processor
manages an array of q bits which correspond to the q possi-
ble partitions. Initially, these bits are cleared by a function
in Line 12. Then, the ith bit is set when the ith partition is
selected. Therefore, each processor knows that a particular
partition has already been selected if its corresponding bit
is set. When this situation occurs, it simply selects another
random partition. All q bits are cleared every time a new
partition is accepted. To determine the partitions that are
being selected by other processors, each processor gener-
ates p random selectable partitions, instead of just one, and,
then, selects the (pid)th one, as show in Lines 14-19. The
remaining partitions are being selected by the other proces-
sors. All p bits that are corresponding to the p selectable
partitions are set.

The global operation (Line 22) is performed after each
processor makes its decision. The accepted alignment with
the smallest iteration number is selected as the input for the
next iteration since the alignments with higher iteration
numbers are invalid as they were based on incorrect specu-
lations. When a new partition is accepted, the contents of
variables (ap, flag, best_score, partn, gap_posititons) are
copied from the accepted processor to the other processors.
In Lines 24-28, we determine the number of sequential it-
erations which were correctly speculated for skipping. If
there is a global accepted partition (iteration) among the p
partitions evaluated, only the iterations smaller than or
equal to the accepted iteration are skipped (Line 25). Oth-
erwise, all p iterations are skipped (Line 28).

Fig. 3. An illustration of the parallel speculative computation process.

1 processor 0 reads input sequences and broadcasts them to other
processors

2 gi = 0;
3 best_score = initial_score();
4 do {
5 seed(gi);/*all processors set the same iteration seed gi*/
6 partn = select_partition();
7 current_score = calculate(seq, partn, gap_positions);
8 flag = decide(current_score, best_score);
9 seq = modify(seq, partn, flag, gap_positions);
10 gi = gi + 1;
11 } while (flag == A);
12 clear_partitions();
13 while ((gi - bgi) < q){
14 for (i = 0 to P-1){
15 seed(gi + i);
16 itemp = select_partition();
17 set_partition(itemp);
18 if (i == pid) partn = itemp;
19 }
20 current_score = calculate(seq, partn, gap_positions);
21 flag = decide(current_score, best_score);
22 global_operation(ap, flag, best_score, partn, gap_positions);
23 seq = modify(seq, partn, flag, gap_positions);
24 if (flag == A){
25 gi = gi + ap + 1;
26 clear_partitions();
27 }
28 else gi = gi + p;
29 }

Fig. 4. A parallel speculative Berger–Munson algorithm.
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To evaluate the performance of our approach, we have
used it to improve the alignments generated manually by
experts, Kabat et al. [30], and automatically by a popular
multiple sequence alignment program, CLUSTALV [17],
[18], which uses a tree-based method. Three different
groups of immunoglobulin sequences with varying lengths
and numbers of sequences were selected from the Kabat
Database (Beta Release 5.0), which is maintained by Kabat
et al [30]. Their statistical summaries are shown in Table 5.
The average sequence length is about the same for all three
groups. However, the number of sequences in the third
group is about twice the second one, which is about twice the
first one. MKL5 is the largest group in this database. CLLC is
the chicken immunoglobulin lambda light chains V-region
group. HHC3 is the human immunoglobulin heavy chains
subgroup III V-region group. MKL5 is the mouse immuno-
globulin kappa light chains V V-region group. The initial
score is the score before any alignment is performed.

TABLE 5
STATISTICAL SUMMARIES OF THE THREE GROUPS OF TEST

SEQUENCES

Group Name Num. of Seqs Avg. Length Initial Score
CLLC 93 62 1,574,724

HHC3 185 65 66,50,831

MKL5 324 83 31,393,504

The scores of the alignments manually generated by ex-
perts, Kabat et al. [30] and their improved scores performed
by the sequential Berger-Munson program, MUSEQAL, are
shown in Table 6. The number of iterations and the se-
quential computation times taken by MUSEQAL are also
shown in this table. These sequential computation times
were obtained by executing a sequential program on a sin-
gle processor. Similarly, we used MUSEQAL to improve
the alignments generated by CLUSTALV. The correspond-
ing information is presented in Table 7. Comparing Table 6
and Table 7, we can see that MUSEQAL improved the
alignments generated by both Kabat, et al. and CLUSTALV
significantly. The sequential computation times in these
tables are used to calculate the speedup factors of the par-
allel speculative Berger-Munson algorithm in the next table.

Table 8 shows the speedup factors for the three groups
of sequences on varying numbers of processors. The
speedup factor is defined as the ratio of the total run time of

the best sequential solution of the program to the total run
time of the parallel version. Table 8 demonstrates that sig-
nificant speedups were obtained for all three groups of se-
quences. From this table, we can make three observations.
First, we obtained the best speedup factors with the largest
group, MKL5. Second, we obtained better efficiencies by
using a smaller number of processors where efficiency is
defined as the ratio of the speedup factor to the number of
processors. Third, we achieved higher speedup factors
when improving the Kabat alignments compared to CLUS-
TALV alignment improvement. The results of the first two
observations are as expected. The first observation was due
to a larger number of partitions (search space) and the sec-
ond to less communication and lower rates of incorrect
speculations. For a larger number of processors, we had to
speculate further into the future, which resulted in a higher
error rate. The third observation is due to the fact that the
Kabat alignments were already better than the CLUSTALV
alignments. Consequently, there were more rejections in
improving the Kabat alignments than the CLUSTALV
alignments.

It is difficult to accurately compare our speedup factors
with those obtained by Ishikawa et al. [27], [28], since their
parallel algorithm does not always generate the same
alignment as the sequential one. To evaluate their parallel
algorithm, they aligned seven sequences which have 63
possible partitions that were assigned to 63 processors.
Their parallel implementation stops after no improvement
was obtained. Their sequential (single processor) imple-
mentation stops after 32 iterations of no improvements,
about one-half of the number of partitions. For the sequen-
tial execution, they used different random seeds to generate
different alignments. On average, they obtained a speedup
factor of 10. We obtained a speedup range of 23 to 53 with
our speculative method.

In spite of the above difficulty, our results clearly
showed that our speedup factors are about three to five
times higher than those obtained by Ishikawa et al. In ad-
dition, we were able to achieve higher speedup factors
without changing the algorithmic behavior of the original
sequential algorithm.

We used the MUSEQAL program to improve the align-
ments generated by CLUSTALV and by an expert by im-
proving the alignment score. A better alignment score only
means better alignment. It does not necessarily mean that

TABLE 6
KABAT AND MUSEQAL ALIGNMENT SCORE COMPARISON

Group Name Kabat Score MUSEQAL Score No. of Iteration Serial Time (s)
CLLC 1,826,747 1,956,501 16,193 54,708

HHC3 7,505,258 7,681,308 56,232 566,901

MKL5 38,568,971 38,765,838 112,374 2,534,786

TABLE 7
CLUSTALV AND MUSEQAL ALIGNMENT SCORE COMPARISON

Group Name CLUSTALV Score MUSEQAL Score No. of Iteration Serial Time (s)
CLLC 1,809,065 1,956,771 12,716 35,871

HHC3 7,366,275 7,655,223 58,285 564,013

MKL5 37,778,278 38,749,102 112,390 2,611,205
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the sequences have a higher biological similarity or they are
more related biologically. In most cases, however, better
alignment scores do indicate more biological similarity.

5 CONCLUSION

We presented and evaluated two parallel computational
methods for analyzing biological sequences. These methods
allow researchers to analyze biological sequences at a much
higher speed than the sequential methods. In addition, they
also make it possible for scientists to analyze problems that
were previously considered too large. The first method is
used to retrieve information about the sequences that are
similar to the query sequences. We showed that this method
achieved a near perfect speedup. Generally, only a number of
N most similar sequences are retrieved. To analyze these
similar sequences further, we developed another parallel
computational method for aligning these N sequences. This
second problem is highly sequential and was difficult to par-
allelize. In fact, the only prior parallization of this biologically
significant computation achieved a speedup factor of only 10
using 64 nodes. However, we showed that our method was
able to achieve speedup factors ranging from 23 to 53 on a
64 nodes.

Sequence searches are very important to the biological
research community. These searches can save research time
and lead to new discoveries. For example, a laboratory ex-
periment for determining a particular property or function
of a sequence can be avoided if that experiment has already
been done by another researcher and its results are stored
in one of the sequence databases. Sequence searches have
also led to the discovery of many protein families, includ-
ing the tyrosine kinase oncogene, the steroid receptor, and
the transcription factors containing a zinc-finger motif. In
addition, they also provide insights into the mechanisms of
actions of newly discovered sequences.

Multiple sequence alignment has been shown to be an
important method in studying the structural and functional
properties of proteins and the organism in which they are
expressed. It has been used to determine common ancestors
of sequences and the organisms in which these are ex-
pressed, to classify organisms, and to reveal structurally
and functionally important regions of proteins, such as
catalytic sites and ligand binding sites. This tool can also be
used to help to predict the structure of proteins.
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