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Abstract—We present an information retrieval model for 
combining evidence from concept-based semantics, term 
statistics, and context for improving search precision of 
genomics literature by accurately identifying concise, 
variable length passages of text to answer a user query. 

The system combines a dimensional data model for 
indexing scientific literature at multiple levels of document 
structure and context with a rule-based query processing 
algorithm. The query processing algorithm uses an 
iterative information extraction technique to identify 
query concepts, and a retrieval function for systematically 
combining concepts with term statistics at multiple levels 
of context. We define context by variable length passages 
of text and different levels of document lexical structure 
including terms, sentences, paragraphs, and entire 
documents. 

Our results demonstrate improved search results in the 
presence of varying levels of semantic evidence, and higher 
performance using retrieval functions that combine 
document as well as sentence and passage level 
information versus using document, sentence or passage 
level information alone.   

Initial results are promising. When ranking documents 
based on the most relevant extracted passages, the results 
exceed the state-of-the-art by 13.89% as assessed by the 
TREC 2005 Genomics track collection of 4.5 million 
MEDLINE citations. 

H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval-search process; H.3.1 [Information 
Storage and Retrieval]: Context Analysis and Indexing-
linguistic processing; I.2.7 [Artificial Intelligence]: Natural 
Language Processing-text analysis. 

I.  INTRODUCTION 
Accurate retrieval of information from genomics literature 

is a key component in experiments to identify new genes, 
diseases, and other biological processes that require further 
investigation [1].  
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Information retrieval in this domain is challenging due to 
the wide variation of synonymous terms, acronyms, and 
morphological variants used for identifying the same 
biological concepts. In addition, acronyms frequently have 
multiple meanings (polysemy) and require contextual clues for 
accurate disambiguation. For example, the terms “bovine 
spongiform encephalopathy”, “BSE”, and “Mad Cow 
Disease” are all different terms representing the same named 
entity or concept. Search terms also have much higher 
relevance when matched against document terms when 
occurring within the local context of a phrase, sentence, or 
passage of text. An acronym like “IP” could represent 
“immunoprecipitant” or “ischemic precondition.” In this case, 
context captured at the paragraph or document level where an 
acronym is defined can help disambiguate its meaning.  

Databases from the National Center for Biotechnology 
Information (NCBI) and other sources can be helpful in 
providing semantic evidence supporting identification and 
extraction of named biological entities [2]. However, it is 
important to recognize that no knowledge source can fully 
capture the complexities of human language let alone be fully 
up-to-date with the dynamic vocabulary of an evolving 
science.  In most cases, there are varying levels of semantic 
evidence which can make accurate identification of biological 
concepts difficult. In these cases, optimal retrieval solutions 
need to integrate additional sources of evidence including 
identification of key phrases and terms within context and 
leverage traditional probabilistic measures of relevance. 

We propose that effective search requires a systematic 
approach for combining semantic, contextual, and statistical 
evidence. Our approach relies on an indexing model that 
supports search of single and multi-word terms to support 
identification of concept term variants, search at different 
levels of document structure for identifying terms within 
context, and integration of external knowledge sources to aid 
in the identification and extraction of named biological entities 
and related synonymous terms.  

We first describe our indexing model, followed by the 
indexing process, query processing, our methods, results, and 
a discussion of related work. For an introduction to 
information retrieval concepts refer to Grossman and Frieder 
[3]. 



 

  

II.  INDEXING MODEL 
Paragraphs, sentences, and terms, representing complete 

topics, thoughts, and units of meaning respectively, provide a 
logical breakdown of document lexical structure into finer 
levels of meaning and context.  

We seek to capture these hierarchical relationships of  
document structure within a search index based on a 
dimensional data model. As shown in Figure 1, the 
dimensional index has a dimension table for each level of 
document structure (document, paragraph, sentence, term) and 
one central fact table or postinglist. The  postinglist represents 
a single mapping table, containing foreign key fields that map 
the relations between all dimensions. The “grain”, i.e., the 
smallest non-divisible element of the database, is the 
individual word. Sentences aggregate words in sequence by 
position, paragraphs aggregate sentences, and documents 
aggregate paragraphs. In the data warehousing literature, this  
model is refered to as a star schema [4,5].  

 
Figure 1. Search index based on dimensional model. 

Term attributes include a term’s position within a sentence, 
textual representation, as well as term and morphological 
variants.   

The dimensional indexing model can be extended to 
include additional dimensions, and allows for efficient 
formulation of SQL search queries.  By indexing each 
individual word, queries can be developed for searching 
single- and multi-word terms, and term statistics can be 
aggregated over different levels of document structure. 

III. INDEXING PROCESS 
The indexing process illustrated in Figure 2 includes:  

1) Lexical Partitioning: Documents are parsed into 
sections (title, abstract, body text), and paragraphs. Paragraphs 
are parsed into sentences. 

2) Tokenization:  Acronyms and their long-forms are 
identified during indexing using the Schwartz and Hearst 
algorithm [6]. A long-short form would include “immuno 
deficiency enzyme (IDE)”, and a short-long form would 
include “IDE (immuno deficiency enzyme)”. The algorithm 
works backwards through the long form text and attempts to 
identify corresponding letters in the acronym. Acronyms and 
their long-forms are added to an acronym table to help with 
disambiguation. Long-form variants are added to the same 
indexing location as acronyms during indexing (and vice 
versa). This technique proved highly effective for 
disambiguating acronyms, and being able to identify and 
extract passages when searching for either the short- or long-
form of an entity. 

Sentence terms are tokenized, stop words removed, and 
lexical variants are generated [7].  Porter stemming [8] is used 
on each token with the following exceptions: gene names (as 
defined by the Entrez Gene database); all upper case, mixed 
case, alpha-numeric terms; and non-gene terms that would 
become a gene name after being stemmed. Small “s” is also 
stripped from all upper-case terms. 

3) Indexing: Each term along with its long-form expansion 
and lexical variants are stored in the index with the same 
positional information. 

 
Figure 2. Process models 

IV. QUERY PROCESSING 
Structured query generation shown in Figure 2 is 

illustrated with the following query: “Provide information 
about the role of the gene PRNP (prion protein) in the disease 
Mad Cow Disease”. 

1. Sentences are extracted, and acronyms and their long-
forms are identified: PRNP (PRioN Protein). 



 

  

2. Part-of-speed tagging is performed using our 2nd order 
statistical Hidden Markov Model tagger: … role_NN of_II 
the_DD gene_NN PRNP_NN (_( prion_NN protein_NN )_) 
in_II the_DD disease_NN Mad_NN Cow_NN Disease_NN.   

3. Stop and function words are removed from further 
processing.  

4. Candidate entities are identified by locating non-
recursive noun phrases (“noun chunks”): [gene PRNP], [prion 
protein], [Mad_NN Cow_NN Disease_NN]. 

5. Candidate entities are verified in the index, and 
resolved using the UMLS Metathesaurus®, OMIM™ (Online 
Mendelian Interface to Man), MeSH (Medical Subject 
Headings), and Entrez Gene databases. If an entity is 
successfully resolved, all synonyms and one level of 
hyponyms, i.e., child terms, are identified.   

Prior to including synonyms as a concept term variant, its 
level of ambiguity is determined. If the synonym is considered 
ambiguous it is not included. We consider a term ambiguous if 
either of the following tests is met: 

1. The synonym’s normalized inverse document 
frequency (NIDF) is < 0.1. Where NIDF is the IDF=log (N/df) 
normalized to between 0 and 1. 

2. The synonym correlates with the correct long-form in 
less than 50% of all instances within the acronym table 

Resolved concepts and corresponding synonyms are shown 
in Table 1. 

TABLE 1.  BIOLOGICAL ENTITY RESOLUTION 

Resolved concepts Synonyms 
[Encephalopathy, 
Bovine Spongiform] 

[Mad Cow Disease] 
[MCD] 
[BSE] 
[Creutzfeldt-Jakob disease] 
[CJD] 

[PRNP gene] [prion protein] 
[prnp] 

Search can be performed within the context of an 
individual term/phrase, sentence, paragraph, or document.  In 
this study, we combine the search results of document, 
passage, and sentence retrieval.  We first perform document 
and paragraph-level searches using the probabilistic BM25 (1) 
retrieval function [9] implemented in standard SQL [10].  
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Note: We used k1=1.4, k2=0, k3=7, and b=0.75. 

Next, using the top 2000 paragraphs we perform a concept 
search as follows:  

1. The position of all term variants of each concept is 
retrieved from the dimensional index by paragraph. 

2. A concept graph is constructed by creating an 
adjacency list using each concept term as a vertex. 

3. A minimum-spanning tree is constructed from the 
adjacency list by determining the maximum number of distinct 
concepts within the shortest lexical distance. Distance 
measurements are weighted such that terms within a lexical 
unit, e.g., a sentence, are always closer than terms in separate 
units. 

4. Finally, the passage boundary based on the first and last 
occurrences of distinct concepts is expanded out to include 
sentence boundaries. 

Passage level concept search is further illustrated with the 
following query: “Exact reactions that take place when you 
do glutathione S-transferase (GST) cleavage during affinity 
chromatography”. 

First, the following concepts and term variants (shown in 
stemmed form) are identified:  

• Cleavage: [[cleavag], [merogenesi], [cytokinesi]]  
• Affinity purification: [affin, purif], [affin, chromatographi]]  
• Glutathione S-transferase: [[glutathion, s, transferase], [gst]] 
 
Second, the index is searched for all term variants of each 

concept. The following query searches for the concept term 
variant “affinity, chromatography”: 

select i1.term as term1, i2.term as term2, p1.docid, p1.parid, 
p1.sentid, p1.startpos, p1.endpos    

from invertedindex i1, invertedindex i2, postinglist p1, postinglist p2      
where i1.term='affin' and i2.term='chromatographi'       
and i1.termid=p1.termid and i2.termid=p2.termid     
and p1.docid=p2.docid and p1.parid=p2.parid  
and p1.sentid=p2.sentid and abs(p2.seq-p1.seq)<=2;      
 
Third, passages are identified: “affinity chromatography, 

and purified Mce1A and Mce1E, free of the fusion partner, 
were recovered following specific proteolytic cleavage of the 
GST” 

Finally, passages are expanded to sentence boundaries: 
“The fusion proteins were purified to near homogeneity by 
affinity chromatography, and purified Mce1A and Mce1E, 
free of the fusion partner, were recovered following specific 
proteolytic cleavage of the GST portion by thrombin 
protease.” 

Passages are first ranked by the distinct number of 
concepts within the passage.  For passages with the same 
number of concepts, the passages are further ranked by a 
query term density match (QTM) measurement we devised 
and used successfully for the 2006 TREC Genomics track 
[10]. QTM (2) assigns a “term match” score to each sentence 
within a passage by summing the NIDF of each distinct match 
of a query term at the sentence level.  
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Sentences are ranked using the same technique as 
passages, except the passage length of one sentence. 

Finally, a linear weighted sum (3) is used to combine the 
normalized BM25 document similarity coefficient with the 
normalized passage and sentence similarity coefficients (SC): 

    SCcomposite = w1SC1 + w2SC2 + …+ wnSCn                      (3) 

V. METHODS 
We evaluated our system on the TREC-2005 Genomics ad-

hoc retrieval task which uses a corpus of 4,591,008 
MEDLINE citations (~15GB) and 49 query topics drawn from 
the information needs of molecular biology researchers [11]. 
Each Medline citation includes an article title, medical subject 
headings (MESH), and typically includes an abstract. 

To establish a baseline, we use BM25 for document 
retrieval using only document-level indexing information, i.e., 
without the benefit of the dimensional indexing model and the 
ability to search within a narrower context of document 
structure, and without the ability to include semantic evidence 
from concepts. 

Next, we evaluate the effectiveness of using context with 
our dimensional data model by creating a composite retrieval 
score based on a linear combination of document (BM25), 
variable length passage of text, and sentence scores. We only 
use the QTM measurement for passages and sentences, i.e., no 
concept-based evidence. 

Finally, we evaluate the effectiveness of a composite 
retrieval score based on a linear combination of document, 
passage, and sentence scores using concept-based semantic 
evidence. Results are measured in mean average precision 
(MAP).  

Indexing and query processing applications were 
developed in Java using the Oracle 10g database. The system 
is platform independent, and indexes approximately 150,000 
citations/hour on a 3.1GHz 2GB Pentium 4 PC. 

VI. RESULTS 

A. Baseline 
The system delivered baseline results of 0.302 mean 

average precision (MAP) on the genomics collection for 
document retrieval using the BM25 retrieval function (k1=1.4, 
k3=7, b=0.75). This establishes a high-performing baseline for 
document retrieval which exceeds the top result from the 2005 
Genomics Track at TREC [11] of 0.288 by 4.9%. We attribute 
much of the improvement of our baseline over the top TREC 
result to our acronym expansion technique. This acronym 
technique improved mean average precision (MAP) search 
results by 1.8 points (6.4% improvement) in our evaluation. 

The remaining improvement may be due to improved 
gene/protein term normalization, and BM25 retrieval function 
parameterization. 

B. Context evaluation with dimensional data model 
BM25 was used for document retrieval, and QTM was 

used for passage and sentence retrieval.  Document, passage, 
and sentence retrieval scores were normalized prior to use in 
the linear weighted sum to determine the final composite 
ranking score. Table 2 shows the results from our dimensional 
model evaluation with several weighting strategies for 
combining document Wd, passage Wp, and sentence Ws scores. 

TABLE 2.  DIMENSIONAL MODEL RANKING 

SCd Wd Wp Ws MAP % imp. 
BM25 1 0 0 0.301 -  
BM25 .75 .25 0 0.315 4.65% 
BM25 .5 .5 0 0.317 5.32% 
BM25 .25 .75 0 0.316 4.98% 
BM25 0 1 0 0.275 -8.64% 
BM25 .75 0 .25 .314 4.32% 
BM25 .5 0 .5 .315 4.65% 
BM25 .25 0 .75 .311 3.32% 
BM25 0 0 1 .280 -6.98% 
BM25 .5 .25 .25 .319 5.98% 
BM25 1 1 1 .318 5.65% 

Our best performing composite score delivered an 
improvement of 5.98% over our top baseline measurement 
and an improvement of 10.8% over the top performing result 
from TREC. All of top performing scores combined 
contextual evidence from each level of document structure, 
i.e., document, passage, and sentence. As long as a retrieval 
function included information from each level, it was 
relatively insensitive to specific weighting parameters. 

C. Rule based ranking with semantic evidence 

Finally, we evaluated our rule based ranking strategy 
combining concept-based semantics, context, and term 
statistics. The results shown in Table 3 increased MAP to 
0.328 and 13.89% above the top TREC genomics track result 
from 2005, and 44.6% over the track average. 

TABLE 3.  RANKING WITH SEMANTIC EVIDENCE 

Retrieval Method MAP % imp.
Top TREC Result 0.288 -
BM25 0.302 4.86%
Composite w/ Context 0.319 10.76%
Ranking w/ Semantics 0.328 13.89%

The average precision for each individual query showed 
results that statistically matched and in most cases exceeded 
the average precision of each query from the 2005 TREC 
Genomics track. As shown in Table 4, 31 queries exceeded 
the track average MAP for individual queries by > 10%. 74% 



 

  

of these queries utilized semantic evidence from concepts 
identified (within the query) by the query processing 
algorithm. Fully 100% of queries that exceeded the track 
average by >50% using concept-based semantics.   

TABLE 4.  IMPROVEMENT OVER TRACK AVERAGE 

% improvement 
over Track 
MAP 

# queries 
exceeding  

# queries 
exceeding  
w/ concepts 

> 10% 31 23 
> 50% 25 25 
>100% 11 11 

These results demonstrate the retrieval model’s ability to 
significantly improve results with increasing amounts of 
semantic evidence, and perform at or above baseline with no 
or varying levels of semantic evidence. 

VII. DISCUSSIONS AND RELATED WORK 
Using retrieval of fixed length passages of text to improve 

retrieval of relevant documents is based on the premise that 
only a small portion of each relevant document is relevant to a 
user’s query. Similarity coefficients are computed at the 
passage level, and the highest scoring passage or some 
combination of the scores of individual passages is used to 
compute a document’s similarity coefficient [12,13,14]. Callan 
used a combination score with document and passage level 
evidence to obtain their best results [15]. These efforts 
focused on fixed length passages of text and did not include 
multiple levels of document context and semantic evidence. 
Tellex performed a quantitative evaluation of passage retrieval 
algorithms used by question-answering systems. Common to 
all three top performing algorithms is a non-linear boost to 
query terms that occur very close together in a candidate 
passage [16].  

Mayfield and Finn advocated an approach for search on 
the semantic web where in the absence of semantic markup, 
their system would rely on traditional information retrieval 
techniques [17]. Regev, et al., utilized a rule-based 
information extraction technique for identifying gene names in 
text [18]. Building a search engine on top of relational 
technology is covered by Grossman and Frieder [19].  

IX. CONCLUSION 
We presented a novel information retrieval model for 

combining semantics, term statistics, and context for 
improving search precision of genomics literature. Results 
exceeded the state-of-the-art by 13.89% as assessed by the 
TREC 2005 Genomics track. 

The results demonstrate improved search results in the 
presence of varying levels of concept-based semantic 
evidence, and the model still performs at or above baseline in 
the absence of semantic evidence. Results also show higher 
performance using retrieval functions that combine document 

as well as sentence and passage level information versus using 
document, sentence or passage level information alone.  

The system can be efficiently implemented with a standard 
relational database on commodity PC hardware. 
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