
A Parallel DBMS Approach to IR in TREC-3

David A. Grossman

O�ce of Information Technology

3E09 Plaza B

Washington, DC 20505

dgrossm1@mason1.gmu.edu

David O. Holmes

AT&T Global Information Solutions

2 Choke Cherry Road

Rockville, MD 20850

Ophir Frieder�

Department of Computer Science

George Mason University

Fairfax, VA

ophir@cs.gmu.edu

Abstract

In this our �rst year of TREC participation, we implemented an IR system using an AT&T
DBC-1012 Model 4 parallel relational database machine. We started with the premise that a
relational system could be used to implement an IR system. After implementing a prototype
to verify that premise, we then began to investigate the performance of a parallel relational
database system for this application. We only used the category B data, but our initial results
are encouraging as processing load was balanced across the processors for a variety of di�erent
queries. We also tested the e�ect of query reduction on accuracy and found that queries can
be reduced prior to their implementation without incurring a signi�cant loss in precision/recall.
This reduction also serves to improve run-time performance.

Finally, in a separate set of work, we implemented Damashek's n-gram algorithm for n=3
and were able to show similar results as found when n=5.

1 Introduction

For TREC-3, we implemented relevance ranking queries using unchanged SQL on an AT&T DBC-
1012 (formerly Teradata) parallel database machine [4]. The purpose of this implementation was

to test the following hypotheses:

� A relational system that implements standard SQL, may be used as the search engine for an
information retrieval application.

� A parallel relational database machine will use an optimizer to balance the workload across

multiple processors. The result will be a scalable system such that required levels of perfor-
mance may be achieved with the purchase of additional hardware.

� Query reduction based on term frequency counts will dramatically improve performance with-
out a signi�cant degradation in accuracy.

�This work supported in part by the National Science Foundation under contract number IRI-9357785.



We have found that each of these hypothesis are true as our relational implementation provides

scalable performance. Additionally, query reduction improved run time performance without a
signi�cant degradation in accuracy.

Section 2 describes related prior work that serves as the foundation behind our hypothesis.

The use of the relational DBMS to model an inverted index is described in Section 3. Our means
of computing a measure of relevance is described in in Section 3.3. Section 4 and Section 5 describe

our runtime and accuracy results. Conclusions and suggestions for future work are given in
Section 6.

2 Prior Work

We briey describe the prior work that provides the motivation behind these hypotheses. The
use of a relational system that would serve as a search engine for an IR application was �rst

proposed by Blair [5]. In this work, it was mentioned that SEQUEL (a precursor to SQL) could
be used to perform boolean keyword retrievals such as \Find all documents that contain the word

`terrorist'. " Later, Macleod presented several SEQUEL queries that performed keyword searches
using unchanged SEQUEL. Additional operators were then described that could achieve relevance

ranking of a set of documents to a query. Research continued in the use of the relational model as
a means of providing a more robust form of information retrieval.

Most research in the area stopped when user-de�ned operators were de�ned to address certain
\application speci�c" operations [3]. Any function required by an application that does not exist in

the database system may be incorporated via a user-de�ned operator. Stonebraker, et al, examined
the usefulness of user-de�ned operators in assisting a text editing application [10]. A more recent
thesis was devoted to the use of user-de�ned operators to provide typical information retrieval

functionality such as keyword searches and proximity searches [8]. Additionally, enhancements to
the database optimizer were analyzed that would allow for query optimization of these user-de�ned

operators.
We have developed algorithms using unchanged SQL that implement vector space relevance

ranking, proximity searches, and Boolean retrieval. Additionally, we computed worst case disk I/O
estimates for a relational implementation and a traditional IR implementation [7]. It was this work

that led us to the realization that query reduction based on term selectivity would dramatically
a�ect I/O. For TREC-3, we were able to test di�erent levels of query reduction based on term

frequency and veri�ed the impact on disk I/O and accuracy.

3 Implementation Details

We now discuss the approach used to migrate the category B portion of the TIPSTER collection to

a set of relations. The relations e�ectively model an inverted index which may be used to e�ciently
query the database. The steps used to move text to the relational model are preprocess, load, and

index.

3.1 Preprocess

We have developed a text preprocessor that accepts SGML marked text as input and produces three

�les as output. The preprocessor applies text formatting rules for special characters as described in
[1, 2]. Subsequently, for each document, the document frequency for each distinct term is computed
and written to a at �le. After all of the documents have been processed, a list of each distinct



term is identi�ed and the inverse document frequency for each term is computed. Implementation

details of the preprocessor are found in [9].

3.2 Create

Relations are created on the DBC-1012. A clustered primary key ensures that the data are stored

in a fashion such that all tuples for a distinct term are on contiguous data pages. Some of our
experiments suggest that this approach seemed to best minimize I/O. Other research continues to
investigate the best placement strategy for these data [11].

Additionally, FALLBACK mode is used for each of the relations. This results in a full replica
of all the data so that the system has resilience to a disk failure.

3.2.1 Load

The DBC-1012 FASTLOAD utility is used to move the data from the at �les (residing on an

Intel 80486 based machine) to the DBC-1012. The utility makes use of all of the processors and
ensures that data are distributed to each processor in the fashion prescribed by the clustered index.

We typically found that the FASTLOAD was able to load our largest relation at a speed of 857
rows per second. By comparison, work we have done on an Intel Pentium based processor running

Microsoft SQL Server on Windows NT typically loads data (using the Bulk Copy facility) at a rate
of 381 rows per second.

3.2.2 Query processing

For TREC-3, we only addressed the ad-hoc queries (Topics 151-200). The queries were preprocessed
and loaded into corresponding relations using a similar method as done for the data.

3.2.3 Example

The following example illustrates our process of starting with an input document in a TIPSTER

�le and completing with the properly loaded relations.
Consider the following document from the TIPSTER data (a �nal sentence has been added

to assist our presentation):
<DOC>
<DOCNO> WSJ870323-0180 <DOCNO>
<HL> Italy's Commercial Vehicle Sales <HL>
<DD> 03/23/87 <DD>
<DATELINE> TURIN, Italy <DATELINE>
<TEXT>
Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier, to 8,848 units, according to
provisional �gures from the Italian Association of Auto Makers.

Sales for the Association are expected to rise an additional 2% in July. <TEXT>

<DOC>



The following relations will be built to model this document:

DOC:
doc id doc name date dateline

1 WSJ870323-0180 3/23/87 Turin, Italy

DOC TERM: IDF
doc id term itterm freq

1 commercial 1

1 vehicle 1

1 sales 2

1 italy 1

1 rose 1

1 11.4% 1

1 february 1

1 year 1

1 earlier 1

1 8,848 1

1 according 1

1 provisional 1

1 �gures 1

1 italian 1

1 association 2

1 auto 1

1 makers 1

1 expected 1

1 additional 1

1 2% 1

1 July 1

term idf

11.4% 2.9595

2% 1.5911

8848 4.3936

according 0.7782

additional 1.0792

association 1.0792

auto 1.2788

commercial 1.0000

earlier 0.6021

expected 0.6990

february 1.3222

�gures 1.2553

italian 1.8451

italy 1.6721

July 1.0414

makers 1.3010

provisional 2.5172

rose 0.7782

sales 0.6990

vehicle 1.7709

year 0.0000

The �rst relation, doc contains a tuple for each document that occurs in the text. The internal

document identi�er and o�cial TIPSTER document name are stored in this tuple along with any
other structured data that has a 1-1 relationship with the document. For TREC-3, we only used

the date and dateline SGML marked �elds, but other �elds such as source could easily be placed
into this relation.

The doc term relation models a typical inverted index. An attribute doc freq is used to store
the number of occurrences for the term in the document. A compressed internal document identi�er
is used here, while the o�cial TREC-3 name may be obtained from the doc relation.

Finally, the idf relation stores the inverse document frequency for each distinct term in the
entire document collection. The idf is computed as:

idf(term) = log
10
df

where df is the number of distinct documents in which the term appears.

3.2.4 Overhead

Typically, storage overhead has been a justi�cation used against relational IR implementations.
Given that the document identi�er and the term must be replicated numerous times in the doc term



relation, it would appear that storage requirements would be substantial. The following table

indicates the storage requirements for each of the three relations. Since the DBC-1012 uses hash-
based indices, there is no extra storage required for each index; rather, a �xed 13 byte overhead is
assigned for each table to maintain an internal hash identi�er.

Storage Overhead

Name Tuples Megabytes

Doc 173,252 29.6

Idf 389,797 32.7

Doc Term 33,497,912 2,037.5

For the 534 megabytes found in Category B data the relational structures required to imple-
ment it required 2.1 Gigabytes of storage. However, the DBC-1012 replicates all data to provide

real time protection for a disk failure. Without this replication, only 1.05 Gigabytes would be
required. The overhead ratio is 1.97:1.00.

3.3 Query Processing

Having constructed the relations, we were able to implement a variety of experiments to learn

more about performance of the DBC-1012 for this application. To learn more about accuracy, we
reduced the size of TIPSTER queries based on the precomputed idf values. The premise was that

a very frequently occurring term increases the I/O but decreases the accuracy of the query. Hence,
this form of query reduction is based on the same premise as a stop word list and can be viewed as

a tailored stop word list.

3.4 Building the Query Threshold Relation

A new query relation is generated called query threshold. The original query relation is joined with
the idf relation such that the idf is obtained for each term in the query. The terms in the query

are then sorted in decreasing order of their idf.
The relation is then exported to a at �le and a simple utility is invoked to determine the

number of terms in the query and develop new queries based on a given threshold. The threshold

indicates the percentage of terms that are found in the new query. A threshold of ten indicates
that the new query contains ten percent of the terms in an unmodi�ed query. For a one hundred

term query, a threshold of ten would result in a query composed of those terms that are ranked (by
idf) one through ten. We developed a query threshold relation that contains tuples that represent

queries for thresholds of .1, .2, .25, .3, .33, .5, and 1.0.

3.5 Implement the Query with Unchanged SQL

We have previously identi�ed queries that use standard SQL to implement both the inner product
and cosine measures of relevance [7]. These queries used a query relation as described in Section

3. A slight modi�cation is required to implement di�erent query thresholds. Additionally, we
found performance improved when we denormalized the query threshold table to contain the idf as

well. The doc table is used to obtain the o�cial doc name after the internal document identi�er
is matched. The query used to compute a vector inner product between a query and all document

vectors for the TREC-3 data is:



SELECT c.doc name, sum(q.cntidf*b.term freq)

FROM QUERY THRESHOLD a, DOC TERM b, DOC c
WHERE a.term = b.term AND
b.docid = c.docid AND

THRESHOLD = ? AND
QUERY NUM = ?

GROUP BY b.doc id
ORDER BY 2 DESC

4 Run Time Performance

We developed macros to execute queries 151-200 for threshold of .10, .20, .25, .30, .33, .50, and

1.0. Each query was run with one and three concurrent sessions. The reason for this is that the
processors were only being used at a capacity of between twenty and thirty percent with a single

session. Increasing the number of concurrent sessions gives the machine more work to do and results
in increased throughput.

Figure 1 gives the average response time for all �fty queries for each of the query thresholds.
Separate lines depict results for one and three sessions. Figures 2 and 3 provide CPU and disk I/O

results. It can be seen that for thresholds less than .5, workload increases linearly, and over .5, we
experience an exponential change. This is consistent with Zipf's law [12].

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

S
e
c
o
n
d
s

Threshold

1 session 3

3
3
3
33

3

3
3 sessions +

+
+ + ++

+

+

Figure 1: Avg. Response Time for Varying Query Thresholds

To further illustrate the cause of the exponential increase in run time performance, Figure
4 provides the number of tuples found in the doc term relation that match a term in the query.

Again, the behavior is the same, and we can see that thresholds of below .5 runs substantially faster
than over .5.

Finally, we measured the amount of load balancing that takes place in using the four pro-



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

10 20 30 40 50 60 70 80 90 100

C
P
U

Threshold

1 session 3

3
3 3

33

3

3
3 sessions +

+
+ + ++

+

+

Figure 2: Avg. CPU Time for Varying Query Thresholds

0

5000000

1e+007

1.5e+007

2e+007

2.5e+007

10 20 30 40 50 60 70 80 90 100

D
i
s
k
I
/
O

Threshold

1 session 3

3
3 3

33

3

3

3 sessions +

+
+ + ++

+

+

Figure 3: Total Disk I/O for Varying Query Thresholds



0

5000000

1e+007

1.5e+007

2e+007

2.5e+007

3e+007

3.5e+007

4e+007

10 20 30 40 50 60 70 80 90 100

T
u
p
l
e
s

Threshold

3 3 3 33

3

3

Figure 4: Total tuples in DOC TERM accessed for Varying Query Thresholds

cessors on the DBC-1012. The table below indicates the amount of processor imbalance for CPU
time: maxcpu�mincpu

avgcpu
measured at each query threshold. It can be seen that for all workloads, the

processors are less then ten percent out of balance. Given this high degree of load balancing, it is

reasonable to suspect that additional processors may be added to achieve required response time.

Percent of Processor Imbalance :

threshold CPU Time (1 session) CPU Time (3 sessions)

10 7.36 7.88

20 8.39 7.29

25 9.38 4.81

30 4.79 2.02

33 5.02 3.02

50 8.19 2.38

100 5.13 4.51

5 Accuracy

We measured precision/recall for each of the queries 151-200 for thresholds of .10, .25, .33, .50,
and 1.0. Our hypothesis was that higher thresholds would result in reduced precision/recall as the

query would be searching for terms that were very common across the corpus and would do little
for di�erentiating a relevant document from an irrelevant document.

Figure 5 illustrates the number of relevant documents that were retrieved for all �fty queries

using varying thresholds. Separate lines for result sets of size 100 and 200 are presented. It can be
seen that as the threshold increases from ten to twenty-�ve, more relevant documents are found.

This is reasonable to expect as a threshold of ten or twenty may omit many query terms that assist
in identifying relevant documents. As the threshold increases beyond twenty-�ve the number of



0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

R
e
l
e
v
a
n
t
r
e
t
r
i
e
v
e
d

Threshold

cuto� = 100 3

3

3
3

33
3

3

cuto� = 200 +

+

+
+

++
+

+

Figure 5: E�ect on Query Reduction on Number Docs Retrieved that are Relevant

relevant documents retrieved drops. This is also understandable as a higher threshold will result in
increased noise within the query. Hence, we have found that a query threshold of between twenty-
�ve to thirty-three may yield good accuracy as well as dramatically improved run time performance

over a query that is not �ltered at all (one hundred percent threshold). These results are uno�cial
as they were determined after the TREC-3 submission deadline.

6 Conclusions and Future Work

Our TREC-3 e�ort has served as a proof-of-concept of our prior ideas that an unchanged

relational DBMS may be used to serve as an engine for IR. Our experiments found that overhead
was somewhat high, but tolerable for a large scale machine. An overhead of 1.97:1.00 may be

reasonable for applications that have performance requirements large enough to justify a large scale
parallel architecture. Given the lack of scalable parallel algorithms for parallel information retrieval,
our work may be one means of easily spreading workload across large numbers of processors.

Another advantage of our approach is that structured data and text may be easily integrated.
Although we only used date and dateline in our prototype, other structured �elds could have easily

been used. Queries that integrate both structured data and text are relatively straightforward
extensions to the queries we have discussed.

We have also shown that query reduction using term frequencies may be a viable means of
reducing disk I/O without signi�cantly a�ecting accuracy.

Finally, it should be noted that the results given here are uno�cial. Our o�cial results came as
a result of implementing Marc Damashek's approach using n-grams of size three instead of size �ve

[6]. Interestingly, our results for the ad-hoc collection were markedly similar to those submitted
by Damashek's group. We plan to incorporate this work into our relational implementation by

developing algorithms that implement this work using unchanged SQL.



References

[1] E. Adams. A Study of Trigrams and Their Feasibility as Index Terms in a Full Text Informa-

tion Retrieval System. PhD thesis, George Washington University, Department of Computer
Science, 1991.

[2] E. Adams. Trigrams as index elements in full text retrieval observations and experimental

results. Proceedings of the First Annual Conference on Information and Knowledge Manage-

mentnt (CIKM '92), October 1992.

[3] M. Stonebraker Je� Anton and Eric Hanson. Extending a database system with procedures.
ACM Transactions on Database Systems, 12(3):350{376, September 1987.

[4] AT&T Global Information Systems. Teradata DBC-1012 Concepts and Facilities, March 1992.

[5] D. Blair. Square (specifying queries as relational expressions) as a document retrieval lan-

guage). Written while working on the System R project., 1974.

[6] M. Damashek. Gauging similarity via n-grams: Text sorting, categorization, and retrieval in

any language. Submitted to Science, 1994.

[7] D. Grossman. Using the relational model and part-of-speech tagging to implement text rele-
vance. Proceedings of the First Annual Conference on Information and Knowledge Manage-

mentnt (CIKM '92), October 1992.

[8] C. Lynch and M. Stonebraker. Extended user-de�ned indexing with application to textual

databases. Proceedings of the 14th VLDB Conference, pages 306{317, 1988.

[9] E. Pulley. A preprocessor for integrating structured data and text. Technical Report CfIA-94-
003, Center for Image Analysis, George Mason University, 1994.

[10] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and Antonin Guttman. Document processing
in a relational database system. ACM Transactions on O�ce Information Systems, 1(2):143{

158, April 1983.

[11] A. Tomasic and Hector Garcia-Molina. Performance of inverted indices in shared-nothing dis-
tributed text document information retreival systems. In Proceedings of the 2nd International

Conference on Parallel and Distributed Information, pages 8{17, 1993.

[12] G.K. Zipf. Human Behaviour and the Principle of Least E�ort. Addison-Wessley, 1949.


