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1. INTRODUCTION

Understanding the topical sense of user queries is a problem at the heart of
Web search. Successfully mapping incoming user queries to topical categories,
particularly those for which the search engine has domain-specific knowledge,
can bring improvements in both the efficiency and the effectiveness of Web
search. Much of the potential for these improvements exists because many of
today’s search engines, both for the Web and for enterprises, often incorpo-
rate the use of topic-specific back-end databases when performing general Web
search. That is, in addition to traditional document retrieval from general in-
dices, they attempt to automatically route incoming queries to an appropriate
subset of specialized back-end databases and return a merged listing of results,
often giving preference to the topic-specific results. This strategy is similar to
that used by metasearch engines on the Web [Glover et al. 1999]. The hope is
that the system will be able to identify the set of back-end databases that are
most appropriate to the query, allowing for more efficient and effective query
processing. Correct routing decisions can result in reduced computational and
financial costs for the search service, since it is impractical to send every query
to every backend-database in the (possibly large) set. If a search service has a
strict operational need for low response time, erroneous routing decisions could
force much larger scaling than is necessary [Chowdhury and Pass 2003]. An
accurate classification of a query to topic(s) of interest can assist in making
correct routing decisions, thereby reducing this potential cost.

Additionally, topical query classifications, sometimes coupled with source-
specific query rewriting, have broad potential for improving the effectiveness
of the result set. In addition to results that are specifically targeted for the
identified topical domain, the presentation of results may be altered accordingly.
For example, a geographic query might result in the presentation of a map;
a shopping query could result in an extracted list of comparison prices, etc.
Topical classifications can also assist the search service in delivering auxiliary
information to the user. Advertisements, for instance, can be tailored based
on category rather than query keywords. Finally, categorization of the query
stream as a whole allows tracking of trends over time. A search service can
use these data as a means of identifying areas that may require additional
resources (e.g., additional hardware, new back-end databases). To fully realize
these gains, a classification system is required that can automatically classify
a large portion of the query stream with a reasonable degree of accuracy. In the
case of large-scale Web search, this task is particularly challenging:

—The Web and its users are highly dynamic. The available content on the Web
changes by as much as 8% per week, with fluctuations in servers and pages
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Table I. Query Stream Breakdown

Autos 3.46% Personal Finance 1.63%

Business 6.07% Places 6.13%

Computing 5.38% Porn 7.19%

Entertainment 12.60% Research 6.77%

Games 2.38% Shopping 10.21%

Health 5.99% Sports 3.30%

Holidays 1.63% Travel 3.09%

Home & Garden 3.82% URL 6.78%

News & Society 5.85% Misspellings 6.53%

Orgs.&Insts. 4.46% Other 15.69%

[Cho et al. 1998; Lawrence and Giles 1998; Ntoulas et al. 2004]. Additionally,
the population of users, their interests, and their model of how a search works,
is simultaneously varying on time scales from minutes to years [Beitzel et al.
2004].

—Traffic at major search engines reaches hundreds of millions of queries per
day [Sullivan 2006] and is highly diverse [Beitzel et al. 2004; Beitzel et al.
2006; Spink and Jansen 2004], requiring a large sample of queries to ade-
quately represent the population.

—It is difficult to determine the user’s desired task and information need from
Web queries, which are typically very short [Jansen et al. 2000]. This compli-
cates manual categorization of queries (for study, or to provide training data),
and poses great challenges for automated query classification [Gravano et al.
2003; Kang and Kim 2003].

The key contribution of this work, introduced in Beitzel et al. [2005a, 2005b],
is the use a large Web search engine query log as a source of unlabeled data
to aid in automatic classification. This approach allows a classification system
to take into account the language and vocabulary of a vast number of real
users’ queries, and to use this information to classify portions of the query
stream that are unreachable using other techniques. Additionally, no external
resources, such as the contents of Web directories (e.g., The Open Directory
Project) or retrieved documents for a query are used with this approach. This
allows it to be deployed under circumstances of operational restriction where
the cost of utilizing such data is prohibitively high for large volumes of queries.
Furthermore, this approach is inherently robust to changes in the query stream
because it draws information from the very thing that is changing most: the
users’ queries themselves.

In Table I, we present a topical breakdown of a manually classified sample
of approximately 600 queries taken from one week’s worth of queries posed to
AOLTM search. This search service has a large number of backend databases
with topic-specific information. Accurate classification of queries into cate-
gories like those listed in Table I (as well as more specific categories further
down the hierarchy) would improve effectiveness of search results, reduce the
computational and financial costs of system operation, and provide new oppor-
tunities for revenue.
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Fig. 1. Frequency distribution of 1 week of queries.

To realize these improvements, a query classification system must classify a
large portion of the query population. Previously proposed classification tech-
niques do not, however, seem adequate to this task. Manual classification is
expensive, and so can be applied to only a small portion of the query population.
Attempts to target manual classification to the most frequent and/or valuable
queries are undermined by dynamic nature of the query stream. Generalizing
from manually labeled queries by supervised machine learning improves cov-
erage, but cannot make up for inadequate coverage of vocabulary in the train-
ing data and a worsening of this problem as query vocabulary changes over
time.

Query stream statistics provide insight into the limitations of manual and
supervised approaches. In Figure 1, we show the frequency distribution of all
queries in a week’s worth of traffic from AOLTM search. The y-axis represents
the proportion of all queries that have individual frequencies in the range of
the buckets on the x-axis. For example, Figure 1 shows that more than 20%
of all queries observed in a week occur only once. This distribution shows that
the Web query stream is tail-heavy, with nearly 50% of queries seen occurring
five or fewer times. In contrast, only a relatively small portion of the query
stream (∼10%) occurred more than 10,000 times that week. Manual classifica-
tion efforts are likely to be biased toward the most popular queries, as they are
typically the most familiar to human assessors and are most often encountered.
Additionally, classification methods that use frequency in their calculations, in-
cluding supervised machine learning algorithms and retrieved-document clas-
sifiers, will have a difficult time attaining sufficient recall because there is little
frequency information available for the majority of queries. To mitigate this
recall problem, we require a classification system that is able to leverage the
terms and phrases comprising a sufficiently large population of Web queries,
popular and rare alike.
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We develop a rule-based automatic classifier produced using a novel appli-
cation of the computational linguistics notion of selectional preferences. We use
this technique to perform a cooccurrence analysis on a large unlabeled query
log containing hundreds of millions of queries. This analysis reveals strong
preferences for query terms to be associated with particular categories, and
these preferences are used to develop rules for classification. We then com-
bine these selectional preference rules with exact matching against a large
set of manually classified queries and a weighted automatic classifier trained
using supervised learning to achieve the most effective classification possible.
Our combined approach bridges the gap between several related areas of in-
formation science, applying elements of machine learning and computational
linguistics to the problem of automatic query classification. Manual classifi-
cation provides a high-precision element while supervised machine learning
leverages these manual classifications for additional benefit. Selectional pref-
erences utilize massive unlabeled query logs to suggest classification rules that
are able to change along with the query stream, adapting over time as users’
interests (and, by extension, their queries) change.

Our combined approach leverages the strengths of each individual technique
to achieve the most effective classification possible, outperforming each indi-
vidual method and achieving a high level of classification recall. This mitigates
the recall problem due to feature sparseness encountered in prior query clas-
sification studies, and allows us to classify a much larger portion of the query
stream than any single technique alone while remaining robust to changes in
the query stream over time. Finally, we are able to perform these classifica-
tions without the assistance of external sources of data, which is a significant
departure from previous work in automatic topical query classification.

In Section 2, we give an overview of prior efforts in classification. In Section 3,
we describe the individual methodologies of each classification technique in our
approach. We discuss our evaluation methods and give details on our datasets in
Section 4, and present our results and analysis and discussion in Section 5. Fi-
nally, in Section 6 we state some conclusions and give directions for future work.

2. PRIOR WORK

Classifying texts and understanding queries are both fundamental concerns in
information retrieval, and so we can mention only a fraction of the potentially
relevant work. In particular, while work on classifying documents is relevant
to classifying queries, we focus on query-oriented work as being most relevant
here. Query classification makes very different demands on a classification sys-
tem than does document classification. Queries are very short (the studies dis-
cussed below find average Web query lengths between 2.0 and 2.6 terms), and
thus have few features for a classifier to work with. Further, unlike a full text
document, a query is just a stand-in for the thing we would really like to classify:
the user’s interest. Sebastiani [2002] has surveyed recent work on document
classification.

More narrowly, our particular interest is in queries to Web search en-
gines. Past research can generally be divided (with some overlap) into work
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employing either manual or automatic methods of query classification. Manual
classification (discussed in Section 2.1), as stated previously, typically involves
using human editors or simple heuristics to create a set of static classifica-
tion decisions. Automatic classification (discussed in Section 2.2) usually refers
to using more complex algorithmic methods (supervised machine learning is
common) to cluster similar queries or perform direct task or topic-based clas-
sification. Until recently there was little published research that specifically
addressed the problem of automatic topical classification of Web queries, cre-
ating a key gap in the existing literature. The 2005 KDD Cup (discussed in
Section 2.2.1) partially addressed this, as it focused specifically on automatic
topical classification of Web queries. However, top performers in the compe-
tition all relied on external sources of information that are not practical for
use in real-time classification systems that process large volumes of queries.
The primary focus of this study is to discuss and compare our classification
techniques, which require only a query log and a small seed of manual classifi-
cations, to existing automatic classification techniques such as those used in the
2005 KDD Cup.

2.1 Manual Query Classification

Several studies have attempted to classify user queries in terms of the infor-
mational actions of users. In early work, Broder [2002] manually classified a
small set of queries into transactional, navigational, and informational tasks
using a pop-up survey of AltaVista users, and manual inspection.

One set of studies [Jansen et al. 2005; Spink et al. 2001; Spink et al. 2002a,
2002b] looked at query logs from the ExciteTM search engine from the years
1997, 1999, and 2001, and the FASTTM search engine from 2001. Sets of about
2500 queries from each log were manually classified into 11 overlapping topic
categories developed by an information science class. (Our own category scheme
bears some similarities to this one, but is slightly finer-grained.) Query frequen-
cies were found to vary year-to-year, and between a mostly U.S. (Excite) versus
mostly European (FAST) user population. Even with this coarse classification,
no single query type accounted for more than 25% of traffic, emphasizing the
diversity of user needs.

There have also been attempts to study query logs using automated clas-
sification techniques. Beitzel et al. [2004] used exact lookup of queries from
AOLTM ’s Web search engine in a large database of semiautomatically catego-
rized queries for the purpose of analyzing query behavior over time. They used a
set of 16 categories and found the most frequent category (Other) accounted for
only 16% of queries. They also found that some categories were much more vari-
able hour-to-hour in frequency of queries and composition of queries within the
category. We hypothesized that these types of categories would give us the most
trouble in automated categorization. As with other studies, this one showed a
short mean query length (2.2 words).

2.2 Automatic Query Classification

Other work on query classification is focused less on understanding large-scale
properties of query logs and more on improving system effectiveness on each
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individual query. Much of this work is proprietary and unpublished, but there
is a growing base of academic literature.

A number of researchers have automatically classified queries into Broder’s
[2002] informational/navigational/transactional taxonomy (or very similar tax-
onomies) and applied different query rewriting and weighting strategies for
each category. Kang and Kim [2003], for example, used query term distribu-
tion, mutual information (cooccurrence), usage rate in anchor text, part-of-
speech info, and combinations of the above to automatically classify queries
into Broder’s [2002] taxonomy. They used this classification to decide which
query processing algorithms to use for retrieval, achieving at best modest im-
provements in retrieval effectiveness. Their study exhibited a problem common
to all query classification studies: the difficulty of achieving accurate classifica-
tion, and in particular high recall, for the inevitably short queries.

Kang and Kim [2003] made use of data from Web search evaluations at the
TREC conferences. A number of groups participating in Web search evaluations
at TREC have attempted classification with respect to similar categories, but
the benefits from these attempts have not been clear [Craswell et al. 2003]
and an effective alternative seems to be to design search approaches that do
well on all question types without explicit classification [Craswell and Hawking
2004]. On the other hand, high-scoring participants in the TREC QA (question
answering) [Voorhees 2004] track appear to be making increasing use of query
classification, in the sense of attempting to determine, by linguistic or other
means, the class of answer a question is seeking. It should be noted that QA
track questions are not typical Web queries.

Gravano et al. [2003] used machine learning techniques in an automatic
classifier to categorize queries by geographical locality. They sampled small
training, tuning, and testing sets of a few hundred queries each from a large
2.4 million-query ExciteTM log from December 1999. Their analysis revealed
that data sparseness was a problem for their classifier, noting in particular that
most queries were very short, and, specific to their geographical task, queries
rarely contained key trigger words likely to identify whether or not a query
was “local” or “global” in geographical scope. They concluded that successful
automatic classification would have to draw on auxiliary sources of information,
such as user feedback or supplemental databases, to compensate for the small
number of features in a single query.

An alternative to classifying queries into manually defined categories is to
allow classes to emerge from a query set itself, through clustering or other
unsupervised learning methods. There is a long history of such approaches
in the field of information retrieval (IR) [Grossman and Frieder 2004; Salton
et al. 1975], with attempts in the past often stymied by the small query logs
available. In clustering Web queries, the problem is no longer lack of queries,
but lack of features in any individual query. This is arguably an even greater
problem for unsupervised than supervised approaches, which can at least latch
on to individual features correlated with a class.

Some query clustering methods have attacked this problem by clustering
“session data,” containing multiple queries and click-through information from
a single user interaction. Beeferman and Berger [2000] mined a log of 500,000
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click-through records from the LycosTM search engine and used a bipartite-
graph algorithm to discover latent relationships between queries based on
common click-through documents linking them together. Unfortunately, only
anecdotal results were reported in the study. A similar approach was used by
Wen et al. [2001a, 2001b, 2002], who also took into account terms from result
documents that a set of queries has in common. They concluded that the use of
query keywords together with session data is the most effective method of per-
forming query clustering. However, their test collection was an encyclopedia,
so the applicability of their results to general Web search is limited.

2.2.1 KDD Cup 2005. The ACM Conference on Knowledge and Data Dis-
covery (KDD) holds an annual competition known as the KDD Cup. The task
varies from year to year, usually focusing on an area in the information sciences.
For 2005, the task was topical query categorization. The dataset consisted of
800,000 Web queries, and 67 possible categories, with each category pertaining
to a specific topic (“Sports-Baseball” was one example of a KDD cup category).
Each participant was to classify all queries into as many as five categories.
An evaluation set was created by having three human assessors independently
judge 800 queries that were randomly selected from the sample of 800,000. On
average, the assessors assigned each query to 3.2 categories for their judgments.
Once complete, these evaluations were used to calculate the classification pre-
cision and F1 score for each submission (F1 is defined as the harmonic mean of
precision and recall [van Rijsbergen 1979]). Equation (1) gives definitions for
each of these classification evaluation metrics. Each submission was evaluated
by finding the mean F1 and precision scores across individual assessors. In all,
there were 37 classification runs submitted by 32 individual teams.

P = #TruePos
#TruePos + #FalsePos

,

R = #TruePos
#TruePos + #FalseNeg

, (1)

F1 = 2PR
P + R

,

where #TruePos is the number of true positives: the number of queries which
belonged to the class, and which the classifier assigned to the class; #FalsePos
is the number of false positives: the number of queries which did not belong to
the class, but which the classifier assigned to the class; and #FalseNeg is the
number of false negatives: the number of queries which belonged to the class,
but which the classifier did not assign to the class.

Participants were not restricted in regard to the use of particular resources
to aid in making classification decisions. As a result, several runs made use of
various forms of external information.

Shen et al. [2005] used an ensemble approach of several different classifica-
tion techniques to create the winning submission for the 2005 KDD Cup. They
built synonym-based classifiers to map the category hierarchies used by search
engines to the one employed at the KDD Cup. Specifically, this mapping function
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was constructed by matching keywords between each category hierarchy. They
extened the keyword matching to include various grammatical forms, and also
via WordNet.1 Three synonym-based classifiers were built, using the category
hierarchies from GoogleTM, LooksmartTM, and an internal search engine based
on Lemur,2 searching a crawl of the ODP3 hierarchy. They also built a statis-
tical classifier using SVM light4 [Joachims 1999]. They collected training data
by using the mappings found for the synonym classifiers to find pages in the
relevant ODP categories for each query. The terms from the pages, their snip-
pets, titles, and category names were stemmed and processed for the removal
of stopwords and used to train the SVM classifier. They also used two ensem-
ble classifiers, one using the 111-query training set to learn weights for each
component classifier, and one giving equal weight to each component classifier.
This approach resulted in an F1 score that outperformed all other participants
by nearly 10%.

Kardkovacs et al. [2005] proposed an approach called the Ferrety Algorithm
for their participation. Their approach was similar to that of the winning team,
employing the Looksmart and Zeal search engines to build their taxonomy map-
ping, enriching the mapping process with stemming, stopword removal, and the
application of WordNet. They used these data to train their own learning soft-
ware and make classification decisions, and they experimented with several
different methods of feature selection, achieving good results on the KDD Cup
data.

Vogel et al. [2005] contributed the runner-up submission for classification
performance (F1). Like the other top performers, they also relied on a Web
directory to drive part of their classification. They built their category mapping
by searching ODP with GoogleTM , and collecting the categories of the top 100
retrieved documents. They also made use of spelling corrections and alternate
queries suggested automatically by GoogleTM, which helped mitigate some of
the noisy queries in the KDD Cup query set. They then manually inspected all
of the categories returned by Google, and mapped each directory node to up to
three KDD Cup categories. Finally, they combined all available information and
generate probability scores for each category via a logistic regression. Weights
were determined through an iterative procedure and covered several different
facets, including the number of result documents for a category, category depth,
redundancy of mapping, and others. They used hill-climbing to find optimal
thresholds for maximizing F1 and precision separately, submitting a run for F1

that was good for second place overall.
At this time, no formal proceedings for the 2005 KDD Cup have been

published; however, the datasets and a summary of results as well as a
PowerPointTM presentation with an overview of the task and some of the top
teams’ techniques are all available from the competition’s Web site.5 Some prior

1http://wordnet.princeton.edu.
2http://www.lemurproject.org.
3http://www.dmoz.com.
4http://svmlight.joachims.org.
5http://www.acm.org/sigs/sigkdd/kdd2005/kddcup.html.
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studies that are similar to common approaches used by KDD Cup participants
are Bot et al. [2005], Das-Neves et al. [2005], and Kowalczyk et al. [2004].

Although the participants were able to achieve encouraging results, with the
median F1 score at 0.23 (max. 0.44) and a median precision of 0.24 (max. 0.75),
the top-teams took advantage of techniques that are impractical in large-scale
operational environments. For example, running the query, retrieving the top
ranked documents, classifying those documents, and using those classification
decisions to classify the query is computationally prohibitive for a Web search
engine, where the query volume can reach hundreds of millions per day [Sulli-
van 2006]. To that end, our approach must be viewed from a slightly different
angle, as we are imposing operational restrictions on what kinds of information
can be used by our classifier, in an effort to address the task of automatic top-
ical query classification as it appears to search practitioners in the real world.
To the best of our knowledge, no participating team leveraged unlabeled data
similar to search engine query logs in their KDD Cup experiments. Further-
more, combining several disparate techniques with complementary strengths
and weaknesses allows our approach to remain robust and effective even when
confined to real-world operational requirements. We evaluate our system on
the KDD Cup dataset and discuss our performance in Section 5.2.

3. RESEARCH MOTIVATIONS AND CLASSIFICATION APPROACHES

We explore three major research questions in this study:

(1) Is it possible to design a viable automatic query classification technique
that utilizes search engine query logs?

As discussed in Section 1, search engine query logs describe the funda-
mental language of Web search. Our motivation here is to explore whether
we can leverage those logs into a system capable of making topical query
classifications.

(2) Can we combine several techniques to improve classification recall?
The “recall problem” that is fundamental to applying traditional text clas-

sification methods to the topical classification of Web queries is paramount
here. We explore whether several different classification techniques can be
successfully combined to mitigate the recall problem.

(3) How does an operationally restricted classification approach compare to
those which use external resources?

As mentioned in Section 2.2.1, the most effective current techniques for
automatic topical classification of Web queries rely on external sources of
information such as online directories and the contents of documents re-
trieved for a query. We propose the development of a classification system
that is not allowed to use external sources of data due to operational restric-
tions. To that end, it is interesting to compare and contrast the performance
of this approach with existing high-performance approaches such as those
used in the 2005 KDD Cup.

We describe the manual and automatic classification techniques that are
used in our approach and explain our motivations for using each technique.
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We also introduce a new rule-based automatic classification technique based
on mining selectional preferences from a large unlabeled query log. Combining
these approaches allows us to cover a large portion of the query stream with
adequate precision, while not requiring external resources.

3.1 Exact-Matching Using Labeled Data

The simplest approach to query classification is looking the query up in a
database of manually classified queries, that is, rote learning [Mitchell 1997].
This is not quite as crazy as it sounds. At any given time, certain queries (the
reader can anticipate some of these) are much more popular than others. By
combining manual classification of these queries with large authority files of
proper nouns in certain categories (personal names, products, geographic loca-
tions, etc.), nontrivial coverage of the query stream can be achieved.

We explored this technique by using 18 lists of categorized queries produced
in the above fashion by a team of AOLTM editors. We examined the coverage of
these categories and found that even after considerable time and development
effort, they only represented ∼12% of the general query stream. In addition
to poor coverage, a key weakness in this approach is that the query stream
is in a constant state of flux [Beitzel et al. 2004]. Any manual classifications
based on popular elements in a constantly changing query stream will become
ineffective over time. Additionally, manual classification is very expensive. It is
infeasible to label enough queries, and to repeat this process often enough, to
power an exact match classification system that covers a sufficient amount of
the query stream. Finally, there are several factors that contribute to precision
being lower than expected. These categories were developed for operational
use, and their definitions have evolved over time leading to ambiguity and
mismatches, which are potentially exacerbated when authority files of proper
nouns are added to particular categories. Also, test queries used for evaluation
are likely to be judged by a group of assessors different from the editors who
created these categories, leading to assessor disagreement, which can further
dampen precision.

3.1.1 n-Gram Matching Using Labeled Data. A major problem with exact
matching, particularly against databases of names in some canonical form, is
that queries are structurally diverse (see Beitzel et al. [2004] and the articles
referenced therein; also Eastman and Jansen [2003]). Punctuation and search
operators may be misused or misparsed, and words added or deleted, in a fash-
ion that causes exact matching against even the correct entity to fail. To miti-
gate this, we explored a variety of relaxed lookup methods using n-gramming
(partitioning the query into a set of subsequences that are n units long, where
units may be words or characters). We experimented with both word-based and
character-based n-grams, and found that the best approach is to use inclusive
word-based n-grams, splitting each query into all of its subsequences between
one and four words long. We then considered the query to match a manually
classified database entry (and get that entry’s category) if one of the query’s
n-grams exactly matched the entry. For example, if we encountered the query
“yahoo mail,” it would be broken up into the word-based n-grams “yahoo” and
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“mail,” and would match a category entry of “yahoo.” Details on these experi-
ments are given in Section 5. While n-gram matching substantially increases
recall over exact matching (and unsurprisingly lowers precision), any form of
rote learning is strongly limited by an inability to cover the long tail of low-
frequency queries.

3.2 Supervised Machine Learning

A natural next step is to use supervised machine learning to generalize from
the manually classified queries, not just match against them. The idea is that
a classifier can abstract from the particular combinations of features seen in
stored database queries and recognize new combinations of those features as
also indicating category members. A classifier that combines many features
usually also allows more flexible trading off of false positives and false nega-
tives. A challenge for this approach is that Web queries are short, averaging
between two and three terms per query [Beitzel et al. 2004, 2006; Jansen et al.
2000]. So even if the classifier successfully combines and balances a large col-
lection of features, its decision for any particular query is inevitably based on
that query’s small number of nonnull feature values.

We trained linear classifiers using the Perceptron with Margins algorithm
[Krauth and Mezard 1987], which has been shown to be competitive with state-
of-the-art algorithms such as support vector machines in text categorization,
and is very computationally efficient [Li et al. 2002]. Our implementation nor-
malizes training and test feature vectors to unit length (Euclidean normaliza-
tion), which we have found to increase classification accuracy on other datasets.
We trained one perceptron classifier for each category, using all manually clas-
sified queries assigned to that category as positive examples, and all manually
classified queries not assigned to that category as negative examples. We tested
combinations of word, word n-gram, and character n-gram features for repre-
senting queries, and found on validation data that using all and only complete
query words as binary features was most effective.

Figure 2 shows DET (Detection Error Tradeoff—see Manmatha et al. [2002]
and Martin et al. [1997] for details) curves for perceptron classifiers for five of
our categories (test set details are given in Section 4.1). Each point on the curve
for a category corresponds to a particular numeric value of the threshold for
the perceptron classifier. The abscissa plots the test set false-positive rate at
that point, with the test set false-negative rate on the ordinate. While Figure 2
shows the perceptron classifier does generalize beyond the coverage of the exact
match system, its coverage is still inadequate. There is also less ability to trade
off false positives and false negatives than a linear classifier usually allows.
The long flat regions of the graph (circled in Figure 2) correspond to a pair
of threshold values between which no test set example’s score falls. In other
words, much of the useful range in which we would like to be able to trade off
false positives and false negatives is unavailable to the Perceptron classifier.
For the best-performing category (Porn), reducing the false-negative rate to
10% results in a false-positive rate of almost 50%.

The fundamental problem is that queries are both short and diverse in their
vocabulary. The database of manually classified queries, partly due its manner
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Fig. 2. DET curve for perceptron learner on five example categories.

of construction and partly due to ongoing changes in the query stream, does
not systematically cover the space of queries. Many important predictor fea-
tures are inevitably missing or underrepresented, and no process that uses the
manually classified queries as its only evidence can overcome this.

3.3 Selectional Preferences

Our supervised learning approach treated classification of queries in the same
fashion it would treat classification of documents. It therefore suffered from
the fact that queries, with their short length, provide many fewer features
than documents. We wondered, however, if this weakness could be turned into
a strength. Because a query is so short, the fact that it has been manually
classified into a particular category seemed to us to convey more information
about the meaning of its component words than would the manual classification
of a 1000 word document. Further, the short length and simple structure of
queries suggested that knowledge about one word even in an unclassified query
might let us infer knowledge about other words in that query. These insights
suggested we might profitably view classifying a query as more like interpreting
the meaning of a linguistic structure than classifying a document.

Computational linguists have studied many approaches to associating mean-
ings with linguistic entities. The technique we explored is based on selectional
preferences [Manning and Schutze 1999]: the tendency for words to prefer that
their syntactic arguments belong to particular semantic classes. For instance,
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the verb eat requires (except in metaphorical uses) that its direct object be some-
thing edible. Learning selectional preferences was an appealing approach to us,
since the computations are simple, efficient, and can leverage large amounts of
unlabeled data. We describe below how selectional preferences are typically ap-
proached in computational linguistics, and then how we adapted this technique
to query classification.

3.3.1 Selectional Preferences in Computational Linguistics. A selectional
preference study begins by parsing a corpus to produce pairs, (x, y), of words
that occur in particular syntactic relationships. The verb-object relationship
is most widely studied, but others such as adjective-noun have been used
[McCarthy and Carroll 2003]. The interest is in finding how x, the context,
constrains the meaning of y , its argument.

Resnik [1993] presented an influential information theoretic approach to
selectional preference. He defined the selectional preference strength S(x) of a
word x, as in Equation (2), where u ranges over a set U of semantic classes.
P (U ) is the probability distribution of semantic classes taken on by words in a
particular syntactic position, while P(U|x) is that distribution for cases where a
contextual syntactic position is occupied by x. S(x) is simply the KL divergence
[Cover and Thomas 1991] of P(U|x) from P (U ).

S(x) = D(P(U|x)||P(U))

=
∑

u

P(u|x)log2

(
P(u|x)

P(u)

)
. (2)

Ideally we would estimate the probabilities in Equation (2) from a set of (x, y)
pairs where each y has been tagged with its semantic class, perhaps produced
by parsing a semantically tagged corpus. The maximum likelihood estimates
(MLEs) would be

P̈ (u) = nu

N
,

P̈ (u|x) = nxu/N
nx/N

= nxu

nx
,

where N is the total number of pairs, nu is the number of pairs with a word
of class u in the syntactic position of interest, nxis the number of pairs with x
providing a context for that position, and nxu is the number of pairs where both
are true. Resnik [1993], Appendix A, discussed other estimates but said they
give similar results to the MLE.

Large semantically tagged corpora are rare, however. A more common ap-
proach is to use unlabeled data, plus a thesaurus specifying which semantic
classes each y can belong to. If a given y has only one class u it can belong to,
we can replace each pair (x, y) with the pair (x, u). Some y ’s will not appear
in the thesaurus, and the corresponding (x, y)’s are usually discarded. Con-
versely, some y ’s will be ambiguous (belong to multiple semantic classes) and
so must be handled specially. Resnik [1993] treated each occurrence of such a
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y as contributing fractionally to the count of each of its word senses, so that

nu =
∑
y∈Wu

ny

|U y | ,

nxu =
∑
y∈Wu

nx y

|U y | ,

where Wu is the set of words which have uas one of their classes, and U y is the
set of classes to which word y belongs. So, for instance, if a word y belongs to
two classes, an occurrence of the word contributes a count of 1

2
to each of the

two classes.

3.3.2 Selectional Preferences in Query Logs. Selectional preferences can be
used for disambiguation and semantic interpretation. If x strongly favors y ’s
that belong to class u, then u is a good prediction for the class of an ambiguous,
or previously unknown, y in that context. Indeed, many studies have evaluated
the quality of learned selectional preferences by measuring the accuracy with
which they can be used for disambiguation [Light and Greiff 2002].

To take advantage of this disambiguation effect to classify queries, we use a
large log of unlabeled queries and do the following:

(1) Convert queries in an unlabeled query log to a set of head-tail (x, y) pairs.

(2) Convert each (x, y) pair to one or more weighted forward, that is, (x, u),
pairs and backward, that is, (u, y) pairs, where u represents a category.
Forward pairs are produced only when we have one or more u’s associated
with y , and backward pairs are produced only when we have one or more
u’s associated with x.

(3) Mine the weighted pairs to find lexemes that prefer to be followed or pre-
ceded by lexemes in certain categories (preferences).

(4) Use the mined preferences to assign test queries to semantic classes

Step 1 is straightforward for queries, vw, of length 2. We have only two pos-
sible ”syntactic” relationships: the first token providing context for the second,
or the second providing context for the first. These produce the forward pair
( v, w) and the backward pair (w , v), where the underscore indicates matching
at the front or the back of the query, respectively. We keep pairs of the two types
separate, and call selectional preferences mined from (v, w) pairs forward pref-
erences, and those from (w, v) pairs backward preferences. It is clear that this
technique is not applicable to single-term queries, as there is nothing present
to provide context for a single term (it should be noted that approximately 15%
of all queries in our query log are composed of a single term).

If all two token queries were simple noun phrases (a modifier followed by a
noun), then forward preferences would capture the degree to which a particular
modifier (noun or adjective) constrained the semantics of the head noun. Back-
ward preferences would capture the reverse. In practice, two token queries
can arise from a variety of other syntactic sources: verb-object pairs, single
words spelled with two tokens, noncompositional compounds, proper names,
etc. A user may also intend the query as a pair of single words in no particular
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Fig. 3. Selectional preference rule generation—Step 2.

syntactic relation. Typographical errors and other anomalies are also pos-
sible. Thus our forward and backward relations inevitably have a murky
interpretation.

Longer queries have more structural possibilities. Rather than attempting
to parse them, we derived from a query abc . . . uvw all pairs corresponding to
binary segmentations, that is,

(a, bc . . . w), (ab, c . . . vw), . . . (abc . . . v, w)

and

(bc . . . w, a), (c . . . w, ab), . . . (w, abc . . . v).

For any given query, most of these pairs get screened out in Step 2.
In Step 2, we replace each pair (x, y) with one or more pairs (x, u), where u is

a thesaurus class. Pairs where y is not present in the thesaurus are discarded,
and pairs where y is ambiguous yield multiple fractionally weighted pairs,
as discussed in the previous section. Our ”thesaurus” is simply our database
of manually classified queries, with each query interpreted as a single (often
multitoken) lexical item. The possible semantic classes for a lexical item are
simply the set of categories it appears under as a query. Step 2 is illustrated in
Figure 3.

In Step 3, we compute S(x) for each x, as well as the MLE of P(u|x) for
each (x, u) pair seen in the data. We then screen out pairs where S(x) < 0.5,
a relatively low threshold on selectional preference strength determined by
initial tests on our validation set. From each remaining pair we form a rule
[x→u:P(u|x)], which is interpreted as saying that a query matching x gets a
minimum score of P(u|x) for category u. If (x, u) is a forward pair (i.e., x is “ v”),
we require x to match a prefix of the query for the rule to apply, while if (x, u)
is a backward pair, we require xto match a suffix of the query to apply.

Finally, in Step 4 we use selectional preferences to classify test queries. We
attempt to match each forward selectional preference against the initial tokens
of the query, and each backward preference against the final tokens of the query.
We give the query a score for each category u corresponding to the maximum
P(u|x) value of any rule that matches it. We then compare the maximum P(u|x)
values for a query against a threshold tuned to optimize classification effec-
tiveness (Section 3.4), and assign the query to all u’s with values that exceed
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Fig. 4. Selectional preference rule generation—Step 4.

Fig. 5. Selectional preference rule examples.

the threshold. Tuning is necessary since the P(u|x) values are estimates of the
probability that a subpart of the query would be viewed as belonging to a cat-
egory (with categories considered as mutually exclusive), not estimates of the
probability that the whole query would be viewed as belonging to that category
(with categories considered as overlapping). Step 4 is illustrated in Figure 4.

In Figure 5 we show examples of how some real queries from our log are
classified by the rules mined from selectional preferences.

The above approach can be compared with conventional rule learning ap-
proaches in machine learning [Mitchell 1997]. Like rule learning approaches,
it uses labeled data to learn logical relationships (in our case very simple ones)
between predictor features and classes, and like some of these approaches uses
weighted rules with conflict resolution by taking maximum score. Our linguis-
tic criterion for filtering rules, S(x), is somewhat different from those used
for feature and rule selection in a typical rule learner, particularly since it
implies a different view of category structure than the classifier itself uses.
Our use of ambiguously labeled and structured training data is atypical in
rule learning. Finally, most rule learners incorporate an inductive bias to-
ward producing small sets of rules, while the short length of queries requires
that as many rules (of sufficient quality) be produced as possible. With re-
spect to this last point, our approach has similarities to association rule learn-
ing [Adamo 2000], which emphasizes producing all rules of sufficient quality.
The focus in association rule learning is usually not on predictive accuracy,
however, nor are issues of semantically ambiguous features typically dealt
with.

ACM Transactions on Information Systems, Vol. 25, No. 2, Article 9, Publication date: April 2007.



18 • S. M. Beitzel et al.

Table II. Positive Example Overlap (N/A-Not Applicable)

Exact Match n-Gram Match Perceptron

n-Gram match .7406 N/A N/A

Perceptron .1243 .0957 N/A

Selectional preferences .0894 .0708 .6513

3.4 Tuning and Combining Classifiers

One ideally tunes a text classifier to the need of the particular application
[Lewis 1995]. Our exact match classifier (Section 3.1) and its n-gram variant
(Section 3.1.1) both either match a query or do not, so no tuning is possible. Our
perceptron learner (Section 3.2) and Selectional Preference (SP—Section 3.3)
classifiers, on the other hand, produce a score for a query on each category, and
we must convert these scores to classification decisions.6 Therefore, for each
experimental run we set the thresholds of these two classifiers to optimize the
particular microaveraged Fβ measure (Section 4.2) to be measured. Tuning was
done on a sample (Section 4.1) distinct from the test set. A single numeric value
was used as the threshold for the classifiers for all 18 categories. This helped
avoid choosing extreme thresholds for categories with little training data, but
may have hurt effectiveness to the degree that scores on different categories
were not comparable.

Simply tuning the threshold of a classifier cannot make it do well on queries
whose important features were simply not present in the training data. In
Table II, we show that our component classifiers vary substantially in the cat-
egory assignments they get correct. Additionally, each individual approach has
different strengths and weaknesses. The exact-match and n-gram approaches
are best for high-precision classification of popular queries (e.g., “nfl football”).
The perceptron learner will be best at classifying queries with strong features
that are well represented in the manually classified queries (e.g., queries that
contain “city” are likely to be about travel or locations). The selectional prefer-
ence classifier will find latent relationships between queries (e.g., during foot-
ball season, “eagles” occurs more frequently with known football queries, but
during baseball season it’s more likely to be associated with ornithology). All of
this suggested combining the individual classifiers for greater effectiveness.

We tested a simple combined classifier that assigned a query to each cate-
gory that any of the component classifiers predicted (hereafter referred to as
the disjunctive combination). We individually tuned each component classifier
to optimize microaveraged Fβ , but no tuning of the combined classifier as a
whole was done. We also combined our techniques using a basic preference-
order approach, in an effort to shore up precision without sacrificing too much
of the recall gained through combination. This involved ranking the component
techniques into a preference order by some criteria. Then, during combination,
only the classification decisions from the highest-ranked technique that assigns
at least one class were used. For these experiments, we determined preference
order by ranking each approach by the level of precision it provided on its own

6The perceptron algorithm itself sets a threshold on each linear model, but these thresholds im-

plicitly minimize error rate, not F -measure.
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(using the validation set described in Section 4.1), highest first. We arrived
at a preference order of exact-match lookup first, followed by the perceptron
learner, 4-gram lookup, and finally selectional preferences. More sophisticated
combination approaches are certainly possible (learning weights for a linear
combination, for example), although they fall outside the scope of this study.

4. EVALUATION

Evaluation in the context of an evolving real-world system is always a challenge.
We discuss the choices we made in structuring controlled experiments with our
data sets. We give an overview of the datasets and effectiveness measures that
we used to evaluate each individual technique and the combined techniques
used in our query classification approach.

4.1 Data Sets

We used three different kinds of data in our experiments. The first data set (the
“training set”) was composed of several hundred thousand queries that were
manually classified (either individually or as bulk sets of names) by human
editors into the set of 20 categories listed in Table I. The “URLs” and “Mis-
spellings” categories were omitted since these would best be handled by special
techniques. The human editors were employees of AOLTM who monitored in-
coming query traffic and classified queries according to their best judgment.
They were not domain experts in search, but for the task of assessing queries,
assessors have only the query terms to help make their decision, so the neces-
sity of expertise was perhaps less important than in traditional tasks with a
manual assessment component, such as the Text Retrieval Conference (TREC),
where assessors often have a more verbose definition of the item being judged.7

The classifications were not governed by a specific set of guidelines, creating
an open assessment environment that was not tightly controlled. These 20 cat-
egories were chosen to represent the top level of a concept hierarchy similar to
the one used by the ODP. The results gathered from our initial work [Beitzel
et al. 2005a, 2005b] served as a pilot for this study, motivating us to perform
more detailed experiments. The queries in the 18 remaining categories pro-
vided exact-match and n-gram lookups for manual classification, were used as
training data for the perceptron, and defined class memberships for lexeme’s
when mining a query log for selectional preferences.

The second data set (the “tuning and testing” set) was a random sample of
20,000 queries out of the entire query stream for 1 week. These queries were
manually classified into the same set of 18 categories by a team of human
assessors (separate from those who classified the first data set). As with our
training data set, “URLs” and “Misspellings” were removed from consideration
for these experiments. A tuning set was formed from approximately 25% of the
remaining queries. This set was used to tune the thresholds for the perceptron
and selectional preference classifiers. The remaining 75% of queries were the
test set used for evaluation. A breakdown of the tuning and testing dataset is
given in Table III.

7The International Text Retrieval Conference (TREC); go online to http://trec.nist.gov.
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Table III. Tuning and Testing Data Breakdown

Description Total queries Total classifications

Original set 20,000 23,780

No URL & Misspell 18,627 21,119

Tuning set 5,113 5,283

Testing set 14,425 15,836

The third and final data set was the large, unlabeled query log that we mined
to generate the selectional preference classification rules. The query log used
for these experiments contained several hundred million queries8 received over
a period of several weeks by the AOLTM search service. The primary computing
resource required for our experiments was disk space, as we used approximately
200 GB to store the query log, data sets, and various intermediate files. This
was implementation-dependant to some degree, as it is certainly possible to
implement our techniques using more storage-conscious principles.

4.2 Effectiveness Measures

Overlap between our categories was low, but a query could belong to more
than one category. We therefore treated each category as a separate binary
classification task. We summarized a classifier’s effectiveness on a category k by
the number of true positives (TPk), false positives (FPk), false negatives (FNk),
and true negatives (TNk), where TPk+ FPk+ FNk+ TNk equals the number of
test queries. Using these counts, we can define the usual measures recall, Rk =
TPk/(TPk+ FNk), precision, Pk = TPk/(TPk+ FPk), and the F -measure [van
Rijsbergen 1979]:

Fβ,k = (β2 + 1) × TPk

(β2 + 1) × TPk + FPk + β2FNk
, (3)

where β lets us specify the relative importance of recall and precision. Values of
β lower than 1.0 indicate precision is more important than recall, while values
of β greater than 1.0 indicate the reverse.

To summarize effectiveness across all categories, we use the microaveraged
[Tague 1981] values of recall, precision, and F :

μ R =
∑

k TPk∑
k TPk + ∑

k FNk
,

μ P =
∑

k TPk∑
k TPk + ∑

k FPk
,

μFβ = (β2 + 1) × ∑
k TPk

(β2 + 1) × ∑
k TPk + ∑

k FPk + β2 × FNk
,

where summations are over the set of categories. Because our target classes
were of nonuniform size, we used microaveraging for our experiments, which
gives equal weight to each individual classification (although microaveraging

8The precise size of the query log is withheld, as it represents proprietary AOL data.
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Table IV. Classification Effectiveness for Each Technique (Disjunctive

Combination)—Sorted by Descending Microaveraged Recall

Micro. precision Micro. recall F1

All techniques 0.1539 0.5510 0.2406

4-Gram + perceptron + SP 0.1539 0.5510 0.2406

4-Gram + SP 0.1625 0.5044 0.2459

Exact match + 4-gram + SP 0.1625 0.5044 0.2459

Exact match + perceptron + SP 0.1622 0.4951 0.2443

SP + perceptron 0.1593 0.4758 0.2387

4-Gram + perceptron 0.1690 0.4689 0.2485

Exact match + 4-gram + perceptron 0.1690 0.4689 0.2485

Exact match + SP 0.1745 0.4343 0.2490

4-Gram match 0.1804 0.3940 0.2475

Exact match + 4-gram 0.1804 0.3940 0.2475

SP 0.1672 0.3856 0.2332

Exact match + perceptron 0.2141 0.3056 0.2518
Perceptron 0.2103 0.2790 0.2399

Exact match 0.3079 0.0990 0.1498

and macroaveraging gave similar results on our data). Note that the microav-
eraged value of Fβ was not derived from the microaveraged precision and
recall values.

5. RESULTS AND ANALYSIS

In Table IV, we show the effectiveness, as measured by microaveraged F1,of
all disjunctions of the individual classification approaches. We tuned both the
perceptron learner and the selectional preferences classifiers to optimize mi-
croaveraged F1 on the validation set.

We present these results in descending order by microaveraged recall, in
keeping with our goal of classifying a reasonably large portion of the query
stream.

First, we examine the performance of our four individual approaches. 4-Gram
matching achieved the best recall (.3940) among the individual techniques,
while still maintaining reasonable precision, with Selectional Preferences fol-
lowing in a close second, but with lower precision. This is especially encourag-
ing, given that the overlap between 4-gram matches and Selectional Preferences
was low (see Table II), indicating that substantial benefit might be gained from
combining these two techniques. It should be noted that the selectional pref-
erences classifier is only applicable to queries consisting of two or more terms.
When evaluating the SP classifier while excluding single-term queries from the
evaluation, its recall increased to 0.4434, which was an increase proportional to
the percentage of single-term queries in our test set, as expected.9 Additionally,
one might expect that the selectional preferences classifier would benefit from
a larger seed log. Based on some preliminary experiments, we concluded that
any increased benefit is minimal once the size of the query log reaches the

9Precision was slightly higher than the in the case of SPs over all queries (0.1719 vs. 0.1672)

because the optimal threshold was recalculated for this case and happened to increase slightly

(ordinarily precision would remain unchanged, as the SP classifier never produces a classification

for a single-term query).
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hundreds of millions. As expected, the perceptron learner and exact-match ap-
proaches were able to achieve greater precision (.2103 and .3079, respectively),
but at the cost of a substantially lower rate of recall, with the learner achieving
a modest .2790, and the exact-match plummeting below 1 in 10 at .0990. It is no-
table that although precision on exact match seems low at ∼30%, the assessors
who judged our test queries were a different group from the editors who classi-
fied our manual database. Thus, assessor disagreement, and the limitations of
bulk classification of large sets of names, played a large role on inhibiting our
maximum achievable precision.

Next, we examine the performance of all possible disjunctive combinations
of the individual approaches. As noted above, we have observed low overlap
among the individual approaches; therefore, we expected to see substantial im-
provements in recall when performing a disjunctive combination. As expected,
nearly all of the combined approaches were able to classify a substantially
larger portion of the query stream than any individual technique alone. In
particular, when we combined all techniques, we saw an increase in recall of
almost 40% (.5510 vs. .3940) over the individual technique with the best recall
(4-grams), while suffering a nominal drop in precision (.1539 vs. .1804). From
these results, it appears clear that we were achieving the “best of all worlds”
and successfully taking advantage of the unique specialties of each individual
technique. In particular, the large increase in recall suggests that the combined
approach may be a tenable solution to the recall problem that has hindered past
efforts at query classification. Additionally, these results strongly suggest that
the selectional preferences classifier is reaching portions of the query stream
that the other classifiers cannot classify. This is in keeping with the overlap
numbers given in Table II, and demonstrated experimentally by the large in-
crease in recall observed when the SP classifier was combined with any other
single approach. This is an important benefit of our system, as the SP classifier
is able to adapt to changes in the query stream over time by simply processing
an updated query log. In this way, we are able to utilize fully unlabeled data
to aid automatic classification, and we are not encumbered by a prohibitive
dependence on external sources of information, such as the set of documents
retrieved for a query.

To add further insight, we also give results for the preference-order combina-
tion of our individual techniques, as discussed in Section 3.4. We present these
results in Table V, again ordered by descending microaveraged recall.

As Table V shows, this preference-order combination strikes a better balance
between the precision/recall tradeoff; F1 scores are slightly higher for most ap-
proaches. If a search service determines that maximum recall is less important
than maintaining a predetermined minimum level of precision, combination
strategies like this preference-order combination can be used to achieve more
balanced results.

5.1 Changing the Value of β: The Precision/Recall Tradeoff

Different search services may put different values on precision and recall.
As discussed above, we can specify a different tradeoff between recall and
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Table V. Classification Effectiveness for Each Technique (Preference-Order

Combination)—Sorted by Descending Microaveraged Recall

Micro. precision Micro. recall F1

Exact match + SP 0.1795 0.4084 0.2494

4-Gram + SP 0.1800 0.4032 0.2489

4-Gram match 0.1804 0.3940 0.2475

SP 0.1672 0.3856 0.2332

Exact match + 4-gram + SP 0.1849 0.3795 0.2487

Exact match + 4-gram 0.1855 0.3703 0.2472

Exact match + perceptron + SP 0.2065 0.3244 0.2523

All techniques 0.2082 0.3228 0.2532
Exact match + 4-gram + perceptron 0.2082 0.3226 0.2530

SP + perceptron 0.1951 0.3190 0.2421

4-Gram + perceptron + SP 0.1973 0.3189 0.2437

4-Gram + perceptron 0.1972 0.3186 0.2436

Exact match + perceptron 0.2236 0.2884 0.2519

Perceptron 0.2103 0.2790 0.2399

Exact match 0.3079 0.0990 0.1498

Fig. 6. Fβ versus β for each automatic classification technique.

precision by varying the value of β in the F -measure, and retuning the au-
tomatic classification approaches and the combined approach to optimize that
measure on our validation set. In Figure 6, we plot values of β against mi-
croaveraged Fβ for each individual approach and the disjunctive combination.
The tunable (SP and Perceptron) classifiers were tuned to optimize microav-
eraged Fβ for each tested value of β on the validation set. We can see that
both the combined approach and the selectional preferences increasingly out-
perform the other approaches as higher levels of recall are desired (higher β).
This is of particular note because it demonstrates the robustness of the com-
bination of multiple techniques, and selectional preferences in particular, over
exact matching and basic machine learning when recall is highly weighted. It
also makes intuitive sense, as the disjunctive combination achieves recall at
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Table VI. KDD Cup Evaluation

Precision F1

Assessor #1 0.2573 0.2644

Assessor #2 0.1623 0.2090

Assessor #3 0.2483 0.2492

Average 0.2226 0.2409

KDD mean 0.2545 0.2353

KDD median 0.2446 0.2327

KDD std. dev. 0.1338 0.0993

least as good (and almost certainly better) than that of its best component, but
precision no better (and almost certainly worse) than that of its best component.
The combination also maintains a slight edge over the selectional preferences
when β is greater than one (more recall desired), but falls off as expected when
precision is more important (lower β), as disjunctive combinations are generally
at a disadvantage when precision is emphasized.

5.2 KDD Cup Performance

As discussed in Section 2.2.1, the task for the 2005 KDD Cup was automatic
topical query classification. Although participants in the KDD Cup made fre-
quent use of external resources outside the scope of our approach, we evalu-
ated our system using the KDD dataset and judgments described previously in
Section 2.2.1.

To facilitate this evaluation, we first needed to map our database of man-
ually classified queries onto the set of specific categories used in KDD Cup.
For many categories, this was difficult, as the set of categories initially used
for our manual classifications were typically more general than the KDD Cup
categories. For cases where it was not possible to map any of our preexisting
classifications to a particular KDD Cup category (usually due to insufficient
data or categories that were too general), we created a small set of manual clas-
sifications for the KDD Cup category in question, in an attempt to make some
effort to represent it. We then used our mapped KDD Cup categories to perform
classifications on the KDD Cup queries using the exact-match and selectional
preferences-based techniques described in Section 3. Specifically, we compared
the disjunctive combination of our exact-match lookups and selectional pref-
erences to the median scores for Precision and F1 from KDD. As done in the
KDD Cup, we performed separate evaluations using each of the three sets of
judgments from KDD assessors. The average performance was also calculated.
We present the results of this evaluation along with the corresponding numbers
from KDD Cup in Table VI.

As seen in Table VI, our system is able to succeed fairly well on the KDD Cup
data, placing right around the median for both Precision and F1. These results
show a reasonable amount of assessor disagreement, which is to be expected.
This level of assessor disagreement is also consistent with the conclusions from
prior studies, although the presentation on the KDD Cup Website shows the
assessors were almost always in agreement on the top three performers. Recall
that one of our goals was to model the problem of automatic query classification
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after how it would appear to a real Web search service. Because of this, we
imposed operational requirements that prevented us from utilizing expensive
outside resources, making our task slightly different and more difficult than
that of the KDD Cup, where participants were uninhibited. When considering
that the systems competing in KDD Cup frequently made use of information-
rich external resources such as retrieved documents and online taxonomies, it
is encouraging to see our approach performed as well as it did, outperforming
approximately half of all competing approaches.

5.3 Discussion

In this section, we review our three primary research questions identified in
Section 3 and discuss the key findings relating to each one.

(1) Is it possible to design a viable automatic query classification technique
that utilizes search engine query logs?

As shown in section 5, the selectional preferences classification technique
is able to classify queries competitively with the other component tech-
niques. Furthermore, it is shown to be especially proficient in achieving
high classification recall.

(2) Can we combine several techniques to improve classification recall?
Both combination methods that were used in this study proved to be very

effective in improving classification recall over that of any single component
technique. Additionally, there is a large body of research on the most effec-
tive means for data fusion and other forms of combining multiple evidence.
As such, it is likely that still more sophisticated combination techniques
can be applied to further increase classification precision, mitigating one of
the biggest limitations of this study.

(3) How does an operationally restricted classification approach compare to
those which use external resources?

It is clear that an approach to query classification that is not allowed to
access external sources of information is placed at an immediate disadvan-
tage. Despite this, we found that our approach could still compete ably with
approaches used in the KDD Cup, outperforming roughly half of them. To
achieve this level of performance in the face of these operational restrictions
is encouraging.

To round out the discussion, we also examine the limitations of this study.
One obvious limitation is the classification precision of our techniques. Clearly
this is an area that needs improvement when false-positive classification de-
cisions are a concern. In the absence of high-quality training data, supervised
learning methods and broad rule-based techniques like the selectional pref-
erences classifier are going to have depressed precision. This is likely best
mitigated by pruning the classification rules according to some empirical cri-
teria or enforcing a more stringent minimum selectional preference strength.
Additionally, more training data (in the form of seed manual classifications
and logged queries) will likely lead to higher precision. A further limitation is
that the categories used in this study may be too general to be of use for all
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applications. The experiments performed for our comparison to KDD Cup sug-
gest that it is perfectly reasonable to use a larger set of categories that are
individually more narrow in scope, even when some of these categories are
not well specified. More detailed study of the performance of our approach un-
der these circumstances is warranted. Finally, this study did not attempt to
quantify the degree to which retrieval might be improved by the classification
approaches presented, though we hope to evaluate this in future work.

6. CONCLUSIONS

Determining the topic of unrestricted Web queries is an important problem
in modern Web search. This is increasingly true as modern search services
increasingly use large numbers of specialized backend databases to provide
special features (maps, stock quotes, advertisements, etc.). We proposed a sys-
tem for automatic Web query classification that combines manually classified
queries with techniques from machine learning and computational linguistics.
This combined approach allows higher recall and smoother tradeoffs between
recall and precision than any of the component approaches. Furthermore, it is
competitive with other classification systems, as measured by the 2005 KDD
Cup, despite not having access to information-rich external resources such as
the results of text classification on documents retrieved for a query, or the con-
tents of online taxonomies and directories. Our combined approach is able to
leverage the specific strengths of each individual approach to classify a much
larger portion of the query stream than would be possible using any of the indi-
vidual methods alone. Moreover, by leveraging the unlabeled data contained in
user query logs, we have created a classification system that is automatically
robust to changes in the query stream, for as the users change their queries, a
system that relies on query logs for information will be able to adapt to them
immediately and automatically. Because of this, we can minimize the need for
periodically labeling new training data to keep up with changing trends in
the query stream over time, and we are not forced to rely on computationally
prohibitive forms of external information to maintain our classification effec-
tiveness.

There are several potential areas for future work, including the following:

—finding ways to improve the precision of both our component and combined
techniques;

—expanding the existing manual classification with queries that are classified
by our approach, and subsetting the manually classified queries by linguistic
properties;

—improving our selectional preference algorithm by more explicit handling of
semantic and structural ambiguity, and incorporating ideas from traditional
rule learning; and

—examining specific topical categories where one approach outperforms an-
other, and using this information to create more sophisticated combined clas-
sification techniques.
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