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Abstract 
 

Peers in peer-to-peer file-sharing systems use 
conjunctive queries as a way of controlling query cost 
in the absence of information about the behavior of 
other peers.  Conjunctive queries are good at increa-
sing the precision of query result sets, but may be 
overly selective, decreasing overall performance.  We 
consider relaxing the conjunctive matching criterion 
and its impact on performance and cost. Experimental 
results indicate that significant performance 
improvements are possible at reasonable cost.  

1. Introduction 

Peer-to-peer (P2P) file-sharing systems are a leading 
application of P2P technology.  In such systems, files 
are binary and must be described independently by 
users (publishers) who share them.  To find a file, a 
user composes a query made up of relevant terms.  If 
these terms “match” those used by a publisher to de-
scribe the file, then the file’s descriptor and the public-
sher’s identity (e.g., a filename and IP address, respect-
tively) are returned to the client.  This information is 
used by the client to identify and download the file. 

Most P2P file-sharing systems support only 
conjunctive queries [1] – all query terms must appear 
in the file’s descriptor for a match to occur.  One 
reason for using conjunctive matching is that its 
performance is intuitive to a user: as the number of 
terms in a query increases, the result set should be more 
selective and more precisely fit the desires of the user. 

The conjunctive nature of queries helps conserve 
bandwidth as well.  Because peers respond to queries 
independently, it is reasonable for them, in the interest 
of efficiency, to be conservative, and return the 
smallest result set. Besides taking a load off the 

network, the user at the client has fewer results through 
which to search. 

However, the conjunctive matching criterion has a 
disproportionately negative impact on the ability to 
find desired results.  As queries grow, they become 
increasingly selective.  In the worst case, all relevant 
results may fail to match long queries.  This is 
particularly problematic in P2P file-sharing systems 
because descriptors are limited in length (a filename is 
typically limited to about 200 bytes). 

We propose relaxing the matching criterion, thereby 
returning more results to the client as a result of the 
query. In particular, we propose using disjunctive que-
ries instead of conjunctive ones: a query matches a 
descriptor if any query term is contained in the descrip-
tor.  We hypothesize that this will have several positive 
effects, two of which are: 

• Increasing the likelihood that the desired file is 
returned as a result of a query. As mentioned above, a 
longer, overly selective query reduces the likelihood 
that any result will be contained in the result set. 

• Increasing the amount of metadata available for 
identifying the desired result. Each descriptor 
(contained in a result) contributes to describing a file.  
Increasing the number of contributing descriptors 
makes the desired file more identifiable.   

We claim that the improvement in query accuracy 
the – ability to identify the desired result - afforded by 
disjunctive matching outweighs its negative impact on 
efficiency.  In addition, simple techniques can be 
applied to improve efficiency. 

In this work, we assume that a user is searching for a 
particular file in a zero-knowledge P2P file-sharing 
environment.  That is, the network and the set of shared 
data are dynamic as peers autonomously join and leave 
the system, and there are no centralized indices storing 
global statistics and no central controller using them.  



This is a conservative assumption, but simplifies our 
model and is inclusive of most applications, such as the 
current generation of P2P file-sharing systems as well 
as mobile P2P applications.  Finally, the user poses 
queries for the desired file using a set of terms s/he 
believes best describes it. 

2. Related Work 

Much of the work done in P2P file-sharing systems 
is in the design of structured network topologies based 
on distributed hash tables (DHTs), which maximize 
routing performance [8][9].  Search in basic DHTs is 
exact keyword matching, and, to support multi-key-
word queries, multiple inverted lists must be main-
tained and their intersections must be computed [4]. 
Other techniques to reduce the cost of queries include 
the use of Bloom filters, the maintenance of additional 
statistics and inverted indices [15], and the use of com-
posite instead of single keywords [20]. Search in struc-
tured P2P file-sharing systems is guaranteed to find the 
desired file if it exists. However, structured P2P net-
works are known to suffer when the environment is 
highly dynamic, characterized by transient data and 
peers. 

Unstructured P2P systems, such as Gnutella, control 
neither the overlay topology, nor the placement of files. 
Peers are free to choose their neighbors, and files are 
freely replicated over the network [21].  Most research 
on unstructured P2P networks focuses on guiding the 
query routing process, by using statistical information 
to select the right peers to which to forward the query: 
routing indices are used in [10][16]; queries are for-
warded only to a small number of powerful peers in 
[14] or to peers that have the similar interests [11]; 
content signatures are used to rank neighboring peers in 
[12][19]. Techniques to build semantic overlay net-
works have also developed in which peers find and 
make connections with others that have similar content 
[19]. Unstructured P2P systems are robust and scalable 
due to their simplicity. However, search in unstructured 
P2P file-sharing systems is not guaranteed to find the 
desired file, regardless of whether or not it exists. To 
cope with this, [18] proposes to use a quorum system to 
guarantee with high probability that the desired file can 
be found. 

The problem of conjunctive queries filtering out 
many relevant results is known as the word mismatch 
problem in the area of information retrieval; the 
searchers and the content providers use different words 
to describe the same content. This problem can be 
addressed by the semantic matching approach. To our 
knowledge, pSearch [15] is the first work on semantic 

searching in P2P networks. pSearch uses latent seman-
tic indexing (LSI) as the indexing technique, and a 
DHT as the P2P routing infrastructure. The scalability 
of LSI, however, is questionable.  In another work [13], 
the authors address the problem by expanding a query 
based on keyword relationships, which are discovered 
by a relevance-feedback-liked mechanism.  This 
method requires maintaining a large base of statistics. 

Our work is distinguished from the work above in 
the minimal amount of information it requires from the 
infrastructure and its focus on the application-level 
behavior of peers that share binary (i.e., non-self-
describing) files. 

3. Model 

Peers collectively share (or publish) a set of (binary) 
files by maintaining local replicas of them.  Each 
replica is represented by a descriptor, which also 
contains an identifying key (e.g., an MD5 
cryptographic hash on file’s bits).  All replicas of the 
same file share the same key.  A query issued by a 
client is routed to all reachable peers until the query’s 
time-to-live expires. The query matches a replica if it is 
fully contained in the replica’s descriptor.  For each 
match, the server returns its system identifier and the 
matching replica’s descriptor.  The client uses this 
information to subsequently download the actual file. 

Formally, let O be the set of files, M be the set of 
terms, and P be the set of peers.  Each file o ∈O has a 
unique key, denoted ko, such that ko = kp if and only if 
o=p (i.e., the MD5 hash value mentioned above). Each 
file o∈O has a set of terms that validly describe it, 
denoted as To, where To⊆M.  Intuitively, To is the set 
of all terms that a person might use to describe o. Each 
term t∈To has a strength of association with o, denoted 
soa(t, o), where 0 ≤ soa(t, o) ≤1 and ∑t∈Tosoa(t, o) = 1. 
The strength of association a term t has with a file o 
describes the relative likelihood that it is to be used to 
describe o, assuming all terms are independent. The 
distribution of soa values for a file o is called the 
natural term distribution of o.   

A peer s ∈P is defined as a pair, (Rs, g
s), where Rs is 

the peer’s set of shared replicas and gs is the peer’s 
unique system identifier.  Each replica ro

s∈ Rs is a copy 
of file o, maintained by peer s.  Each ro

s has an asso-
ciated descriptor, d(ro

s)⊆M, which is a multiset of 
terms that is maintained independently by s.  Each 
descriptor d(ros) also contains ko. The maximum 
number of terms that a descriptor can contain is fixed. 

A query Qo⊆To for file o is also a multiset of terms.  
The terms in Qo are expected to follow o’s natural term 
distribution.  When a query Q≠Ø arrives at a server s, 



the server returns result set UQ
s={(d(ro

s), gs) | ros∈Rs, 
Q⊆d(ros)}. In other words, in accordance with the 
(conjunctive) matching criterion, a result’s descriptor 
must contain all query terms. 

The client receives result set UQ=∪sU
Q

s, s∈P, and 
groups individual results by key, forming G={GO1, GO2, 
…}, where GOi=(di, kOi, li), di={⊕d(rOi

s) | (d(rOi
s), 

gs)∈UQ } is the group’s descriptor, kOi is the key of Oi, 
and li={gs | (d(rOi

s), g
s)∈UQ} is the list of servers that 

returned the results in GOi.  In this definition, ⊕ is the 
multiset sum operation. 

The client assigns a rank score to each group with 
function Fi∈F, defined as F: 2M×2M×Z×Z→R+. If Fi(dj, 
Q, |Gj|, timej) > Fi(dk, Q, |Gk|, timek), where Gj, Gk are 
groups, then we say that Gj is ranked higher than Gk 
with respect to query Q.  In these definitions of F, |Gj| 
is the number of results contained in a group, and timej 
is the creation time of the Gj (i.e., the time when the 
first result in Gj arrived). 

3.1. Model Specifics 

In popular P2P file-sharing systems, such as various 
versions of Gnutella and eDonkey, result keys are 
generally generated by the MD5 cryptographic hash 
function and results are grouped based on these keys. 
Ranking is based on group size: 

FG(d, Q, s, t) = s. 

Descriptors in these systems are generally imple-
mented via filenames, although some descriptive infor-
mation may be embedded in the binaries (e.g., ID3 data 
embedded in MP3 files [5]). When a client downloads 
a file, the descriptor of this new replica is initialized as 
a duplicate of one of the servers’ in the result set.  We 
also assume such behavior in our model. 

For simplicity, we will use the term result to 
describe a group, an individual result, or a result’s 
descriptor; and clarify the usage if necessary. 

4. An Alternative to Conjunctive Queries 

Conjunctive queries are problematic because they 
may be excessive in shrinking the result set, perhaps 
selecting away desired results.  We now sketch the 
intuition behind this behavior.  Based on our model, 
given a query Qo with term, t, the probability that a 
descriptor d(rp) contains t is  

1-[1-soa(t, p)]||d(rp)||, 

where ||d(rp)|| is the number of (not necessarily unique) 
terms in d(rp).  Let Qo’ be the set of unique terms of Qo.  
The probability that d(rp) contains Qo is 

∏ti∈Qo’[1-[1-soa(ti, p)]||d(rp)||-i], ||d(rp)|| ≥ |Qo’|. 

As Qo grows, the probability that it is contained by 
d(rp) decreases exponentially. The conjunctive 
matching criterion has a tendency of filter out results 
that are not relevant (i.e., have different natural term 
distributions).  Such results likely do not contain all the 
terms that are the most strongly associated with file o, 
and therefore do not contain Qo.  However, the 
conjunctive matching criterion may also filter out 
desired results because their descriptors are too small 
or happen, by chance, to not contain all of Qo. 

To alleviate this problem, we propose relaxing the 
conjunctive matching criterion.  There are many 
relaxation alternatives, so we do not attempt to 
enumerate all of them. Rather, our goal is to show that 
relaxing the conjunctive criterion is viable.  We 
therefore propose the following alternative because of 
its simplicity: 

If Qo ∩ d(rp) ≠ Ø, then Qo matches d(rp). 

This disjunctive matching criterion has the 
following probability of matching Qo’ with d(rp): 

∑t∈Qo’Pr(t∈d(rp)) - ∑t1,t2∈Qo’Pr(t1, t2∈d(rp)) + … 

The expression above is a result of the inclusion-
exclusion principle of probability theory [6].  In this 
expression, Pr(event) signifies the probability of an 
event. The point we are making is that additional terms 
in the query do not negatively impact its ability to yield 
an inclusive result set. 

5. 5. Experimental Results 

We simulate the performance of a P2P file-sharing 
system to test the large scale performance of our 
methods.  In accordance with the model described in 
[2] and observations presented in [3], we enhance our 
experimental model with interest categories, which 
model the fact that some users have stronger interests 
in some well-known subsets of data than other.   

We partition the set of files, O, into sets Ci, where 
Ci⊆O, Ci∩Cj=Ø if i≠j, and ∪iCi=O.  Each category Ci 
has an assigned popularity, bi, which describes how 
likely it is to be assigned to a peer.  The values of bi 
follow the Zipf distribution [2]. Within each interest 
category, each file varies in popularity, which is also 
skewed according to the Zipf distribution [2]. This 
popularity governs the likelihood that a peer who has 
its interest category is either initialized with a replica of 
the file or decides to search for it. 

At initialization, each peer s∈P is assigned some 
interests Is⊆C, and is allocated a set of replicas Rs from 



this interest set:  Rs={r o
s | o∈∪iCi, where Ci∈Is}.  For 

each replica, ri
s, allocated at initialization, d(ri

s)⊆Ti, 
where term allocation is governed by natural term 
distributions. Peer s’s interest categories also constrain 
its searches; it only searches for files from ∪iCi, where 
Ci∈Is. 

 
Table 1. Query length distribution 

Length 1 2 3 4 5 6 7 8 

Prob. .28 .30 .18 .13 .05 .03 .02 .01 
 

Table 2. Parameters used in the simulation 
Parameter Value(s) 
Num. Peers 1000 
Num. Queries 10,000 
Max. descriptor size (terms) 20 
Num. terms in initial descriptors 3-10 
Num. categories of interest per peer 2-5 
Num. files per peer at initialization 10-30 
Num. trials per experiment 10 
 
We use Web data to simulate term distributions and 

interest categories. Web data are a convenient choice 
because they constitute a grouping of terms into 
documents (we use terms’ relative frequencies in 
documents to simulate natural term distributions for 
files) and a grouping of documents into domains (we 
use Web domains to simulate interest categories).  
Other researchers have also used Web data for P2P 
experimentation [23]. Real data from P2P applications 
would be preferable, but we know of none [22].  We 
are currently investigating the creation of such data. 

Our data consist of an arbitrary set of 1,000 Web 
documents from the TREC 2GB Web track (WT2G).  
These documents come from 37 Web domains.  Terms 
are stemmed, and markup and stop words are removed.  
The final data set contains 800,000 terms, 37,000 of 
which are unique.  We also conducted experiments 
using other data sets with other data distributions, but, 
due to space constraints, we only present a repre-
sentative subset of our results. The data we used for all 
experiments can be found on our Web site [24]. The 
other experimental results are available on request. 

Queries for files are generated using associated 
terms with a length distribution that is typical of that 
found in Web search engines [4] as shown in Table 1. 
Other simulation parameters shown in Table 2 are 
based on observations of real-world P2P file-sharing 
systems and are comparable to the parameters used in 
the literature. 

Although other behavior is possible, we assume that 
the user identifies and downloads the desired result 

group with a probability 1/rank, where rank≥1 is its 
position in the ranked set of results. 

Performance is measured using a standard metric 
called mean reciprocal rank score (MRR), defined as  

q

N

i
i

N

rank
MRR

q

∑ =

=
1

1

, 

where Nq is the number of queries and ranki is the rank 
of the desired file in query i's result set.  If the file is 
not in the result set, then ranki=∞.  MRR is an 
appropriate metric in applications where the user is 
looking for a single, particular result. 

For reference, we also present precision and recall, 
which have slightly different definitions than they do in 
traditional IR, due to the fact that replicas exist in the 
P2P file-sharing environment, and assuming that 
queries are for particular files.  Let A be the set of 
existing replicas of the desired file in the entire system, 
and R be the result set of the query.  Precision and 
recall are defined as follows: 

            
||

||
R

RA
precision

∩= ,         
||

||

A

RA
recall

∩= . 

Precision measures the percentage of a result set that 
is relevant to the query and recall measures the 
percentage of the existing results retrieved by a query.  
When computing average precision, we only consider 
the cases when result sets are non-empty.  Reported 
precisions and recalls are the averages of these 
measures over all queries in a trial. 

Because recall and precision are commonly 
inversely related in information retrieval research, the 
F-score metric has been devised to combine their 
relative contributions in a single metric [7]: 

.
2

precisionrecall

precisionrecall
scoreF

+
××=−  

These more traditional IR metrics are useful in 
roughly diagnosing the performance of query 
processing and in generalizing the presented 
performance to other domains. 

Note that the results may exhibit some variance due 
to the experimental nature of the results. We have 
computed statistical significances of the results, but 
have left them out for brevity. The statistical 
significances of the presented results should be 
obvious, however. 

Finally, note that we present some results over 
various query lengths.  These results were yielded by 
keeping track of the length of each of the 10,000 
experimental queries. We are not reporting results 
where query length was the independent variable. 



5.1. Disjunctive Query Performance 

In Figure 1, we compare the performances of 
queries using both conjunctive and disjunctive 
matching. Disjunctive matching outperforms 
conjunctive matching by more than 50%.   
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Figure 1. MRR of two matching criteria 

 
As conjunctive queries get longer, they become 

more selective. Longer queries will likely return only 
correct results, if they return anything at all.  As shown 
in Figure 2, the precision of conjunctive queries is 
about 90% higher than that of disjunctive queries. 
However, the recall of conjunctive queries is about 
50% lower than that of disjunctive queries. That  the F-
score of disjunctive queries is about 30% greater than 
that of conjunctive queries suggests a net gain in the 
use of disjunctive queries. 

Precision is an important metric, because, the 
likelihood of identifying a desired result increases as 
the percentage of that result set made of the desired 
result increases.  The caveat of this claim, however, is 
that the result set be non-empty. 

Conjunctive queries, however, prioritize precision 
over recall to the point that near-matches involving 
desired results are rejected.  In the worst case, no 
desired results are returned at all.  As shown in Figure 
3, as queries get longer, the percentage of result sets 
containing the desired result decreases from 70% when 
queries contain only one term to less than 2% when 
queries contain 8 terms.  

In contrast, with disjunctive queries, the percentage 
of result sets that contain the desired result is 
consistently about 70%.  These figures are significant 
because only if the desired result is in the result set can 
it be identified by the ranking function and user. 
Intuitively, the percentage-contained metric acts as an 
upper bound to our main metric, MRR. 
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Figure 2. Recall, precision, and F-score of two 

matching criteria 
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Figure 3. Percentage of result sets containing 

the desired result of two matching criteria  
over various query lengths 

 
The relationship between MRR and percentage-

contained is clear from the MRR results shown in 
Figure 4.  As query length increases, the MRR of 
disjunctive queries persists at approximately 35%, 
whereas with conjunctive queries, there is a significant 
drop-off. We attribute the bumpiness exhibited in these 
graphs to random variance. 

We tried the same experiments on different data sets 
with different data distributions, and, predictably, they 
yielded similar results: disjunctive queries out-
performed conjunctive ones.  In Figure 5, we show the 
performance improvement using disjunctive queries 
over data sets of different sizes (400K and 1.2M 
terms), different data sets with 800K terms (sets 2 and 
3), and when using a uniform distribution of data 
popularity.  These results indicate that our reported 
results are representative, so we will no longer consider 
other data sets in this work. 
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Figure 4. MRR of two matching criteria over 

various query lengths 
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Figure 5. MRR of two matching criteria with 

different data sets and distributions 

5.2. Cost Analysis 

Using disjunctive queries increases MRR, but they 
come at a price:  more results are returned putting more 
load on the network, the server, and the client.  One 
might argue that the price of the increased MRR is 
worth it, as better-ranked results increase the likelihood 
that the desired result is found and decreases the result 
that: 

1. Subsequent queries are issued to find the 
desired file, and 
2. The user downloads an irrelevant file, which 
may be followed by another search for the 
original file. 

Despite the hypothetical cost savings, the overhead 
of a disjunctive query should be addressed.  The num-
ber of results returned by the query is directly related to 
the work peers have to perform to serve, transmit, and 
rank them, so we use it as our cost metric. 

We reduce the cost of disjunctive queries by 
performing Bernoulli sampling on the result set 

generated by each server.  The disjunctive matching 
criterion with sampling becomes: 

If Qo∩d(rp)≠Ø → Qo matches d(rp) with probability Pm, 

where Pm is a user-tuned parameter. By sampling in this 
way, we yield an unbiased sample of the original result.  
The size of the result set that arrives at the client should 
be reduced by a factor of Pm. 
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Figure 6. Number of results per query over 
various sampling rates and query lengths 

 
Figure 6 shows the number of results per query with 

various sampling rates and query lengths.  With 
conjunctive queries, we see that the number of results 
decreases as query length increases.  With disjunctive 
queries, however, the number of results per query is 
constant with query length, but decreases predictably 
with sampling rate. 

Figure 7 shows the average number of results per 
query with various sampling rates and random query 
lengths. Note that when the sampling rate of disjunc-
tive queries is 25%, cost is about 28% lower than when 
using conjunctive queries without sampling. Sampling, 
predictably, has a negative impact on MRR.  As argued 
above, the reason that disjunctive queries improve 
performance is because they result in increased recall 
and the percentage of query result sets that contain the 
desired result. Sampling counteracts these effects. 

Figure 8 shows the impact that sampling has on the 
percentage of result sets that contain the desired result.  
Although percentage-contained of disjunctive queries 
are still, for the most part, higher than with conjunctive 
queries, the decrease in this metric is not in proportion 
to the decrease in cost.  For example, with 75% 
sampling, the drop in percentage-contained is less than 
the expected 25%.  This is due to the precision of the 
average result set.  In our experiments, when using 
disjunctive queries, precision is 17%.  This means that, 
on average, as long as there are 0.17-1

≈6 results in the 
result set, then one of them is expected to be the 



desired result, assuming that results are uniformly 
distributed. 
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Figure 7. Average number of results per query 

with different sampling rates 
 
In other words, the probability that a randomly sel-

ected result in a result set, R, corresponds to the desired 
file, o, is the precision of R, denoted precision(R, o).  
The likelihood that there are no instances of the de-
sired result in R after sampling is  

Pr(desired result ∉ R) = (1-precision(R, o))|R|, 

where |R| denotes the number of results in R.  Thus, 
removing one random result from R increases the 
likelihood that the desired result is not contained in R 
by a factor of 

),(1

1

oRprecision−
. 

As the size of a result set shrinks, the likelihood that 
it contains the desired result decreases exponentially, 
albeit slowly. In particular, if |R| is shrunk by a factor 
of 0 ≤ Pm 

≤ 1, then the likelihood that there are no 
instances of the desired result in R increases by a factor 
of (1-precision(R,o))Pm||R||-||R|| = (1-precision(R,o))||R||(Pm-

1)|. This explains the percentage-contained trend shown 
in Figure 8 with different sampling rates. 

Because the number of results per disjunctive query 
ranges from 40 to 160, theoretically, with a 17% 
precision, we can sample out from 40-6=34 to 160-6 
=154 results (i.e., from 85% to 96%) from a result set 
and still expect it to contain the desired result.  
Specifically, we should be able to decrease cost more 
quickly than we decrease search accuracy. 

Figure 9 compares the MRR and percentage-
contained of conjunctive and disjunctive queries over 
various sampling rates. As predicted by the results 
shown in Figure 8, MRR decreases with sampling rate.  
Nevertheless, with all sampling rates, disjunctive 
queries outperform conjunctive queries without 

sampling, by at least 15%.  Considering these results 
and the cost results shown in Figure 7, we see that it is 
possible to improve on both the cost and the accuracy 
of conjunctive queries (i.e., using disjunctive queries 
with a sampling rate of 25%). 
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Figure 8. Percentage of result sets containing 
the desired result over various query lengths 

with various sampling rates 
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Figure 9. MRR and percentage of results 

containing the desired result over various 
sampling rates 

 
The benefit of disjunctive matching, as stated in 

Section 4, is that it reduces the selectivity of queries, 
increasing the size of the result set. At the same time, 
sampling acts to decrease the size of the result set.  The 
overall effect of disjunctive matching and sampling, 
however, is higher MRR.  The reason for this is the 
relaxation of the conjunctive matching criterion has a 
tendency of selecting for relevant results over irrelevant 
ones, whereas sampling is indiscriminate in what it 
removes.  All the terms in the query are expected to be 
the most strongly associated with the desired result.  
Allowing any of them to be the basis for a match is 
therefore expected to yield a result set that contains a 
large proportion of desired result – this is suggested by 
the F-score results shown in Figure 2. 



5.3. Other Matching Criteria 

Besides the disjunctive matching criterion presented 
above, we also tried various other matching criteria.  
For example, one criterion computed the cosine 
similarity [7] between the query and the descriptor and 
used it as a probability of returning the result. These 
alternative criteria have slightly different performance-
cost profiles, but all essentially exhibited the similar 
performance-cost tradeoff. 

6. Conclusion 

P2P file-sharing systems are designed to handle 
queries conjunctively, ostensibly to be more efficient 
with network resources.  This form of query matching 
tends to increase the proportion of desired results in 
query results sets.  However, this criterion may be too 
strict; in some cases, all desired results are selected 
away. By using disjunctive matching, we could 
increase the likelihood that the desired result is 
contained in the result set, increasing search accuracy 
(MRR) by over 50%, but at triple the cost. 

Because the disjunctive selection criterion biases the 
additional results to the desired one, random sampling 
is able to reduce cost with a lesser impact on MRR.  In 
fact, at a 25% sampling rate, MRR when using 
disjunctive queries is 15% better than with conjunctive 
queries without sampling, and cost is 28% lower.   

One may use this performance characteristic to tune 
the sampling rate based on current network traffic:  
when bandwidth is plentiful, maximize MRR, 
otherwise, minimize cost.  A particular heuristic, 
however, is outside of the scope of this work. 

Our work in this area is ongoing.  We are currently 
exploring other ways of relaxing the matching criterion 
and how other ranking functions may be used to further 
refine MRR. 
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