
Conjunction Dysfunction:
The Weakness of Conjunctive Queries in Peer-to-Peer File-sharing Systems

Wai Gen Yee, Linh Thai Nguyen, and Ophir Frieder
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
yee@iit.edu, nguylin@iit.edu, ophir@ir.iit.edu

Abstract

Peers in peer-to-peer file-sharing systems use
conjunctive queries as a way of controlling query cost
in the absence of information about the behavior of
other peers. Conjunctive queries are good at increa-
sing the precision of query result sets, but may be
overly selective, decreasing overall performance. We
consider relaxing the conjunctive matching criterion
and its impact on performance and cost. Experimental
results indicate that significant performance
improvements are possible at reasonable cost.

1. Introduction

Peer-to-peer (P2P) file-sharing systems are a leading
application of P2P technology. In such systems, files
are binary and must be described independently by
users (publishers) who share them. To find a file, a
user composes a query made up of relevant terms. If
these terms “match” those used by a publisher to de-
scribe the file, then the file’s descriptor and the public-
sher’s identity (e.g., a filename and IP address, respect-
tively) are returned to the client. This information is
used by the client to identify and download the file.

Most P2P file-sharing systems support only
conjunctive queries [1] – all query terms must appear
in the file’s descriptor for a match to occur. One
reason for using conjunctive matching is that its
performance is intuitive to a user: as the number of
terms in a query increases, the result set should be more
selective and more precisely fit the desires of the user.

The conjunctive nature of queries helps conserve
bandwidth as well. Because peers respond to queries
independently, it is reasonable for them, in the interest
of efficiency, to be conservative, and return the
smallest result set. Besides taking a load off the

network, the user at the client has fewer results through
which to search.

However, the conjunctive matching criterion has a
disproportionately negative impact on the ability to
find desired results. As queries grow, they become
increasingly selective. In the worst case, all relevant
results may fail to match long queries. This is
particularly problematic in P2P file-sharing systems
because descriptors are limited in length (a filename is
typically limited to about 200 bytes).

We propose relaxing the matching criterion, thereby
returning more results to the client as a result of the
query. In particular, we propose using disjunctive que-
ries instead of conjunctive ones: a query matches a
descriptor if any query term is contained in the descrip-
tor. We hypothesize that this will have several positive
effects, two of which are:

• Increasing the likelihood that the desired file is
returned as a result of a query. As mentioned above, a
longer, overly selective query reduces the likelihood
that any result will be contained in the result set.

• Increasing the amount of metadata available for
identifying the desired result. Each descriptor
(contained in a result) contributes to describing a file.
Increasing the number of contributing descriptors
makes the desired file more identifiable.

We claim that the improvement in query accuracy
the – ability to identify the desired result - afforded by
disjunctive matching outweighs its negative impact on
efficiency. In addition, simple techniques can be
applied to improve efficiency.

In this work, we assume that a user is searching for a
particular file in a zero-knowledge P2P file-sharing
environment. That is, the network and the set of shared
data are dynamic as peers autonomously join and leave
the system, and there are no centralized indices storing
global statistics and no central controller using them.

This is a conservative assumption, but simplifies our
model and is inclusive of most applications, such as the
current generation of P2P file-sharing systems as well
as mobile P2P applications. Finally, the user poses
queries for the desired file using a set of terms s/he
believes best describes it.

2. Related Work

Much of the work done in P2P file-sharing systems
is in the design of structured network topologies based
on distributed hash tables (DHTs), which maximize
routing performance [8][9]. Search in basic DHTs is
exact keyword matching, and, to support multi-key-
word queries, multiple inverted lists must be main-
tained and their intersections must be computed [4].
Other techniques to reduce the cost of queries include
the use of Bloom filters, the maintenance of additional
statistics and inverted indices [15], and the use of com-
posite instead of single keywords [20]. Search in struc-
tured P2P file-sharing systems is guaranteed to find the
desired file if it exists. However, structured P2P net-
works are known to suffer when the environment is
highly dynamic, characterized by transient data and
peers.

Unstructured P2P systems, such as Gnutella, control
neither the overlay topology, nor the placement of files.
Peers are free to choose their neighbors, and files are
freely replicated over the network [21]. Most research
on unstructured P2P networks focuses on guiding the
query routing process, by using statistical information
to select the right peers to which to forward the query:
routing indices are used in [10][16]; queries are for-
warded only to a small number of powerful peers in
[14] or to peers that have the similar interests [11];
content signatures are used to rank neighboring peers in
[12][19]. Techniques to build semantic overlay net-
works have also developed in which peers find and
make connections with others that have similar content
[19]. Unstructured P2P systems are robust and scalable
due to their simplicity. However, search in unstructured
P2P file-sharing systems is not guaranteed to find the
desired file, regardless of whether or not it exists. To
cope with this, [18] proposes to use a quorum system to
guarantee with high probability that the desired file can
be found.

The problem of conjunctive queries filtering out
many relevant results is known as the word mismatch
problem in the area of information retrieval; the
searchers and the content providers use different words
to describe the same content. This problem can be
addressed by the semantic matching approach. To our
knowledge, pSearch [15] is the first work on semantic

searching in P2P networks. pSearch uses latent seman-
tic indexing (LSI) as the indexing technique, and a
DHT as the P2P routing infrastructure. The scalability
of LSI, however, is questionable. In another work [13],
the authors address the problem by expanding a query
based on keyword relationships, which are discovered
by a relevance-feedback-liked mechanism. This
method requires maintaining a large base of statistics.

Our work is distinguished from the work above in
the minimal amount of information it requires from the
infrastructure and its focus on the application-level
behavior of peers that share binary (i.e., non-self-
describing) files.

3. Model

Peers collectively share (or publish) a set of (binary)
files by maintaining local replicas of them. Each
replica is represented by a descriptor, which also
contains an identifying key (e.g., an MD5
cryptographic hash on file’s bits). All replicas of the
same file share the same key. A query issued by a
client is routed to all reachable peers until the query’s
time-to-live expires. The query matches a replica if it is
fully contained in the replica’s descriptor. For each
match, the server returns its system identifier and the
matching replica’s descriptor. The client uses this
information to subsequently download the actual file.

Formally, let O be the set of files, M be the set of
terms, and P be the set of peers. Each file o ∈O has a
unique key, denoted ko, such that ko = kp if and only if
o=p (i.e., the MD5 hash value mentioned above). Each
file o∈O has a set of terms that validly describe it,
denoted as To, where To⊆M. Intuitively, To is the set
of all terms that a person might use to describe o. Each
term t∈To has a strength of association with o, denoted
soa(t, o), where 0 ≤ soa(t, o) ≤1 and ∑t∈Tosoa(t, o) = 1.
The strength of association a term t has with a file o
describes the relative likelihood that it is to be used to
describe o, assuming all terms are independent. The
distribution of soa values for a file o is called the
natural term distribution of o.

A peer s ∈P is defined as a pair, (Rs, g
s), where Rs is

the peer’s set of shared replicas and gs is the peer’s
unique system identifier. Each replica ro

s∈ Rs is a copy
of file o, maintained by peer s. Each ro

s has an asso-
ciated descriptor, d(ro

s)⊆M, which is a multiset of
terms that is maintained independently by s. Each
descriptor d(ros) also contains ko. The maximum
number of terms that a descriptor can contain is fixed.

A query Qo⊆To for file o is also a multiset of terms.
The terms in Qo are expected to follow o’s natural term
distribution. When a query Q≠Ø arrives at a server s,

the server returns result set UQ
s={(d(ro

s), gs) | ros∈Rs,
Q⊆d(ros)}. In other words, in accordance with the
(conjunctive) matching criterion, a result’s descriptor
must contain all query terms.

The client receives result set UQ=∪sU
Q

s, s∈P, and
groups individual results by key, forming G={GO1, GO2,
…}, where GOi=(di, kOi, li), di={⊕d(rOi

s) | (d(rOi
s),

gs)∈UQ } is the group’s descriptor, kOi is the key of Oi,
and li={gs | (d(rOi

s), g
s)∈UQ} is the list of servers that

returned the results in GOi. In this definition, ⊕ is the
multiset sum operation.

The client assigns a rank score to each group with
function Fi∈F, defined as F: 2M×2M×Z×Z→R+. If Fi(dj,
Q, |Gj|, timej) > Fi(dk, Q, |Gk|, timek), where Gj, Gk are
groups, then we say that Gj is ranked higher than Gk
with respect to query Q. In these definitions of F, |Gj|
is the number of results contained in a group, and timej
is the creation time of the Gj (i.e., the time when the
first result in Gj arrived).

3.1. Model Specifics

In popular P2P file-sharing systems, such as various
versions of Gnutella and eDonkey, result keys are
generally generated by the MD5 cryptographic hash
function and results are grouped based on these keys.
Ranking is based on group size:

FG(d, Q, s, t) = s.

Descriptors in these systems are generally imple-
mented via filenames, although some descriptive infor-
mation may be embedded in the binaries (e.g., ID3 data
embedded in MP3 files [5]). When a client downloads
a file, the descriptor of this new replica is initialized as
a duplicate of one of the servers’ in the result set. We
also assume such behavior in our model.

For simplicity, we will use the term result to
describe a group, an individual result, or a result’s
descriptor; and clarify the usage if necessary.

4. An Alternative to Conjunctive Queries

Conjunctive queries are problematic because they
may be excessive in shrinking the result set, perhaps
selecting away desired results. We now sketch the
intuition behind this behavior. Based on our model,
given a query Qo with term, t, the probability that a
descriptor d(rp) contains t is

1-[1-soa(t, p)]||d(rp)||,

where ||d(rp)|| is the number of (not necessarily unique)
terms in d(rp). Let Qo’ be the set of unique terms of Qo.
The probability that d(rp) contains Qo is

∏ti∈Qo’[1-[1-soa(ti, p)]||d(rp)||-i], ||d(rp)|| ≥ |Qo’|.

As Qo grows, the probability that it is contained by
d(rp) decreases exponentially. The conjunctive
matching criterion has a tendency of filter out results
that are not relevant (i.e., have different natural term
distributions). Such results likely do not contain all the
terms that are the most strongly associated with file o,
and therefore do not contain Qo. However, the
conjunctive matching criterion may also filter out
desired results because their descriptors are too small
or happen, by chance, to not contain all of Qo.

To alleviate this problem, we propose relaxing the
conjunctive matching criterion. There are many
relaxation alternatives, so we do not attempt to
enumerate all of them. Rather, our goal is to show that
relaxing the conjunctive criterion is viable. We
therefore propose the following alternative because of
its simplicity:

If Qo ∩ d(rp) ≠ Ø, then Qo matches d(rp).

This disjunctive matching criterion has the
following probability of matching Qo’ with d(rp):

∑t∈Qo’Pr(t∈d(rp)) - ∑t1,t2∈Qo’Pr(t1, t2∈d(rp)) + …

The expression above is a result of the inclusion-
exclusion principle of probability theory [6]. In this
expression, Pr(event) signifies the probability of an
event. The point we are making is that additional terms
in the query do not negatively impact its ability to yield
an inclusive result set.

5. 5. Experimental Results

We simulate the performance of a P2P file-sharing
system to test the large scale performance of our
methods. In accordance with the model described in
[2] and observations presented in [3], we enhance our
experimental model with interest categories, which
model the fact that some users have stronger interests
in some well-known subsets of data than other.

We partition the set of files, O, into sets Ci, where
Ci⊆O, Ci∩Cj=Ø if i≠j, and ∪iCi=O. Each category Ci
has an assigned popularity, bi, which describes how
likely it is to be assigned to a peer. The values of bi
follow the Zipf distribution [2]. Within each interest
category, each file varies in popularity, which is also
skewed according to the Zipf distribution [2]. This
popularity governs the likelihood that a peer who has
its interest category is either initialized with a replica of
the file or decides to search for it.

At initialization, each peer s∈P is assigned some
interests Is⊆C, and is allocated a set of replicas Rs from

this interest set: Rs={r o
s | o∈∪iCi, where Ci∈Is}. For

each replica, ri
s, allocated at initialization, d(ri

s)⊆Ti,
where term allocation is governed by natural term
distributions. Peer s’s interest categories also constrain
its searches; it only searches for files from ∪iCi, where
Ci∈Is.

Table 1. Query length distribution

Length 1 2 3 4 5 6 7 8

Prob. .28 .30 .18 .13 .05 .03 .02 .01

Table 2. Parameters used in the simulation
Parameter Value(s)
Num. Peers 1000
Num. Queries 10,000
Max. descriptor size (terms) 20
Num. terms in initial descriptors 3-10
Num. categories of interest per peer 2-5
Num. files per peer at initialization 10-30
Num. trials per experiment 10

We use Web data to simulate term distributions and

interest categories. Web data are a convenient choice
because they constitute a grouping of terms into
documents (we use terms’ relative frequencies in
documents to simulate natural term distributions for
files) and a grouping of documents into domains (we
use Web domains to simulate interest categories).
Other researchers have also used Web data for P2P
experimentation [23]. Real data from P2P applications
would be preferable, but we know of none [22]. We
are currently investigating the creation of such data.

Our data consist of an arbitrary set of 1,000 Web
documents from the TREC 2GB Web track (WT2G).
These documents come from 37 Web domains. Terms
are stemmed, and markup and stop words are removed.
The final data set contains 800,000 terms, 37,000 of
which are unique. We also conducted experiments
using other data sets with other data distributions, but,
due to space constraints, we only present a repre-
sentative subset of our results. The data we used for all
experiments can be found on our Web site [24]. The
other experimental results are available on request.

Queries for files are generated using associated
terms with a length distribution that is typical of that
found in Web search engines [4] as shown in Table 1.
Other simulation parameters shown in Table 2 are
based on observations of real-world P2P file-sharing
systems and are comparable to the parameters used in
the literature.

Although other behavior is possible, we assume that
the user identifies and downloads the desired result

group with a probability 1/rank, where rank≥1 is its
position in the ranked set of results.

Performance is measured using a standard metric
called mean reciprocal rank score (MRR), defined as

q

N

i
i

N

rank
MRR

q

∑ =

=
1

1

,

where Nq is the number of queries and ranki is the rank
of the desired file in query i's result set. If the file is
not in the result set, then ranki=∞. MRR is an
appropriate metric in applications where the user is
looking for a single, particular result.

For reference, we also present precision and recall,
which have slightly different definitions than they do in
traditional IR, due to the fact that replicas exist in the
P2P file-sharing environment, and assuming that
queries are for particular files. Let A be the set of
existing replicas of the desired file in the entire system,
and R be the result set of the query. Precision and
recall are defined as follows:

||

||
R

RA
precision

∩= ,
||

||

A

RA
recall

∩= .

Precision measures the percentage of a result set that
is relevant to the query and recall measures the
percentage of the existing results retrieved by a query.
When computing average precision, we only consider
the cases when result sets are non-empty. Reported
precisions and recalls are the averages of these
measures over all queries in a trial.

Because recall and precision are commonly
inversely related in information retrieval research, the
F-score metric has been devised to combine their
relative contributions in a single metric [7]:

.
2

precisionrecall

precisionrecall
scoreF

+
××=−

These more traditional IR metrics are useful in
roughly diagnosing the performance of query
processing and in generalizing the presented
performance to other domains.

Note that the results may exhibit some variance due
to the experimental nature of the results. We have
computed statistical significances of the results, but
have left them out for brevity. The statistical
significances of the presented results should be
obvious, however.

Finally, note that we present some results over
various query lengths. These results were yielded by
keeping track of the length of each of the 10,000
experimental queries. We are not reporting results
where query length was the independent variable.

5.1. Disjunctive Query Performance

In Figure 1, we compare the performances of
queries using both conjunctive and disjunctive
matching. Disjunctive matching outperforms
conjunctive matching by more than 50%.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

conj disj

Matching Criterion

M
R

R

Figure 1. MRR of two matching criteria

As conjunctive queries get longer, they become

more selective. Longer queries will likely return only
correct results, if they return anything at all. As shown
in Figure 2, the precision of conjunctive queries is
about 90% higher than that of disjunctive queries.
However, the recall of conjunctive queries is about
50% lower than that of disjunctive queries. That the F-
score of disjunctive queries is about 30% greater than
that of conjunctive queries suggests a net gain in the
use of disjunctive queries.

Precision is an important metric, because, the
likelihood of identifying a desired result increases as
the percentage of that result set made of the desired
result increases. The caveat of this claim, however, is
that the result set be non-empty.

Conjunctive queries, however, prioritize precision
over recall to the point that near-matches involving
desired results are rejected. In the worst case, no
desired results are returned at all. As shown in Figure
3, as queries get longer, the percentage of result sets
containing the desired result decreases from 70% when
queries contain only one term to less than 2% when
queries contain 8 terms.

In contrast, with disjunctive queries, the percentage
of result sets that contain the desired result is
consistently about 70%. These figures are significant
because only if the desired result is in the result set can
it be identified by the ranking function and user.
Intuitively, the percentage-contained metric acts as an
upper bound to our main metric, MRR.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

conj disj

Matching Criterion

recall

precision

f-score

Figure 2. Recall, precision, and F-score of two

matching criteria

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

Query Length

P
er

ce
nt

ag
e

of
 R

es
ul

t
S

et
s

C
on

ta
in

in
g

D
es

ire
d

R
es

ul
t

conj

disj

Figure 3. Percentage of result sets containing

the desired result of two matching criteria
over various query lengths

The relationship between MRR and percentage-

contained is clear from the MRR results shown in
Figure 4. As query length increases, the MRR of
disjunctive queries persists at approximately 35%,
whereas with conjunctive queries, there is a significant
drop-off. We attribute the bumpiness exhibited in these
graphs to random variance.

We tried the same experiments on different data sets
with different data distributions, and, predictably, they
yielded similar results: disjunctive queries out-
performed conjunctive ones. In Figure 5, we show the
performance improvement using disjunctive queries
over data sets of different sizes (400K and 1.2M
terms), different data sets with 800K terms (sets 2 and
3), and when using a uniform distribution of data
popularity. These results indicate that our reported
results are representative, so we will no longer consider
other data sets in this work.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 5 6 7 8

Query Length

M
R

R conj

disj

Figure 4. MRR of two matching criteria over

various query lengths

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

400K 1M 800K_2 800K_3 unif

Data Set

M
R

R conj

disj

Figure 5. MRR of two matching criteria with

different data sets and distributions

5.2. Cost Analysis

Using disjunctive queries increases MRR, but they
come at a price: more results are returned putting more
load on the network, the server, and the client. One
might argue that the price of the increased MRR is
worth it, as better-ranked results increase the likelihood
that the desired result is found and decreases the result
that:

1. Subsequent queries are issued to find the
desired file, and
2. The user downloads an irrelevant file, which
may be followed by another search for the
original file.

Despite the hypothetical cost savings, the overhead
of a disjunctive query should be addressed. The num-
ber of results returned by the query is directly related to
the work peers have to perform to serve, transmit, and
rank them, so we use it as our cost metric.

We reduce the cost of disjunctive queries by
performing Bernoulli sampling on the result set

generated by each server. The disjunctive matching
criterion with sampling becomes:

If Qo∩d(rp)≠Ø → Qo matches d(rp) with probability Pm,

where Pm is a user-tuned parameter. By sampling in this
way, we yield an unbiased sample of the original result.
The size of the result set that arrives at the client should
be reduced by a factor of Pm.

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8

Query Length

R
es

ul
ts

 p
er

 Q
ue

ry conj

disj-100%

disj-75%

disj-50%

disj-25%

Figure 6. Number of results per query over
various sampling rates and query lengths

Figure 6 shows the number of results per query with

various sampling rates and query lengths. With
conjunctive queries, we see that the number of results
decreases as query length increases. With disjunctive
queries, however, the number of results per query is
constant with query length, but decreases predictably
with sampling rate.

Figure 7 shows the average number of results per
query with various sampling rates and random query
lengths. Note that when the sampling rate of disjunc-
tive queries is 25%, cost is about 28% lower than when
using conjunctive queries without sampling. Sampling,
predictably, has a negative impact on MRR. As argued
above, the reason that disjunctive queries improve
performance is because they result in increased recall
and the percentage of query result sets that contain the
desired result. Sampling counteracts these effects.

Figure 8 shows the impact that sampling has on the
percentage of result sets that contain the desired result.
Although percentage-contained of disjunctive queries
are still, for the most part, higher than with conjunctive
queries, the decrease in this metric is not in proportion
to the decrease in cost. For example, with 75%
sampling, the drop in percentage-contained is less than
the expected 25%. This is due to the precision of the
average result set. In our experiments, when using
disjunctive queries, precision is 17%. This means that,
on average, as long as there are 0.17-1

≈6 results in the
result set, then one of them is expected to be the

desired result, assuming that results are uniformly
distributed.

0

20

40

60

80

100

120

140

160

100% 75% 50% 25%

Sampling Rate

N
um

be
r

of
 R

es
ul

ts
 p

er
 Q

ue
ry

conj

disj

Figure 7. Average number of results per query

with different sampling rates

In other words, the probability that a randomly sel-

ected result in a result set, R, corresponds to the desired
file, o, is the precision of R, denoted precision(R, o).
The likelihood that there are no instances of the de-
sired result in R after sampling is

Pr(desired result ∉ R) = (1-precision(R, o))|R|,

where |R| denotes the number of results in R. Thus,
removing one random result from R increases the
likelihood that the desired result is not contained in R
by a factor of

),(1

1

oRprecision−
.

As the size of a result set shrinks, the likelihood that
it contains the desired result decreases exponentially,
albeit slowly. In particular, if |R| is shrunk by a factor
of 0 ≤ Pm

≤ 1, then the likelihood that there are no
instances of the desired result in R increases by a factor
of (1-precision(R,o))Pm||R||-||R|| = (1-precision(R,o))||R||(Pm-

1)|. This explains the percentage-contained trend shown
in Figure 8 with different sampling rates.

Because the number of results per disjunctive query
ranges from 40 to 160, theoretically, with a 17%
precision, we can sample out from 40-6=34 to 160-6
=154 results (i.e., from 85% to 96%) from a result set
and still expect it to contain the desired result.
Specifically, we should be able to decrease cost more
quickly than we decrease search accuracy.

Figure 9 compares the MRR and percentage-
contained of conjunctive and disjunctive queries over
various sampling rates. As predicted by the results
shown in Figure 8, MRR decreases with sampling rate.
Nevertheless, with all sampling rates, disjunctive
queries outperform conjunctive queries without

sampling, by at least 15%. Considering these results
and the cost results shown in Figure 7, we see that it is
possible to improve on both the cost and the accuracy
of conjunctive queries (i.e., using disjunctive queries
with a sampling rate of 25%).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8

Query Length

P
er

ce
nt

ag
e

of
 R

es
ul

t
S

et
s

C
on

ta
in

in
g

D
es

ire
d

R
es

ul
t

conj

disj-100%

disj-75%

disj-50%

disj-25%

Figure 8. Percentage of result sets containing
the desired result over various query lengths

with various sampling rates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

conj-MRR disj-MRR conj-%cont disj-%cont

Sampling Rate

100%

75%

50%

25%

Figure 9. MRR and percentage of results

containing the desired result over various
sampling rates

The benefit of disjunctive matching, as stated in

Section 4, is that it reduces the selectivity of queries,
increasing the size of the result set. At the same time,
sampling acts to decrease the size of the result set. The
overall effect of disjunctive matching and sampling,
however, is higher MRR. The reason for this is the
relaxation of the conjunctive matching criterion has a
tendency of selecting for relevant results over irrelevant
ones, whereas sampling is indiscriminate in what it
removes. All the terms in the query are expected to be
the most strongly associated with the desired result.
Allowing any of them to be the basis for a match is
therefore expected to yield a result set that contains a
large proportion of desired result – this is suggested by
the F-score results shown in Figure 2.

5.3. Other Matching Criteria

Besides the disjunctive matching criterion presented
above, we also tried various other matching criteria.
For example, one criterion computed the cosine
similarity [7] between the query and the descriptor and
used it as a probability of returning the result. These
alternative criteria have slightly different performance-
cost profiles, but all essentially exhibited the similar
performance-cost tradeoff.

6. Conclusion

P2P file-sharing systems are designed to handle
queries conjunctively, ostensibly to be more efficient
with network resources. This form of query matching
tends to increase the proportion of desired results in
query results sets. However, this criterion may be too
strict; in some cases, all desired results are selected
away. By using disjunctive matching, we could
increase the likelihood that the desired result is
contained in the result set, increasing search accuracy
(MRR) by over 50%, but at triple the cost.

Because the disjunctive selection criterion biases the
additional results to the desired one, random sampling
is able to reduce cost with a lesser impact on MRR. In
fact, at a 25% sampling rate, MRR when using
disjunctive queries is 15% better than with conjunctive
queries without sampling, and cost is 28% lower.

One may use this performance characteristic to tune
the sampling rate based on current network traffic:
when bandwidth is plentiful, maximize MRR,
otherwise, minimize cost. A particular heuristic,
however, is outside of the scope of this work.

Our work in this area is ongoing. We are currently
exploring other ways of relaxing the matching criterion
and how other ranking functions may be used to further
refine MRR.

7. References

[1] C. Rohrs, “Keyword Matching [in Gnutella]”,
LimeWire Technical Document, Dec., 2000,
www.limewire.org/techdocs/KeywordMatching.htm.

[2] M. T. Schlosser, T. E. Condie and S. D. Kamvar,
“Simulating a File-Sharing P2P Network”, Proc.
Wkshp. Semantics in Peer-to-Peer and Grid Comp.,
May, 2003.

[3] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A
Measurement Study of Peer-to-Peer File Sharing
Systems”, Proc. Multimedia Computing and
Networking (MMCN), Jan., 2002.

[4] P. Reynolds and A. Vahdat, “Efficient peer-to-peer
keyword searching”, Proc. ACM Middleware, 2003.

[5] M. Nilsson, ID3v2 Web Site, Web Document, 2006,
www.id3.org

[6] S. M. Ross, Introduction to Probability Models, 6th ed.,
Academic Press, New York, 1997.

[7] D. Grossman and O. Frieder, Information Retrieval:
Algorithms and Heuristics, 2nd ed., Springer, 2004.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A Scalable Content-Addressable Network”,
Proc. ACM SIGCOMM, 2001.

[9] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, Proc. ACM
SIGCOMM, 2001.

[10] A. Singla and C. Rohrs, “Ultrapeers: Another Step
Towards Gnutella Scalability”, Whitepaper, Dec 2001.

[11] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient
Content Location Using Interest-Based Locality in Peer-
to-Peer Systems”, Proc. IEEE INFOCOM, 2003.

[12] F. M. Cuenca-Acuna and T. D. Nguyen, “Text-based
content search and retrieval in ad hoc p2p
communities”, Proc. Wkshp P2P Comp., May 2002.

[13] K. Nakauchi, Y. Ishikawa, H. Morikawa and T.
Aoyama, “Peer to Peer Keyword Search Using Keyword
Relationship”, Proc. of IEEE/ACM Intl. Symposium on
Cluster Computing and the Grid (CCGRID), 2003

[14] Y. Shao and R. Wang, “Buddynet:History-Based Peer-
to-Peer Search”, ECIR-05.

[15] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-Peer
Information Retrieval Using Self-Organizing Semantic
Overlay Networks”, Proc. of ACM SIGCOMM’03.

[16] A. Crespo and H. Garcia-Monila, “Routing Indices for
Peer-to-Peer Systems”, ICDCS’02.

[17] J. Lu and J. Callan, “Content-based retrieval in hybrid
peer-to-peer networks”, Proc. of the 12th Intl. Conf. on
Information and Knowledge Management

[18] R. Ferreira et. al, “Search with Probabilistic Guarantees
in Unstructured Peer-to-peer Networks”, Proc. of the
Fifth IEEE Intl. Conf. on Peer-to-Peer Computing,
2005.

[19] Y. Zhu, X. Yang, and Y. Hu, “Making Search Efficient
on Gnutella-like P2P Systems”, Proc. of the 19th IEEE
Intl. Parallel and Distributed Processing Symposium,
2005.

[20] O. Gnawali, “A Keyword-set Search System for Peer-to-
Peer Networks”, MS Thesis, MIT, 2002.

[21] T. Klingberg and R. Manfredi, Gnutella Protocol 0.6,
Web Document, 2002, rfc-
gnutella.sourceforge.net/src/rfc-0_6-draft.html.

[22] H. Nottelmann, K. Aberer, J. Callan, W. Nejdl, CIKM
2005 P2PIR Workshop Report, 2005,
http://p2pir.is.informatik.uni-duisburg.de/2005/
report.pdf.

[23] J. Lu and J. Callan, “Federated Search of Text-Based
Digital Libraries in Hierarchical Peer-to-Peer
Networks”, Proc. of the Wrkshp on Peer-to-Peer
Information Retrieval, 2004.

[24] PIRS: A Peer-to-Peer Information Retrieval System
Project Home Page, http://ir.iit.edu/~waigen/proj/pirs

