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Abstract

Energy conservation is a critical issue in ad hoc wireless networks
for node and network life since the nodes are powered by batteries only.
One major approach for energy conservation is to route a communica-
tion session along the route which requires the lowest total energy con-
sumption. This optimization problem is referred to as Minimum-Energy
Routing. While the minimum-energy unicast routing problem can be
solved in polynomial time by shortest-path algorithms, it remains open
whether the minimum-energy broadcast routing problem can be solved in
polynomial time despite the NP-hardness of its general graph version. Re-
cently three greedy heuristics were proposed in [8]: MST (minimum span-
ning tree), SPT (shortest-path tree), and BIP (broadcasting incremental
power). They evaluated their approaches through simulations [8], but lit-
tle is known about their analytical performance. The main contribution
of this paper is a quantitative characterization of their performances in
terms of approximation ratios. By exploring geometric structures of Eu-
clidean MSTs, we were able to prove that the approximation ratio of MST
is between 6 and 12, and the approximation ratio of BIP is between 13

3

and 12. On the other hand, we show that the approximation ratio of SPT
is at least n

2
, where n is the number of receiving nodes. To the best of our

knowledge, these are the �rst analytical results for the minimum-energy
broadcasting problem.

1 Introduction

Ad hoc wireless networks received signi�cant attention in recent years due to
their potential applications in battle�eld, emergency disaster relief, and other
application scenarios [7, 8]. Unlike wired networks or cellular networks, no
wired backbone infrastructure is installed in ad hoc wireless networks. A com-
munication session is achieved either through a single-hop transmission if the
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communication parties are close enough, or through relaying by intermediate
nodes otherwise. Omnidirectional antennas are used by all nodes to transmit
and receive signals. Such antennas are attractive due to their broadcast na-
ture. A single transmission by a node can be received by many nodes within its
vicinity. This feature is extremely useful for multicasting/broadcasting commu-
nications. For the purpose of energy conservation, each node can dynamically
adjust its transmitting power based on the distance to the receiving node and
the background noise. In the most common power-attenuation model [6], the
signal power falls as 1

r�
where r is the distance from the transmitter antenna

and � is a real constant between 2 and 4 dependent on the wireless environment.
Assume that all receivers have the same power threshold for signal detec-

tion, which is typically normalized to one. With these assumptions, the power
required to support a link between two nodes separated by a distance r is r�. A
key observation here is that relaying a signal between two nodes may result in
lower total transmission power than communicating over a large distance due
to the nonlinear power attenuation. As a simple illustration, consider three
nodes p1;p2 and p3 with kp1p2k > kp1p3k and assume � = 2. See Figure
1. Node p1 wants to send a message to node p2. It has two options. It can
transmit the signal directly to node p2, with a energy consumption of kp1p2k2.
Alternatively, it can send the message to node p3 and let it retransmit to node
p2. The latter option has a total energy consumption of kp1p3k2 + kp3p2k2.
Therefore if the angle \p1p3p2 is obtuse, the second option consumes less total
energy. A crucial issue is then how to �nd a route with the minimum total en-
ergy consumption for a given communication session. This problem is referred
to as Minimum-Energy Routing [7, 8].

p2 p3

p1

Figure 1: Reduce energy consumption through relaying.

Minimum-energy broadcast/multicast routing in a simple ad hoc networking
environment was addressed by the pioneering work described in [8]. To assess
the complexities one at a time, the nodes in the network are assumed to be
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static, namely without mobility, and randomly distributed in a two-dimensional
plane. Nevertheless, as argued in [8], the impact of mobility can be incorpo-
rated into this static model because the transmitting power can be adjusted to
accommodate the new locations of the nodes as necessary. In other words, the
capability to adjust the transmission power provides considerable \elasticity"
to the topological connectivity, and hence may reduce the need for hand-o�s
and tracking. In addition, as assumed in [8], there are su�cient bandwidth
and transceiver resources. Under these assumptions, centralized (as opposed
to distributed) algorithms were presented by [8] for minimum-energy broad-
cast/multicast routing. These centralized algorithms, in this simple networking
environment, are expected to serve as the basis for further studies on distributed
algorithms in a more practical network environment, where limited bandwidth
and transceiver resources exist, as well as node mobility.

Three greedy heuristics were proposed in [8] for the minimum-energy broad-
cast routing problem: MST (minimum spanning tree), SPT (shortest-path tree),
and BIP (broadcasting incremental power). They were evaluated through sim-
ulations in [8], but little is known about their analytical performance in terms
of the approximation ratio. The approximation ratio of a heuristic, in this con-
text, is the maximum ratio of the energy needed to broadcast a message based
on the arborescence generated by this heuristic to the least necessary energy
by any arborescence for any set of points. For the minimum-energy broadcast
routing problem, one may come up with several seemingly reasonable greedy
heuristics. Via simulation, it is di�cult to determine which heuristic is better
for an arbitrary con�guration. Purely, for illustration, another slight variation
of BIP, which is referred to as Broadcast Average Incremental Power (BAIP), is
introduced in Section 3. Indeed, all the three heuristics proposed in [8] only have
subtle di�erences. These subtle di�erences, however, can have a great impact
on the analytical performance of these heuristics. In fact, we will show that the
approximation ratios of MST and BIP are between 6 and 12 and between 13

3 and
12 respectively; on the other hand, the approximation ratios of SPT and BAIP
are at least n

2 and 4n
lnn � o (1) respectively, where n is the number of nodes. To

the best of our knowledge, these are the �rst quantitative characterizations of
heuristics for the minimum-energy broadcast routing problem.

The remaining of this paper is organized as follows. In Section 2, we analyze
the challenges for minimum-energy broadcast routing and brie
y overview the
three greedy heuristics developed in [8]. In Section 3, we construct some con-
trived instances to illustrate the poor performances of SPT and BAIP. These
instances lead to the lower bounds on the approximation ratios of SPT and
BAIP. In Section 4, we obtain lower bounds on the approximation ratios of
MST and BIP by constructing some instances. In Section 5, we derive upper
bounds on the approximation ratios of MST and BIP. A cornerstone to the
analysis of the upper bounds is an elegant structure property of Euclidean MST
which is explored in Section 6. Finally, in Section 7, we summarize our results
and highlight several future research directions.
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2 Preliminaries

We assume that the network nodes are given as a �nite point1 set P in a two-
dimensional plane. For any real number �, we use G(�) to denote the weighted
complete graph over P in which the weight of an edge e is kek�.

The minimum-energy unicast routing is essentially a shortest-path problem
in G(�). Consider any unicast path from a node p 2 P to another node q 2 P :

p = p0p1 � � �pm�1pm = q:

In this path, the transmission power of each node pi, 0 � i � m�1, is kpipi+1k�
and the transmission power of pm is zero. Thus, the total transmission energy
required by this path is

m�1X
i=0

kpipi+1k� ;

which is the total weight of this path in G�. By applying any shortest-path
algorithm such as Dijkstra's algorithm [2], one can solve the minimum-energy
unicast routing problem.

However, for broadcast applications (in general multicast applications), Minimum-
Energy Routing is far more challenging. Any broadcast routing is viewed as an
arborescence (a directed tree) T , rooted at the source node of the broadcasting,
that spans all nodes. We use fT (p) to denote the transmission power of the
node p required by T . For any leaf node p of T , fT (p) = 0. For any internal
node p of T ,

fT (p) = max
pq2T

kpqk� ;

in other words, the �-th power of the longest distance between p and its children
in T . The total energy required by T is

P
p2P fT (p). Thus, the minimum-

energy broadcast routing problem is di�erent from the conventional link-based
minimum spanning tree (MST) problem. Indeed, while the MST can be solved
in polynomial time by algorithms such as Prim's algorithm and Kruskal's al-
gorithm [2], it is still unknown whether the minimum-energy broadcast rout-
ing problem can be solved in polynomial time. In its general graph version,
the minimum-energy broadcast routing can be shown to be NP-hard [3], and
even worse, it can not be approximated within a factor of (1� �) log�, unless
NP � DTIME

�
nO(log logn)

�
, by an approximation-preserving reduction from

the Connected Dominating Set problem [4], where � is the maximal degree
and � is any arbitrary small positive constant. However, this intractability of
its general graph version does not necessarily imply the same hardness of its

1The terms node, point and vertex are interchangeable in this paper: node is a network

term, point is a geometric term, and vertex is a graph term.
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geometric version. In fact, as shown later in the paper, its geometric version
can be approximated within a constant factor. Nevertheless, this suggests that
the minimum-energy broadcast routing problem is considerably harder than the
MST problem.

Three greedy heuristics were proposed for the minimum-energy broadcast
routing problem in [8]. The MST heuristic �rst applies Prim's algorithm to
obtain a MST, and then orients it as an arborescence rooted at the source node.
The SPT heuristic applies Dijkstra's algorithm to obtain a SPT rooted at the
source node. The BIP heuristic is the node version of Dijkstra's algorithm for
SPT. It maintains, throughout its execution, a single arborescence rooted at
the source node. The arborescence starts from the source node, and new nodes
are added to the arborescence one at a time on the minimum incremental cost
basis until all nodes are included in the arborescence. The incremental cost
of adding a new node to the arborescence is the minimum additional power
increased by some node in the current arborescence to reach this new node.
The implementation of BIP is based on the standard Dijkstra's algorithm, with
one fundamental di�erence on the operation whenever a new node q is added.
Whereas Dijkstra's algorithm updates the node weights (representing the cur-
rent knowing distances to the source node), BIP updates the cost of each link
(representing the incremental power to reach the head node of the directed link).
This update is performed by subtracting the cost of the added link pq from the
cost of every link qr that starts from q to a node r not in the new arborescence.

The performance of these three greedy heuristics have been evaluated in
[8] by simulation studies. However, their analytic performance in terms of the
approximation ratio remains an open issue. In subsequent sections, we derive
the bounds of their approximation ratios.

3 Greedy Is Not Always Good

Greedy approaches are the most natural and widely used techniques in design-
ing practical heuristics for optimization problems. For the minimum-energy
broadcast routing problem, one may think of many greedy heuristics, in addi-
tion to the three greedy heuristics proposed in [8]. The real challenge, however,
is how to come up with a provably good one. Two greedy heuristics may only
di�er slightly, but this small variation can have a great impact on the analyt-
ical performance of these heuristics. In addition, some heuristics may perform
quite well or even optimally in some situations, but may perform very poorly
in some other situations. For the purpose of an illustration, in this section, we
compare two example heuristics: one is SPT and the other is a new one. The
\hard" instance constructed in this section can not only lead to lower bounds
on the approximation ratios of these two heuristics, but also helps in designing
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an overall good greedy heuristic. For simplicity, we only consider � = 2 in this
section.

We begin with the SPT algorithm. Let � be a su�ciently small positive
number. Consider m nodes p1;p2; � � � ;pm evenly distributed on a cycle of
radius 1 centered at a node o (see Figure 2). For 1 � i � m, let qi be the point
in the line segment opi with koqik = �. We consider broadcasting from the
node o to these n = 2m nodes

p1;p2; � � � ;pm;q1;q2; � � � ;qm:

The SPT is the superposition of paths oqipi, 1 � i � m. Its total energy
consumption is

�2 +m (1� �)
2
:

On the other hand, if the transmission power of node o is set to 1, then the
signal can reach all other points. Thus, the minimum energy consumed by all
broadcasting methods is at most 1. So the approximation ratio of SPT is at
least �2 +m (1� �)

2
. As � �! 0, this ratio converges to n

2 = m.

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o

Figure 2: A bad instance for SPT.

The second greedy heuristic is similar to Chvatal's algorithm [1] for the Set
Cover Problem and is a variation of BIP. Like BIP, an arborescence, which
starts with the source node, is maintained throughout the execution of the
algorithm. However, unlike BIP, many new nodes can be added one at a time.
Similar to Chvatal's algorithm [1], the new nodes added are chosen to have the
minimal average incremental cost, which is de�ned as the ratio of the minimum
additional power increased by some node in the current arborescence to reach
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these new nodes to the number of these new nodes. We refer to this heuristic
as the Broadcast Average Incremental Power, abbreviated by BAIP. In contrast
to the 1 + logm approximation ratio of Chvatal's algorithm [1], where m is the
largest set size in the Set Cover Problem, we show that the approximation ratio
of BAIP is at least 4n

lnn � o (1), where n is the number of receiving nodes.

Consider the following instance of minimum-energy broadcasting. All nodes
lie on the x-axis with the source at the origin, the i-th receiving node at positionp
i for 1 � i � n� 1, and the n-th receiving node at position

p
n� � for some

su�ciently small real number � > 0. For any 1 � k � n � 1, the minimal

transmission power of the source to reach k receiving nodes is
�p

k
�2

= k, and

thus the average incremental power cost at the origin to reach these k nodes is
k

k
= 1. On the other hand, the minimal transmission power of the source to

reach all n receiving nodes is
�p

n� �
�2

= n��, and the thus the average power
e�ciency is n��

n
= 1� �

n
. So BAIP will let the source to transmit at power n��

to reach all nodes. However, the optimal routing is a directed path consisting
of all nodes from left to right. So the minimum power consumption is

n�1X
i=1

�p
i�pi� 1

�2
+
�p

n� ��pn� 1
�2
:

<

nX
i=1

�p
i�pi� 1

�2

= 1 +

n�1X
i=1

1�p
i+ 1 +

p
i
�2

� 1 +
n�1X
i=1

1

4i

� 1 +
ln (n� 1) + 1

4

=
ln (n� 1) + 5

4
:

Thus, the approximation ratio of BAIP is at least

n� �Pn�1
i=1

�p
i�pi� 1

�2
+
�p

n� ��pn� 1
�2 :
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As � �! 0, this ratio converges to

nPn

i=1

�p
i�pi� 1

�2
=

n

1 +
Pn�1

i=1
1

(
p
i+1+

p
i)

2

� n

1 +
Pn�1

i=1
1
4i

� n

1 + ln(n�1)+1
4

=
4n

ln (n� 1) + 5

=
4n

lnn
� o (1) :

Interestingly, SPT generates the optimal solution in the second instance
while BAIP can provide near-optimal or optimal solution for the �rst instance.
On the other hand, MST and BIP have many similarities to SPT and BAIP but
have constant approximation ratios as proved later. Thus, one must carefully
design and select greedy heuristics.

4 Lower Bounds on Approximation Ratios

In this section, we derive lower bounds on approximation ratios of MST and
BIP. We begin with MST.

Theorem 1 The approximation ratio of MST is at least 6 for any � � 2.

Proof. Let � be a su�ciently small positive real number. Consider seven
nodes o;p1; � � � ;p6 (see Figure 3), which satisfy

kop1k = 1;

kopik = 1 + �; 2 � i � 6;

kpipi+1k = 1; 1 � i � 5:

Then for any 1 � i � 5,

\piopi+1 <
�

3
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1

1

1

1

1

1

p3

p4

p5

p6

p1

p2

o

1+ε
1+ε

1+ε

1+ε

1+ε

Figure 3: A bad instance for MST.

and

\p6op1 >
�

3
:

Consider the two triangles op1p2 and op1p6. Since

kop2k = kop6k

and

\p6op1 > \p1op2;

by Law of Cosine, we have

kp1p6k > kp1p2k = 1:

We consider the broadcasting from node o to nodes p1; � � � ;p6. Then the
path op1 � � �p5p6 is the unique MST. Its total energy consumption is 6. On the
other hand, it is easy to show that the optimal routing is the star centered at
node o, whose total energy consumption is (1 + �)

�
. Thus, the approximation

ratio of MST is at least 6
(1+�)� , which converges to 6 as � �! 0.

Now we develop a lower bound on the approximation ratio of BIP.

Theorem 2 The approximation ratio of BIP is at least 13
3 for any � = 2.
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p2

p3

p4

p5

p6

q2q1 qm
qm+1

p1

o

qπ/3−3θ

π/3−3θ

π/3−2θ

π/3−2θ
π/3−θ

Figure 4: A instance for BIP.

Proof. Let � be a su�ciently small positive real number. Consider six
points p1; � � � ;p6 on a cycle of radius 1 centered at node o (see Figure 4), with

\p1op2 = \p5op6 =
�

3
� 3�;

\p2op3 = \p4op5 =
�

3
� 2�;

\p3op4 =
�

3
� �;

\p6op1 =
�

3
+ 11�:

Then

kp1p2k = kp5p6k <
kp2p3k = kp4p5k <
kp3p4k < 1 < kp6p1k :

Let q be the point in the perpendicular bisector of p1p6 such that p1q is
perpendicular to p1p2: Choose a su�ciently large integer m such that

1�
�koqk

m

�2

> kp3p4k2 :

Let q1; � � � ;qm+1 be the m+ 1 points on the ray oq with

koqik =
i

m
koqk

for 1 � i � m+ 1. Then qm = q.
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We consider broadcasting from point o to points q1; � � � ;qm+1;p1; � � � ;p6.
The optimal solution is that the node o transmits at power 1 to reach all nodes.
Now examine the output of the BIP algorithm. As m is su�ciently large, in
the �rst m + 1 steps, the points q1; � � � ;qm+1 are sequentially added, and the
transmission power of the nodes o;q1; � � � ;qm all has the transmission power�
koqk
m

�2
. Since the angles

\p1qm+1qm = \p6qm+1qm >
�

2
;

in the next two steps, the points p1 and p6 are added, and the transmission
power of point qm+1 is kp1qm+1k2. At this moment, the incremental power of
all points o;q1; � � � ;qm to reach any node pi for 2 � i � 5 is at least

1�
�koqk

m

�2

> kp3p4k2 > kp1p2k2 = kp5p6k2 ;

and the incremental power of point qm+1 to reach any node pi for 2 � i � 5 is
also greater than kp1p2k2 = kp5p6k2 as

\p2p1qm+1 = \p5p6qm+1 > \p2p1qm =
�

2
:

Thus, in the subsequent two steps, the points p2 and p5 are added, and the
transmission power of points p1 and p6 is kp1p2k2 = kp5p6k2. Similarly, in the
last two steps, the points p3 and p4 are added, and the transmission power of
points p2 and p5 is kp2p3k2 = kp4p5k2. The total power is

(m+ 1)

�koqk
m

�2

+ kp1qm+1k2 + 2 kp1p2k2 + 2 kp2p3k2

=
m+ 1

m2
koqk2 + kp1qm+1k2 + 2 kp1p2k2 + 2 kp2p3k2 :

As � �! 0 and m �! 1, the polygon p1p2p3p4p5p6 converges to a regular
hexagon, and the nodes q and qm+1 converges to the center of the triangle
op1p6. Thus, the total power consumption converges to 1

3 + 4 = 13
3 . Conse-

quently, the approximation ratio of BIP is at least 13
3 � 4:33.

5 Upper Bounds on Approximation Ratios

We have given some lower bounds on the approximation ratios of MST and BIP
by studying some special instances. However, upper bounds on the approxima-
tion ratios of these heuristics need to be analyzed for all possible instances. Our
derivation of the upper bounds relies extensively on the geometric structures
of Euclidean MSTs. We �rst observe that as long as the cost of a link is an
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increasing function of the Euclidean length of the link, the set of MSTs of any
point set coincides with the set of Euclidean MSTs of the same point set. In
fact, this can be followed from Prim's algorithm. In particular, for any spanning
tree T of a �nite point set P , parameter

P
e2T kek2 achieves its minimum if and

only if T is an Euclidean MST of P . For any �nite point set P , we use mst (P )
to denote an arbitrary Euclidean MST of P . The radius of a point set P is
de�ned as

inf
p2P

sup
q2P

kpqk :

Thus, a point set of radius one can be covered by a disk of radius one. A key
result in this section is an upper bound on the parameter

P
e2mst(P ) kek2 for

any �nite point set P of radius one. Note that the supreme of the total edge
lengths of mst (P ),

P
e2mst(P ) kek, over all point sets P of radius one is in�nity.

Amazingly, however, the parameter
P

e2mst(P ) kek2 is bounded from above by
a constant for any point set P of radius one, as shown later. We use c to denote
the supreme of

P
e2mst(P ) kek2 over all point sets P of radius one. The next

key theorem states that c is at most 12.

Theorem 3 6 � c � 12.

The proof of this theorem involves complicated geometric arguments, and
therefore we postpone it until Section 6. Note that for any point set P of radius
one, the length of each edge in mst (P ) is at most one. Therefore, Theorem 3
implies that for any point set P of radius one and any real number � � 2,X

e2mst(P )

kek� �
X

e2mst(P )

kek2 � c � 12:

In the next, we explore a relation between the minimum energy required
by a broadcasting and the energy required by the Euclidean MST of the corre-
sponding point set.

Lemma 4 For any point set P in the plane, the total anergy required by any
broadcasting among P is at least 1

c

P
e2mst(P ) kek�.

Proof. Let T be an arborescence for broadcasting among P with the mini-
mum energy consumption. For any non-leaf node p in T , let Tp be an Euclidean
MST of the point set consisting p and all children of p in T . Suppose that the
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longest Euclidean distance between p and its children is r. Then, the transmis-
sion power of node p is r�, and all children of p lie in the disk centered at p
with radius r. From the de�nition of c, we have

X
e2Tp

�kek
r

��

� c;

which implies that

r� � 1

c

X
e2Tp

kek� :

Let T � denote the spanning tree obtained by superposing of all Tp's for non-
leaf nodes of T . Then, the total energy required by T is at least 1

c

P
e2T� kek�,

which is further no less than 1
c

P
e2mst(P ) kek�. This completes the proof.

Consider any point set P in a two-dimensional plane. Let T be an arbores-
cence oriented from some mst (P ). Then, the total energy required by T is
at most

P
e2Tp kek

�
. From Lemma 4, this total energy is at most c times the

optimum cost. Thus, the approximation ratio of the link-based MST heuristic
is at most c. Together with Theorem 3, this observation leads to the following
theorem.

Theorem 5 The approximation ratio of the link-based MST heuristic is at most
c, and therefore is at most 12.

Finally, we derive an upper bound on the approximation ratio of the BIP
heuristic. Once again, the Euclidean MST will play an important role.

Lemma 6 For any broadcasting among a point set P in a two-dimensional
plane, the total energy required by the arborescence generated by the BIP algo-
rithm is at most

P
e2mst(P ) kek�.

Proof. Remember that G(�) is the complete graph over the point set P in
which the weight of an edge e is kek�. Let T be the arborescence generated
by the algorithm BIP. We construct another weighted graph H over the same
point set P according to the execution of BIP for generating T . Suppose that,
during the execution of BIP, the nodes are added in the order p1;p2; � � � ;pn,
where p1 is the source node. Let Ti be the arborescence just after the node pi
is added. In H , the weight of edge pipi+1 is equal to the incremental energy
of the link from a node in Ti to pi+1 chosen during the execution of SPF; and
the weight of any other edge, with at least one node not in Ti, is the same as
that in G(�). Note that for each edge pipi+1, its weight in H is not more than
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its weight in G(�). Therefore, for any spanning tree, its weight in H is no more
than its weight in G(�). On the other hand, the execution of Prim's algorithm
on H will emulate the algorithm BIP on G(�) in the sense that it will add the
required nodes in the same order, and will output the path p1p2 � � �pn. The
weight of this path in H is exactly the total energy required by T , but is at most
the weight of any MST in G(�). This implies that the total energy required by
T is at most

P
e2mst(P ) kek�. This completes the proof.

From the above lemma and Lemma 4, we have the following result for the
BIP algorithm similar to Theorem 5.

Theorem 7 The approximation ratio of the BIP heuristic is at most c, and
therefore is at most 12.

6 Proof of Theorem 3

This section is devoted to the proof of Theorem 3. The lower bound is trivial as
it can follow from the following instance consisting of seven points: the center of
a regular hexagon and its six vertices. However, the deriving of the upper bound
is challenging. We �rst introduce some geometric structures and notations to be
used in this section. All angles are measured in radians and take values in the
range [0; �]. For any three points p1;p2 and p3, the angle between the two rays
p1p2 and p1p3 is denoted by \p2p1p3 or \p3p1p2. The closed in�nite area
inside the angle \p2p1p3, also referred to as a sector, is denoted by ]p2p1p3.
The triangle determined by p1;p2 and p3 is denoted by 4p2p1p3. The open
disk centered at p with radius r, denoted by B (p; r), is the set of points such
that every point has distance less than r from p. The lune through points
p1 and p2, denoted by L (p1p2), is the intersection of the two open disks of
radius kp1p2k centered at p1 and p2 respectively (see Figure 5(a)). Thus, it
consists of points whose distances from p1 and p2 are less than kp1p2k. The
open diamond subtended by a line segment p1p2, denoted by D (p1p2), is the

rhombus with sides each of which has length
p
3
3 kp1p2k (see Figure 5(b)). Note

that the interior angles at p1 and p2 within D (p1p2) are equal to
�

3 .

The Euclidean MSTs have many nice structure properties [5]. Some basic
properties are listed blow.

� Any pair of edges do not cross each other.

� The angles between any two edges incident to a common vertex is at least
�

3 .
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p1
p2p1

p2

(a) (b)

Figure 5: Illustration of (a) lune and (b) diamond.

� The length of each edge is at most the radius of the vertex set.

� The lune determined by each edge does not contain any other vertices.

� Let p1p2 be any edge. Then, the two endpoints of any other edge are
either both outside B (p1; kp1p2k), or both outside B (p2; kp1p2k).

In this section, we �rst prove another structure property of the Euclidean
MSTs, which is very essential to bound the constant c: The diamonds of any
two edges are disjoint. The proof of this property will make use of the following
lemma.

Lemma 8 Let p1;p2 and p3 be any three points in the plane with \p1p3p2 =
2�
3 and kp1p3k = kp2p3k(see Figure 6). Let p4 be any point in ]p1p3p2 but
outside 4p1p2p3 with \p2p1p4 = �. Then, D (p1p4) � ]p1p3p2 if and only

if either � 2 �0; �3 � and kp1p4k � sin �

3

sin(�3��)
kp1p2k or � 2 ��3 ; 2�3 �.

Proof. Note that D (p1p4)  ]p1p3p2 if � > 2�
3 ; and D (p1p4) �

]p1p3p2 if � 2 �
�

3 ;
2�
3

�
. So we now assume � 2 �

0; �3
�
. We �x � and cal-

culate the maximum length of p1p4 such that D (p1p4) � ]p1p3p2. This hap-
pens when D (p1p4) touches the ray p3p2, say at x. We consider this extreme
scenario. In this case,

\p3p1x =�;\p1xp3=
�

3
� �:

Applying the Laws of Sine in 4p1p3x, we have
kp1xk
kp1p3k =

sin �

3

sin
�
�

3 � �
� :

On the other hand, as 4p1p2p3 and 4p1p4x are similar,

kp1p4k
kp1p2k =

kp1xk
kp1p3k =

sin �

3

sin
�
�

3 � �
� :
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p1
p2

p3

p4

α
α α

π/3−α x

p1
p2

p3

p4

π/3−α

α

α

α

x

(a)

(b)

Figure 6: Two extreme cases for D (p1p4) � ]p1p3p2.

Therefore, D (p1p4) � ]p1p3p2 as long as kp1p4k � sin �

3

sin( �3��)
kp1p2k.

Next, we apply the above lemma to show that the diamond determined by
any edge in an Euclidean MST is contained in some sector de�ned in the next
lemma.

Lemma 9 Let p1;p2 and p3 be any three points in the plane with p3 being
outside L (p1p2). Let p01 (p02 respectively) be the vertex of D (p1p3) (D (p2p3)
respectively) which lies on the opposite side of the line p1p3 (p2p3 respectively)
from p2 (p1 respectively) (see Figure 7). Then, D (p1p2) � ]p01p3p02.

Proof. We assume by symmetry that p3 is above the line p1p2 and to the
right of the perpendicular bisector of p1p2. Then, kp1p3k � kp2p3k. Since p3
is outside L (p1p2), kp1p3k � kp1p2k and \p1p3p2 < �

2 . Therefore,

\p01p3p
0
2 <

�

2
+
�

6
+
�

6
=

5�

6
;

\p1p2p3 � �

3
;

\p2p1p3 <
�

2
:
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p2’

p3
x

y

(a)

(b)

(c)

Figure 7: The three cases for Lemma 9
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Let x and y be the other two vertices of D (p1p2) which lie between the up
side and the down side respectively of the line p1p2. It is su�cient to show that
both x and y are within ]p01p3p

0
2. This is true when \p2p1p3 � �

6 (see Figure
7(a)). So we assume that \p2p1p3 <

�

6 . In this case x is within 4p1p3p01, and
thus within ]p01p3p

0
2, from Lemma 8 and kp1p3k � kp1p2k. If \p1p2p3 � 5�

6 ,
then y is within ]p01p3p2 � ]p01p3p

0
2 (see Figure 7(b)). If \p1p2p3 > 5�

6 ,
then

\p3p2y = 2��\p1p2p3 �\p1p2y
� 2��� � �

6
=

5�

6

which implies that the ray p2y does not intersect with the ray p3p
0
2 (see Figure

7(c)). So y is within ]p01p3p
0
2. Therefore, in either case both x and y are

within ]p01p3p
0
2. This completes the proof.

Now we are ready to prove the \disjoint diamonds" property of Euclidean
MSTs.

Lemma 10 In any Euclidean MST, the two diamonds determined by any two
edges are disjoint.

Proof. The lemma is true when two edges are incident to a common vertex
as the angle between them is at least �

3 . So, we consider two edges p1p2 and
q1q2 with distinct endpoints. We consider two cases.

Case 1: At least one of p1p2 and q1q2 does not cross the perpendicular
bisector of the other. Without loss of generality, assume that q1 and q2 lie in the
same side of the perpendicular bisector of p1p2 as p1 (see Figure 8(a)). Let q

0
1

(q02 respectively) be the vertex ofD (p1q1) (D (p1q2) respectively) which lies on
the opposite side of the line p1q1 (p1q2 respectively) from q2 (q1 respectively).
Then, from Lemma 9, D (q1q2) � ]q01p1q02. On the other hand, since both q1
and q2 are outside L (p1p2), D (p1p2) is outside ]q

0
1p1q

0
2. Thus, D (p1p2) and

D (q1q2) are disjoint.
Case 2: Both p1p2 and q1q2 cross the perpendicular bisector of the other.

Without loss of generality, assume that q1 lies in the same side of the perpen-
dicular bisector of p1p2 as p1 (see Figure 8(b)). Then, p1 must lie in the same
side of the perpendicular bisector of q1q2 as q1, for otherwise

kp2q1k > kp1q1k > kp1q2k > kp2q2k ;

i.e., both p1 and p2 lie in the same side of the perpendicular bisector of q1q2
as q2, which contradicts to the assumption. Since q2 is outside L (p1p2) and
kp1q2k > kp2q2k, we have kp1q2k > kp1p2k. As kp1q2k > kp1q1k, q2 is out-
side 4q1p1p2. Similarly, any of these four points p1;p2;q1 and q2 is outside
the triangle determined by the other three points. This implies that the convex
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q2
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xy

Figure 8: Two cases for Lemma 10.

hull determined by these four points is a quadrilateral. Note that p1p2 and
q1q2 cannot be the two diagonals of the quadrilateral as they do not cross each
other. Neither can be p1q1 and p2q2 as they are separated by the perpendic-
ular bisector of p1p2. Thus, the two diagonals must be p1q2 and p2q1, and
consequently the boundary of the quadrilateral is p1p2q2q1. From the previ-
ous argument its four sides are all less than its two diagonals, and hence its
four inner angles are all more than �

3 . Without loss of generality, we assume
that kp1q1k � kp2q2k. Then kp1q1k � kp1p2k, for otherwise q1 would be in-
side B (p1; kp1p2k) and q2 would be inside B (p2; kp1p2k), which is impossible.
Similarly, kp1q1k � kq1q2k. Therefore, both \q1p1q2 and \p1q1p2 are less
than �

3 . Since both \q2p1p2 and \p2q1q2 are less than �

2 , we have

\q1p1p2;\p1q1q2 2
�
�

3
;
5�

6

�
:

Let x be the point inside ]q1p1p2 such that 4p1q1x is equilateral. Then, both
p1p2 and q1q2 are outside 4p1q1x. In addition,

\xp1p2;\xq1q2 2
�
0;
�

2

�
and

kp1xk � kp1p2k ; kq1xk � kq1q2k :

Let y be the center of 4p1q1x. Then, from Lemma 8,

D (p1p2) � ]p1yx;D (q1q2) � ]q1yx:

This implies that D (p1p2) and D (q1q2) are disjoint.
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Let P be any point set of radius one. According to Lemma 10, the total area
covered by the diamonds through the edges in mst (P ) equals to

p
3

6

X
e2mst(P )

kek2 :

Let p be any point in P . Then, every point in P has distance of at most one
from p. Since all edges of mst(p) have lengths of at most one, all diamonds are

contained in B
�
p; 2p

3

�
. This implies that

p
3

6

X
e2mst(P )

kek2 � �

�
2p
3

�2

=
4�

3
:

Therefore X
e2mst(P )

kek2 � 8�p
3
� 14:51:

This estimation is quite loose and fails in getting the desired 12 upper bound.
We now provide a tighter estimation which can lead to the 12 upper bound.

We observe that the total area of the diamonds is no more than the area of
the disk B (p; 1) plus the sticking-out areas of these diamonds beyond B (p; 1).
Let D (p1p2) be any diamond which sticks out B (p; 1), and let q be its vertex
which is outside B (p; 1) (see Figure 9). Let p01 (p02 respectively) be the inter-
section between p1q (p2q respectively) and the boundary of B (p; 1). Then, the
sticking-out area of D (p1p2) can be calculated by subtracting the area of the
sector subtended by pp01 and pp02 from the area of the quadrilateral pp01qp

0
2.

The area of the quadrilateral pp01qp
0
2 can be further calculated by summing up

the areas of 4pp01p02 and 4qp01p02. As \p01qp
0
2 is a constant 2�

3 , the area of
4qp01p02 is maximized when kqp01k = kqp02k. Let \p01pp02 = �, then � 2 �0; �3 �
and the sticking-out area of D (p1p2) is at most

S (�) =
1

2
sin�+

p
3

6
(1� cos�)� �

2
:

The area function S (�) has the following nice property.

Lemma 11 For any �; � 2 �0; �3 �,
1. if �+ � � �

3 , S (�) + S (�) � S (�+ �);

2. if �+ � � �

3 , S (�) + S (�) � S
�
�+ � � �

3

�
+ S

�
�

3

�
.
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Figure 9: The calculation of the sticking-out area.

Proof. The lemma follows from the following two equalities: for any � and
�,

S (�+ �)� S (�) � S (�)

=
4
p
3

3
sin

�

2
sin

�

2
sin

�
�

6
� �+ �

2

�
;

S
�
�+ � � �

3

�
+ S

��
3

�
� S (�)� S (�)

=
4
p
3

3
sin

�
�+ �

2
� �

6

�
sin

��
6
� �

2

�
sin

�
�

6
� �

2

�
:
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We �rst prove the �rst equality.

S (�+ �)� S (�)� S (�)

=
1

2
(sin (�+ �)� sin�� sin�) +

p
3

6
((cos�+ cos�)� (cos (�+ �) + 1))

=

�
sin

�+ �

2
cos

�+ �

2
� sin

�+ �

2
cos

�� �

2

�
+

p
3

3

�
cos

�+ �

2
cos

�� �

2
� cos2

�+ �

2

�

= sin
�+ �

2

�
cos

�+ �

2
� cos

�� �

2

�
+

p
3

3
cos

�+ �

2

�
cos

�� �

2
� cos

�+ �

2

�

=
2
p
3

3
sin

�

2
sin

�

2

�
cos

�+ �

2
�
p
3 sin

�+ �

2

�

=
4
p
3

3
sin

�

2
sin

�

2
sin

�
�

6
� �+ �

2

�

Now we prove the second equality.

S
�
�+ � � �

3

�
+ S

��
3

�
� S (�) � S (�)

= (S (�+ �)� S (�)� S (�))��
S (�+ �)� S

�
�+ � � �

3

�
� S

��
3

��

=
4
p
3

3
sin

�

2
sin

�

2
sin

�
�

6
� �+ �

2

�
�

4
p
3

3
sin

�
�+ �

2
� �

6

�
sin

�

6
sin

�
�

6
� �+ �

2

�

=
4
p
3

3
sin

�
�+ �

2
� �

6

��
sin

�

6
sin

�
�+ �

2
� �

6

�
� sin

�

2
sin

�

2

�

=
2
p
3

3
sin

�
�+ �

2
� �

6

��
cos

�
�

3
� �+ �

2

�
� cos

�� �

2

�

=
4
p
3

3
sin

�
�+ �

2
� �

6

�
sin

��
6
� �

2

�
sin

�
�

6
� �

2

�
:

Suppose that there are k diamonds which stick out B (p; 1). For any 1 �
i � k, let �i be the inner angle of the arc between the two intersection points
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of the boundary B (p; 1) and the boundary of the i-th sticking-out diamond.
Then, �i 2

�
0; �3

�
and

kX
i=1

�i < 2�:

By repeatedly applying the two inequalities in Lemma 11, the total sticking-out
area of the diamonds is

kX
i=1

S (�i) �
&P

k

i=1 �i
�

3

'
S
��
3

�

� 6S
��
3

�
= 2

p
3� �:

Thus, the total area of diamonds is at most

� + 2
p
3� � = 2

p
3:

Therefore,

X
e2mst(P )

kek2 � 2
p
3

p
3
6

= 12:

This completes the proof Theorem 3.

7 Summary and Future Works

In this paper, we provided the theoretical performance analysis for the heuristics
presented in [8]. The approximation ratio of SPT is at least n

2 , and thus less
favorable from the theoretical perspective. The other two heuristics, link-based
MST and BIP, have constant-bounded approximation ratios. Speci�cally, the
approximation ratio of the link-based MST heuristic is between 6 and c, which
is at most 12; the approximation ratio of the BIP heuristic is between 13

3 and
c � 12. However, there are still several challenging issues for future research.

First of all, the computational complexity of the Minimum-Energy Broad-
casting remains unknown. As mentioned in Section 1, the graph-version of this
problem is at least as hard as the Connected Dominate Set problem. However,
due to its geometric nature, this intractability of the graph version does not
imply the same intractability of the geometric version. Indeed, while the Con-
nected Dominating Set problem does not allow a constant-approximation ratio,
the geometric version does on the contrary, for example, by MST or BIP.

Secondly, the exact value of the constant c remains unsolved. A tighter
upper bound on c can lead to tighter upper bounds on the approximation ratios
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of both the link-based MST heuristic and the BIP heuristic. From the derivation
of the 12 upper bound, we observe that there is still room to improve the upper
bound. For example, it is very unlikely for the diamonds to �ll the unit disk
fully. At least this is true for small number of nodes. However, the treatment
of large number of nodes is quite challenging, and more geometric properties of
the Euclidean MSTs should be explored.

The third interesting problem is how to construct \harder" instances that
can lead to better lower bounds on the approximation ratios of both the MST
and BIP.

A major challenge, and a topic of continued research, is the development
of distributed algorithms of MST and BIP. These algorithms should take ad-
vantage of the geometric properties for fast implementation. Furthermore, it is
important to study the impact of limited bandwidth and transceiver resources,
as well as to develop mechanisms to cope with node mobility [8].
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