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ABSTRACT

We propose several novel localized algorithms to construct energy
efficient routing structures for homogeneous wireless ad hoc net-
works, where al nodes have same maximum transmission ranges.
Our first structure has the following attractive properties: (1) It
is energy efficient: given any two nodes « and v, there is a path
connecting them in the structure with total energy cost at most
p = Tﬁn%)f’ times of the energy cost of any path connect-
ing them in original communication graph; (2) Its node degree is
bounded from above by a positive constant k£ + 5 where k > 6 is
an adjustable parameter; (3) It is a planar structure, which enables
several localized routing algorithms; (4) It can be constructed and
maintained locally and dynamically. Moreover, by assuming that
the node ID and its position can be represented in O(log n) bits
each for a wireless network of n nodes, we show that the struc-
ture can be constructed using at most 24n messages, where each
message is O(logn) bits. Our second method improves the de-
gree bound to &, relaxes the theoretical power spanning ratio to

. \/—B . .
p= m where k > 8 is an adjustable parameter, and

keeps all other properties. We show that the second structure can
be constructed using at most 3n messages, where each message has
size of O(log n) bits.

We also experimentally evaluate the performance of these new
energy efficient network topologies. Thetheoretical results are cor-
roborated by the simulations: these structures are more efficient in
practice, compared with other known structures used in wireless ad
hoc networks and are easier to construct. In addition, the power
assignment based on our new structures shows low energy cost and
small interference at each wireless node.
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1. INTRODUCTION

Wirelessad hocnetworks have been undergoing arevolution that
promises to have a significant impact throughout society, one that
could quite possibly dwarf milestones in the information revolu-
tion. Unlike traditional fixed infrastructure networks, there are no
centralized control over ad hocwireless networks, which consist
of an arbitrary distribution of radios in certain geographical area.
In Ad hocnetworks, mobile devices can communicate via multi-
hop wireless channels; a node can reach all nodes in its transmis-
sion range, while two far-away nodes communicate through the
messages relaying by intermediate nodes. Ad hocwireless net-
works intrigue many challenging research problems, as it intrin-
sically has many specia characteristics and some unavoidable lim-
itations, compared with other wired or wireless network. An im-
portant requirement of these networks is that they should be self-
organizing, i.e., transmission ranges and data paths are dynamically
restructured with changing topology. Energy conservation and net-
work performance are probably the most critical issuesin ad hoc
wireless networks, because wireless devices are usually powered
by batteries only and have limited computing capability and mem-
ory.

The topology controltechnique is to let each wireless device
locally adjust its transmission range and select certain neighbors
for communication, while maintaining a structure that can support
energy efficient routing and improve the overall network perfor-
mance. By enabling each wireless node shrinking its transmis-
sion power (which isusually much smaller than the maximal trans-
mission power) to sufficiently cover the farthest selected neighbor,
topology control can not only save energy and prolong network
life, but also can improve network throughput through mitigating
the MAC-level medium contention. Unlike traditional wired net-
work and cellular wireless networks, the wireless devices are often
moving during the communication, which could change the net-
work topology in some extent. Hence it is more challenging to de-
sign atopology control algorithm for ad hocwireless networks: the
topology should be locally and self-adaptively maintained without
affecting the whole network, and the communication cost during
maintaining should not be too high.

Topology control has drawn significant research interest [1, 2,
3,4,5, 6,7, 8] in last few years. Different topologies have dif-



ferent properties, however, none of them can achieve al three pre-
ferred properties for unicast applications on wireless ad hoc net-
works: power spanner, planar, degree-bounded. Until recently,
Wang and Li [13] proposed alocalized algorithm to build a degree-
bounded planar spanner both in centralized and distributed way,
which is based on the combination of localized Delaunay triangu-
lations (LDel) [14] and Y ao structure [15]. It isthefirst localized
algorithm that can achieve all the three desirable features. How-
ever, the theoretical node degree of their structure can reach 25 in
the worst case; and the communication cost of their method can
be large, although it is shown that the total number of messages
is O(n), the hidden constant could be as high as several hundreds
since the method needs to collect the 2-hop information for every
node.

In this paper, we propose two novel methods to build a power
efficient planar structures with much less communication costs and
lower node degree bounds. Our first structure has the following
attractive properties:

1. Itis power efficient: given any two nodes u and v, there is

a path connecting them in the structure with total power cost
no morethan p = W times of the power cost of any
path connecting them in the original homogeneous network;

. Itsnode degree isbounded from above by a positive constant
k + 5 where k > 6 is an adjustable parameter;

. Itisaplanar structure, which enables several localized rout-
ing algorithms;

. It can be constructed and maintained in localized and dy-
namic way.

Moreover, by assuming that the node | D and its position can be rep-
resented in O(log n) bits each for a wireless network of » nodes,
we show that the structure can be constructed using at most 24n
messages, where each message is O (log n) bits. Our second method
reduces the degree bound to &, and keeps all other properties, ex-
cept that the theoretical power spanning ratio is relaxed to p =

\/55 . .
Vi TP where k > 8 is an adjustable parameter. We show

that the second structure can be constructed using at most 3n mes-
sages, where each message has size of O(log n) bits.

We also experimentally evaluate the performance of these new
energy efficient network topologies. Thetheoretical results are cor-
roborated in the smulations: our new structures are more efficient
in practice and easier to construct, compared to other known struc-
tures used in wireless ad hoc networks. By shrinking the trans-
mission range of each node to reach the farthest neighbors in our
new structures, the experiment shows each node indeed costs low
energy and has small number of physical neighbors The physi-
cal neighborsare those nodes within its transmission range, and
smaller number of physical neighborsneans less interference.

The rest of the paper is organized as follows. In Section 2, we
describe some most preferred properties of topology control pro-
tocol in wireless ad hoc networks and review the priori artsin this
area. We then present our two localized methods, in Section 3,
to construct degree-bounded planar power spanners for UDG(V)
with total communication cost O(n) under the broadcasting com-
munication model. In Section 4, we conduct extensive simulations
to validate our theoretical results. Finally, we conclude the paper in
Section 5.
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2. PRELIMINARIES
2.1 Network Mode€

A wireless ad hoc network (or sensor network) consists of a set
V' of n wireless nodes distributed in atwo-dimensional plane. Each
node has the same maximumtransmission range R. 1 By a proper
scaling, we assume that all nodes have the maximum transmission
range equal to one unit. These wireless nodes define a unit disk
graph UDG(V') in which there is an edge between two nodes iff
their Euclidean distance is at most one. In other words, we assume
that two nodes can always receive the signal from each other di-
rectly if the Euclidean distance between them is no more than one
unit. Hereafter, UDG(V') is aways assumed to be connected. We
also assume that al wireless nodes have distinctive identities and
each wireless node knows its position information either through
alow-power Global Position System (GPS) receiver or some other
ways. More specifically, in our protocal, it is would be enough if
each node knows the relative position of itsone-hop neighbors. The
relative position of neighbors can be estimated by the direction of
signal arrival and the strength of signalBy one-hop broadcasting,
each node u can gather the location information of all nodes within
its transmission range.

In the most common power-attenuation model, the power to sup-
port alink uv isassumed to be ||uv||”, where ||uv || isthe Euclidean
distance between v and v, 8 isareal constant between 2 and 5 de-
pending on the wireless transmission environment.

2.2 Preferred Properties

Wireless ad hoc network topology control schemes are to main-
tain a structure that can be used for efficient routing [10, 9] or im-
prove the overall networking performance [1, 2, 6], by selecting a
subset of links or nodes used for communication. In the literature,
the following desirable features are well-regarded and preferred in
wireless ad hoc networks:

Power Spanner: In ad hoc wireless networks, two far-apart
nodes can communicate with each other through the relay of inter-
mediated nodes; hence, each node only need set small transmission
ranges. This has two advantages: (1) reducing the signal interfer-
ence (2) saving power for transmission. To guarantee the advan-
tage, agood network topology should be energy efficient, that isto
say, the total power consumption of the shortest path (most power
efficient path) between any two nodes in final topology should not
exceed a constant factor of the power consumption of the shortest
path in original network. Given a path vivs - - - v, connecting two
nodes vi and vy, the energy cost of this path isZ’?;ll lvjviaal®.
The path with the least energy cost is called the sﬁorta;t pathin a
graph. Formally speaking, asubgraph H is called apower spanner
of agraph G if thereis a positive real constant p such that for any
two nodes, the power consumption of the shortest path in H is at
most p times of the power consumption of the shortest path in G.
The constant p is called the power stretch factarA power spanner
isusually energy efficient for routing.

Obviousdly, for any weighted graph G and a subgraph H C G,
we have

LeEmmA 1. [3] Subgraph H of a graphG has stretch factor
p if and only if for any linkuv € G, du(u,v) < p - da(u,v),

whered (u, v) is the total power consumption of the shortest path

between: andv in G.

Lemma 1 implies that, to generate a power efficient structure, we
only need to guarantee that any two adjacent nodes v and v in G are

n practice, R can be defined as the minimum of all the maximum
node transmission ranges.



connected by a path in H with energy cost no more than a constant
factor of the cost of link uwv.

Degree Bounded: It is also desirable that the node degree in the
constructed topology is small and bounded from above by a con-
stant. A small node degree reduces the MAC-level contention and
interference, also may help to mitigate the well known hidden and
exposed terminal problems. Especially in Bluetooth based wireless
ad hoc networks, the mastemode degreeis preferred belessthan 7,
according to Bluetooth specifications, to maximize the efficiency.
In addition, a structure with small degree will improve the overall
network throughout [16].

Planar: Many routing algorithms require the planar topology to
guarantee the message delivery, such as right hand routing, Greedy
Perimeter Stateless Routig@PSR) [9], Greedy Face Routin@GFG)
[10], Adaptive Face Routif@dFR) [11], and Greedy Other Adap-
tive Face RoutingGOAFR) [12].

Efficient L ocalized Construction: Due to the limited resources
and high mobility of the wireless nodes, it is preferred that the un-
derlying network topology can be constructed and maintained in
a localized manner. Here a distributed algorithm constructing a
graph G is alocalized algorithmif every node v can exactly de-
cide al edges incident on u based only on the information of all
nodes within a constant hops of ». More importantly, we expect
that the total communication cost of the agorithm is O(n) mes-
sages, where each message is O(log n) bits; the time complexity
of each node running the algorithm is at most O(d log d), where d
isthe number of 1-hop or 2-hop neighbors.

2.3 Priori Arts

Severa structures (such as relative neighborhood graph RNG,
Gabriel graph GG, Yao structure, etc) have been proposed for topol-
ogy control in wireless ad hoc networks. The relative neighbor-
hood graph denoted by RNG(V) [17], consists of al edges uv
such that the intersection of two circles centered at v and v and with
radius ||uv|| do not contain any vertex w from the set V. See Fig-
ure 1(a). The Gabriel graph[18] GG (V') contains edge wv if and
only if disk(u, v) contains no other points of V', where disk(u, v)
is the disk with edge uv as a diameter. See Figure 1(b). Denote
GG(UDG) and RNG(UDG) s the intersection of UDG(V')
with GG(V) and RNG(V) respectively. Both GG(UDG) and
RNG(UDG) are connected, planar, and contain the Euclidean
minimum spanning tred/ ST of V if UDG is connected. De-
launay triangulation, denoted by Del, is also used as underlying
structure by several routing protocols. Here a triangle Auvw be-
longs to Delaunay triangulation Del if its circumcircle does not
contain any nodeinside. Let Del(U DG) bethe set of edgesin De-
launay that isalso in UDG. It iswell known that RNG(UDG) C
GG(UDG) C Del(UDG). Thestructure Del(U DG) has bounded
length spanning ratio [14]; both RNG(U DG) and GG(UDQG) are
not length spanners, GG(U DG) is power efficient.

The Yao graph15] with an integer parameter k£ > 6, denoted by
Y‘C)?k(UDG), isdefined asfollows. At each node u, any k equally-
separated rays originating at « define k cones. In each cone, choose
the shortest edge uv € UDG(V') among all edges emanated from
u, if there is any, and add a directed link wv. Ties are broken ar-
bitrarily or by ID. See Figure 1(c). The resulting directed graph
is called the Yao graph Let Y G (U DG) be the undirected graph
by ignoring the direction of each link in Y‘()Jk(UDG). Some re-
searchers used a similar construction named 6-graph [19, 20], the
difference isthat it chooses the edge which has the shortest projec-
tion on the axis of each cone instead of the shortest edge in each
cone.

In [10, 9], relative neighborhood graph and Gabriel graph are
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(8) RNG (b) GG

©YG

Figure 1. Thedefinitionsof RNG, GG, and YG. The shaded
area isempty of nodesinside.

used as underlying network topologies. However, Bose, et al. [21]
proved that the length stretch factors of these two graphs are ©(n)
and ©(y/n) respectively. Actually, they are at most n — 1 and
vn —1[22]. Moreover, in [3], Li, et al. showed that the power
stretch factor of RNG isn — 1 while the power stretch factor of GG
is 1. Recently, some researchers [3, 8] proposed to construct the
wireless network topology based on Yao graph. It isknown that the
length/power stretch factor and the node out-degree of Yao graph
are bounded by some positive constants. But asLi et al. mentioned
in[3], all these three graphs can not guarantee node degree bounded
(for Yao graph, the node in-degree could be as large as ©(n)). In
[3, 4], Li, et al. further proposed to use another sparse topology,
Yao and Sinkthat has both a constant bounded node degree and a
constant bounded length/power stretch factor. However, al these
graphs [3, 4, 8] are not guaranteed to be planar. In [14] Li, et
al. proposed a planar spanner localized Delaunay triangulations
(LDel), and in [23] Gao et al. proposed a planar spanner Restricted
Delaunay Graptfor wireless ad hoc networks. Unfortunately, both
of them might result in an unbounded node degree.

Bose et al[24] proposed a centralized method with running time
O(nlogn) to build a degree-bounded planar spanner for a two-
dimensional point set. They construct aplanar ¢-spanner for agiven
nodes set V, for t = (1 + 7) - Cger ~ 10.02, such that the node
degree is bounded from above by 27. Hereafter, we use Cy; t0
denote the spanning ratio of the Delaunay triangulation [25, 26,
20]. However the distributed implementation of this centralized
method takes O(n?) communications in the worst case for aset V
of n nodes.

Recently, Wang and Li [13] proposed the first efficient localized
agorithm to build a degree-bounded planar spanner BPS(UDG)
for wireless ad hoc networks. It has a length spanning ratio ¢t =
max{%,msin § 4+ 1} - Caer(1 + €), and each node has degree at
most 194 [227. Here0 < « < /3 isan adjustable parameter, and

Caer < ‘%gw is the spanning ratio of the Delaunay triangulation.
Though their method can achieve all these three desirable features:
planar, degree-bounded, and power efficient, the theoretical bound
on the node degree of their structure is alarge constant. For exam-
ple, when o = 7/6, the theoretical bound on node degreeis 25. In
addition, the communication cost of their method can be very high,
athough it is O(n) theoretically, because it needs to collect the
2-hop information for every wireless node. Even as mentioned in
[13], the method by Calinescu [27] to collect 2-hop neighborsinfor-
mation takes O(n) messages, however the hidden constant can be
as high as several hundreds. Concerning this large communication
cost and the possible large node degree, we propose two communi-
cation efficient methods to construct small degree-bounded planar
power efficient structures, which are more practical in wireless ad
hoc networks. The construction of our second structure only needs
at most 3n messages, the tradeoff isthat theoretically our structures
do not have constant length spanning ratio.



3. PROPOSED APPROACHES

We propose two novel methods to build power efficient planar
structures with much less communication costs and lower node de-
gree bounds compared with previously best known planar power
efficient structures [13] called BP.S, see Figure 2(b). Before pre-
senting our methods, we first present a localized construction of
Gabriel graph structure for homogeneous wirel ess ad hoc networks.

ALGORITHM 1. CONSTRUCTING GABRIEL GRAPH

1. In the beginning, each node « locally broadcasts a message
with ID,,, and its position (z., y.) to al nodesinits trans-
mission range. Each node w initiates sets Eypc(u) and
Egc(u) to be empty. Here Eypa(u) and Ege(u) are the
set of links known by u in UDG and GG respectively.

2. At the same time, each node u processes the incoming mes-
sages. Assume that node u gets a message from some new
node v, then it adds alink uv to Eypa(u).

Node u checkswhether thereisanother link uw € Eypa(u)
where w € disk(u,v). If no such link ww exists, then
it adds uv to Ega(u). On the other hand, for any link
uw € Ega(u), node u checks whether v € disk(u, w), if
the condition holds, then u removes link uw from Egc (u).

Node w repeats this step until no new messages are received.

3. All links wv in Eqc(u) are the fina links in GG(UDG)
incident on w.

We first show that Algorithm 1 builds the structure GG(UDG)
correctly. For any link uv € GG(UDG), clearly, we cannot re-
move them in Algorithm 1. For alink uv ¢ GG(UDG), assume
that anode w isinside disk (u, v) and both links uw and wv belong
to UDG. If node u gets the message from w first, and then gets the
message from v, clearly, uwv cannot be added to Egc(w). If node
u gets the message from v first, then node » will remove link uv
from Ecc(u) (if it is there) when u gets the information of node
w.
Itisnot difficult to prove that structure GG (U DG) is connected
by induction if UDG is connected. In addition, since we remove
a link uv only if there are two links uw and wv with w inside
disk(u,v), itis easy to show that the power stretch factor of struc-
ture GG(UDG) is exactly 1 [4]. In other words, the minimum
power consumption path for any two nodes v and v in UDG is till
kept in GG(UDG). Remember that here we assume the power
needed to support alink uw is ||uv||®, for 3 € [2, 5]. Notice that,
as mentioned in the literature, GG(U DG) is not degree bounded.
For example, when all n — 1 nodes are uniformly distributed on a
unit circle with the nth node u as center, the node degree of u is
n — 1. Figure 2(a) shows another example, where (n — 1) /2 nodes
are uniformly distributed on a unit circle, another (n — 1) /2 nodes
are on a half unit circle, and both circles have the nth node u as
center. The node degree of centeris (n — 1)/2 = O(n) in GG, as
shown in Figure 2(c).

The following result isafolklore.

THEOREM 2. [3] GG(UDQG) is a planar power spanner, whose

power stretch factor ig.

Heresfter, if it is clear that these structures are constructed on
UDG(V), we omit the (UDG) in the representation of all struc-
tures. For instance, we will use GG to denote Gabriel Graph in-
stead of GG(UDQG).

3.1 Degree-(k+5) Planar Power Spanner
(OrdYaoGG)

One natural way to construct a degree-bounded planar power
spanner is to apply the Yao structure on Gabriel graph. In [4], Li,
et. al showed that the final structure by directly applying the Yao
structure on GG is a planar power spanner, called YaoGG, how-
ever itsin-degree can be aslarge as O(n), asin the example shown
in Figure 2(c). In this paper, we present anew method by applying
the ordered Yao structures on Gabriel graph to bound node degree.
The ideais similar with the method in [13] where they apply Yao
structures on the localized Delaunay triangulations using a local
ordering of nodes to build a degree-bounded planar length span-
ner. The major differences are 1) here we only use 1-hop informa-
tion instead of two hop information, which reduces communication
cost significantly; 2) we use Gabriel graph instead of the localized
Delaunay triangulation, which makes the localized method much
simpler and more efficient; 3) the method used to bound the degree
isaso different. The algorithm is as follows.

ALGORITHM 2. CONSTRUCT DEGREE-(K+5) PLANAR POWER
SPANNER OrdY aoGG

1. First, each node self-constructs the Gabriel graph GG locally
based on the strategy described in Algorithm 1. Let Nec (u)
be the neighbors set of node » in GG.

2. Second, each node u decidesits order 7 locally as follows.
Two data structures at each node u are used in thisalgorithm:

(1) [ ]: thelist of the local orders of al neighboring nodes
of u (including itself) in GG, which isinitialy set as 0, i.e,,
unordered.

(2) d(u): the number of its unordered neighbors known by
node u so far, which isinitialy set asitsdegreein GG.

(3) DOQUERY: aflag indicating whether this node will per-
form a query to its neighbors. Initialy, the flag is set as
FALSE if its degree d(u) > 5 and TRUE otherwise. No-
tice that when the node is ordered (i.e., w[u] > 0), this flag
DOQUERY isaways set to FALSE.

The strategy of finding local ordering is as follows:

(8 If DOQUERY is true, then node « queries al its un-
ordered neighboring nodes by sending amessage QUERY.
The query message QUERY contains only the ID of
node w.

(b) When an unordered node v receives a message QUERY
from a neighboring node u in GG, it checks whether
d(v) < 5and ID(v) < ID(u). If so, node v replies
node u amessage FAILEDQUERY with the IDs of itself
and u. Otherwise, node v replies node u a message
PAssSeEDQUERY with the IDs of itself and u.

(c) If node u received a message FAILEDQUERY, node u
sets DOQUERY to FALSE. Node u will not perform
such query until its degree is decreased later, so there
are at most 5 rounds of queries.

(d) If node u receives message PASSEDQUERY from all its
unordered neighbors, node u sets

mu] = max{w[v] | v € Nag(u)} + 1,

sets DOQUERY to FALSE, and broadcasts 7 [u] to its
neighbors N (u) through message MY ORDER.



(8) UDG

(b) BPS

(c) GG and YaoGG

(d) OrdYaoGG (d) SYa0GG

Figure 2: Several planar power spannerson the UDG shown in (a). Here k = 9 for Yao related construction.

(e) If nodew receivesaM Y ORDER message fromitsneigh-
bor w in GG saying that 7[u] = k, it records [u] lo-
cally, and updatesitsd(v) = d(v) — 1. If 7[v] = 0 and
d(v) < 5, then node v sets DOQUERY to TRUE.

(f) When node u findsthat d(u) = 0 and w[u] > 0, it can
go to next step to bound itsdegree in the final structure.

3. All nodes self-form the final topology based on local order «
asfollows. Initialy, all nodes are marked with WHITE color,
i.e., unprocessed. Let Noyae (u) be the set of neighbors of
u inthefinal topology, whichisinitialized as N (u).

(8 If node u is unprocessed (marked WHITE), and it has
the largest order 7[u] among al its WHITE neighbors
in Neg(u), it divides its transmission range (which
is a unit disk centered at the node ) into k& equal-
sized cones, keeps one nearest WHITE neighbor v €
Novce(u) (if available) in each cone and deletes oth-
ers. Node u marks itself BLACK, i.e., processed, and
notifiesall nodesin Ng¢ (u) of the deleted edgesthrough
a broadcasting message UPDATEN. The message Up-
DATEN includes all unselected neighbors.

(b) Once the node u receives the message UPDATEN for
deleting edge vu from its neighbor v, it deletesthe node

v fromitslocal list Noyaa(u).

. When all nodes are processed, all the remaining edges
{uwv|v € Novaa(u), Vv €GG} formthefinal network topol-
ogy OrdY aoGG. Each node then can shrink its transmis-
sion range aslong as it sufficiently reaches its farthest neigh-
bor in the final topology.

LeEMMA 3. The final topologyOrdY aoGG is a planar graph,
whose node degree is bounded by 5 wherek > 6 is an ad-
justable parameter.

PROOF. The Yao graph construction does not add any edges to
original graphs, on the contrast, it only deletes edges. Hence the
planar property isinherited from GG graph.

We then show that each node degree is bounded by k£ + 5 in
OrdY aoGG. To prove this, we first review one important prop-
erty for planar graph, that is, there always exists a node with degree
at most 5 in planar graph. Clearly, our local ordering is able to
start, since there is at least one node with degree at most 5 initially.
When we order these nodes with degree at most 5 that have ID
smaller than these neighbors in GG with degree at most 5, we will

ordered after u. From our processing order of nodes, these nodes
will be marked BLACK before node u, i.e., being processed before
u. We will then call P,, predecessors of node u. Clearly, inthelo-
cal ordering 7, every node v has at most 5 edges to its predecessors
P, in GG, that isto say, before it is marked with BLACK, it has at
most 5 processed neighbors.

When node u is being processed, it could select at most & other
unprocessed neighborsinto final structure, thus, itsdegree isbounded
by k + 5. Once anode is marked with BLACK color, its degree will
be kept unchanged according to our algorithm. This finishes our
proof. []

In Figure 2, we show that GG and Y aoGG cannot bound the
node degree, while our structure OrdY aoGG is indeed degree-
bounded by k£ + 5 = 14, here k isset as 9 in our experiment. We
then prove that the final structure is also power efficient.

LEMMA 4. OrdY aoGG is a power spanner di DG, and its

power spanning ratio i = m wherek > 6 is an
k

adjustable parameter an@ € [2,5] is a constant depending on
the transmission environment.

PROOF. Since the GG is a power spanner with spanning ratio
1, we only need prove that OrdY aoGG isapower spanner of GG
with spanning ratio p = Tﬁn%)f’ The proof is similar to the
proof for Yao on UDG [3] and the later proof of Theorem 7. Due
to space limitation, we omit the detailshere. [

We then analyze the total communication cost of Algorithm 2.
(1) Clearly, the first step of building GG can be done using only
n messages. each message contains the ID and geometry position
of anode. (2) The second step of computing local ordering can
be done in 21n messages. First, an unordered node « sends out at
most 5 query messages containing itsID. Each such query message
isreplied by d(u) neighbors. Since we perform a new query only
if d(u) decreases from last failed query, the total messages used
for queriesis at most n - Zle(i + 1) = 20n messages. Second,
an ordered node u sends a message containing its ID and the local
ordering 7, computed. The second step can thus be done in at
most 21n messages. (3) In the third step, a processed node v will
inform al its WHITE neighbors v about the deletion of the edge
uw from Gabriel Graph (which has at most 3n edges). In the final
topology OrdYaoGG, at least n — 1 edges were kept to guarantee
the connectivity, thus, the total number of such messagesis at most
2n. In summary, the following lemma directly follows.

LEMMA 5. Assuming that both the ID and the geometry po-
sition can be represented lyg n bits each, the total number of
messages of Algorithm 2 is then at m®$t, where each message
has at mos® log n bits.

mark these nodes ordered and update the degrees for the remain-
ing nodes. We clearly can repeat this procedure until al nodes are
ordered since the Gabriel graph induced on all unordered nodes is
always planar. Let P, be the neighbors of node v in GG that are
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Additional communication and computation cost can be saved,
if the degree is expected to be bounded by k£ + 5 only. The mod-
ification is to let al nodes with degree at most k& + 5 be initialy
marked as BLACK, that isto say, they do not participate in the third
step in Algorithm 2.

Remember that the total messages of our Algorithm 2 is bounded
by O(n). Thisimplies that the average number of messages per
node is a constant, which is verified in our simulations presented
later. However, in the worst case, the number of messages sent
by some node could be as large as O(n). Algorithm 2 can be
modified to further bound the communication cost of each node.
During the Yao construction in the third step, instead of using mes-
sage UPDATEN to delete the unselected links, each node will notify
its neighbors of the kept edges. In other words, the message UP-
DATEN contains the selected neighbor I1Ds instead of the deleted
neighbor IDs. The communication cost of each node can be bounded
since at most k£ neighbors are kept during Yao construction. It is
easy to show that each node sends at most 31 messages during con-
structing GG and computing thelocal order: at most 5 QUERY mes-
sages are sent, and at most 25 PASSEDQUERY or FAILEDQUERY
messages are sent. The tradeoff isthat the total communication cost
could be higher than that used in Algorithm 2 if the final topology
isdenser.

3.2 Degree-k Planar Power Spanner (SYaoGG)

Algorithm 2 constructs a planar power efficient structure using
at most O(nlogn) bits communications, and the final structure
has a theoretical degree bound k + 5, where k > 6 is a param-
eter. We then study a more interesting method to build a degree-
bounded planar power spanner, which can be constructed easier
and demands less communication cost during construction. later.
We compare their practical performances through simulations. The
second structure is constructed as follows.

ALGORITHM 3. CONSTRUCT DEGREE-K PLANAR POWER SPAN-

NER SY aoGG

1. First, each node self-constructs the Gabriel graph GG locally
based on the strategy described in Algorithm 1.

2. All nodes together self-form the final topology as follows.
Initially, each node u is marked with WHITE color, i.e., un-
processed, and initializes Nsycag(u) as the set of al the
neighbor nodesin GG.

(& If aWHITEnodew hasthesmallest ID among itsWHITE
neighbors in GG, it divides its transmission range into
k equal-sized cones where k > 8 is an adjustable pa-
rameter. In each cone, node u checks whether there are
some BLACK nodesin Nsy e (u) within same cone:

i. Yes. Node u keeps the closest BLACK neighbor
v € Nsyaa(u) among them and deletes all the
other links in the cone;

ii. No. Node u keeps a closest WHITE neighbor v €
Nsyca(u) (if available) among them and deletes
all the other linksin the cone.

After processing all k& cones, node u marksitself BLACK,
i.e. processed, then notifies each deleted neighboring
node v in GG by abroadcasting message UPDATEN.

Once a WHITE node v receives the message UPDATEN
from a neighbor » in GG, it checks whether itself is
in the nodes set for deleting: if so, it deletes the send-
ing node u from Nsyca(v), otherwise, marks u as
BLACK initsloca list Nsyca(v).

(b)
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(c) OnceaBLACK node v receives the message UPDATEN
from a neighbor belonging to Nsyaea(v), it checks
whether itself is in the nodes set for deleting: if so,
it deletes the sending node u from Nsy e (v), other-
wise, marksu as BLACK initslocal list Nsyca(v).

3. When &l nodes are processed, all selected edges {uv|v €
Nsyaa(u), Vv €GG} form the fina network topology, de-
noted by SY aoGG. Each node then can shrink its trans-
mission range as long as it sufficiently reaches its farthest
neighbor in the final topology.

Algorithm 3 further reduces the communication cost during con-
structing a degree-bounded planar power spanner, because we do
not demand the local ordering before construction.

Our analysis of the structure SY aoGG relies on the following
simple observation.

LEMMA 6. In GG graph, if two edgesw and uw emanates
from a single vertex, then both the angl&€uwv and Zuvw must
be acute.

PrROOF. We proveit by inducing contradiction. Suppose the an-
gle Zuvw is an obtuse angle, then ||wv|| < [Juwl|, hence, al the
three edges uv, vw and uw are in the UDG graph. Thus, the cir-
cle with diameter uw contains the node v inside. According to the
property of GG graph, edge uw can not be kept during GG con-
struction. The contradiction isinduced. Thisfinishesthe proof. [

THEOREM 7. The structureSY aoGGG is k degree-bounded pla-
nar power spanner, whose power stretch factor is at most

NGk . .
Vi TP wherek > 9 is an adjustable parameter angl €

[2, 5] is a constant factor depending on the communication envi-

ronment.

PrRoOOF. First, the node degree is obviously bounded by & be-
cause each node only keeps one undirected edge in each cone. Fig-
ure 2(d) illustrates the self-constructed SY aoGG structure on the
UDG graph shown in Figure 2(a). The node degree is indeed at
most k = 9.

Second, thegraph SY aoGG isplanar, because the Gabriel graph
GG isplanar and Algorithm 3 does not add any more edges, thus,
the planar property isinherited.

In the following, we show that the structure SY aoGG isapower
spanner. According to Theorem 2, GG has power spanning ratio 1.
Hence, from Lemma 1, it is sufficient to show that for any nodes u
and v with an edge uv € GG, thereisapath connecting « and v in
SY aoGG with power cost at most p - [|uv]|”.

Given any edge wv € GG, we will construct a path u e~ v
connecting » and v in SY aoGG. If edge uv is kept in the final
structure, then v «~ v isjust uv. Otherwise, assume that uv is
removed 2 when processing node . There must exist a link uw
selected by node u in the same cone. Then u «~ v isthe concate-
nation of uw with w «~ v, see Figure 3. Notice that node u is
marked as processed in this stage. It is possible that the link uw
could then be removed by node w later on since node w is not pro-
cessed when process node u. If so, wereplace link uw by u «~ w,
see Figure 4 for illustration, details will be explained later.

We then prove by induction, on the number of its edges, that
the path w «~ v has power cost, denoted by p(u «~ v), at most
plluv]”.

“Notice that an edge uv € GG can only be removed while pro-
cessing its endpoint node « or node v.



Obvioudly, if thereis only one edge in u «~ v, p(u «w v) =
luv]|® < plluv||®. Assume that the claim is true for any path with
[ edges. Then consider apath u «~ v with+ 1 edges, which isthe
concatenation of edge uw (or path u «~ w) and the path w «~ v
with at most [ edges.

Without loss of generality, we always assume that the link uv is
removed after node « is processed and link uw is selected in the
cone. Notice that the link uw could be removed later by node w
if w is processed after u, so there are two cases that need to be
discussed carefully:

1. Thefirst caseisthat link uw iskept in thefinal structure. Re-

member that, as described in the algorithm, we always sel ect
the nearest BLACK neighbor in a cone if it exists, otherwise
the nearest WHITE neighbor is selected if it exists.

(a) Both w and v are
WHITE or BLACK

(b) wisBLACK
and v isSWHITE

Figure3: Thelink uw iskept in thefinal structure.

Figure 3 illustrates the situations that a WHITE node v starts
Yao construction in the cone. Suppose, we delete wv in the
cone and choose edge uw, which is aso kept in the final
structure. Again, there are two subcases that need to be ana-
lyzed:

Subcase 1. |juw]|| < ||Juv||. Thissubcase happensonly when
both nodes v and w are processed (or unprocessed), and
node u deleteslink uv since the existence of closer pro-
cessed (or unprocessed) neighbor w. Figure 3(a) illus-
trates the situation.

We bound the length ||wv|| respecting to ||uv||. Notice
that [|uw|| < |luv|| and Zwuv < § = 2Z. The max-

imum length of vw is achieved when |Juw|| = |uv||
because the angle Zuww is acute according to Lemma
6. Therefore
0
lwol] < 2sin Zluv]| = 2sin % l[uv]|.

By induction, we have
plu e v) = Juw])” + p(w o v)
< Juw])” + pllwo]”
< vl + p- (2sin 2)°luv])”
< plluol”,

Subcase 2: ||uw]| > |luv]||. Thiscasehappensonly when node
w is processed while node v is not processed yet, and
node v deletes link uv since any processed neighbor
has higher priority in our algorithm. Figure 3(b) illus-
trates the situation.

We bound the length ||wv|| respecting to ||uw||. Notice
that [|uw|| > |luv|| and Zwuv < § = 2% < Z accord-
ing to Lemma 6. Sowe have 7 < Zuwv < Zuvw <
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= Consequently, |luw|| < Z2Z[w| = v2|juv|.
4

2 sin &
The maximum length of vw isachieved when |juw|| =
|luv|| because the angle Zuww is acute. Therefore

|wo|| < 2sin %Huw” < 2v/2sin %Huv”.
By induction, we have
p(u e ) = fluw]|” + p(w e~ v)
< Jluw|® + pllwo”
< (V2)' (1 + p(2sin )" uv]®
< plluv]?,

V2P
whenp 2 e e

2. The second caseisthat link uw is later removed by node w.

We show that the spanning ratio is still kept. Notice that, this
case could only succeed Subcase 1The link uw in Subcase
2, see Figure 3(b), can never be removed in our agorithm,
since both node v and w have processed and kept this edge.
An edge can only be removed by its endpoints. Thisis the
tricky case in this agorithm.

(a) processing u (b) processing w

Figure 4: Link uv isremoved when processing node « (illus-
trated in theleft figure) and link ww isthen removed by node w
later (illustrated in theright figure).

Figure 4(a) shows the situation that a WHITE node u selects
alink uww in a cone, where the neighbor node w is not pro-
cessed. Figure 4(b) illustrates the scenario when node w pro-
cesses its neighbors: sinceit has two processed® neighbors
and z in the cone, it will select the nearest processed neigh-
bor in that cone, which is node z. Observe that after node
w decided to keep link wa and remove link uw, the link wx
will be kept in thefinal structure since both end nodes w and
x are processed and only an unprocessed node can removeits
incident links later. Obviously, from the selection procedure,
we know that

[[uv]| > fluw]] = [wz]].

Notice that, both nodes « and z select the node w in one of
their cones when they are processed before node w starts its
processing. Node w then selects x instead of « because wx is
shorter. Consequently, node « does not have any neighbors
kept in the node u’s cone shown in Figure 4(b). Thisisa
sharp contrast to our first structure OrdY aoGG, in which

3Node = must also be a processed node, otherwise w will definitely
select v instead of x according to our rule.



every node always keep an edge in each cone if it originally
has one neighbor from Gabriel graph. Then the path v «~ u
connecting nodes v and v is composed of path v «» w,
link wz and path = «~ u. The total power cost of the path
RNV TAILS

Pl o 0) = |+ plaw s 0) + plu o 2)
< |lwa||® + pllwo|® + plluz||?
< flwall” + p(2sin ) (luvl]” + [luw|®)
< ] (1 +2p(2sin 7))
< plluwo]?,

1

All conditions about p are satisfied when p = This

finishes the proof. [

We then analyze the communication cost of Algorithm 3. (1)
Clearly, the first step of building GG can be done using only n
messages. each message contains the ID and geometry position of
anode. (2) Inthe second step of the algorithm, initially, the number
of edges in Gabriel Graph is less than 3n sinceit is a planar graph.
Clearly, there are at most 2n such removed edges since we keep at
least n — 1 edges from the connectivity of the final structure. Thus
the total messages used to inform the deleted edges from GG is at
most 2n. Then the following lemma directly follows.

v
1—(2v2sin E)B°

LEMMA 8. Assuming that both the ID and the geometry po-
sition can be represented lyg n bits each, the total number of
messages by Algorithm 3 is at m8st, where each message has at

most2 log n bits.

Similarly, if the message UPDATEN contains the selected neigh-
bor IDs instead of the deleted neighbor 1Ds, then the communica-
tion cost of each node also can be bounded by & + 1 since at most
k neighbors will be kept during Yao construction.

Theoretically, compared with OrdY aoGG, thetopology SY aoGG

has lower node degree bound while higher power spanning ratio
bound. Worth to mention that, our simulation later shows the power
spanning ratios of OrdY aoGG and SY aoGG are very close in
practice.

4. EXPERIMENTS

We evaluated the performance of our new degree-bounded and
planar spanners by conducting simulations. In our experiments, we
randomly generated a set V' of n wireless nodes and UDG(V),
then tested the connectivity of UDG(V'). If it is connected, we
construct different localized topologies on UDG(V'), including
our new topologies OrdY aoGG and SY aoGG, somewell-known
planar spanner topologies GG[10, 9], YaoGG[4], and BPS[13].
Then we measure the sparseness, the power efficiency and the com-
munication cost during construction of these topol ogies.

In the experimental results presented here, we generated n ran-
dom wireless nodes in a20 x 20 square; the parameter k, i.e., the
number of cones, isset to 9 when we construct BP S, OrdY aoGG
and SY aoGG; thetransmission rangeis set to 8. Wetested all pre-
ferred properties described in Section 2.2 of these planar structures
by varying node number from 30 to 300, where 100 vertex sets are
generated for each case to smooth the possible peak effects caused
by some exception examples. The average and the maximum were
computed over al these 100 vertex sets.
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4.1 Power Efficiency
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Figure 5: Average and maximum power spanning ratio of dif-
ferent topologies.

The most important design metric of wireless network topol-
ogy is perhaps the power efficiency, as it directly affects both the
node and the network lifetime. So while our new topologies in-
crease the sparseness, how does it affect the power efficiency of
the constructed network? First, we test power stretch factors of
all structures. In our simulations, we set power attenuation con-
stant 5 = 2. In Figure 5, we summarize our experimental results
of power stretch factors of all these topologies. It shows al of
the power stretch factors are small in practice, just around 1.002,
except GG has power stretch factor 1. In other words, the path
remaining in the sparse planar structures can estimate the shortest
path in the original communication graph without too higher power
consumption. It is not surprising that the average/maximum power
stretch factors of OrdY aoGG and SY aoGG are @t the same level
of those of GG while they are much sparser.

Another interesting thing to noticeisthat OrdY aoGG hassmaller
power spanning ratio than Y aoGG, even though OrdY aoGG is
sparser than YaoGG theoretically and practically (Refer Figure
7). Onereason isthat OrdY aoGG ismore uniform than Y aoGG.
Hence, the proper ordering scheme can conserve more energy.

Notice that after constructing the sparse structures, a node can
shrink its transmission energy as long as it is enough to cover the
longest adjacent link in the structure. By this way, we define the
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Figure6: Average nodetransmission energy of different topolo-
gies.

node transmission power for each node w in a constructed structure
as follows. If u has alongest link, say ww, in the structure, then
the node transmission energy of w is ||uv||®. As expected, Figure
6 shows the average node transmission energy of each topology
decreases as the network density increases. The power needed by
each node in our new structures OrdY aoGG and SY aoGG isa-
most same with that by GG, which is much less than its maximum
transmission energy (which is 8° here 3 = 2 in our experiment).
Each node in BPS need to set higher transmission energy since
it has more neighbors. Specifically, BPS is a supergraph of the
Gabriel graph and our new structures are subgraphs of the Gabriel

graph.
4.2 Node Degree

The node degree is an important performance metric in wireless
ad hoc networks, since the degree of each node directly relates to
its power consumption and the global network performance.

The average and maximum node degrees of each topology are
shown in Figure 7. It shows that OrdY aoGG and SY aoGG
have less number of edges (average node degrees) than Y aoGG,
GG and BPS. In other words, these graphs are sparser. Notice
that the node degree of BP.S is much higher than those of other
graphs, since BP.S uses many edges from L Del which is a super-
graph (thus much denser than) of GG, see Figures 2(b) and (c),
while al the other structures discussed here are subgraphs of the
Gabriel graph. Recall that theoreticaly, only BPS, OrdY aoGG
and SY aoGG have bounded node degree (both for in-degree and
out-degree). In [3, 4], Li et al. gave an example to show that
RNG, GG, and LDel could have large node degree (in-degree
for YG and YaoGG). Notice that, in our experiments, since the
wireless nodes are randomly distributed in two dimensional space,
it is easy to understand that the maximum node degree of GG and
YaoGG are not as big as the extreme example, however, it can
happen. Recall that we proved OrdY aoGG and SY aoGG have
bounded node degree k£ + 5 and k respectively. In Figure 2, we
give a special example to show the theoretical node degree bound
for OrdY aoGG and SY ao, where two group wireless nodes, with
size 17 each, are uniformly distributed on a unit disk and a half-
unit disk respectively. Both disks are centered at one node u with
ID = 0. Figure 2 shows the unit disk graph, which is a com-
plete graph, and other structures built on it. Notice that GG and
Y aoGG keep dl the linksto « in the inner cycle, while BP.S and
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Figure 7: Average and maximum node degree of different
topologies.

OrdY aoGG can remove some links to bound node degree, and
SY aoGG has the best node degree bound & = 9. Notice that
BPS isconstructed based on L Del, and it also added some edges
to keep the length spanner property, soit isthe densest among them.

Beside the node degree of al these structures, we are aso inter-
ested in another kind of node degree, called physical node degree
For each node u, it has a longest link, say v, in a constructed
structure. Then the physical degree of « is defined as all nodes w
such that ||uw]|| < ||uv||. Thisisthe total number of nodes that can
cause direct interference with u. The average and maximum physi-
cal node degrees of each topology are shown in Figure 8. They are
higher than the node degrees in Figure 7 as expected, however they
follow the same pattern of curves. Moreover, the possible interfer-
ence increases dlightly while the number of wireless nodes grows.
Thisis tolerable because each node also decreases its transmission
range as shown in Figure 6 and the average number of actual phys-
ical neighbors of anodeisaround 6 in our simulations.

4.3 Communication Cost During Construction

In Section 3 we proved that the localized algorithms construct-
ing OrdY aoGG and SY aoGG use a most O(n) messages. We
found that when the number of wireless nodes increases the aver-
age messages used by each node for constructing them is still in
the same level. Figure 9 summarizes our experimental results of
the communication costs in each node during the construction of
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Figure 8: Average and maximum physical node degree of dif-
ferent topologies.

OrdY aoGG and SY aoGG. Here we do not compare our com-
munication costs with that of BP.S, since it uses 2-hop neigh-
bors information and needs to build LDel® (U DG) which costs
much more messages for sure. It is clear that the network becomes
more and more dense whilethe number of wireless nodes increases.
However, experiment shows that the localized method does not cost
more messages on each node even when the graph becomes denser.
An interesting observation is that the average number of messages
per node for structures OrdY aoGG is around 8 though the theo-
retical bound is 24. It is reasonable because nodes do not always
query 5 timesin local ordering in practice. Notice that SY aoGG
costs much less messages than OrdY aoGG does, so it isindeed a
very efficient topology construction method. This is expected and
consistent with our theoretical analysis.

Moreover, simulations resultsin al charts also show that the per-
formances of our new topologies OrdY aoGG and SY aoGG are
stable when number of nodes changes.

5. CONCLUSION

We proposed several novel localized algorithms that construct
energy efficient routing structures, where each node has a bounded
degree and the structures are planar, for wireless ad hoc networks
modelled by unit disk graph (UDG). Our first structure has bounded
node degree k+5 where k > 6 isan adjustable parameter; its power
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stretch factor isno more than p = W; itisplanar; and it
k
can be constructed locally in 24n messages, where each message
has O(log n) bitsfor awireless network of n nodes.
Our second method improves the degree bound to &, and keeps

all other properties, except that the theoretical power spanning ratio

isrelaxed to p = % where k£ > 8 is an adjustable
hln?

parameter. We showed that the second structure can be constructed
using at most 3n messages, where each message has O(log n) bits.

We conducted extensive simulations to study these new sparse
network topologies and compared them with previously known ef-
ficient structures. Theoretical results are corroborated by the simu-
lations.
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