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ABSTRACT
We propose several novel localized algorithms to construct energy
efficient routing structures for homogeneous wireless ad hoc net-
works, where all nodes have same maximum transmission ranges.
Our first structure has the following attractive properties: (1) It
is energy efficient: given any two nodes u and v, there is a path
connecting them in the structure with total energy cost at most
ρ = 1

1−(2 sin π
k

)β times of the energy cost of any path connect-

ing them in original communication graph; (2) Its node degree is
bounded from above by a positive constant k + 5 where k > 6 is
an adjustable parameter; (3) It is a planar structure, which enables
several localized routing algorithms; (4) It can be constructed and
maintained locally and dynamically. Moreover, by assuming that
the node ID and its position can be represented in O(log n) bits
each for a wireless network of n nodes, we show that the struc-
ture can be constructed using at most 24n messages, where each
message is O(log n) bits. Our second method improves the de-
gree bound to k, relaxes the theoretical power spanning ratio to

ρ =
√

2
β

1−(2
√

2 sin π
k

)β , where k > 8 is an adjustable parameter, and

keeps all other properties. We show that the second structure can
be constructed using at most 3nmessages, where each message has
size of O(log n) bits.

We also experimentally evaluate the performance of these new
energy efficient network topologies. The theoretical results are cor-
roborated by the simulations: these structures are more efficient in
practice, compared with other known structures used in wireless ad
hoc networks and are easier to construct. In addition, the power
assignment based on our new structures shows low energy cost and
small interference at each wireless node.
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1. INTRODUCTION
Wireless ad hocnetworks have been undergoing a revolution that

promises to have a significant impact throughout society, one that
could quite possibly dwarf milestones in the information revolu-
tion. Unlike traditional fixed infrastructure networks, there are no
centralized control over ad hocwireless networks, which consist
of an arbitrary distribution of radios in certain geographical area.
In Ad hocnetworks, mobile devices can communicate via multi-
hop wireless channels; a node can reach all nodes in its transmis-
sion range, while two far-away nodes communicate through the
messages relaying by intermediate nodes. Ad hoc wireless net-
works intrigue many challenging research problems, as it intrin-
sically has many special characteristics and some unavoidable lim-
itations, compared with other wired or wireless network. An im-
portant requirement of these networks is that they should be self-
organizing, i.e., transmission ranges and data paths are dynamically
restructured with changing topology. Energy conservation and net-
work performance are probably the most critical issues in ad hoc
wireless networks, because wireless devices are usually powered
by batteries only and have limited computing capability and mem-
ory.

The topology controltechnique is to let each wireless device
locally adjust its transmission range and select certain neighbors
for communication, while maintaining a structure that can support
energy efficient routing and improve the overall network perfor-
mance. By enabling each wireless node shrinking its transmis-
sion power (which is usually much smaller than the maximal trans-
mission power) to sufficiently cover the farthest selected neighbor,
topology control can not only save energy and prolong network
life, but also can improve network throughput through mitigating
the MAC-level medium contention. Unlike traditional wired net-
work and cellular wireless networks, the wireless devices are often
moving during the communication, which could change the net-
work topology in some extent. Hence it is more challenging to de-
sign a topology control algorithm for ad hocwireless networks: the
topology should be locally and self-adaptively maintained without
affecting the whole network, and the communication cost during
maintaining should not be too high.

Topology control has drawn significant research interest [1, 2,
3, 4, 5, 6, 7, 8] in last few years. Different topologies have dif-
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ferent properties, however, none of them can achieve all three pre-
ferred properties for unicast applications on wireless ad hoc net-
works: power spanner, planar, degree-bounded. Until recently,
Wang and Li [13] proposed a localized algorithm to build a degree-
bounded planar spanner both in centralized and distributed way,
which is based on the combination of localized Delaunay triangu-
lations (LDel) [14] and Y ao structure [15]. It is the first localized
algorithm that can achieve all the three desirable features. How-
ever, the theoretical node degree of their structure can reach 25 in
the worst case; and the communication cost of their method can
be large, although it is shown that the total number of messages
is O(n), the hidden constant could be as high as several hundreds
since the method needs to collect the 2-hop information for every
node.

In this paper, we propose two novel methods to build a power
efficient planar structures with much less communication costs and
lower node degree bounds. Our first structure has the following
attractive properties:

1. It is power efficient: given any two nodes u and v, there is
a path connecting them in the structure with total power cost
no more than ρ = 1

1−(2 sin π
k

)β times of the power cost of any

path connecting them in the original homogeneous network;

2. Its node degree is bounded from above by a positive constant
k + 5 where k > 6 is an adjustable parameter;

3. It is a planar structure, which enables several localized rout-
ing algorithms;

4. It can be constructed and maintained in localized and dy-
namic way.

Moreover, by assuming that the node ID and its position can be rep-
resented in O(log n) bits each for a wireless network of n nodes,
we show that the structure can be constructed using at most 24n
messages, where each message isO(log n) bits. Our second method
reduces the degree bound to k, and keeps all other properties, ex-
cept that the theoretical power spanning ratio is relaxed to ρ =√

2
β

1−(2
√

2 sin π
k

)β , where k > 8 is an adjustable parameter. We show

that the second structure can be constructed using at most 3n mes-
sages, where each message has size of O(log n) bits.

We also experimentally evaluate the performance of these new
energy efficient network topologies. The theoretical results are cor-
roborated in the simulations: our new structures are more efficient
in practice and easier to construct, compared to other known struc-
tures used in wireless ad hoc networks. By shrinking the trans-
mission range of each node to reach the farthest neighbors in our
new structures, the experiment shows each node indeed costs low
energy and has small number of physical neighbors. The physi-
cal neighborsare those nodes within its transmission range, and
smaller number of physical neighborsmeans less interference.

The rest of the paper is organized as follows. In Section 2, we
describe some most preferred properties of topology control pro-
tocol in wireless ad hoc networks and review the priori arts in this
area. We then present our two localized methods, in Section 3,
to construct degree-bounded planar power spanners for UDG(V )
with total communication cost O(n) under the broadcasting com-
munication model. In Section 4, we conduct extensive simulations
to validate our theoretical results. Finally, we conclude the paper in
Section 5.

2. PRELIMINARIES

2.1 Network Model
A wireless ad hoc network (or sensor network) consists of a set

V of nwireless nodes distributed in a two-dimensional plane. Each
node has the same maximumtransmission range R. 1 By a proper
scaling, we assume that all nodes have the maximum transmission
range equal to one unit. These wireless nodes define a unit disk
graphUDG(V ) in which there is an edge between two nodes iff
their Euclidean distance is at most one. In other words, we assume
that two nodes can always receive the signal from each other di-
rectly if the Euclidean distance between them is no more than one
unit. Hereafter, UDG(V ) is always assumed to be connected. We
also assume that all wireless nodes have distinctive identities and
each wireless node knows its position information either through
a low-power Global Position System (GPS) receiver or some other
ways. More specifically, in our protocol, it is would be enough if
each node knows the relative position of its one-hop neighbors. The
relative position of neighbors can be estimated by the direction of
signal arrival and the strength of signal. By one-hop broadcasting,
each node u can gather the location information of all nodes within
its transmission range.

In the most common power-attenuation model, the power to sup-
port a link uv is assumed to be ‖uv‖β , where ‖uv‖ is the Euclidean
distance between u and v, β is a real constant between 2 and 5 de-
pending on the wireless transmission environment.

2.2 Preferred Properties
Wireless ad hoc network topology control schemes are to main-

tain a structure that can be used for efficient routing [10, 9] or im-
prove the overall networking performance [1, 2, 6], by selecting a
subset of links or nodes used for communication. In the literature,
the following desirable features are well-regarded and preferred in
wireless ad hoc networks:

Power Spanner: In ad hoc wireless networks, two far-apart
nodes can communicate with each other through the relay of inter-
mediated nodes; hence, each node only need set small transmission
ranges. This has two advantages: (1) reducing the signal interfer-
ence (2) saving power for transmission. To guarantee the advan-
tage, a good network topology should be energy efficient, that is to
say, the total power consumption of the shortest path (most power
efficient path) between any two nodes in final topology should not
exceed a constant factor of the power consumption of the shortest
path in original network. Given a path v1v2 · · · vh connecting two
nodes v1 and vh, the energy cost of this path is

Ph−1
j=1 ‖vjvj+1‖β .

The path with the least energy cost is called the shortest path in a
graph. Formally speaking, a subgraph H is called a power spanner
of a graph G if there is a positive real constant ρ such that for any
two nodes, the power consumption of the shortest path in H is at
most ρ times of the power consumption of the shortest path in G.
The constant ρ is called the power stretch factor. A power spanner
is usually energy efficient for routing.

Obviously, for any weighted graph G and a subgraph H ⊆ G,
we have

LEMMA 1. [3] SubgraphH of a graphG has stretch factor
ρ if and only if for any linkuv ∈ G, dH(u, v) ≤ ρ · dG(u, v),
wheredG(u, v) is the total power consumption of the shortest path
betweenu andv in G.

Lemma 1 implies that, to generate a power efficient structure, we
only need to guarantee that any two adjacent nodes u and v inG are
1In practice, R can be defined as the minimum of all the maximum
node transmission ranges.
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connected by a path inH with energy cost no more than a constant
factor of the cost of link uv.

Degree Bounded: It is also desirable that the node degree in the
constructed topology is small and bounded from above by a con-
stant. A small node degree reduces the MAC-level contention and
interference, also may help to mitigate the well known hidden and
exposed terminal problems. Especially in Bluetooth based wireless
ad hoc networks, the masternode degree is preferred be less than 7,
according to Bluetooth specifications, to maximize the efficiency.
In addition, a structure with small degree will improve the overall
network throughout [16].

Planar: Many routing algorithms require the planar topology to
guarantee the message delivery, such as right hand routing, Greedy
Perimeter Stateless Routing(GPSR) [9], Greedy Face Routing(GFG)
[10], Adaptive Face Routing(AFR) [11], and Greedy Other Adap-
tive Face Routing(GOAFR) [12].

Efficient Localized Construction: Due to the limited resources
and high mobility of the wireless nodes, it is preferred that the un-
derlying network topology can be constructed and maintained in
a localized manner. Here a distributed algorithm constructing a
graph G is a localized algorithmif every node u can exactly de-
cide all edges incident on u based only on the information of all
nodes within a constant hops of u. More importantly, we expect
that the total communication cost of the algorithm is O(n) mes-
sages, where each message is O(log n) bits; the time complexity
of each node running the algorithm is at most O(d log d), where d
is the number of 1-hop or 2-hop neighbors.

2.3 Priori Arts
Several structures (such as relative neighborhood graph RNG,

Gabriel graph GG, Yao structure, etc) have been proposed for topol-
ogy control in wireless ad hoc networks. The relative neighbor-
hood graph, denoted by RNG(V ) [17], consists of all edges uv
such that the intersection of two circles centered at u and v and with
radius ‖uv‖ do not contain any vertex w from the set V . See Fig-
ure 1(a). The Gabriel graph[18] GG(V ) contains edge uv if and
only if disk(u, v) contains no other points of V , where disk(u, v)
is the disk with edge uv as a diameter. See Figure 1(b). Denote
GG(UDG) and RNG(UDG) as the intersection of UDG(V )
with GG(V ) and RNG(V ) respectively. Both GG(UDG) and
RNG(UDG) are connected, planar, and contain the Euclidean
minimum spanning treeMST of V if UDG is connected. De-
launay triangulation, denoted by Del, is also used as underlying
structure by several routing protocols. Here a triangle �uvw be-
longs to Delaunay triangulation Del if its circumcircle does not
contain any node inside. LetDel(UDG) be the set of edges in De-
launay that is also in UDG. It is well known that RNG(UDG) ⊆
GG(UDG) ⊆ Del(UDG). The structureDel(UDG) has bounded
length spanning ratio [14]; bothRNG(UDG) andGG(UDG) are
not length spanners; GG(UDG) is power efficient.

The Yao graph[15] with an integer parameter k > 6, denoted by−−→
Y Gk(UDG), is defined as follows. At each node u, any k equally-
separated rays originating at u define k cones. In each cone, choose
the shortest edge uv ∈ UDG(V ) among all edges emanated from
u, if there is any, and add a directed link −→uv. Ties are broken ar-
bitrarily or by ID. See Figure 1(c). The resulting directed graph
is called the Yao graph. Let Y Gk(UDG) be the undirected graph

by ignoring the direction of each link in
−−→
Y Gk(UDG). Some re-

searchers used a similar construction named θ-graph [19, 20], the
difference is that it chooses the edge which has the shortest projec-
tion on the axis of each cone instead of the shortest edge in each
cone.

In [10, 9], relative neighborhood graph and Gabriel graph are

u v u v
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�����
�����

�����
�����
�����
�����
�����

������������������

u

(a) RNG (b) GG (c) YG

Figure 1: The definitions of RNG, GG, and Y G. The shaded
area is empty of nodes inside.

used as underlying network topologies. However, Bose, et al. [21]
proved that the length stretch factors of these two graphs are Θ(n)
and Θ(

√
n) respectively. Actually, they are at most n − 1 and√

n− 1 [22]. Moreover, in [3], Li, et al. showed that the power
stretch factor of RNG is n−1 while the power stretch factor of GG
is 1. Recently, some researchers [3, 8] proposed to construct the
wireless network topology based on Yao graph. It is known that the
length/power stretch factor and the node out-degree of Yao graph
are bounded by some positive constants. But as Li et al. mentioned
in [3], all these three graphs can not guarantee node degree bounded
(for Yao graph, the node in-degree could be as large as Θ(n)). In
[3, 4], Li, et al. further proposed to use another sparse topology,
Yao and Sink, that has both a constant bounded node degree and a
constant bounded length/power stretch factor. However, all these
graphs [3, 4, 8] are not guaranteed to be planar. In [14] Li, et
al. proposed a planar spanner localized Delaunay triangulations
(LDel), and in [23] Gao et al. proposed a planar spanner Restricted
Delaunay Graphfor wireless ad hoc networks. Unfortunately, both
of them might result in an unbounded node degree.

Bose et al.[24] proposed a centralized method with running time
O(n log n) to build a degree-bounded planar spanner for a two-
dimensional point set. They construct a planar t-spanner for a given
nodes set V , for t = (1 + π) · Cdel 
 10.02, such that the node
degree is bounded from above by 27. Hereafter, we use Cdel to
denote the spanning ratio of the Delaunay triangulation [25, 26,
20]. However the distributed implementation of this centralized
method takes O(n2) communications in the worst case for a set V
of n nodes.

Recently, Wang and Li [13] proposed the first efficient localized
algorithm to build a degree-bounded planar spanner BPS(UDG)
for wireless ad hoc networks. It has a length spanning ratio t =
max{π

2
, π sin α

2
+ 1} · Cdel(1 + ε), and each node has degree at

most 19+
 2π
α
�. Here 0 < α ≤ π/3 is an adjustable parameter, and

Cdel ≤ 4
√

3
9
π is the spanning ratio of the Delaunay triangulation.

Though their method can achieve all these three desirable features:
planar, degree-bounded, and power efficient, the theoretical bound
on the node degree of their structure is a large constant. For exam-
ple, when α = π/6, the theoretical bound on node degree is 25. In
addition, the communication cost of their method can be very high,
although it is O(n) theoretically, because it needs to collect the
2-hop information for every wireless node. Even as mentioned in
[13], the method by Calinescu [27] to collect 2-hop neighbors infor-
mation takes O(n) messages, however the hidden constant can be
as high as several hundreds. Concerning this large communication
cost and the possible large node degree, we propose two communi-
cation efficient methods to construct small degree-bounded planar
power efficient structures, which are more practical in wireless ad
hoc networks. The construction of our second structure only needs
at most 3nmessages, the tradeoff is that theoretically our structures
do not have constant length spanning ratio.
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3. PROPOSED APPROACHES
We propose two novel methods to build power efficient planar

structures with much less communication costs and lower node de-
gree bounds compared with previously best known planar power
efficient structures [13] called BPS, see Figure 2(b). Before pre-
senting our methods, we first present a localized construction of
Gabriel graph structure for homogeneous wireless ad hoc networks.

ALGORITHM 1. CONSTRUCTING GABRIEL GRAPH

1. In the beginning, each node u locally broadcasts a message
with IDu, and its position (xu, yu) to all nodes in its trans-
mission range. Each node u initiates sets EUDG(u) and
EGG(u) to be empty. Here EUDG(u) and EGG(u) are the
set of links known by u in UDG and GG respectively.

2. At the same time, each node u processes the incoming mes-
sages. Assume that node u gets a message from some new
node v, then it adds a link uv to EUDG(u).

Node u checks whether there is another link uw ∈ EUDG(u)
where w ∈ disk(u, v). If no such link uw exists, then
it adds uv to EGG(u). On the other hand, for any link
uw ∈ EGG(u), node u checks whether v ∈ disk(u,w), if
the condition holds, then u removes link uw from EGG(u).

Node u repeats this step until no new messages are received.

3. All links uv in EGG(u) are the final links in GG(UDG)
incident on u.

We first show that Algorithm 1 builds the structure GG(UDG)
correctly. For any link uv ∈ GG(UDG), clearly, we cannot re-
move them in Algorithm 1. For a link uv �∈ GG(UDG), assume
that a node w is inside disk(u, v) and both links uw and wv belong
to UDG. If node u gets the message from w first, and then gets the
message from v, clearly, uv cannot be added to EGG(u). If node
u gets the message from v first, then node u will remove link uv
from EGG(u) (if it is there) when u gets the information of node
w.

It is not difficult to prove that structureGG(UDG) is connected
by induction if UDG is connected. In addition, since we remove
a link uv only if there are two links uw and wv with w inside
disk(u, v), it is easy to show that the power stretch factor of struc-
ture GG(UDG) is exactly 1 [4]. In other words, the minimum
power consumption path for any two nodes u and v in UDG is still
kept in GG(UDG). Remember that here we assume the power
needed to support a link uv is ‖uv‖β , for β ∈ [2, 5]. Notice that,
as mentioned in the literature, GG(UDG) is not degree bounded.
For example, when all n − 1 nodes are uniformly distributed on a
unit circle with the nth node u as center, the node degree of u is
n− 1. Figure 2(a) shows another example, where (n− 1)/2 nodes
are uniformly distributed on a unit circle, another (n− 1)/2 nodes
are on a half unit circle, and both circles have the nth node u as
center. The node degree of center is (n− 1)/2 = O(n) in GG, as
shown in Figure 2(c).

The following result is a folklore.

THEOREM 2. [3] GG(UDG) is a planar power spanner, whose
power stretch factor is1.

Hereafter, if it is clear that these structures are constructed on
UDG(V ), we omit the (UDG) in the representation of all struc-
tures. For instance, we will use GG to denote Gabriel Graph in-
stead ofGG(UDG).

3.1 Degree-(k+5) Planar Power Spanner
(OrdYaoGG)

One natural way to construct a degree-bounded planar power
spanner is to apply the Yao structure on Gabriel graph. In [4], Li,
et. al showed that the final structure by directly applying the Yao
structure on GG is a planar power spanner, called Y aoGG, how-
ever its in-degree can be as large asO(n), as in the example shown
in Figure 2(c). In this paper, we present a new method by applying
the ordered Yao structures on Gabriel graph to bound node degree.
The idea is similar with the method in [13] where they apply Yao
structures on the localized Delaunay triangulations using a local
ordering of nodes to build a degree-bounded planar length span-
ner. The major differences are 1) here we only use 1-hop informa-
tion instead of two hop information, which reduces communication
cost significantly; 2) we use Gabriel graph instead of the localized
Delaunay triangulation, which makes the localized method much
simpler and more efficient; 3) the method used to bound the degree
is also different. The algorithm is as follows.

ALGORITHM 2. CONSTRUCT DEGREE-(K+5) PLANAR POWER

SPANNER OrdY aoGG

1. First, each node self-constructs the Gabriel graphGG locally
based on the strategy described in Algorithm 1. LetNGG(u)
be the neighbors set of node u in GG.

2. Second, each node u decides its order π locally as follows.

Two data structures at each node u are used in this algorithm:

(1) π[ ]: the list of the local orders of all neighboring nodes
of u (including itself) in GG, which is initially set as 0, i.e.,
unordered.

(2) d(u): the number of its unordered neighbors known by
node u so far, which is initially set as its degree in GG.

(3) DOQUERY: a flag indicating whether this node will per-
form a query to its neighbors. Initially, the flag is set as
FALSE if its degree d(u) > 5 and TRUE otherwise. No-
tice that when the node is ordered (i.e., π[u] > 0), this flag
DOQUERY is always set to FALSE.

The strategy of finding local ordering is as follows:

(a) If DOQUERY is true, then node u queries all its un-
ordered neighboring nodes by sending a message QUERY.
The query message QUERY contains only the ID of
node u.

(b) When an unordered node v receives a message QUERY

from a neighboring node u in GG, it checks whether
d(v) ≤ 5 and ID(v) < ID(u). If so, node v replies
node u a message FAILEDQUERY with the IDs of itself
and u. Otherwise, node v replies node u a message
PASSEDQUERY with the IDs of itself and u.

(c) If node u received a message FAILEDQUERY, node u
sets DOQUERY to FALSE. Node u will not perform
such query until its degree is decreased later, so there
are at most 5 rounds of queries.

(d) If node u receives message PASSEDQUERY from all its
unordered neighbors, node u sets

π[u] = max{π[v] | v ∈ NGG(u)} + 1,

sets DOQUERY to FALSE, and broadcasts π[u] to its
neighbors NGG(u) through message MYORDER.
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(a) UDG (b) BPS (c) GG and YaoGG (d) OrdYaoGG (d) SYaoGG

Figure 2: Several planar power spanners on the UDG shown in (a). Here k = 9 for Yao related construction.

(e) If node v receives a MYORDER message from its neigh-
bor u in GG saying that π[u] = k, it records π[u] lo-
cally, and updates its d(v) = d(v)− 1. If π[v] = 0 and
d(v) ≤ 5, then node v sets DOQUERY to TRUE.

(f) When node u finds that d(u) = 0 and π[u] > 0, it can
go to next step to bound its degree in the final structure.

3. All nodes self-form the final topology based on local order π
as follows. Initially, all nodes are marked with WHITE color,
i.e., unprocessed. Let NOY GG(u) be the set of neighbors of
u in the final topology, which is initialized as NGG(u).

(a) If node u is unprocessed (marked WHITE), and it has
the largest order π[u] among all its WHITE neighbors
in NGG(u), it divides its transmission range (which
is a unit disk centered at the node u) into k equal-
sized cones, keeps one nearest WHITE neighbor v ∈
NOY GG(u) (if available) in each cone and deletes oth-
ers. Node u marks itself BLACK, i.e., processed, and
notifies all nodes inNGG(u) of the deleted edges through
a broadcasting message UPDATEN. The message UP-
DATEN includes all unselected neighbors.

(b) Once the node u receives the message UPDATEN for
deleting edge vu from its neighbor v, it deletes the node
v from its local listNOY GG(u).

4. When all nodes are processed, all the remaining edges
{uv|v ∈ NOY GG(u),∀v ∈GG} form the final network topol-
ogy OrdY aoGG. Each node then can shrink its transmis-
sion range as long as it sufficiently reaches its farthest neigh-
bor in the final topology.

LEMMA 3. The final topologyOrdY aoGG is a planar graph,
whose node degree is bounded byk + 5 wherek > 6 is an ad-
justable parameter.

PROOF. The Yao graph construction does not add any edges to
original graphs, on the contrast, it only deletes edges. Hence the
planar property is inherited from GG graph.

We then show that each node degree is bounded by k + 5 in
OrdY aoGG. To prove this, we first review one important prop-
erty for planar graph, that is, there always exists a node with degree
at most 5 in planar graph. Clearly, our local ordering is able to
start, since there is at least one node with degree at most 5 initially.
When we order these nodes with degree at most 5 that have ID
smaller than these neighbors in GG with degree at most 5, we will
mark these nodes ordered and update the degrees for the remain-
ing nodes. We clearly can repeat this procedure until all nodes are
ordered since the Gabriel graph induced on all unordered nodes is
always planar. Let Pu be the neighbors of node u in GG that are

ordered after u. From our processing order of nodes, these nodes
will be marked BLACK before node u, i.e., being processed before
u. We will then call Pu predecessors of node u. Clearly, in the lo-
cal ordering π, every node u has at most 5 edges to its predecessors
Pu in GG, that is to say, before it is marked with BLACK, it has at
most 5 processed neighbors.

When node u is being processed, it could select at most k other
unprocessed neighbors into final structure, thus, its degree is bounded
by k+5. Once a node is marked with BLACK color, its degree will
be kept unchanged according to our algorithm. This finishes our
proof.

In Figure 2, we show that GG and Y aoGG cannot bound the
node degree, while our structure OrdY aoGG is indeed degree-
bounded by k + 5 = 14, here k is set as 9 in our experiment. We
then prove that the final structure is also power efficient.

LEMMA 4. OrdY aoGG is a power spanner ofUDG, and its
power spanning ratio isρ = 1

1−(2 sin π
k

)β , wherek > 6 is an

adjustable parameter andβ ∈ [2, 5] is a constant depending on
the transmission environment.

PROOF. Since the GG is a power spanner with spanning ratio
1, we only need prove that OrdY aoGG is a power spanner ofGG
with spanning ratio ρ = 1

1−(2 sin π
k

)β . The proof is similar to the

proof for Yao on UDG [3] and the later proof of Theorem 7. Due
to space limitation, we omit the details here.

We then analyze the total communication cost of Algorithm 2.
(1) Clearly, the first step of building GG can be done using only
n messages: each message contains the ID and geometry position
of a node. (2) The second step of computing local ordering can
be done in 21n messages: First, an unordered node u sends out at
most 5 query messages containing its ID. Each such query message
is replied by d(u) neighbors. Since we perform a new query only
if d(u) decreases from last failed query, the total messages used
for queries is at most n ·P5

i=1(i + 1) = 20n messages. Second,
an ordered node u sends a message containing its ID and the local
ordering πu computed. The second step can thus be done in at
most 21n messages. (3) In the third step, a processed node u will
inform all its WHITE neighbors v about the deletion of the edge
uv from Gabriel Graph (which has at most 3n edges). In the final
topology OrdYaoGG, at least n − 1 edges were kept to guarantee
the connectivity, thus, the total number of such messages is at most
2n. In summary, the following lemma directly follows.

LEMMA 5. Assuming that both the ID and the geometry po-
sition can be represented bylog n bits each, the total number of
messages of Algorithm 2 is then at most24n, where each message
has at most2 log n bits.
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Additional communication and computation cost can be saved,
if the degree is expected to be bounded by k + 5 only. The mod-
ification is to let all nodes with degree at most k + 5 be initially
marked as BLACK, that is to say, they do not participate in the third
step in Algorithm 2.

Remember that the total messages of our Algorithm 2 is bounded
by O(n). This implies that the average number of messages per
node is a constant, which is verified in our simulations presented
later. However, in the worst case, the number of messages sent
by some node could be as large as O(n). Algorithm 2 can be
modified to further bound the communication cost of each node.
During the Yao construction in the third step, instead of using mes-
sage UPDATEN to delete the unselected links, each node will notify
its neighbors of the kept edges. In other words, the message UP-
DATEN contains the selected neighbor IDs instead of the deleted
neighbor IDs. The communication cost of each node can be bounded
since at most k neighbors are kept during Yao construction. It is
easy to show that each node sends at most 31 messages during con-
structing GG and computing the local order: at most 5 QUERY mes-
sages are sent, and at most 25 PASSEDQUERY or FAILEDQUERY

messages are sent. The tradeoff is that the total communication cost
could be higher than that used in Algorithm 2 if the final topology
is denser.

3.2 Degree-k Planar Power Spanner (SYaoGG)
Algorithm 2 constructs a planar power efficient structure using

at most O(n log n) bits communications, and the final structure
has a theoretical degree bound k + 5, where k > 6 is a param-
eter. We then study a more interesting method to build a degree-
bounded planar power spanner, which can be constructed easier
and demands less communication cost during construction. later.
We compare their practical performances through simulations. The
second structure is constructed as follows.

ALGORITHM 3. CONSTRUCT DEGREE-K PLANAR POWER SPAN-
NER SY aoGG

1. First, each node self-constructs the Gabriel graphGG locally
based on the strategy described in Algorithm 1.

2. All nodes together self-form the final topology as follows.
Initially, each node u is marked with WHITE color, i.e., un-
processed, and initializes NSY GG(u) as the set of all the
neighbor nodes in GG.

(a) If a WHITE node u has the smallest ID among its WHITE

neighbors in GG, it divides its transmission range into
k equal-sized cones where k > 8 is an adjustable pa-
rameter. In each cone, node u checks whether there are
some BLACK nodes in NSY GG(u) within same cone:

i. Yes. Node u keeps the closest BLACK neighbor
v ∈ NSY GG(u) among them and deletes all the
other links in the cone;

ii. No. Node u keeps a closest WHITE neighbor v ∈
NSY GG(u) (if available) among them and deletes
all the other links in the cone.

After processing all k cones, node umarks itself BLACK,
i.e. processed, then notifies each deleted neighboring
node v in GG by a broadcasting message UPDATEN.

(b) Once a WHITE node v receives the message UPDATEN
from a neighbor u in GG, it checks whether itself is
in the nodes set for deleting: if so, it deletes the send-
ing node u from NSY GG(v), otherwise, marks u as
BLACK in its local listNSY GG(v).

(c) Once a BLACK node v receives the message UPDATEN
from a neighbor belonging to NSY GG(v), it checks
whether itself is in the nodes set for deleting: if so,
it deletes the sending node u from NSY GG(v), other-
wise, marks u as BLACK in its local listNSY GG(v).

3. When all nodes are processed, all selected edges {uv|v ∈
NSY GG(u),∀v ∈GG} form the final network topology, de-
noted by SY aoGG. Each node then can shrink its trans-
mission range as long as it sufficiently reaches its farthest
neighbor in the final topology.

Algorithm 3 further reduces the communication cost during con-
structing a degree-bounded planar power spanner, because we do
not demand the local ordering before construction.

Our analysis of the structure SY aoGG relies on the following
simple observation.

LEMMA 6. In GG graph, if two edgesuv and uw emanates
from a single vertexu, then both the angle\uwv and\uvw must
be acute.

PROOF. We prove it by inducing contradiction. Suppose the an-
gle \uvw is an obtuse angle, then ‖wv‖ < ‖uw‖, hence, all the
three edges uv, vw and uw are in the UDG graph. Thus, the cir-
cle with diameter uw contains the node v inside. According to the
property of GG graph, edge uw can not be kept during GG con-
struction. The contradiction is induced. This finishes the proof.

THEOREM 7. The structureSY aoGG isk degree-bounded pla-
nar power spanner, whose power stretch factor is at mostρ =√

2
β

1−(2
√

2 sin π
k

)β , wherek ≥ 9 is an adjustable parameter andβ ∈
[2, 5] is a constant factor depending on the communication envi-
ronment.

PROOF. First, the node degree is obviously bounded by k be-
cause each node only keeps one undirected edge in each cone. Fig-
ure 2(d) illustrates the self-constructed SY aoGG structure on the
UDG graph shown in Figure 2(a). The node degree is indeed at
most k = 9.

Second, the graph SY aoGG is planar, because the Gabriel graph
GG is planar and Algorithm 3 does not add any more edges, thus,
the planar property is inherited.

In the following, we show that the structure SY aoGG is a power
spanner. According to Theorem 2,GG has power spanning ratio 1.
Hence, from Lemma 1, it is sufficient to show that for any nodes u
and v with an edge uv ∈ GG, there is a path connecting u and v in
SY aoGG with power cost at most ρ · ‖uv‖β .

Given any edge uv ∈ GG, we will construct a path u ! v
connecting u and v in SY aoGG. If edge uv is kept in the final
structure, then u ! v is just uv. Otherwise, assume that uv is
removed 2 when processing node u. There must exist a link uw
selected by node u in the same cone. Then u! v is the concate-
nation of uw with w ! v, see Figure 3. Notice that node u is
marked as processed in this stage. It is possible that the link uw
could then be removed by node w later on since node w is not pro-
cessed when process node u. If so, we replace link uw by u! w,
see Figure 4 for illustration, details will be explained later.

We then prove by induction, on the number of its edges, that
the path u! v has power cost, denoted by p(u! v), at most
ρ‖uv‖β .
2Notice that an edge uv ∈ GG can only be removed while pro-
cessing its endpoint node u or node v.
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Obviously, if there is only one edge in u! v, p(u! v) =

‖uv‖β < ρ‖uv‖β . Assume that the claim is true for any path with
l edges. Then consider a path u! v with l+1 edges, which is the
concatenation of edge uw (or path u! w) and the path w! v
with at most l edges.

Without loss of generality, we always assume that the link uv is
removed after node u is processed and link uw is selected in the
cone. Notice that the link uw could be removed later by node w
if w is processed after u, so there are two cases that need to be
discussed carefully:

1. The first case is that link uw is kept in the final structure. Re-
member that, as described in the algorithm, we always select
the nearest BLACK neighbor in a cone if it exists; otherwise
the nearest WHITE neighbor is selected if it exists.

w

u v

w

u v
(a) Both w and v are (b) w is BLACK

WHITE or BLACK and v is WHITE

Figure 3: The link uw is kept in the final structure.

Figure 3 illustrates the situations that a WHITE node u starts
Yao construction in the cone. Suppose, we delete uv in the
cone and choose edge uw, which is also kept in the final
structure. Again, there are two subcases that need to be ana-
lyzed:

Subcase 1: ‖uw‖ ≤ ‖uv‖. This subcase happens only when
both nodes v andw are processed (or unprocessed), and
node u deletes link uv since the existence of closer pro-
cessed (or unprocessed) neighbor w. Figure 3(a) illus-
trates the situation.
We bound the length ‖wv‖ respecting to ‖uv‖. Notice
that ‖uw‖ ≤ ‖uv‖ and \wuv < θ = 2π

k
. The max-

imum length of vw is achieved when ‖uw‖ = ‖uv‖
because the angle \uwv is acute according to Lemma
6. Therefore

‖wv‖ ≤ 2 sin
θ

2
‖uv‖ = 2 sin

π

k
‖uv‖.

By induction, we have

p(u! v) = ‖uw‖β + p(w! v)

≤ ‖uw‖β + ρ‖wv‖β

≤ ‖uv‖β + ρ · (2 sin
π

k
)β‖uv‖β

≤ ρ‖uv‖β,

when ρ ≥ 1
1−(2 sin π

k
)β .

Subcase 2: ‖uw‖ > ‖uv‖. This case happens only when node
w is processed while node v is not processed yet, and
node u deletes link uv since any processed neighbor
has higher priority in our algorithm. Figure 3(b) illus-
trates the situation.
We bound the length ‖wv‖ respecting to ‖uw‖. Notice
that ‖uw‖ > ‖uv‖ and \wuv < θ = 2π

k
< π

4
accord-

ing to Lemma 6. So we have π
4
< \uwv < \uvw <

π
2

. Consequently, ‖uw‖ <
sin π

2
sin π

4
‖uv‖ =

√
2‖uv‖.

The maximum length of vw is achieved when ‖uw‖ =
‖uv‖ because the angle \uwv is acute. Therefore

‖wv‖ ≤ 2 sin
π

k
‖uw‖ ≤ 2

√
2 sin

π

k
‖uv‖.

By induction, we have

p(u! v) = ‖uw‖β + p(w! v)

≤ ‖uw‖β + ρ‖wv‖β

≤ (
√

2)β(1 + ρ(2 sin
π

k
)β)‖uv‖β

≤ ρ‖uv‖β,

when ρ ≥
√

2
β

1−(2
√

2 sin π
k

)β .

2. The second case is that link uw is later removed by node w.
We show that the spanning ratio is still kept. Notice that, this
case could only succeed Subcase 1. The link uw in Subcase
2, see Figure 3(b), can never be removed in our algorithm,
since both node u and w have processed and kept this edge.
An edge can only be removed by its endpoints. This is the
tricky case in this algorithm.

v

x

w u

v

x

w u

(a) processing u (b) processing w

Figure 4: Link uv is removed when processing node u (illus-
trated in the left figure) and link uw is then removed by node w
later (illustrated in the right figure).

Figure 4(a) shows the situation that a WHITE node u selects
a link uw in a cone, where the neighbor node w is not pro-
cessed. Figure 4(b) illustrates the scenario when node w pro-
cesses its neighbors: since it has two processed3 neighbors u
and x in the cone, it will select the nearest processed neigh-
bor in that cone, which is node x. Observe that after node
w decided to keep link wx and remove link uw, the link wx
will be kept in the final structure since both end nodes w and
x are processed and only an unprocessed node can remove its
incident links later. Obviously, from the selection procedure,
we know that

‖uv‖ ≥ ‖uw‖ ≥ ‖wx‖.
Notice that, both nodes u and x select the node w in one of
their cones when they are processed before node w starts its
processing. Nodew then selects x instead of u becausewx is
shorter. Consequently, node u does not have any neighbors
kept in the node u’s cone shown in Figure 4(b). This is a
sharp contrast to our first structure OrdY aoGG, in which

3Node xmust also be a processed node, otherwisew will definitely
select u instead of x according to our rule.
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every node always keep an edge in each cone if it originally
has one neighbor from Gabriel graph. Then the path v! u
connecting nodes u and v is composed of path v ! w,
link wx and path x! u. The total power cost of the path
v! u is

p(u! v) = ‖wx‖β + p(w! v) + p(u! x)

≤ ‖wx‖β + ρ‖wv‖β + ρ‖ux‖β

≤ ‖wx‖β + ρ(2 sin
π

k
)β(‖uv‖β + ‖uw‖β)

≤ ‖uv‖β(1 + 2ρ(2 sin
π

k
)β)

≤ ρ‖uv‖β,

when ρ ≥ 1
1−2(2 sin π

k
)β .

All conditions about ρ are satisfied when ρ =
√

2
β

1−(2
√

2 sin π
k

)β . This

finishes the proof.

We then analyze the communication cost of Algorithm 3. (1)
Clearly, the first step of building GG can be done using only n
messages: each message contains the ID and geometry position of
a node. (2) In the second step of the algorithm, initially, the number
of edges in Gabriel Graph is less than 3n since it is a planar graph.
Clearly, there are at most 2n such removed edges since we keep at
least n− 1 edges from the connectivity of the final structure. Thus
the total messages used to inform the deleted edges from GG is at
most 2n. Then the following lemma directly follows.

LEMMA 8. Assuming that both the ID and the geometry po-
sition can be represented bylog n bits each, the total number of
messages by Algorithm 3 is at most3n, where each message has at
most2 log n bits.

Similarly, if the message UPDATEN contains the selected neigh-
bor IDs instead of the deleted neighbor IDs, then the communica-
tion cost of each node also can be bounded by k + 1 since at most
k neighbors will be kept during Yao construction.

Theoretically, compared withOrdY aoGG, the topology SY aoGG
has lower node degree bound while higher power spanning ratio
bound. Worth to mention that, our simulation later shows the power
spanning ratios of OrdY aoGG and SY aoGG are very close in
practice.

4. EXPERIMENTS
We evaluated the performance of our new degree-bounded and

planar spanners by conducting simulations. In our experiments, we
randomly generated a set V of n wireless nodes and UDG(V ),
then tested the connectivity of UDG(V ). If it is connected, we
construct different localized topologies on UDG(V ), including
our new topologiesOrdY aoGG and SY aoGG, some well-known
planar spanner topologies GG[10, 9], Y aoGG[4], and BPS[13].
Then we measure the sparseness, the power efficiency and the com-
munication cost during construction of these topologies.

In the experimental results presented here, we generated n ran-
dom wireless nodes in a 20 × 20 square; the parameter k, i.e., the
number of cones, is set to 9 when we constructBPS,OrdY aoGG
and SY aoGG; the transmission range is set to 8. We tested all pre-
ferred properties described in Section 2.2 of these planar structures
by varying node number from 30 to 300, where 100 vertex sets are
generated for each case to smooth the possible peak effects caused
by some exception examples. The average and the maximum were
computed over all these 100 vertex sets.

4.1 Power Efficiency
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Figure 5: Average and maximum power spanning ratio of dif-
ferent topologies.

The most important design metric of wireless network topol-
ogy is perhaps the power efficiency, as it directly affects both the
node and the network lifetime. So while our new topologies in-
crease the sparseness, how does it affect the power efficiency of
the constructed network? First, we test power stretch factors of
all structures. In our simulations, we set power attenuation con-
stant β = 2. In Figure 5, we summarize our experimental results
of power stretch factors of all these topologies. It shows all of
the power stretch factors are small in practice, just around 1.002,
except GG has power stretch factor 1. In other words, the path
remaining in the sparse planar structures can estimate the shortest
path in the original communication graph without too higher power
consumption. It is not surprising that the average/maximum power
stretch factors of OrdY aoGG and SY aoGG are at the same level
of those of GG while they are much sparser.

Another interesting thing to notice is thatOrdY aoGG has smaller
power spanning ratio than Y aoGG, even though OrdY aoGG is
sparser than Y aoGG theoretically and practically (Refer Figure
7). One reason is thatOrdY aoGG is more uniform than Y aoGG.
Hence, the proper ordering scheme can conserve more energy.

Notice that after constructing the sparse structures, a node can
shrink its transmission energy as long as it is enough to cover the
longest adjacent link in the structure. By this way, we define the

105



0 50 100 150 200 250 300
0

5

10

15

20

25

30

Number of Nodes

A
ve

ra
ge

 N
od

e 
T

ra
ns

m
is

si
on

 E
ne

rg
y

GG
YaoGG
OrdYaoGG
SYaoGG
BPS

Figure 6: Average node transmission energy of different topolo-
gies.

node transmission power for each node u in a constructed structure
as follows. If u has a longest link, say uv, in the structure, then
the node transmission energy of u is ‖uv‖β . As expected, Figure
6 shows the average node transmission energy of each topology
decreases as the network density increases. The power needed by
each node in our new structures OrdY aoGG and SY aoGG is al-
most same with that by GG, which is much less than its maximum
transmission energy (which is 8β here β = 2 in our experiment).
Each node in BPS need to set higher transmission energy since
it has more neighbors. Specifically, BPS is a supergraph of the
Gabriel graph and our new structures are subgraphs of the Gabriel
graph.

4.2 Node Degree
The node degree is an important performance metric in wireless

ad hoc networks, since the degree of each node directly relates to
its power consumption and the global network performance.

The average and maximum node degrees of each topology are
shown in Figure 7. It shows that OrdY aoGG and SY aoGG
have less number of edges (average node degrees) than Y aoGG,
GG and BPS. In other words, these graphs are sparser. Notice
that the node degree of BPS is much higher than those of other
graphs, since BPS uses many edges from LDel which is a super-
graph (thus much denser than) of GG, see Figures 2(b) and (c),
while all the other structures discussed here are subgraphs of the
Gabriel graph. Recall that theoretically, only BPS, OrdY aoGG
and SY aoGG have bounded node degree (both for in-degree and
out-degree). In [3, 4], Li et al. gave an example to show that
RNG, GG, and LDel could have large node degree (in-degree
for Y G and Y aoGG). Notice that, in our experiments, since the
wireless nodes are randomly distributed in two dimensional space,
it is easy to understand that the maximum node degree of GG and
Y aoGG are not as big as the extreme example, however, it can
happen. Recall that we proved OrdY aoGG and SY aoGG have
bounded node degree k + 5 and k respectively. In Figure 2, we
give a special example to show the theoretical node degree bound
forOrdY aoGG and SY ao, where two group wireless nodes, with
size 17 each, are uniformly distributed on a unit disk and a half-
unit disk respectively. Both disks are centered at one node u with
ID = 0. Figure 2 shows the unit disk graph, which is a com-
plete graph, and other structures built on it. Notice that GG and
Y aoGG keep all the links to u in the inner cycle, while BPS and
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Figure 7: Average and maximum node degree of different
topologies.

OrdY aoGG can remove some links to bound node degree, and
SY aoGG has the best node degree bound k = 9. Notice that
BPS is constructed based on LDel, and it also added some edges
to keep the length spanner property, so it is the densest among them.

Beside the node degree of all these structures, we are also inter-
ested in another kind of node degree, called physical node degree.
For each node u, it has a longest link, say uv, in a constructed
structure. Then the physical degree of u is defined as all nodes w
such that ‖uw‖ ≤ ‖uv‖. This is the total number of nodes that can
cause direct interference with u. The average and maximum physi-
cal node degrees of each topology are shown in Figure 8. They are
higher than the node degrees in Figure 7 as expected, however they
follow the same pattern of curves. Moreover, the possible interfer-
ence increases slightly while the number of wireless nodes grows.
This is tolerable because each node also decreases its transmission
range as shown in Figure 6 and the average number of actual phys-
ical neighbors of a node is around 6 in our simulations.

4.3 Communication Cost During Construction
In Section 3 we proved that the localized algorithms construct-

ing OrdY aoGG and SY aoGG use at most O(n) messages. We
found that when the number of wireless nodes increases the aver-
age messages used by each node for constructing them is still in
the same level. Figure 9 summarizes our experimental results of
the communication costs in each node during the construction of
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Figure 8: Average and maximum physical node degree of dif-
ferent topologies.

OrdY aoGG and SY aoGG. Here we do not compare our com-
munication costs with that of BPS, since it uses 2-hop neigh-
bors information and needs to build LDel(2)(UDG) which costs
much more messages for sure. It is clear that the network becomes
more and more dense while the number of wireless nodes increases.
However, experiment shows that the localized method does not cost
more messages on each node even when the graph becomes denser.
An interesting observation is that the average number of messages
per node for structures OrdY aoGG is around 8 though the theo-
retical bound is 24. It is reasonable because nodes do not always
query 5 times in local ordering in practice. Notice that SY aoGG
costs much less messages than OrdY aoGG does, so it is indeed a
very efficient topology construction method. This is expected and
consistent with our theoretical analysis.

Moreover, simulations results in all charts also show that the per-
formances of our new topologies OrdY aoGG and SY aoGG are
stable when number of nodes changes.

5. CONCLUSION
We proposed several novel localized algorithms that construct

energy efficient routing structures, where each node has a bounded
degree and the structures are planar, for wireless ad hoc networks
modelled by unit disk graph (UDG). Our first structure has bounded
node degree k+5 where k > 6 is an adjustable parameter; its power
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Figure 9: Communication cost during construction of
OrdY aoGG and SY aoGG.

stretch factor is no more than ρ = 1
1−(2 sin π

k
)β ; it is planar; and it

can be constructed locally in 24n messages, where each message
has O(log n) bits for a wireless network of n nodes.

Our second method improves the degree bound to k, and keeps
all other properties, except that the theoretical power spanning ratio

is relaxed to ρ =
√

2
β

1−(2
√

2 sin π
k

)β , where k > 8 is an adjustable

parameter. We showed that the second structure can be constructed
using at most 3nmessages, where each message has O(log n) bits.

We conducted extensive simulations to study these new sparse
network topologies and compared them with previously known ef-
ficient structures. Theoretical results are corroborated by the simu-
lations.
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