XML Retrieval in the Classroom

Steven M. Beitzel, Eric C. Jensen, Angelo J. Pilotto, Ophir Frieder, David Grossman !
Information Retrieval Laboratory
[llinois Institute of Technology

There are currently a variety of systems for searching XML. However, they are typically research
tools or specialized commercial products that have limited usability in the classroom. The SQL-
Generator is a complete implementation of the XML-QL query language that translates queries
to SQL for execution by an underlying relational database. It is unique in that it is a scalable,
portable implementation of a semi-structured query language, that is also open source and ex-
tremely well-documented by a 140-page user’s and devloper’s manual. It allows students to see
the logic of their semi-structured queries represented in the familiar relational language of SQL.
In contrast to many of the relational mapping tools for XML, the SQLGenerator operates on a
fixed relational schema that conceptually represents the hierarchical nature of XML data of any
schema without requiring XSchemas or DTD’s. A case study of using the SQLGenerator to teach
the concepts of semi-structured search to a graduate level database class is presented. The SQL-
Generator source code, along with all of its documentation and a demo interface, can be found at
http://ir.iit.edu/sqlgen.

Categories and Subject Descriptors: D.2.7 [Education]: Education
General Terms: XML, SQL, Education
Additional Key Words and Phrases: XML, SQL, query languages

Introduction

The eXtensible Markup Language (XML) has become the standard for platform-
independent data exchange. Its semi-structured nature provides the basis for many
existing data integration solutions [6; 10]. Despite its extensive practical applica-
tions, the concepts of semi-structured data and search are often briefly noted in
existing Computer Science curricula at best. Courses dealing with how to actually
implement semi-structured search systems, much less scalable ones, are rare. One
reason for this may be the lack of XML retrieval systems and suitable course ma-
terial available for use in the classroom. Most systems that are publicly available
are research systems that are insufficiently documented or specialized commercial
products (such as relational database mapping tools) that do not address the gen-
eral problem of XML search with a semistructured query language. Neither of these
approaches are suited for presenting the fundamentals of semi-structured search in
a classroom setting. The SQLGenerator is implemented as a platform-indepedent
(tested on Solaris, Linux, and Windows with MySQL) system using only Java and
ANSI SQL, with its full indexing and query-translating source code available under
the Lesser GNU General Public License (LGPL). A regression test suite of 120
queries is provided to ensure functionality and provide a large number of example
queries and their known results. Most importantly, it is extremely well documented

LComputer Science Department, 10 w 31 St., Chicago, IL 60616.
{beitzel,jensen,pilotto} Qir.iit.edu

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-077.

2 . Steven Beitzel et. al

both in the sense of its query language (documented in its own manual and by the
standards and tutorials publicly available) and its internal operation, making it
suitable for use as both a system for students to execute XML-QL queries and as
a system that can be modified in class projects.

The query languages that are implemented by many of the available systems are
either lacking many of the features desirable for semistructured query languages
(such as XPath) or nonstandard, often unintuitive, proprietary languages. There
are a large number of proposed query languages for XML data [8; 26; 2; 3; 16].
The SQLGenerator system implements XML-QL, a query language developed by
AT&T [7]. XML-QL was designed to meet the requirements of a full-featured XML
query language set out by the World Wide Web Consortium [27]. In addition to
its range of capabilities, it provides an intuitive means of writing semi-structured
queries resembling SQL that uses XML data bindings in a format very similar to the
XML documents being searched. XML-QL has been used to teach graduate stu-
dents about searching XML at several universities including Concordia University,
University of Pennsylvania, and University of Southern California?, all using the
AT&T reference implementation that parses XML data at query time and translates
XML-QL queries to StruQL queries for execution by their Strudel semi-structured
query engine. While this engine is the reference point for the XML-QL standard,
it is not designed to be a teaching system. The error reporting it provides is most
often too complex for students to understand and it is lacking in documentation,
especially that which would be needed for use in class projects. By contrast, our
system, with its open source code and extensive documentation, is well-suited for
use in the classroom, especially by undergraduates.

There have been a variety of methods proposed for storing XML data and
accessing it efficiently [5; 1]. One approach is a customized tree file structure,
but this lacks portability and doesn’t leverage existing database technology [12].
Other approaches include building a database system specifically tailored to storing
semistructured data from the ground up [14; 15] or utilizing common information
retrieval structures unsuited for full-featured semistructured search [20; 21]. The
SQLGenerator fully implements XML-QL by translating its semistructured queries
to SQL queries for execution on a static relational schema. Although work has
been done on defining static schemas for XML storage, we are unaware of an algo-
rithm for translating all queries in a full-featured semi-structured query language to
SQL that retrieves the correct results from those schemas. By storing XML docu-
ments in a fixed-schema relational database, we are able to utilize the performance
advantages of over 30 years of research in the database community, while fully sup-
porting the rich semistructured features of the XML-QL query language [4; 22; 17;
19]. This makes it scalable not only in terms of collection size, based almost solely
on database performance, but by using a parallel database we are implicitly able
to scale the number of nodes for query processing, based on the database’s scala-
bility. The impact of this in the classroom is that it provides a realistic solution to
searching large collections of XML that maintains an intuitive, familiar view of the
logic behind semistructured queries. Its static schema design accommodates data of

2http:/ /www.cs.concordia.ca/ grad/thomo, http://db.cis.upenn.edu/XML-QL,
http://infolab.usc.edu/csci585/Spring2001 /hw3.pdf

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 3

any XML schema without the need for document-type definitions [24] or XSchemas
[28], allowing students to draft their own XML and experiment with searching it.
By implementing XML-QL, it uses a standard, intuitive query language. In section
2 we present a case study of our experiences with SQLGenerator in the classroom.
Section 3 presents a brief overview of the properties of XML and how to write valid
XML documents. Section 4 describes in detail the syntax XML-QL and demon-
strates how to use its features to query sample XML documents. Finally, section
5 is dedicated to SQLGenerator. The storage schema is explained as well as the
query translation process.

Case Study

Recently, we extended the undergraduate curriculum at IIT to include information
retrieval and data mining [11]. In Fall, 2002 we began teaching XML retrieval as a
topic in the graduate advanced database course at IIT.

Lesson Plan

The lessons consist of an introduction to semistructured data in the form of XML
and to semistructured search using XML-QL. Initially we refresh the students on
the nature of searching structured and unstructured data. Although they work
all semester with structured data, we have found that many did not make the
distinction between this and other data types. We exemplify these differences by
a comparison to unstructured data in the form of plain text. We briefly show
that it can be modeled as a bag of words for which a similarity score to a bag of
query words can be found. Students easily understand the simplest example of an
unstructured data query as something they might type into a popular search engine
such as Google™. The key steps in the lesson plan are to introduce students to the
basics of XML, have them author their own simple XML documents, and finally
query their documents using XML-QL.

XML is presented as a type of semistructured data that posseses structured at-
tributes, such as data within a document conforming to a specific DTD, but also
exhibits unstructured properties because the contents of an element can be other
unspecified (possibly recursive) elements or textual data. The example XML doc-
ument, presented to the students describes the members of a family where each
member is described as a person element. This simple XML document is used to
examine issues differentiating semistructured data from the structured (relational
and object-oriented) databases they had previously learned about. Four important
terms that we emphasize are: element, attribute, tag, and markup. These de-
fined terms are used to explain the XML standard and why standards are important
for data interchange. To give students a familiar example, we point to a number of
real-world applications (e.g. e-commerce, file sharing programs, etc.).

Next, students given an assignment to create their own XML documents. A loose
standard format for each of the student documents is discussed in class, defining the
names of some example elements and what they might contain. The assignment is
based on the autobiography examples supplied in class; each student creates their
own XML autobiography including some additional elements such as education,
family, and date of birth. Once a student has composed their XML file, they use
the indexing feature of SQLGenerator so that it that can be queried using XML-QL

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 . Steven Beitzel et. al

through a web interface.

In authoring their own XML the students achieve an understanding of the struc-
ture of an XML file and are familiar with XML terminology. They are then in-
troduced to the basics of XML-QL. Students are taught that XML-QL consists of
two basic clauses, WHERE and CONSTRUCT. A WHERE clause allows them to
bind variables and pose constraints on those variables. A CONSTRUCT clause
creates XML results from the variables obtained in a WHERE clause. An impor-
tant concept is the idea of XML having paths within the document from the root
element to some final value. Paths represent the structured properties of an XML
document because they allow a user to take advantage of the known structure of
a document to obtain values that occur at the end of a given path. A single path
may occur multiple times within a document with different values found at the
end of each path occurrence. We present the concept of a regular path expression,
which presents a pattern for matching to a set of paths. For example, a single path
expression represents a set of actual paths within the XML document. In XML-QL,
variables can be bound to the values of paths. We explain that it is fundamental to
use this feature of XML-QL when constructing queries. Consider the small XML
fragment shown in Figure 1.

We see the path ”[person, name]” has a value of ”John Smith” at the end. A
variable bound to a path can take on multiple values and that a query must be
thought of as an iteration over matching paths of the XML document. The students
can see that it is desirable to be able to bind a variable to the value at the end of
the path so that the value can be used to construct XML later in the query.

We then present some example queries which operate on the autobiography XML
presented. The results of the queries are explained so that the student clearly sees
how XML-QL operates on the data it is querying and how the variables are used
to create resultant XML. Finally, students are ready to construct their own queries
and are assigned five query concepts to write in XML-QL and execute to obtain
results. The student creates the query based on a question posed in English that
can be answered from the set of XML documents written previously by the students
themselves.

Interface

Having a web interface to show the execution of an XML-QL query also aids in
the teaching process. The web interface provided is simple to use and uses a Java
servlet to provide the results. It consists of an input box that accepts the query and
a button that initiates the execution of the query. Once the student provides their
XML file and it is indexed into the database, they can use the servlet interface to
query their XML document. The servlet was especially useful as it allowed students
to learn XML-QL by trial and error. The source code for the servlet is included
with the rest of the SQLGenerator package. A screenshot of the servlet interface
can be seen in Figure 2.

The query is executed when the button is clicked and user is redirected to a
page (Figure 3) that displays the results if the XML-QL query was well-formed. In
the case of syntax errors, a detailed error message is provided in order to aid the
student in correcting the error and therefore further learning XML-QL syntax.

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 5

Fig. 1. XML Fragment

<Person>
<Name>Joe Smith</Name>
<Birthplace>
<City>Honolulu</City>
<State>HI</State>
<Date Format="IS0 8601">1981-10-05</Date>
</Birthplace>
<Residence>
<City>Honolulu</City>
<State>HI</State>
</Residence>
<Residence>
<City>Chicago</City>
<State>IL</State>
</Residence>
<Education>
<University>
<Name>Illinois Institute of Technology</Name>
<City>Chicago</City>
<State>IL</State>
</University>
<High_School>
<Name>University Laboratory School</Name>
<City>Honolulu</City>
<State>HI</State>
</High_School>
</Education>
<Family>
<Parents />
<Siblings />
</Family>
</Person>

Findings

The largest amount of teaching effort required was for introducting the students
to the basic concepts and motivations behind semi-structured data and query lan-
guages. Once these basics were covered then a sample XML document and XML-QL
query answered most of the questions students had.

After they completed the basics of the assignment, many of the students ex-
plored the XML their fellow students had written by exploiting the various features
of XML-QL. They were curious to see the additions other students had made to
the basic autobiography schema. For example, several students added elements
which indicated where they were from, or included recursive person tags giving
information about parents or siblings. In exploring, they also realized the chal-
lenges that dynamic schemas can pose, and the increasing complexity necessary in
semistructured queries to accomodate them.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 . Steven Beitzel et. al

/, i Ly
e OPERA u‘.-Il 1‘:-.1.-'-(“! browser' on earthi

ILLINOIS INSTITUTE‘
OF TECHNOLOGY

f » pCom P BusiNgss & InousTry) FACULTY & STarr | ALUMNI) VISITORS
IIT IR XML-QL Engine coesyote [|J -

Enter your XML-QL query for biography.xml for biography.xml according to the lesson plan

L Exocuie Quary_|

SEARCH CONTENT SEARCHPEOPLE SITE INDEX FEEDBACK IIT HOME.
72002 Winois Institute of Technology 3300 South Federal Sireet, Chicago, IL 60616-3763 Tel 312 567-3000

Fig. 2. The XML-QL Interface

Click to buy K .
- the fastest browser on earthl

<xml version="1.0" encoding="UTF-8"2>
<Colleges>

<College>Wartburg College</College>
</Colleges>

Fig. 3. The results

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 7

<Instruments>
<Instrument>
<name>Violin</name>
<lowest_note>
<octave>2</octave>
<note>G</note>
</lowest_note>
<length unit="in">14</length>
</Instrument>
<Instrument>
<name>Viola</name>
<lowest_note>
<octave>2</octave>
<note>C</note>
</lowest_note>
<length unit="in">16</length>
</Instrument>
<Instrument>
<name>Cello</name>
<lowest_note>
<octave>1</octave>
<note>C</note>
</lowest_note>
</Instrument>
<Instruments>

Fig. 4. string.xml.

XML
A Brief Primer

Figure 4 is an example of an XML file. This file describes instruments: string
instruments, in particular, although there is no reason why the document could
not be extended to include wind, percussion, or any other type of instrument.
Many XML search systems model XML as a tree. We can represent the XML in
Figure 4 as a tree such as the one in Figure 5. Here the o; values denote object
identifiers (OIDs). These values are assigned using a depth first traversal of the
XML document. We see that assigning the IDs in this manner does denote some
type of order, however, there is no reason why the <Instrument> tag for violin
should come before the tag for viola. The tags (starting with a < and ending with a
>, like <Researcher>) wrap around human-readable text that the markup around
it describes. Note that each tag is paired with a closing tag of the same name
with a / before it. XML requires all opening tags to be matched with closing tags.
An element is the entire fragment of the file from an opening to a closing tag.
string.xml in its entirety can be referred to as an <Instruments> element. XML
elements are ordered: unlike relations, it does matter which elements come before
others. That means that we can say that the <Instrument> tag talking about
violas is the second child element of the root element <Instruments>, where
child elements are elements that are beneath so-called parent elements, and root

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 . Steven Beitzel et. al

Instruments, o ;

Instrument, o 2 Instrument, o 12

el e I R

name, o, lowest_note, 0, Igngth, 049 name, o,, lowest_note, 0 15 Igngth, 0,

| N0 & | NG &

cda‘ta, 0, octTve, 04 no‘te, 0g in" cTata, 0y, cda‘ta, Oy octTve, 016 no‘te, 0,5 "in" cTata, 0,
"Violin* cdata, o 7 cdata, 04 "14" "Viola" cdata, 0, cdata, o "16"

| | | |

won e nom e

Instrument, o 2

/\

name, 0,, lowest_note, 0 25
| N
cdata, 0,, octave, 0 ,; note, 0,
| | |
"Cello" cdata, o,, cdata, 0,4
| |
wp wee

Fig. 5. The XML Data Model

elements are the top-most elements of the document. All XML documents have
one and only one root element. Some tags also contain optional attributes, which
are unordered key-value pairs, unlike elements, which are ordered. In other words,
writing <Tag a="1" b="2">is the same thing as <Tag b="2" a="1">; additionally,
attribute a of tag Tag has a value of 1 while attribute b has a value of 2. Because they
are unordered, neither a nor b is the first or second attribute as far as computers
are concerned.

XML is a markup language standard, but the tag names themselves are not
part of the standard. However, through the use of Document-Type Definitions
(DTDs) or XML Schemas, these tags and their ordering can be restricted. DTDs
define rules for how elements and attributes of an XML file are supposed to be
enclosed in one another. For example, a DTD for string.xml might stipulate
that the <Instrument> element may only appear as children of the <Instruments>
element.

Overview of Existing Query Languages

There are several popular XML query languages in use today [13]. XML-QL, the
semistructured language of our particular system, was developed by a team of
AT&T researchers in 1998. In August 1997, initial work on XPath, likely the most
basic path-based query language, was submitted to the W3C [23]. The specification
describing XPath as it is known today was released on July 9, 1999. In December
2001, XPath 2.0 was released. One of the newest semistructured query languages,

ACM Journal Name, Vol. V, No. N, Month 20YY.

1

XML Retrieval in the Classroom . 9

XQuery, is also among the most powerful. It borrows many ideas from prior work
on other semistructured query languages such as XML-QL and XPath, as well as
from relational query languages like SQL. The first public draft of the XQuery 1.0
spec was released in June 2001.

Existing XML Retrieval Systems

The majority of systems freely available are unrealistic solutions to the problems
of searching large volumes of XML with varying schemas, These are systems that
use in-memory indexes. Many of them require XML that adheres to specified
XSchemas [28] or document-type definitions (DTD’s) [25; 24], which provides an
obstacle to teaching students because they do not learn an XML query language.
In contrast, the SQLGenerator accomodates XML of any XML schema with a
single, fixed relational schema. Unlike in-memory systems, such as AT&T’s XML-
QL implementation, the SQLGenerator uses a relational database for persistent
storage; parsing and indexing of XML data is performed before query time. This
allows us to scale to collection sizes much larger than the physical memory of
the system available. Unlike the relational mapping tools provided by many of
the major database vendors, changes in the schema of XML data being stored
do not require changes in the underlying relational schema, and a fully-functional
semistructured query language is provided.

XML-QL
Data Model

Although elements in XML are ordered, the default data model for XML-QL does
not retain order. As most relational databases also use unordered tuples that can
be explicitly sorted or grouped as needed at query time, this property allows the
SQLGenerator to make assumptions that are very useful for translating XML-QL
queries to SQL.

Basics

All XML-QL queries return a block of XML as their results. Every query must
contain a CONSTRUCT clause, which specifies a template for building XML query
results. The trivial XML-QL query in Figure 6 doesn’t actually query over XML;
it merely specifies XML to build. Because well-formed XML documents have a
single root element, XML-QL wraps the result tags inside of an artificial <XML>
root element when no root element is defined.

Variables and the WHERE Clause

CONSTRUCT clauses only format retrieved data. The real power of XML-QL lies in
the WHERE clause. A WHERE clause cannot exist without a CONSTRUCT clause, as
WHERE only specifies what data to look for and not how to format query results.
A WHERE clause contains a comma-separated set of conditions that can be im-
posed on the query to limit results. Conditions appear in two forms: tag patterns,
where results that fit a specific XML form are retrieved, and predicate conditions,
where mathematical comparisons or string LIKE comparisons can be performed on
variables. Most useful queries such as the one in Figure 7 use WHERE clauses with

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 . Steven Beitzel et. al

Query:

CONSTRUCT <result>Hello world.</result>
<!-- And now for some math... -->
<result>10 > 4</result>

Results:

<?xml version="1.0" encoding="UTF-8"7>

<XML>

<result>Hello world.</result>
<!-- And now for some math... -->
<result>10 > 4</result>

</XML>

Fig. 6. simple.xmlql and its output.

tag-patterns and variables. In this example, the variable $b matches on all char-
acter data that occurs in a <name> tag that is a child of the <book> element that
is a child of the <books> root element. Similarly, the variable $p is bound to the
character data for the <price> tag. Finally, a predicate condition is imposed that
requires result books to have a price greater than 5 units (in this case, US Dol-
lars). A file that this query might be applied to, books.xml, and its corresponding
results are also shown in Figure 7. An XML tag can either contain more XML
tags or character data. The contents of an XML tag are said to be complex when
they contain more XML tags. Complex tags cannot be compared to one another
like character data can. To explicitly request the character contents of an XML
tag instead of its complex contents, one must append .PCDATA to the tag name
in the XML-QL path expression. A shorthand for closing tags in path expressions
is </>. Many strings that substitute for tag names in XML-QL (such as regular
path expressions) are not true tag names, and actually require this type of closing
tag. The tag pattern in the WHERE clause of books.xmlql (taken from Figure 7)
specifies that for all XML character data that exist in <name> only under <book>
only under <books>, $b will represent this value and the CONSTRUCT template will
be repeated as many times as necessary to display all the possible bindings of $b.

The XML-QL processor needs to know where to look for these tags. This is ac-
complished by specifying a file name: IN "books.xml". The keyword IN is used to
specify the data source for the given tag pattern. Figure 8 shows examples of WHERE
clause data sources: external source (files, which can be local files or absolute or rela-
tive URLSs), a variable bound to XML, or a variable bound to a file location. In those
examples, books.xml is the name of a file, http://www.mylibrary.net/books.xml
is a URL where a file can be found, $q is bound to some XML fragment, and
$filename is bound to the URL or local reference of a file. Obviously, as we're
indexing the XML data ahead of time and storing it persistently in a relational
database, one can also choose to query over all indexed XML.

Advanced CONSTRUCT clauses

The CONSTRUCT clause (or any element that appears in a CONSTRUCT clause) may
contain expressions, elements, or query blocks. Expressions are simply mathemati-

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom

11

Query:
WHERE <books>
<book>
<name .PCDATA>$b</>
<price.PCDATA>$p</>
</book>
</books> IN "books.xml",
$p > 5
CONSTRUCT <result>$b</result>

Document:
<books>
<book>
<name>The Great Gatsby</name>
<author>F. Scott Fitzgerald</author>
<price currency="USD">9.99</price>
</book>
<book>
<name>Cat in the Hat</name>
<author alias="true">Dr. Seuss</author>
<price currency="USD">14.99</price>
</book>
<pamphlet>
<name>Common Sense</name>
<author>Thomas Paine</author>
</pamphlet>
</books>
Results:
<?xml verson="1.0" encoding="UTF-8"7>
<XML>

<result>The Great Gatsby</result>
<result>Cat in the Hat</result>

<XML>
Fig. 7. books.xmlql, books.xml, and the output of the query.

WHERE <...>

IN "books.xml"
WHERE <...>

IN "http://www.mylibrary.net/books.xml"
WHERE <...>

IN $q
WHERE <...>

IN SOURCE($filename)

Fig. 8. Examples of WHERE clause data sources.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 . Steven Beitzel et. al

WHERE <books>
<book>
<name .PCDATA>$n</>
<price.PCDATA>$p</>
</book>
</books> IN ‘‘books.xml’’
CONSTRUCT <result>
<name>$n</name>
<tax>$p * 0.05</tax>
</result>

Fig. 9. books2.xmlql

cal formulas where numbers, bound variables, or values of function calls are added,
subtracted, multiplied, or divided. The query books2.xmlql of Figure 9 computes
5% tax on the prices of the books in books.zml. For every name-price pair encoun-
tered, the name is returned unchanged and the price is multiplied by 0.05. The
PCDATA expression is absolutely essential here—without it, the processor would at-
tempt to take 5% of a complex tag, when in fact, we very specifically want the
character data within the tag.

Figure 11 shows the usage of a variable as a tag name, and an XML attribute. Re-
call that the closing tag of any element can be expressed as </>. In this CONSTRUCT
clause, </> is actually necessary because $t can potentially be bound to anything.
The XML result contains the closing tag appropriate to the matching tag name.
The inner tag has a name specified by $t. The value of this bound variable can be
stored and later used in a CONSTRUCT statement as contents of a tag or the name
of a tag. The attribute eatsVeggies will be constructed with all values of $f.

Advanced WHERE clauses

In addition to basic tag patterns, regular tag path expressions allow for searching
across multiple tag names. Say, for example, we wanted to extract only pamphlets
and magazines from books2.xml. We could either write two separate queries since
our sought-after results are in two different tag paths, or write one query that
encapsulates both types of tags as seen in Figure 10. If one wants to retain the
name of the tag that matched, the tag name variables and predicate conditions
are used. As seen in Figure 11, Regular path expressions are composed of three
operators, listed in order of precedence, lowest first:

(1) Alternation (“|”). Matches an occurrence of any of the expressions sepa-
rated by the vertical bar. <cats|dogs> matches “<cats>”, “<dogs>”, but
not “<cats><dogs>”

(2) Concatenation (“.”). Matches the concatenation of the expressions separated
by periods. <$t.$x> matches “<cat><dog>” if $t="<cat>” and $x="“<dog>"

(3) Kleene operators (“+”, “?”, “*”). Matches one or more, zero or one, or zero
or more occurrences, respectively. <cat*> matches “”, “<cat>”, “<cat><cat>”,
<dog> matches “” or ”<dog>” but not “<dog><dog>” <bird+>matches “<bird>”,
“<bird><bird>”, not “”

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom

Fig. 10. A query that captures both kinds of tags.

13

CONSTRUCT <results> {
WHERE <books>
<magazine|pamphlet>
<name .PCDATA>$n</>
<price.PCDATA>$p</>
</>
</books>
CONSTRUCT <result>
<name>$n</name>
</result>
} </results>

Fig. 11. Use of tag name variables and predicate conditions

CONSTRUCT <results> {
WHERE <books>
<$t>
<name .PCDATA>$n</>
</>
</books> IN "books2.xml", $t IN {magazine, pamphlet}
CONSTRUCT <result type=$t>
<name>$n</name>
<price>$p</price>
</result>
} </results>

Fig. 12. Binding Tag Contents to a Variable

CONSTRUCT <results> {
WHERE <books>
<$t>
<name .PCDATA>$n</>
<price.PCDATA>$p</>
</> ELEMENT_AS $e
</books> CONTENT_AS $c IN "books2.xml", $p > 10, $n LIKE "Drx*"
CONSTRUCT $t
} </results>

Tag patterns can also bind their contents or their entire elements to variables. The
query in Figure 12, we see that $c and $e are both bound to the matching <$t>

tag, illustrating ELEMENT_AS and CONTENT_AS in action.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 . Steven Beitzel et. al

Fig. 13. Using an Aggregate Predicate in the CONSTRUCT

Query:
CONSTRUCT <results>
<cheapest_price>MIN($p)</cheapest_price> {
WHERE <books>
<$t>
<name .PCDATA>$n</>
<price.PCDATA>$p</>
</> CONTENT_AS $e
</books> IN "books2.xml"
CONSTRUCT <result type=$t>$e</result>
} </results>

Results:

<?xml version="1.0" encoding="UTF-8"7>

<results>
<cheapest_price>3.95</cheapest_price>
<book>

<name>The Great Gatsby</name>
<author>F. Scott Fitzgerald(/author)
<price currency="USD">9.99</price>
</book>
<book>
<name>Cat in the Hat</name>
<author alias="true">Dr. Seuss</author>
<price currency="USD">14.99</price>
</book>
<magazine>
<name>Time</name>
<issue>January 14, 2002</issue>
<price currency="USD">3.95</price>
</magazine>
<results>

Aggregate Predicates

Aggregate predicates are special functions that appear in the contents of an element
in a CONSTRUCT clause. With the exception of COUNT(), the aggregate predicates
aggregate over all the values that a particular bound variable can have. The query
in Figure 13 produces the cheapest price in books2.xml, followed by the matches.
The PCDATA expression is required here; aggregations of complex tag patterns are
not supported. Notice that <pamphlet> is not shown. There is no <price> in
<pamphlet>, and therefore <pamphlet> does not match the specified tag pattern.
The numeric aggregate predicates supported by XML-QL are very similar to their
SQL counterparts; MIN, MAX, AVG, and SUM. COUNT (%) is a special aggregate
predicate that returns the number of tags that are at the same level as its enclosing
tag, not counting its own enclosing tag.

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 15

The SQLGenerator

The SQLGenerator is a scalable XML retrieval engine that fully implements the
XML-QL query language by translating it to SQL. It incorporates XML documents
of any schema without requiring modifications to the fixed underlying relational
schema they are stored in. XML need not specify a schema or DTD, but rather
incoming XML with dynamically changing schemas is immediately searchable via
a full-featured semi-structured query language.

The Relational Database Schema

Our storage schema stores each unique XML path and its value from each document
as a seperate row in a relational table. This is similar to the edge table described
by Florescu and Kossman, named for the fact that each row corresponds to an
edge in the XML graph representation [9]. Our edge table has the values inlined
(in the same table). This is a static schema that is capable of storing any XML
document without modification. The hierarchy of XML documents is kept in tact
such that any document indexed into the database can be reconstructed using only
the information in the tables. We also support the partitioning of this edge table
by selected paths, producing a schema similar to a partially decomposed variant
of Florescu’s binary scheme. This allows for the seperation of key paths into their
own tables, often enabling the database to build more effective indexes due to the
increased homogeneity of the data in those paths and the obvious data partitioning
advantages. Unlike the pure binary scheme, however, it does not require a table for
every unique path in every XML document indexed. We shall use books.xml (see
Figure 7) as an example file to show our storage scheme and the SQLGenerator’s
translation over it. All of the database tables shown in examples will reflect the
data of this file.

tagnametbl, tagpathtbl, and atrnametbl. These tables store the metadata
(data about the data) of the XML files. tagnametbl (Figure 14) and tagpathtbl
(Figure 15) together store the information about tags and paths within the XML
file. tagnametbl stores the name of each unique tag in the XML collection.
tagpathtbl stores the unique paths found in the XML documents. atrnametbl
(Figure 16) stores the names of all the attributes. In each of these tables, vkey is
an integer assigned by the system and is the primary key of the table. These tables
are populated each time a new XML file is indexed. This process consists of parsing
the XML file and extracting all of this information and storing it into these tables.

vkey | value
1 | books
2 | book
3 | name
4 | author
5

6

price
pamphlet

Fig. 14. The tagnametbl Table

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 . Steven Beitzel et. al

<
=~
@
<
<
S
=
5]
@

[

[books, book]
[books, book, name]
[books, book, author]
[books, book, price]
[books, pamphlet]
[books, pamphlet, name]
[books, pamphlet, author]

O~ O UL W

Fig. 15. The tagpathtbl Table

vkey | value
1| -
2 | currency

Fig. 16. The atrnametbl Table

pinfiles. Since XML-QL allows users to specify what file(s) they wish to query,
frequently we do not want to look at each record in the database but only a subset
of records that correspond to that file. Each time a new file is indexed, it receives
a unique identifier that is known as the pin value. This value corresponds to a
single XML file. The pinfiles table creates a link from the pin value to the name
of the XML document. When a user specifies an XML document whose pin value
happens to be 5, the SQL generated needs to have a condition that only entries
with this pinnum should be examined. An example entry in this table is shown in
Figure 17.

vkey | value
1 | books.xml
2 | iit-ir.xml

Fig. 17. The pinfiles Table

pinndx

The pinndx table (Figure 18) stores the actual contents of all of the XML files that
have been indexed. The pinndxnum column is a unique integer assigned to each
element and attribute in a document. The parent column indicates the pinndxnum
value of the tag that is the parent of the current tag. The tagpath entry is the value
corresponding to the primary key value in the tagpathtbl. The tagtype column
indicates whether the path terminates with an element or attribute. The tagname
and atrname values correspond to the primary key values in the tagnametbl and
atrnametbl tables respectively. The pinnum column indicates the XML document
this row corresponds to. The indexpos column is used for queries that use the index
expression feature of XML-QL and indicates the position of this element relative
to others under the same parent (starting at zero). This column stores the original
ordering of the input XML for explicit usage in users’ queries.

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 17

pinndxnum | parent | tag- tag- tag- atr- pin- index- | value
path type name name num pos

1 0 1 E 1 1 1 0
2 1 2 E 2 1 1 0
3 2 3 E 3 1 1 0 The Great Gatsby
4 2 4 E 4 1 1 0 F. Scott Fitzgerald
5 2 5 E 5 1 1 0 9.99
6 5 5 A 5 2 1 0 USD
7 1 2 E 2 1 1 0
8 7 3 E 3 1 1 0 Cat in the Hat
9 7 4 E 4 1 1 0 Dr. Seuss

10 7 5 E 5 1 1 0 14.99

11 10 5 A 5 2 1 0 USD

12 1 6 E 6 1 1 0

13 12 7 E 3 1 1 0 Common Sense

14 12 8 E 4 1 1 0 Thomas Paine

Fig. 18. The pinndx Table

The Translation Process

While prior work has defined methods for storing XML in relational databases, it
has not shown that all features of a rich semistructured query language such as
XML-QL can be translated into equivalent SQL for the given schemas. Using the
relations described above, we can translate any XML-QL query into the appropriate
SQL that will return all of the information requested by the user. Data returned by
the translated SQL query is used to create a DOM document object for representing
the XML results. The general algorithm for processing a query block is shown in
Figure 21. This represents a high level view of the inner workings of SQLGenerator
and does not go into detail on the translation of many of the advanced features of
XML-QL. The algorithm processes a query block which is a part of the XML-QL
query that contains a CONSTRUCT clause and optional WHERE clause. Initially
the CONSTRUCT clause is processed by examining each element in the clause.
Elements or the contents of the clause are usually an XML element or variable that
is used to create a new XML document. These elements are put into a template
that is used later in the XML construction process. The optional WHERE clause is
processed next. If the element of the WHERE clause is a tag pattern, this is stored
in a special data structure. If the element is a predicate condition, this is stored
as a string that can be appended to the generated SQL. Once each tag pattern
has been stored, path creation and resolution is the next step. A tag pattern can
represent multiple paths, finding these paths is the path creation process. A path
can contain an expression to represent a real path, such as a Kleene star, finding
all possible paths is path resolution. Once the paths and predicates are known, the
SQL can be generated. The results obtained by the SQL are used in conjunction
with the template created from the CONSTRUCT clause to create the new XML.
Consider a query shown in Figure 19.

In the query, we see a CONSTRUCT clause enclosing a nested block. When the
SQLGenerator encounters a CONSTRUCT clause it begins to process its contents.
In this example, the contents consist of another query block, which will be stored

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 . Steven Beitzel et. al

CONSTRUCT <authors> {
WHERE <books>
<book>
<author.PCDATA>$author</author>
</book>
</books> IN "books.xml"
CONSTRUCT <author>$author</author>
T

Fig. 19. A Basic XML QL Query

for execution until after the outer query block has been processed. Since the outer
block is a single CONSTRUCT clause, SQLGenerator executes its algorithm again
on the nested query block. The example query specifies a single <authors> tag as
the root of the XML results, and under it will be a variable number of <author> tags
depending on the number of authors found in books.xml. When the the resulting
authors are obtained from the translated SQL query, the template for each author
specified by the CONSTRUCT is filled in. As stated above, a WHERE clause
consists of a number of conditions. In this example query, the sole condition is a tag
pattern that binds the authors in the document to the variable $author. This tag
pattern resolves to a single path (some tag patterns can represent multiple paths).
The goal of this query is to find each instance of this path in the data source being
searched and bind the value associated with it to the specified variable. Although
SQLGenerator translates each nested XML-QL query into exactly one SQL query,
a small number of simple SQL queries are executed beforehand in order to obtain
metadata necessary for the main translation process. For queries containing regular
path expressions (this example does not), the expression is resolved to a set of paths.
This is accomplished by doing string comparisons of the values in the tagpathtbl
with the path expression in the query. Once all paths in the query have been
resolved to known paths, the integer keys corresponding to these paths are stored
for later use. In this example, the integer key associated with the path is 4. The
data source for each tag pattern must also be resolved into pin numbers by querying
the pinfiles table. In our example query the data source is books.xml and the
corresponding pin value is 1.

After obtaining the integer keys of the data source and all of the paths, SQL-
Generator has enough information to begin construction of the SQL query that will
retrieve the desired results, in this case all authors restricted to the path given in
the query, located in the file books.xml. An alias to a new self-join on the pinndx
table is generated for each path. This allows the SQLGenerator to perform the
conjunctions of paths necessary to translate an XML-QL query into a single SQL
query. The SQL generated for this query is shown in Figure 20.

Aliases created for the pinndx are labeled as queryTablen where n is an integer
that depends on the number of necessary aliases. We see that the conditions we
put on our results as expressed in the generated SQL query are that the path must
have an ID of 4 and it must be of type 'E’ (an XML Element). Also, valid results

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 19

SELECT DISTINCT queryTableO.pinnum,

queryTable0.value

FROM pinndx queryTableO

WHERE queryTable0.tagtype="E" AND
queryTableO.tagpath=4 AND

queryTableOQ.pinnum=1

Fig. 20. Generated SQL From Example Query

must have a pinnum of 1, ensuring that that we only get results from the books.xml
document. It is easy to see that this simple query will return all desired author
names. Once the results are returned from the database, SQLGenerator iterates
through the result set and replaces the known author names into the template
obtained from the CONSTRUCT clause. The template accepts the current result
and returns a DOM document fragment. A list of these fragments is compiled and
appended to our root document. The document is then formatted and the resulting
XML text is output to the user.

Performance

The SQLGenerator is unique in its capacity for scalability as it is bound soley
by the scalability of the underlying database. Performance of indexing the XML
documents is solely a function of the XML parser used and time required to insert a
row into the database for each path in each document. This typically takes relatively
little time, being bounded by the I/O capability of the relational database engine.
Query translation is inconsequential compared to query execution time. Aside from
some metadata lookup queries, the SQLGenerator makes every effort to combine
the key processing into a single SQL statement, allowing the database to perform
any possible optimizations. The only XML-QL feature which require more than
one SQL query is nested queries, requiring one SQL query per nested query.

We indexed a collection of roughly 6.5 GB of XML documents which corresponds
to a pinndx table of over 12 million rows. Figure 22 contains a subset of the queries
from our regression test suite having various features discussed in this paper, and
their execution time (in seconds). These queries were executed using a MySQL 4.0
database running on a Sun E450 with 4GB of RAM and 4 400MHz Ultrasparc II
CPUs using a single SCSI drive. The first query binds one variable to a path and
uses this variable in the CONSTRUCT to create XML results with one element
each. The second query binds the value of an attribute as well as binds the value of
two paths. The attribute and two element values are used in the CONSTRUCT to
produce results with three elements all at the same depth. The first predicate query
binds one variable to a path and places one relational condition on that variable.
The variable is used in the CONSTRUCT to create results with one element. The
second predicate condition is similar to the first but two conditions are placed on the
variable to that it must fall within a certain range. The fifth query binds variables
to paths using PCDATA binding, meaning that the contents of the path are not
reconstructed manually but simply looked up using a column in the pinndx table.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 . Steven Beitzel et. al

Fig. 21. Query block processing algorithm

procedure Generate DOM Results(QueryBlock)
predicates = {0}
tagPatterns = {0}
nestedQueries = {0}
paths = {0}
sql Predicates = {0}
sqlSelects = {0}
template = {emptyDOMtemplate}
for all elements in the CONSTRUCT do
10: if Contents is a nested QueryBlock then
nestedQueries < QueryBlock
else
template < element
end if
end for
if This QueryBlock contains a WHERE clause then
for all Conditions in the WHERE clause do
if The condition is a TagPattern then
tagPatterns < this TagPattern
20: else
predicates < this predicate
end if
end for
for all Elements in tagPatterns do
Build a path from this TagPattern
paths < all resolved paths from path
Assign aliases to the pinndz table for each element in paths
for all path in paths do
if path has a variable or literal bound within it then
30: sqlSelects < a value column for the alias
end if
sqlPredicates < predicate to enforce the data source
sqlPredicates < predicate to require presence of this path
end for
end for
for all Items in predicates do
Find table alias for variable in predicate
sqlPredicates < translated predicate
end for
40: construct SQL from sqlPredicates and sqlSelects
resultSet < execution of SQL
end if
for all result in resultSet do
Use result to replace all non-static items in template
domResults < result.toDOM()
end for
for all nested QueryBlocks do
nestedResults < GenerateDOM Results(QueryBlock)
Replace nestedResults into domResults
50: end for
return domResults

ACM Journal Name, Vol. V, No. N, Month 20YY.

XML Retrieval in the Classroom . 21

Fig. 22. Timings of queries on 6.5 gig collection

Feature Execution Time (s)
1: Basic functionality 330
1 path, 667542 results

2: Attribute binding 1170
2 paths, 1 result

3: Predicate conditions 143
1 path, 317900 results

4: Predicate conditions 79

1 path, 114736 results

5: PCDATA binding 872
2 paths, 105489 results

6: Kleene star expression 360
1 path, 15667 results

7: CONSTRUCT formatting | 2

2 paths, 6 results

The Kleene star query uses a Kleene star as the contents of an element to represent
any element or number of elements whose parent element and child element match
the other two elements in the query. A variable is bound to the resulting paths
and used in the CONSTRUCT. Finally, the CONSTRUCT formatting query binds
two variables to paths and uses them in the CONSTRUCT. However, there is a
formatting string located within the CONSTRUCT that separates the two variables.
This formatting string causes a new line and tab character to be placed in between
the values of the variables.

Acknowldegements

This work is supported by BIT Systems, Inc. Special thanks to Fred Ingham and
Tim Lewis for their assistance with the design and testing of various parts of the
SQLGenerator.

REFERENCES

Serge Abiteboul, Querying semistructured data, Proceedings of the International Conference
on Database Theory, 1997.

S. Abiteboul and D. Quass and J. McHugh and J. Widom and J. Wiener, The Lorel Query
Language for Semistructured Data, International Journal on Digital Libraries, vol. 1, no. 1, pp.
68-88, 4/1997.

XML Query Languages: Experiences and Exemplars.
http://www-db.research.bell-labs.com/user/simeon/xquery.html

P. Boncz, A. Wilschut, M. Kersten. Flattening an Object Algebra to Provide Performance.
IEEE 14th International Conference on Data Engineering, 568-577, 1998.

Peter Buneman, Susan Davidson, Gerd Hillebrand, Dan Suciu A query language and optimiza-
tion techniques for unstructured data, Proceedings of ACM-SIGMOD International Conference
on Management of Data, 1996.

Peter Buneman, Tutorial: Semistructured data Proceedings of the ACM SIGMOD Symposium
on Principles of Database Systems, 1997.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu A query language for XML.
International World Wide Web Conference, 1999.

Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, David Maier, and Dan Suciu
Querying XML Data IEEE Data Engineering Bulletin, 22(3):10-18, 1999.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22

. Steven Beitzel et. al

D. Florescu, D. Kossman. Storing and Querying XML Data using an RDMBS. IFEFE Data
Engineering Bulletin, 22(3):27-84, 1999.

R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML: Migrating the
Lore data model and query language. In Proceedings of the 2nd International Workshop on the
Web and Databases (WebDB ’99), Philadelphia, Pennsylvania, June 1999.

D. Grossman, N. Goharian, O. Frieder, N. Raju. Extending the Undergraduate Curriculum to
Include Information Retrieval and Data Mining. IASTED Fifth International Multi-Conference
on Computers and Advanced Technology in Education. Cancun, Mexico, May 2002.

C. Kanne, G. Moerkotte. Efficient storage of XML data. Proc. Of the 16th Int. Conf. On Data
Engineering, 2000.

Luk, Robert W.P., Leong, H.V., Dillon, Thraam S., Chan, Alvin T.S., Croft, W. Bruce, Allan,
James. A Survey in Indexing and Searching XML Documents. Journal of the American Society
of Information Science and Technology, 53(6):415-437, 2002.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Management
System for Semistructured Data. SIGMOD Record, 26(3):54-66, September 1997.

D. Quass, J. Widom. R. Goldman, K. Haas, Q. Luo, J. McHugh, S. Nestorov, A. Rajaraman,
H. Rivero, S. Abiteboul, J. Ullman, and J. Wiener. LORE: A Lightweight Object REposi-
tory for Semistructured Data. Proceedings of the ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, June 1996. Demonstration description.

J. Robie. The design of XQL, 1999.

http://www.texcel.no/whitepapers/xql-design.html

A. Schmidt, M. Kersten, M. Windhouwer, F. Waas. Efficient Relational Storage and Retrieval of
XML Documents Proceedings of the Third International Workshop on the Web and Databases,
47-52, 2000.

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J. Naughton. Relational
Databases for Querying XML Documents: Limitations and Opportunities. Proceedings of the
25th VLDB Conference, 1999.

T. Shimura, M. Yoshikawa, S. Uemura. Storage and retrieval of xml documents using object-
relational databases. Proc. of DEXA, Florence, Italy. Lecture Notes in Computer Science,
1677:206-217, 1999.

Dongwook Shin. BUS: An Effective Indexing and Retrieval Scheme in Structured Documents.
Proceedings of Digital Libraries '98.

Dongwook Shin. Structured querying, indexing, and retrieval for SGML/XML documents. Pro-
ceedings of SGML/XML Japan ’98, pp. 199-21/.

R. Zwol, P. Apers, A. Wilschut. Modelling and querying semistructured data with Moa pro-
ceedings of Workshop on Query Processing for Semistructured Data and Non-standard Data
Formats, 1999.

A Proposal for XSL http://www.w3.org/TR/NOTE-XSL.html

Extensible Markup Language (XML) Second Edition
http://www.w3.org/TR/2000/REC-xml-20001006

The Extensible Markup Language (XML)

http://www.w3c.org/XML

The Query Languages Workshop.

http://www.w3.org/TandS/QL/QL98/

XML Query Requirements

http://www.w3.org/TR/xmlquery-req

XML Schema: Formal Description
http://www.w3.org/TR/2001/WD-xmlschema-formal-20010320

ACM Journal Name, Vol. V, No. N, Month 20YY.

