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Multiprocessor Algorithms for
Relational-Database Operators

on Hvpercube  Systems
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E xploiting  parallelism in database
processing has been a research goal
since the early 1970s. Originally,

special-purpose architectures were devel-
oped to provide the computational and input/
output bandwidth needed for database
processing. More recently, many research-
ers have relied on commercial multipro-
cessor and local area networked systems
by such vendors as Sequent,Tandem,  BBN,
DEC, and various hypercube system man-
ufacturers to improve database processing
performance.

This tutorial focuses on hypercube inter-
connected architectures as a computation-
al engine for relational-database process-
ing.Likeotherarchitectureswithdistributed
memory and resources (“shared-nothing”
architectures I),  hypercube systems can
support the high I/O bandwidth required
for database processing. However, unlike
the other architectures, hypercubes are
scalable to thousands of nodes. For exam-
ple, NCube  Corporation currently manu-
factures hypercubes comprising up to 8,192
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As databases expand
and applications

become more diverse,
demands on

computational engines
supporting database
processing increase.

With appropriate
algorithms,

commercially available
hypercube systems can

meet the demands.

nodes, These engines can provide large-
scale concurrency for both interquery and
intraquery processing2 and are well suited
for such computationally intensive pro-
cessing as protocol verification using da-
tabase techno1ogy.s

Afterreviewing hypercube systems, this
tutorial briefly highlights several imple-
mentations of the many currently available
hypercube systems and comments on their
potential performance in evaluating rela-
tional database operators. All algorithms
assume that the relevant data are memory
resident.

The hypercube
multicomputer

A hypercube graph is an n-dimensional
Boolean cube Q,s  defined as across product
of the complete graph K2  and the (n-l)-
dimensional Boolean cube Q, -,,  with Q, =
K,. In an architecture based on hypercube
interconnection, each node is connected
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Figure 1. Various bypercube configurations: (a) one-dimensional, (b)  two-dimen-
sional, (c) three-dimensional, (d) four-dimensional.

(or adjacent) to each of its n = log*  N
neighbors, where N is the number of nodes.
For example, in a four-dimensional cube
Q4,  node 0000 is adjacent to nodes 0001,
0010, 0100, and 1000. Figures la through
Id illustrate the communication paths of
one-dimensional (two-node), two-dimen-
sional (four-node), three-dimensional
(eight-node), and four-dimensional (16-
node) hypercube systems. Note that each
system consists of N = 2” nodes, with n
being the cubical dimension of the system.
We assume that the node address bits are
numbered 0 to n-l, with the leftmost bit
(bit 0) being the most significant. Existing
hypercube machines include Caltech’s
Cosmic Cube:  Intel’s iPSC/2,  andNCube’s
NCube/lO.

or strictly through software. In software
synchronization, a receiving node “blocks”
until a message arrives. Thus, the arrival of
a message synchronizes the two nodes.
This blocking send/receive technique can
be generalized to synchronize all nodes
within the system. A possible synchroniza-
tion algorithm for hypercube architectures
is based on a message-sending ordering
technique called recursive halving, which I
will describe in a later section.

Database processing requires vast I/O
and data-access bandwidth and significant
computational resources. Hypercube sys-
tems provide all three. By horizontally
partitioning relations (see sidebar  on pp.
16-  17)  across a parallel I/O structure like
the disk-per-node I/O subsystem in the
Intel iPSC/2, a relation can be read or
written in parallel, if appropriate synchro-
nization primitives are available. Thus,
currently available hypercube systems can
remedy the known I/O bottleneck of data-
base processing.

The degree of I/O parallelism depends
on the partitioning scheme and the data
values relevant to the query. Common
horizontal partitioning techniques include
random, round-robin, hash-based, range-
based, and user-specified distribution of
tuples across the sites. Both the hash-based
and the range-based partitioning approaches
allocate the tuples according to the hashed
or actual value of a set of specified attributes.
A round-robin partitioning scheme evenly
distributes the tuples across the sites.

Nodes communicate by sending mes-
sages in packets. Packet size varies, but
protocol imposes a maximum. Packets,
which in database processing contain tu-
ples, can be sent between any two nodes in
the system, possibly being routed through
intermediate nodes. In current hypercube
systems, typical internode communication
times are on the order of microseconds.5

Synchronization among nodes can be
achieved either through hardware support

Other hypercube systems use global
hardware lines to synchronize the proces-
sors. A global wired-AND or wired-OR
line is connected to a number of nodes, and
each node has a local input. The global line
value is the logical AND’ing  or OR’ing  of
the local inputs. Synchronization is main-
tained by monitoring the changes in the
global line value. For example, if a “global
AND” line is used, all nodes maintain their
local input value at false throughout the
execution of their local task. A global line
value of true implies that all nodes termi-
nated local execution. Similarly, wired-
OR lines can be substituted for wired-AND
lines by reversing the local line values. The
algorithms presented in this article assume
the availability of global synchronization

The Gamma Project6 is a hypercube da-
tabase engine initially developed for a
ring-based multicomputer. The system
currently runs on an Intel iPSC/2 hyper-
cube comprising 32 80386-based  nodes
with a disk drive per node. Gamma exploits
the available parallel I/O capability by
horizontally partitioning the relations
across the disk drives. The relational-
database operator algorithms presented
in this tutorial differ from those devel-
oped for the Gamma project’ in that they
are not independent from interconnection
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lines. These lines need not be supported by
hardware but may be provided logically by
software.

Other scalable “shared-nothing” archi-
tectures include mesh-based multicomput-
ers and ring-based local area networks.
Each hypercube node requires more com-
munication ports than the nodes making up
meshes and rings, but the hypercube inter-
connection significantly reduces the max-
imal communications diameter as com-
pared with meshes and rings. The maximal
communications diameter in a hypercube
comprising N nodes is log2N as compared
with N/2 and 4N in similarly sized rings
and meshes, respectively.

Hypercube
architectures as
database engines



topology, and hence are actually optimized
for the hypercube interconnection topolo-

?zY.
Database performance is enhanced

whenever the variance in the data distribu-
tion across the various processing sites is
low. Poorly distributed relations result from
individual database operators that favor a
particular value, for example, a selection.
Independent of the data organization, data
skew is likely to result during the processing
of some user queries. For example, consider
the pathological case of a 50-processor
system on which a population database is
partitioned according to states: A range-
based horizontal partitioning scheme based
on the STATE attribute is used, resulting in
each processor accessing data for only a
single state. A query interested in infor-
mation about only the state of Michigan
yields data at only a single processor.
Without redistributing the data, 49 of 50
processors remain idle for the duration of
the query.

Dynamic data redistribution (on-the-fly
data reorganization) preceding each multi-
scan operator in a query tree has been
proposed to guarantee a near-even workload
across the processors. A multiscan opera-
tor is any operator in which the processing
of an individual tuple involves comparing
its attribute value(s) against other tuples.
For example, the Select is not a multiscan
operator since the relevance of the tuple is
independent of any other tuples. However,
both the Join and Project are multiscan
operators because the relevance of each
tuple depends on the values of other tuples:
unique value in the case of Project, and a
similar value in the other joining relation in
the case of Join (see sidebar).

Baru and Frieder*  have demonstrated the
reduction in time resulting from executing
a nested-loop Join on a hypercube instead
of a special-purpose, bus-based architec-
ture. The study also demonstrated that data
redistribution on a hypercube system as
part of the Join can be achieved with low
overhead. A 16-node  hypercube system
using dynamic dataredistribution achieved
roughly a 15 to 80-percent  reduction in
the processing times of various Join com-
putations. The exact savings depended on
the degree of skew in the data distribution.

As databases expand in size and appli-
cations using databases become more di-
verse, the computational engines support-
ing database processing must likewise
continue to improve. Currently, hyper-
cube systems comprising more than 8,000
processors are available commercially.
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Figure 2. Aggregation example.

Thus, for at least the near future, hypercube
systems meet the computational demands
of database processing.

Hypercube database
algorithms: Uniscan
operations

A query tree is a partially ordered se-
quence of operators initiating at the leaves,
with the result of the query obtained on
termination of root execution. The output
relation of the child operator is the input
relation of the parent operator. The rela-
tions accessed by the leaf nodes are called
base relations and typically are physically
stored in the database. All computed rela-
tions, except for the final output, are called
intermediate relations.

The relational operators can be viewed
as being in one of two categories: uniscan
and multiscan operators. Both Join and
Project are examples of a multiscan oper-
ators since each tuple, in turn, is compared
against a set of tuples. However, both Se-
lect and the aggregation operators are
uniscan operators because the processing
of each tuple is independent of the pro-
cessing of any other tuple.

The Select operator. In optimized
query trees, the Select operators are typi-
cally located near the leaf levels of the
query tree. Thus, in a selection on a hori-
zontally partitioned relation, it is common
to assume a uniform distribution of tuples
across the nodes. As Select is a uniscan

operator, each tuple can be processed inde-
pendently. Hence, computing a Select in
parallel requires each node to read its res-
ident tuple set and, for each tuple read,
compare the tuple attribute value against
the desired value. If the node detects a
match, it keeps the tuple.

Aggregation operators. Scalar aggre-
gation operators are an extension to the
relational algebra and include such uniscan
operators as Max, Min, Count, and Aver-
age. In parallel systems, aggregation is
generally performed in two phases. In the
first phase, each node computes its local
aggregate value. Tuples are accessed as
described for the Select operator. In the
second phase, the global aggregate value
is computed by combining all the local
values at the final destination or target
node.

On a hypercube the global aggregation
phase, phase 2, takes n steps and is based
on a common technique called recursive
halving. As the communications diameter
of the hypercube is n,  n steps represent the
minimal number of steps required for the
scalar aggregation, since relevant data can
reside on any node in the cube. In the kth step,
k = 0 ton- 1, nodes whose leftmost k address
bits equal the leftmost k bits of the target
address receive the intermediate aggregate
value from the nodes that differ in address
from the target in the kth bit.

Figure 2 illustrates an eight-node cube
where node 5 (101) is the target node.
Target node designation is specified in the
query. In step a (k = 0), each of the nodes 0
(000), 1 (OOl), 2 (OlO), and 3 (011) sends
itsva1uetonodes4(100),5(101),6(110),
and 7 (11 l), respectively. The receiving
nodes, indicated with the letter a, compute
the new aggregate values. These new val-
ues are used in the second step, step b (k  =
1),wherenodes6(llO)and7(111)send
their values to nodes 4 (100) and 5 (lo]),
respectively. Receiving nodes are marked
by the letter b. Once again, the receiving
nodes compute the new values. Finally, in
step c (k = 2), node 4 (100) sends its value
to node 5 (lOl),  the target node marked by
the letter c, which computes the final re-
s u l t .

Sometimes the user may wish to aggre-
gate values by categories. For example, in
apopulationdatabaseforthe United States,
a user may want the average age of the
population in each state. In such cases, the
aggregation is performed by repartitioning
the data according to attribute values (cat-

(Continued on p. 18)
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Figure 3. Database partitioning for a multiprocessor Join example.

Node 3e
Figure 4. Broadcast-based Join result.

egories), with each node computing the
aggregate for the resident categories. I dis-
cuss data redistribution according to at-
tribute values in later sections.

Multiscan database
operators

Multiprocessor implementations of the
multiscan database operators can be clas-
sified into two main categories: broadcast-
based and bucket-based. The first catego-
ry, broadcast-based, requires thateach  node,
in turn, broadcast its portion of the smaller
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relation, R,  (in the case of a two-relation
operator), or the relation at hand (unirela-
tional operator), to all the system nodes.
All nodes receive the broadcast message
(tuple set) and perform the appropriate
local computation, which involves the res-
ident tuples and the received packet.

Bucket-based solutions include imple-
mentations that rely on sorting and/or
hashing techniques. (Numerous extensions
and modifications to the basic bucket ap-
proach described here appear in the liter-
ature.7.9x’0)  We characterize any operator-
processing approach as bucket-based if the
approach partitions all the data elements
involved in the operation into buckets ac-

cording to their attribute values. Each bucket
corresponds to a range of attribute values,
and only tuples consisting of attribute val-
ues within the given range reside in the
bucket.

This approach has an advantage over the
broadcast-based approach: Only tuples that
are likely to match are compared with one
another. However, this approach suffers
from the need to repartition both relations
for a multirelational operator. Furthermore,
when one relation is significantly larger
than the other, the communication re-
quirements of the bucket approach result in
greater processing time than a broadcast-
based Join. The time involved in partitioning
both relations instead of only the smaller
relation is greater than the savings ob-
tained by eliminating redundant compari-
sons.

An example illustrates both approaches.
Consider a Join of two relations P and Ton
attributeB,R[ABCD]=P[ABC] IxlT[BD],
on a three-node multiprocessor where the
relations are partitioned as shown in Figure
3. In the figure, P is shown as the top
relation. Node 1 contains four tuples, two
of P and two of T. Node 2 contains two P
tuples and two T tuples, while node 3 has
only three T tuples. Clearly the P relation
consists of fewer tuples; hence, we refer to
it as the smaller relation.

A broadcast-based Join algorithm pro-
ceeds as follows. Since P is the smaller
relation, each node in turn broadcasts each
tuple of P to all other nodes. Thus, node 1
will broadcast <I,  6,4>  and <4,9,2>,  node
2 will broadcast<2,6,4>and<3,4,1>,  and
node 3 will not broadcast any tuples. End-
of-tuple transmission is indicated by a de-
fault-value broadcast. All nodes monitor
the transmission and compute the local
Join of the broadcasted tuple value and
their local T tuples. Figure 4 illustrates the
resulting relation.

Continuing with the example, initially
the maximal possible joining attribute(s)
range is computed. This range consists of
actual attribute values and not necessarily
the domain of the joining attribute(s). For
example, the range of B of the “combined”
relation, R, is 1 to 9, designated attr-ran(R.B)
= [1,9].  However, dam(B)  may comprise a
much greater range, say the set of natural
numbers. A tighter bound on maximal attr-
ran(R.B) is the intersection of the regions
attr-ran(P.B) = [4,9] and attr-ran(T.B) =
[ 1,7], namely maximal attr-ran(B) = [4,7].

Once the attr-ran[R.B] is computed, the
corresponding disjoint attribute range is
assigned to each processor. Assigning each
processor an attribute range is accomplished
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either statically or dynamically. In a sys-
tem using static partitioning, the range
attr-ran(B) is partitionedequally across the
processors. Such a partitioning scheme re-
sults in a skewed processor workload
whenever the distribution of attribute val-
ues is biased.

A dynamic partitioning scheme nullifies
the effects of a skewed tuple distribution.
Randomly sampling a small number of the
joining tuples as part of the previous oper-
ation provides a crude histogram of the
data distribution and hence of the proces-
sor workload distribution. Using this in-
formation, the range attr-ran(R.B) is parti-
tioned to yield a near-optimal workload
partitioning of the Join processing across
the processors. However, like all dynamic
load-balancing algorithms, dynamic sam-
pling introduces some overhead. The pre-
cise observed reduction in processing time
depends on the skewness of the data and
various machine-specific parameters, for
example, communications overhead.

The example presented here uses static
partitioning. Nodes 1,2, and 3 are assigned
B attribute value ranges 4-5, 6, and 7,
respectively. All tuples of both relations
are redistributed on the basis of their B
attribute value to reside in the proper buck-
et. When the redistribution terminates, all
processors compute the local Join of their
P and T tuples. Figure 5 illustrates the
resulting tuple distribution for the bucket
Join method. Comparison with Figure 4
shows that both schemes produce the iden-
tical relation; however, the relation-parti-
tioning differs.

The Join operator:
A broadcast-based
solution

Because broadcast-based solutions re-
duce communication costs (transmit less
data) at the expense of redundant compar-
isons, ensuring full processor use is vital.
Baru and Frieder’  describe a three-stage,
broadcast-based Join that guarantees a
nearly even processor workload. First, a
dynamic data-redistribution algorithm re-
ferred to as baluncin~  ensures an even dis-
tribution of input tuples. Incorporating the
balancing step results in a minimal in-
crease in communication costs but roughly
a 35percent  reduction in the overall Join
processing time. Once they are evenly dis-
tributed, the tuples are sorted.

In the second stage, the Relation Com-
paction and Replication (RCR) stage repli-
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Node 1

Figure 5. Bucket-based Join result.

cates  the smaller relation R,,  originally
stored in a cube of dimension n,  so it is
replicated in each of the two equal-sized,
dimension n- 1, logical-cube partitions of
the original cube. This primitive’s goal is
to increase the number of tuples from R,
stored at each node until the volume of RI
tuples present at each node is the size of
one packet, or until R,  has been fully rep-
licated at each node. It ensures that packets
used in the cycling phase are as full as
possible, and that the packet-formation
overhead per tuple is minimized for the
cycling primitive.

Finally, the cycling primitive sends the
tuples of the smaller relation around in a
ring. Local Joins of the resident tuples and
the pipelined circulated relation are per-
formed simultaneously at each node. Often
the design of each node incorporates dual
buffers, so the broadcast of packet i+l can
overlap the local computation of packet i.

Assuming multiple independent com-
munications processors, the balancing of
two relations simultaneously proceeds as
follows. Initially, the local tuple counts of
the relations R, and Rz  are computed.
During each step j (0 <j  5 n-l), the nodes
whose addresses differ in the jth bit ex-
change their local-relation R,  tuple count.
The node with the greater number of tuples
(if any) then sends the difference of the
average tuple count and its own tuple count
of tuples to its paired neighbor. Simulta-
neously, the nodes whose addresses differ
in the ((j+l)  mod n)th bit balance RZ.  The
local tuple counts for R,  and for R, are
then recomputed, and the next step is
initiated. After n steps, all nodes contain
roughly the same number of R,  and R2
tuples. A more complex balancing algo-
rithm that incorporates the sending-node

number can guarantee a difference of one
tuple per node, per relation. Once balanc-
ing is complete, both relations are sorted
locally.

Figure 6 provides a simplified pseudo-
code description of the single-relation bal-
ancing algorithm. Several instructions re-
quire explanation. The send(addr,  data)
and receive(addr, data) send or receive
from nodes whose address is addr the
tuples designated by the set  data .
Rotate-right(num,  count) rotates num’s
binary representation countbits to the right.
Similarly the rotate-left(num,  count) in-
struction in the RCR primitive (Figure 7)
rotates thenum’s binaryrepresentationcount
bits to the left. For example, using a four-
bit representation of 1 (OOOl),  rotate-left
(1, 1) = 2, rotate-right (1, 1) = 8, and
rotate-left (1, 2) = rotate-right (1, 2) = 4.
Finally, Global AND (GAND) is the global
synchronization line value obtained by
AND’ing  all the local synchronization line
values. The ABS, XOR, and CEIL instruc-
tions are the mathematical absolute value,
exclusive OR, and ceiling functions, re-
spectively. The node address bits are num-
bered 0 to n-l.

The second stage of the broadcast Join,
relation compaction and replication, pro-
ceeds as follows. Initially the local tuple
count of the smaller relation, say R,, is
computed. During each step j (0 2 j < n-l),
the nodes whose addresses differ in the jth
bit exchange their local R, tuple count. RCR
is possible if thecombined volume (in bytes)
of Ri tuples in each pairing of nodes does
not exceed the maxima1 size of a single
packet. When possible, all nodes transmit
their tuples to their paired neighbors. While
maintaining a sorted order, the local and
received tuples are merged, and the new
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begin ( BALANCE )

( Redistribute data dynamically according to the volume of data, ensuring a
nearly even workload across the processors.

PREDEFINED FUNCTIONS:
FIRST(k) Function that moves the first k tuples of a

prespecified relation to a stated buffer (send-set)
XOR  (k, j) Bitwise  Exclusive OR of k andj
rotate-right (k, j) Rotate the binary representation of k,  j bits to the right

INPUT: Number of locally resident tuples (own-count)
Local address of the node (X)

PRIOR TO EXECUTION: Relation randomly distributed across nodes

EXECUTION TERMINATION: Evenly distributed relation across nodes )

for j := 0 to n - 1 do begin
send ( XOR( X, rotate-right ( 1, j+l ) ), own-count );
receive ( XOR( X, rotate-right ( 1, j+ 1 ) ), neighbor-count );

( Simultaneously equate the tuples across each node pair. )
if ABS ( own-count - neighbor-count ) > 1 then begin

avr := CEIL ( [ own-count + neighbor-count ] / 2 );

if own-count > neighbor-count then begin
send-set := FIRST ( own-count - avr );
send ( XOR( X, rotate-right ( 1, j+l ) ), send-set );

lot-tuple-set  := lot-tuple-set  - sent-set;
own-count := own-count - I send-set I;

end
else begin

receive ( XOR( X, rotate-right ( 1, j+ 1 ) ), receive-set );

lot-tuple-set  := lot-tuple-set  + receive-set;
own-count := own-count + I receive-set I;

end
end

end ( for )
end ( BALANCE )

Figure 6. Data-balancing pseudocode.

tuple count is computed. RCR continues
until either n RCR steps have occurred or
the single-packet limitation is exceeded.
Each successful RCR step results in the
duplication of the smaller relation. After j
successful RCR steps, a copy of Rt  is res-
ident in each of 2j(n-51 dimensional hy-
percubes. Figure 7 shows a pseudocode
description of the RCR stage.

The final stage, called cycling, creates a

20

Hamiltonian cycle within each logical cube
partition generated by the RCR primitive,
and pipelines the data packets throughout
the cycle. Only those address bits not used
in the RCR step are considered when
forming the cycle. All nodes within each
formed cycle have the identical bit values
in the iteration rightmost address bits. A
Hamiltonian cycle can be dynamically
generated with reflexive Gray codes, as

shown in Figure 8.  Execut ing the
pseudocode results in a reflexive Gray code
ring in Send-Array. Given any node num-
ber, say stored at Send-Array [i], its left and
right ring neighbors are the values at
Send-Array [i - l] and Send-Array [i + 1 I,
respectively.

We now work through an example. Con-
sider two relations partitioned over an eight-
node hypercube, N = 8 and n = 3. Figure 9
shows the initial distribution of the 24-
tuple relation R2  (upper portion of each
bin) and 16-tuple  relation R,  (lower por-
tion of each bin). Initially, the balancing
stage is used, resulting in a uniform distri-
bution of both R2  and RI. As shown in
Figure 10, in steps 1,2,  and 3 a maximum
of two, one, and one tuples, respectively,
are transferred in a neighbor pairing. The
figure illustrates two relations being bal-
anced simultaneously. Assuming a maxi-
mum packet limitation of four tuples -
because there are two R, tuples after bal-
ancing at each node - a single RCR step
is possible. After the RCR step, two full
copies of the smaller relation exist. The
first copy of R,  is partitioned over nodes 0
(000), 2 (010)  4 (loo),  and 6 (1 lo),  while
the second copy spans nodes 1 (OOl), 3
(Oil),  5 (101)  and 7 (111). Note that a
sorted order is maintained. Finally, a
Hamiltonian cycle is generated in each of
the smaller cubes - (OOO-+  010 + 110 +
100~OOO)and(001  +Oll+lll  +lOl
+ 001) - and the compacted smaller
relation is circulated in both cubes simulta-
neously. Figure 11 gives the resulting re-
lation.

The Join operator: A
bucket-based solution

Nearest neighbor pairing algorithms -
for example, the balancing algorithm pre-
sented in Figure 6 -can implement buck-
et-based Joins. Initially all nodes sort their
local tuple set of both relations based on
the joining attribute values. In bucket-based
Join algorithms, instead of computing the
average number of tuples between each
pair of nodes, at every node-pairing step j
(0 <j  I n-l), each node partitions its tuple
set into two. The first set Sr  consists of all
tuples whose attribute values are assigned
to hypercube nodes whose jth bit address is
0. All remaining tuples areplacedin Sz.  With
a sorted tuple set, partitioning the tuples
into two sets only requires finding the
boundary condition.

During each step j (0 <j  I n-l), nodes

COMPUTER



iegin ( RELATION COMPACTION REPLICATION ]

Replicates a relation partitioned across the nodes of
Q,!  into each Q,,+,.  Via replication, the number of
nodes required for the later stage, cycling, is halved.
Replication continues until packet limitation is reached.

PREDEFINED FUNCTIONS:
FIRST ( k ) Function that moves the first k tuples

of a prespecified relation to a
stated buffer (send-set)

XOR  (k, j) Bitwise Exclusive OR of k and j
SYNCH (GAND) Global AND’ing  of all local

feeds (GAND,,,)
rotate-left (k, j) Rotate the binary representation

of k, j bits to the left

INPUT:

PRIOR TO
EXECUTION:

Local address of the node (X)

Relation distributed across all
nodes in Q,

EXECUTION
TERMINATION: 2iterarion  copies of the relation, each

partitioned over a disjoint en-iteration  ]
GAND,,,  := true;
iteration := 0;

SYNCH(  GAND );

While GAND and ( iteration $ n - 1 ) do begin

( Inform neighbor of own count )
f-send ( XOR( X, rotate-left ( 1, iteration ) ),

own-count );
f-receive ( XOR( X, rotate-left ( 1, iteration ) ),

neighbor-count );

( Determine if compaction / replication is possible ]
if (own-count + neighbor-count) z
MAX-TUPLES-IN-PACKET
then GAND,,,  := false;

SYNCH(  GAND );

if GAND then begin ( step is possible )

send ( XOR( X, rotate-left ( 1, iteration ) ),
tuple-set );

receive ( XOR( X, rotate-left ( 1, iteration ) ),
receive-set );

iteration := iteration + 1;
tuple-set := tuple-set u receive-set;
own-count := own-count + I receive-set I;

end
end ( step possible )

end [ while )
end ( RELATION COMPACTION REPLICATION )

begin ( GENERATE CYCLE ]

( Generate a routing table that yields a reflexive
Gray code in each of thee,-iteration  that resulted
from the RCR step.

INPUT: Cube dimension (dimension-cube)

OUTPUT: Reflexive Gray code routing table )

Send-Array [ 0 ] := 0;
Send-Array [ 1 ] := 1;
curr-num-nodes := 2;

For dimen  := 2 to dimension-cube do begin

curr_num-nodes  := curr-num-nodes x 2;
j :=  -1  ;

For i := ( curr-num-nodes / 2 ) to
curr-num-nodes - 1 do begin

j:=j+2;
Send-Array [ i ] := Send-Array [ i -j ]

+ curr-num-nodes / 2;
end;

end;
end: [ GENERATE CYCLE )

Figure 8. Cycle-generation pseudocode.

Figure 7. Pseudocode for relation compaction replication. Figure 9. Initial data distribution.

November I990 21



1 0 1

<I,  c>

<7.a>3<6,d><9,  a>

(a) (b)

100

<a, a>

<6,b>

<9,  a>

-I

<4,x>

<13.z>

000
<I,&

<6,a>

4,  c>

I-
<10,x>

<lO,Y>

<lO,Z>

<15,x>

c3,d>

<5,a>

0 1 0

<2,a>

<2,0

<16,a>I-<3,x>4,  x>

<12,x>

<12,Y>

(d)

Figure 10. Broadcast-based Join (balancing: (a) step 1, (b) step 2, and (c) step 3).
(d) represents the RCR stage.

Figure 12 shows a pseudocode descrip-
tion of the bucket data redistribution for a
single relation. As with the balancing oper-
ation, both relations can be redistributed in
parallel, with the one relation using linkj at
stepj, while the second uses link (j+  1) mod
n at step j. In this algorithm, however, ei-
ther the portion of the algorithm that se-
lects the buckets to exchange during each
node-pairing step or the attribute-range-
to-bucket-number assignment must be
modified in the code that simultaneously
repartitions the second relation. Also, in
both the balancing and the bucket redistri-
bution algorithms, simultaneous redistri-
bution of both relations does not require
separate links. If the two relations can be
separated efficiently, both relations can be
routed together on the same link. However,
given independent communications pro-
cessors and buffers, the use of multiple
links generally reduces the data-transfer
time. (Omiecinski and Tien describe a
similar repartitioning algorithm that uses
hashing to redistribute the relations.iO)

whose n-jth address bit is 0 keep S i and send logical buckets a through b, inclusive, into
S2.  Similarly, nodes whose n-jth address bit

With the example in Figure 8, using a
send-set.

is 1 keep S2  and send S,.  All nodes receive
bucket Join algorithm that simultaneously

After n pairing steps, each node contains redistributes both relations results in the
the sent tuples and merge them with those only tuples whose joining attributes fall
kept tuples. Sorted order is maintained.

following: In each of the three steps, a
within a disjoint subrange  of the joining

The GET-BUCKET(a, b) primitive places
maximum of 5,4,  and 3 tuples, respective-

domain. Once both relations are redistrib- ly, are routed in any internode communica-
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Figure 11. Final distribution of broad-
cast Join.

uted, the local Join computation proceeds
in parallel at each node.



tion. Note the significant difference be-
tween the maximal tuple transfer in the
partitioning algorithm compared with the
tuple-balancing algorithm. Figure 13 shows
the result relation of the Join computation.
As required, both Join approaches result in
the same relation; however, the final distri-
bution varies.

Characterizing
performance
potential

Here, 1  present experimental timings
obtained from a portable hypercube-based
database system. The system implementa-
tion issues are beyond the scope of this
tutorial but can be found in an upcoming
publication. It The evaluation focuses on
only the two Join approaches presented
here and includes a comparison of the tim-
ings obtained when the balancing step in
the broadcast Join is omitted. Only timings
for the Join operator are provided since the
processing time of the Join greatly exceeds
that of other common relational operators,
making it the computational performance
bottleneck in database processing.

I emphasize computational to differenti-
ate between the l/O and CPU demands
associated with database processing. The
parallel l/O demands are commonly han-
dled through parallelization of the Select
operator, because the Select operators typ-
ically precede all other database operators
in optimized query trees. No interproces-
sor communication exists in the Select op-
erator, so performance measurements are
not provided.

The timings presented were obtained us-
ing macros developed at Argonne National
Laboratories” executing on an Encore
Multimax  running the Umax 4.2 operating
system. These macros provided a fully
portable, simulated, distributed-memory
environment, allowing for system porta-
bility and independence from the hardware
limitations of a particular vendor. The abil-
ity to vary hardware parameters comes at
the expense of simulative overhead. Al-
though the assumed hypercube architec-
ture was simulated, all the database algo-
rithms actually executed as though they
were running on an actual hypercube. The
Multimax  configuration consisted of 16
processors, enabling each logical hyper-
cube node to execute on a dedicated node
in the Multimax. As the total system mem-
ory comprised 128 Mbytes, the entire data-
base was memory resident.

begin { BUCKET )

( Redistributes data by attribute(s) values. Each bucket has a nonoverlapping
subset of the global attribute domain. The union of the attribute value range
of all the buckets is the global domain. Assumed is that all local tuples are
already partitioned into local buckets and must only be routed to the
appropriate processor.

PREDEFINED  FUNCTIONS:

GET-BUCKET (k , j)

XOR (k, j)
rotate-right (k, j)

merge ( Y, buckets )

Function that moves all the tuples assigned
to buckets k through j inclusive to
a stated buffer (send-set)

Bitwise Exclusive OR of k and j
Rotate the binary representation of k, j bits

to the right
Mark the corresponding bucket for each

tuple in buffer Y and move to the
appropriate memory location

INPUT: Local address of the node (X)

PRIOR TO EXECUTION: Relation randomly distributed across node:

EXECUTION TERMINATION: Tuples distributed across nodes according
to attribute value )

first := 0;
last := N - 1;

f o r j : = O t o n - l d o b e g i n

( Select buckets to send I
if Xb]  = 0 then begin

send-set := GET-BUCKET ( (first + last + 1)/2,  last );
last := (first + last - 1)/2;

end
else begin

send-set := GET-BUCKET ( first, (first + last - 1)/2  );
first := (first + last + 1)/2;

end
end

send ( XOR( X, rotate-right ( I, j+l ) ), send-set );
receive ( XOR( X, rotate-right ( I, j+l ) ), receive-set );

( Place received tuples into appropriate local bins I
merge ( receive-set, local-buckets );

end ( for )
end ( BUCKET )

Figure 12. Bucket-based partitioning pseudocode.
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Figure 13. Bucket-based Join example: (a) step 1, (b) step 2, and (c) step 3. Part
(d) represents the final result (bucket).

The emulative overhead significantly paring the two presented Join approaches.
affects the actual timings observed in terms Because we are interested only in seeing
of absolute time. Hence, these timings the similarities and differences between
should not be used for comparison against these Join approaches, runs of a standard
other systems, but only as a tool for com- benchmark data set are not presented. In-

2 4

stead, a synthetic database that better illus-
trates the behavior of the presented ap-
proaches was constructed.

The database comprised relations of four
different sizes: lK,  lOK, lOOK,  1M  tuples.
Each tuple had 24 bytes. Relations were
randomly generated using a uniform-at-
tribute value distribution. The tuples of
each relation were horizontally partitioned
across the nodes using either a uniform
(marked as “uniform” on the graph) or a
bimodal skewed distribution (marked as
“skewed” on the graph).

Results for multiple-size Joins are pre-
sented: 1OKx 10K (uniform), 1OOKx  1OOK
(uniform), 1OOK  x 1OOK  (skewed), 10K x
1OOK  (uniform), 1K  x 1M  (uniform), and
IK x 1M  (skewed). Each Join algorithm
was run on four different hypercube con-
figurations: two, four, eight, and 16 nodes.
By definition, the smallest hypercube is of
dimension 1, so single-node runs are not
included in the timing presentation.

In general, the broadcast-based Join, as
compared with a bucket-based Join, reduc-
es the required communication at the ex-
pense of redundant computation. Redun-
dant comparisons in the broadcast Join
result from the unnecessary comparison of
every tuple in the smaller relation, Ri,
against all tuples in the larger relation, RI.
In the bucket-based Join, each tuple in R2
is compared with only the relevant portion
of RI. In terms of communication require-
ments, unlike the bucket Join where both
relations must be redistributed, the com-
munication demands of the broadcast Join
require that only R1 be routed. Thus, when
R, and R2  are comparable in size, the bucket
Join is better. However, if the difference in
the communication times for the two Join
approaches is significant (Ri is much
smaller than Rz), the broadcast Join is bet-
ter. The precise size disparity is based on
the degree of data skew and various system
parameters.

The timing results summarized in Fig-
ures 14a through 14f coincide with size
disparity intuition. The scalability of the
bucket Join exceeds that of the broadcast
Join when the relations are comparable in
size (Figures 14a-c),  and the broadcast
Join is superior when the relations differ in
size (Figures 14c-f).

The graphs also show the performance
obtained when the balancing step is not
performed as part of the broadcast Join.
When the tuples are uniformly distributed
across the nodes, the overhead of balanc-
ing is negligible, but the reduction in
processing time resulting from the balanc-
ing step is also negligible (Figures 14a, b,
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Figure 15. Theta-Join example.

begin ( Bucket-Based Less-Than Theta-Join ]

( Redistributes data of the smaller relation according to attribute(s) values
for a LESS-THAN Theta-Join.

PREDEFINED FUNCTIONS:
XOR  (k j) Bitwise  Exclusive OR of k and j
rotate-right (k, j) Rotate the binary representation of k,  j bits to the right

INPUT: Local address of the node (X)
An array indicating the lower bound of each bucket of

the larger relation (bounds)
An ordered set comprising all the tuples of the smaller

relation that are resident at the node (tuples).
tuples [i].attribute  is the joining attribute value of
tuple i .

PRIOR TO
EXECUTION: Larger relation distributed according to attribute values

Smaller relation randomly distributed

EXECUTION
TERMINATION: Tuples distributed as required by Theta-Join ]

first := 0;
las t :=N- 1;
forj:=Oton-ldobegin

send-set := 0 ;
num-tuples := I tuples I;
if Xlj] = 0 then begin

for i := 1 to num-tuples do begin
send-set := send-set u tuples [i];
if tuples [i].attribute > bounds [(first + last + 1) / 21  then

tuples := tuples - tuples[i];
end ( for )

last := (first + last - 1)/2;
end ( then )
else begin

for i := 1 to num-tuples do
if tuples [i].attribute < bounds [(first + last + 1) / 21  then

send-set := send-set u tuples [i];
first := (first + last + 1)/2;

end ( else )

send ( XOR( X, rotate-right ( 1, j+l ) ), send-set );
receive ( XOR( X, rotate-right ( 1, j+l ) ), receive-set );
tuples := tuples u receive-set;

end [ for ]
end ( Bucket-Based Less-Than Theta-Join )

Figure 16. Theta-Join data-redistribution pseudocode.

26

d, and e). In fact, if the original tuple
distribution is exactly even across the nodes,
balancing will increase the total process-
ing time. The observed minima1 perfor-
mance improvement results from the exist-
ence of some variance, albeit low, in the
number of tuples resident at each node.
However, as the variance of the tuple dis-
tribution increases (Figures 14b and f), the
savings resulting from balancing become
substantial. Thus, at least when faced with
a skewed distribution of tuples across the
nodes, the balancing step should be incor-
porated as part of the broadcast Join. All
the results show that in a database system
both Join algorithms should be implement-
ed. The system should choose the approach
to employ, depending on the input data set.

The Project operator
Similar to an aggregation operator, com-

puting a Project operator (a multiscan, uni-
relational operator) involves two stages:
local and global duplicate-tuple elimina-
tion. The first stage is local tuple elimina-
tion. Traditionally, local elimination re-
quires each processor to sort its resident
tuples and remove the duplicates. The
second stage eliminates internode dupli-
cates. As the communication requirements
of the Project operator are a subset of the
Join, either a broadcast or an attribute-
partition scheme is possible.

If broadcasting is used, data replication
is unnecessary because Project is a unire-
lational operator. Hence, instead of RCR,
only relation compaction is required. That
is, in each node pairing, the projected rela-
tion is compacted to only a single node, as
in the aggregation algorithm. At each com-
paction, local duplicates are removed. Once
relation compaction terminates, the cycling
primitive is applied. In cycling, a copy of
the compacted, projected relation is circu-
lated. All nodes compare simultaneously
their tuple set against the circulated tuples.
If a duplicate is found, the local node num-
ber is compared with the node number
generating the circulated tuple set. The
local tuple is eliminated if the local node
number is smaller.

A bucket-based Project implementation
is nearly identical to a bucket-based Join
algorithm. As in the Join, the domain is
partitioned across the processors and the
tuples are routed to the appropriate proces-
sor. To reduce the data routed, after each of
the n steps, local duplicate elimination is
performed. Thus, duplicates are eliminat-
ed as soon as possible.

COMPUTER



Additional operators

Common set operators such as Union.
Intersection, and Difference are typically
incorporated into database systems. These
multiscan operators can be implemented
using the data-redistribution algorithms
previously described. For example, the
union of relations R[XYZ] and S[XYZ],
written T(XYZ]  = R[XYZ] u S[XYZ],  can
be implemented by defining the new rela-
tion T[XYZ] as all the tuples of R and all
the tuples of S, and then eliminating the
duplicates in T, as in the Project operator.

TheIntersectionofR[XYZ]andS[XYZ],
T[XYZ]  = R[XYZ] n S[XYZ], is the Join
of the two relations in which only those
tuples that match in all the attributes are
kept, namely R.X  = S.X, R.Y = S.X, and
R.Z = S.Z. Finally, the difference of R and
S, T[XYZ]  = R[XYZ] - S[XYZ],  is com-
puted as a Join where only those tuples of
R that do not join with any tuples in S are
maintained.

Another popular operator that includes
the Join described above as a special case
is the Theru-.loin. The Theta-Join of rela-
tions R[X] and SLY],  where X n Y = 0. A
E  X, B E  Y, and 8 E  (=, f, <.  I, >,  >),
written R[A 8 B]S,  is defined as T[XY] =
(x I y E  R,:  E  S. such that y[A] (3 -[B],y  =
.r(X], and : = .v[Y]  ). Modifying a broad-
cast-based Join algorithm to encompass all
the Theta-comparators requires only that
the local equality comparison presently
made at each node be replaced by the ap-
propriate Theta-comparator.

Because a Theta-Join may require tuples
in an attribute range to be compared against
tuples in a set of attribute ranges, altering a
bucket-based Join algorithm to support
Theta-comparators requires not only that
the local equality comparator be replaced
by the appropriate Theta-comparator but
that the actual tuple-redistribution algo-
rithm be changed to support comparisons
between an attribute range and multiple
other attribute ranges.

Consider a Theta-Join where the com-
parator operator is Less Than. Relations
R[ABC] and S[DE] are joined so R[B <
D]S. Then, all the R tuples that map to
bucket 2 based on the B attribute must be
compared against all the S tuples that map
to buckets 2 through N inclusive based on
the D attribute, as illustrated in Figure 15.

The algorithm proceeds as follows. Ini-
tially, relation S is partitioned according to
attribute values using the algorithm in Fig-
ure 12. Then, using the same bucket rang-
es, relation R is partitioned into buckets so

November 1990

all tuples in bucket i (1 2 i 5 N) are routed
to those processors that contain bucketsj  (i
C: j I N) of relation S. Figure 16 shows a
pseudocode description of an algorithm
that achieves the necessary bucket-based
Theta-Join data routing. In contrast to the
algorithm in Figure 12, where no addition-
al copy of the data is generated, here mul-
tiple copies of the data assigned to the
lower numbered buckets are produced, re-
sulting in a vast volume of internode data
transfer. Algorithms for the remaining
Theta-Join comparators likewise result in
a vast replication of data.

0
perator implementation is crucial,
but fully exploiting multiproces-
sors in database processing in-

volves numerous additional database con-
cerns not discussed in this tutorial. Such
topics as data placement, execution-site
selection. query optimization, security, and
recovery must be addressed before large-
scale (thousands of processors) multipro-
cessor database systems become an alter-
native to high-performance mainframe
solutions for very large databases and com-
plex database-based applications. n
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