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ABSTRACT General Terms

We propose several novel localized algorithms to construct energy Algorithms, Design, Theory
efficient routing structures for homogeneous wireless ad hoc net-
works, where all nodes have same maximum transmission rangeS'KeyWOFdS
Our first structure has the following attractive properties: (1) It

is energy efficient: given any two nodesandv, there is a path ~ Wireless ad hoc networks, topology control, bounded degree, pla-
connecting them in the structure with total energy cost at most Nnar, spanner, efficient localized algorithm, power assignment.

p = W times of the energy cost of any path connect-

ing them in original communication graph; (2) Its node degree is 1. INTRODUCTION

bounded from above by a positive constant 5 wherek > 6 is Wirelessad hocnetworks have been undergoing a revolution that
an adjustable parameter; (3) It is a planar structure, which enablespromiseS to have a significant impact throughout society, one that
several localized routing algorithms; (4) It can be constructed and coyld quite possibly dwarf milestones in the information revolu-
maintained locally and dynamically. Moreover, by assuming that tjon. Unlike traditional fixed infrastructure networks, there are no
the node ID and its position can be represented(iog n) bits centralized control ovead hocwireless networks, which consist

for a wireless network of. nodes, we show that the structure can  of an arbitrary distribution of radios in certain geographical area.
be constructed using at mastn messages, where each message is |n Ad hocnetworks, mobile devices can communicate via multi-
O(log n) bits. Our second method improves the degree boukdto  pop wireless channels, a node can reach all nodes in its transmis-

. . . 8 . - !
relaxes the theoretical power spanning ratip te % sion range, while two far-away nodes communicate through the
— sin 3

wherek > 8 is an adjustable parameter, and keeps all other proper- Messages relaying by intermediate nodésd hocwireless net-
ties. We show that the second structure can be constructed using /0TS intrigue many challenging research problems, as it intrin-
most3n messages, where each message has si2¢log 1) bits. sically has many special characteristics and some unavoidable lim-

We also experimentally evaluate the performance of these new itations, compared with other wired or wireless network. An im-
energy efficient network topologies. The theoretical results are cor- Portant requirement of these networks is that they should be sel-
roborated by the simulations: these structures are more efficient in©r92nizing, i.e., transmission ranges and data paths are dynamically
practice, compared with other known structures used in wireless adestructured with changing topology. Energy conservation and net-
hoc networks and are easier to construct. In addition, the power WOk performance are probably the most critical issueadrhoc

assignment based on our new structures shows low energy cost andViréless networks, because wireless devices are usually powered

small interference at each wireless node. by batteries only and has limited computing capability and mem-
ory.
) ] ] The topology controltechnique is to let each wireless device
Categories and Subject Descriptors locally adjust its transmission range and select certain neighbors

for communication, while maintaining a structure that can support
energy efficient routing and improve the overall network perfor-
mance. By enabling each wireless node shrinking its transmis-
sion power (which is usually much smaller than the maximal trans-
“Department of Computer Science, llinois Institute of Tech- mission power) to sufficiently cover the farthest selected neighbor,
nology, Chicago, IL 60616, USA. Email songwen@iit.edu, topology control can not only save energy and prolong network
wangyul@iit.edu, xli@cs.iit.edu, ophir@ir.iit.edu. life, but also can improve network throughput through mitigating
the MAC-level medium contention. Unlike traditional wired net-
work and cellular wireless networks, the wireless devices are often
moving during the communication, which could change the net-
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ferent properties, however, none of them can achieve all three pre-2.1  Network Model

ferred properties for unicast applications on wireless ad hoc net- A wireless ad hoc network (or sensor network) consists of a set
works: power spanner, planar, degree-bounded. Until recently, 1/ of , wireless nodes distributed in a two-dimensional plane. Each
Wang and Li [13] proposed a localized algorithm to build a degree- pode has the sammaximumtransmission rang®. * By a proper
bounded planar spanner both in centralized and distributed way, scaling, we assume that all nodes have the maximum transmission
which is based on the combinationlotalized Delaunay triangu- range equal to one unit. These wireless nodes defimeitadisk
lations (LDel) [14] andY ao structure [15]. It is the first localized graph U DG(V') in which there is an edge between two nodes iff
algorithm that can achieve all the three desirable features. How- their Euclidean distance is at most one. In other words, we assume
ever, the theoretical node degree of their structure can rzaah that two nodes can always receive the signal from each other di-
the worst case; and the communication cost of their method can rectly if the Euclidean distance between them is no more than one
be large, although it is shown that the total number of messages nit. Hereafterl/ DG(V) is always assumed to be connected. We
is O(n), the hidden constant could be as high as several hundredsy|sp assume that all wireless nodes have distinctive identities and
since the method needs to collect théop information for every  each wireless node knows its position information or the distance
node. ] to another node either through a low-power Global Position System
In the paper, we propose two novel methods to build a power (Gps) receiver or some other ways. More specifically, in our proto-
efficient planar structures with much less communication costs and ¢q|. it is would be enough if each node knows the relative position
lower node degree bounds. Our first structure has the following of jts one-hop neighbors. The relative position of neighbors can be
attractive properties: estimated by theirection of signal arrivaland thestrength of sig-
nal. By one-hop broadcasting, each nadean gather the location

1. Itis power efficient. given any two nodesandv, there is information of all nodes within its transmission range.

a path connecting them in the s_tructure with total power cost In the most common power-attenuation model, the power to sup-
no more tharp = — times of the power cost of

1
_1—(2sin )P port a linkuv is assumed to bguw ||, where||uv || is the Euclidean
any path connecting them in UDG; distance between andv, § is a real constant betwe@rand5 de-

. - ending on the wireless transmission environment.
2. Its node degree is bounded from above by a positive constantp 9

k + 5 wherek > 6 is an adjustable parameter; 2.2 Preferred Properties

Wireless ad hoc network topology control schemes are to main-
tain a structure that can be used for efficient routing [10, 9] or im-
prove the overall networking performance [1, 2, 6], by selecting a

4. 1t can be constructed and maintained in localized and dy- Subset of links or nodes used for communication. In the literature,

namic way. the following desirable features are well-regarded and preferred in

wireless ad hoc networks:

Moreover, by assuming that the node ID and its position can be  Power Spanner In ad hoc wireless networks, two far-apart
represented i@ (log n) bits for a wireless network of nodes, we nodes can communicate with each other through the relay of inter-
show that the structure can be constructed using at fesmes- mediated nodes; hence, each node only need set small transmission
sages, where each messag€©idogn) bits. Our second method  ranges. This has two advantages: (1) reducing the signal interfer-
reduces the degree boundipand keeps all other properties, ex- ence (2) saving power for transmission. To guarantee the advan-
cept that the theoretical power spanning ratio is relaxed te tage, a good network topology should be energy efficient, that is to

V2’ __, wherek > 8 is an adjustable parameter. We show say, the total power consumption of the shortest path (most power
1-(2V2sin )7 . efficient path) between any two nodes in final topology should not
that the second structure can be constructed using atngses- exceed a constant factor of the power consumption of the shortest

sa\g,;\;as, \I/vhere ea(_:h meslTage hlas s'iﬁ(tﬁg”% bits. f th path in original graph. Given a path v - - - v;, connecting two
e also experimentally evaluate the performance of these new o 4ag, anduw,, the energy cost of this path E;;l ;0741

energy efficient network topologies. The theoretical results are cor- The path with the least energy cost is called the shortest path in a
roborated in the simulations: our new structures are more efficient graph. Formally speaking, a subgrafihis called apower spanner

in practice and easier to construct, compared to other known struc-of a graphG if there is a p’ositive real constaptsuch that for any
tures used in wireless ad hoc networks. By shrinking the trans- ;o nodes. the power consumption of the shortest patH iis at
mission range of each node to reach the farthest neighbors in OUNost )y timés of the power consumption of the shortest patt¥in
new structures, the experiment shows each node indeed costs |°W|'he constan is called thepower stretch factarA power spanner
energy and has small number piiysical neighbors The physi- is usually energy efficient for routing.

cal neighborsare those nodes within its transmission range, and Obviously, for any weighted grapf and a subgraplil C G
smaller number ophysical neighborsneans less interference. we have ' =

The rest of the paper is organized as follows. In Section 2, we
describe some most preferred properties of topology control pro- LEMMA 1. SubgraphH of a graphG has stretch factop if
tocol in wireless ad hoc networks and review the priori arts in this and only if for any linkuv € G, dx (u,v) < p - da(u,v), where
area. We then present our two localized methods, in Section 3, da(u,v) is the total power consumption of the shortest path be-
to construct degree-bounded planar power spanners fo6 (V') tweenu andv in G.
with total communication cosD(n) under the broadcasting com-
munication model. In Section 4, we conduct extensive simulations
to validate our theoretical results. Finally, we conclude the paper in
Section 5.

3. Itis a planar structure, which enables several localized rout-
ing algorithms;

Lemma 1 implies that, to generate a power efficient structure, we
only need to guarantee that any two adjacent nadesdv in G are
connected by a path i with energy cost no more than a constant
factor of the cost of linkuw.

!n practice,R can be defined as the minimum of all the maximum
2. PRELIMINARIES node transmission ranges.



Degree Bounded It is also desirable that the node degree in the
constructed topology is small and bounded from above by a con-
stant. A small node degree reduces the MAC-level contention and
interference, also may help to mitigate the well known hidden and
exposed terminal problems. Especially in Bluetooth based wireless
ad hoc networks, themastemode degree is preferred be less tfian
according to Bluetooth specifications, to maximize the efficiency.
In addition, a structure with small degree will improve the overall
network throughout [16].

Planar: Many routing algorithms require the planar topology to
guarantee the message delivery, sucBaedy Perimeter Stateless
Routing(GPSR) [9],Greedy Face RoutingGFG) [10], Adaptive
Face RoutinAFR) [11], andGreedy Other Adaptive Face Routing
(GOAFR) [12].

Efficient Localized Construction: Due to the limited resources
and high mobility of the wireless nodes, it is preferred that the un-
derlying network topology can be constructed and maintained in
a localized manner. Here a distributed algorithm constructing a
graphG is alocalized algorithmif every nodeu can exactly de-
cide all edges incident on based only on the information of all
nodes within a constant hops of More importantly, we expect
that the total communication cost of the algorithm($n) mes-
sages, where each messag®idog n) bits; the time complexity
of each node running the algorithm is at m@Xtd log d), whered
is the number of 1-hop or 2-hop neighbors.

2.3 Priori Arts

Several structures (such as relative neighborhood graph RNG,
Gabriel graph GG, Yao structure, etc) have been proposed for topol-
ogy control in wireless ad hoc networks. Thredative neighbor-
hood graph denoted byRNG(V') [17], consists of all edgesv
such that the intersection of two circles centered: &ndv and
with radius||uv|| do not contain any vertex from the sefl’. See
Figure 1(a) Th&sabriel graph[18] GG (V') contains edgew if and
only if disk(u,v) contains no other points of, wheredisk(u, v)
is the disk with edge.v as a diameter. See Figure 1(b). Denote
GG(UDG) and RNG(UDG) as the intersection ot/ DG(V)
with GG(V') and RNG(V) respectively. BothGG(UDG) and
RNG(UDG) are connected, planar, and contain the Euclidean
minimum spanning tred/ ST of V. Delaunay triangulation, de-
noted byDel, is also used as underlying structure by several rout-
ing protocols. Here a triangl&uvw belongs to Delaunay tri-
angulationDel if its circumcircle does not contain any node in-
side. LetDel(UDGQG) be the set of edges in Delaunay that is also
in UDG. It is well known thatRNG(UDG) C GG(UDG) C
Del(UDG). The structureDel (U DG) has bounded length span-
ning ratio [14]; bothRNG(U DG) andGG (U DG) are not length
spannersGG(U DQG) is power efficient.

TheYao graph15] with an integer parametér > 6, denoted by
Y—ka(UDG), is defined as follows. At each nodeanyk equally-
separated rays originatingatefinek cones. In each cone, choose
the shortest edgev € UDG (V') among all edges emanated from
u, if there is any, and add a directed lik. Ties are broken ar-
bitrarily or by ID. See Figure 1(c). The resulting directed graph
is called theYao graph Let Y G (U DG) be the undirected graph

by ignoring the direction of each link iIh’-dk(UDG). Some re-
searchers used a similar construction naepaph [19, 20], the

(@) RNG (b) GG
Figure 1: The definitions of RNG, GG, and Y G. The shaded
area is empty of nodes inside.

and ©(y/n) respectively. Actually, they are at most— 1 and

v/n — 1 [22]. Moreover, in [3], Li,et al. showed that the power
stretch factor of RNG is — 1 while the power stretch factor of GG

is 1. Recently, some researchers [3, 8] proposed to construct the
wireless network topology based on Yao graph. It is known that the
length/power stretch factor and the node out-degree of Yao graph
are bounded by some positive constants. But &t kl. mentioned

in [3], all these three graphs can not guarantee node degree bounded
(for Yao graph, the node in-degree could be as larg®@s)). In

[3, 4], Li, et al. further proposed to use another sparse topology,
Yao and Sinkthat has both a constant bounded node degree and a
constant bounded length/power stretch factor. However, all these
graphs [3, 4, 8] are not guaranteed to be planar. In [14]eki,

al. proposed a planar spannecalized Delaunay triangulations
(LDel), and in [23] Gacet al. proposed a planar spanrieestricted
Delaunay Graptor wireless ad hoc networks. Unfortunately, both

of them might result in an unbounded node degree.

Boseet al[24] proposed a centralized method with running time
O(nlogn) to build a degree-bounded planar spanner for a two-
dimensional point set. They construct a plariapanner for a given
nodes seV/, fort = (1 + 7) - Cqe; ~ 10.02, such that the node
degree is bounded from above By. Hereafter, we us€’'y.; to
denote the spanning ratio of the Delaunay triangulation [25, 26,
20]. However the distributed implementation of this centralized
method take®)(n?) communications in the worst case for a et
of n nodes.

Recently, Wang and Li [13] proposed the first efficient localized
algorithm to build a degree-bounded planar spam&rS (U DG)
for wireless ad hoc networks. It has a length spanning ratio
max{F,7sin § + 1} - Caer(1 + €), and each node has degree at
most19+[27]. Here0 < o < /3 is an adjustable parameter, and

Cae < 4—\9/§7r is the spanning ratio of the Delaunay triangulation.
Though their method can achieve all these three desirable features:
planar, degree-bounded, and power efficient, the theoretical bound
on the node degree of their structure is a large constant. For exam-
ple, whena = 7/6, the theoretical bound on node degrefisin
addition, the communication cost of their method can be very high,
although it isO(n) theoretically, because it needs to collect the
2-hop information for every wireless node. Even as mentioned in
[13], the method by Calinescu [27] to collezhop neighbors infor-
mation takegD(n) messages, however the hidden constant can be
as high as several hundreds. Concerning this large communication
cost and the possible large node degree, we propose two communi-
cation efficient methods to construct small degree-bounded planar
power efficient structures, which are more practical in wireless ad
hoc networks. The construction of our second structure only needs

difference is that it chooses the edge which has the shortest projec—4t mostsn messages.
tion on the axis of each cone instead of the shortest edge in each

cone.
In [10, 9], relative neighborhood graph and Gabriel graph are

used as underlying network topologies. However, Bes@]. [21]

proved that the length stretch factors of these two graph®&ng

3. PROPOSED APPROACHES

We propose two novel methods to build power efficient planar
structures with much less communication costs and lower node de-



gree bounds compared with previously best known planar power
efficient structures [13] calle® P.S, see Figure 2(b). Before pre-
senting our methods, we first present a localized construction of

Gabiriel graph structure for homogeneous wireless ad hoc networks.

ALGORITHM 1. CONSTRUCTINGGABRIEL GRAPH

1. In the beginning, each nodelocally broadcasts a message
with ID,,, and its position(z., y.) to all nodes in its trans-
mission range. Each node initiates setsEypa(u) and
Egc(u) to be empty. Herdfupe(u) and Ege(u) are the
set of links known by, in UDG and GG respectively.

. At the same time, each nodeprocesses the incoming mes-
sages. Assume that nodegets a message from some node
v, then it adds a linkww to Eypa (u).

Nodeu checks whether there is another limv € Evpe(u)
wherew € disk(u,v), if no such linkuw, then it addsw to
Ecc(u). On the other hand, for any linkw € Ega(u),
nodeu checks whethew € disk(u,w), if the condition
holds, theru removes linkuw from Egca(u).

Nodew repeats this step until no new messages are received.

. All links wv in Eqc(u) are the final links inGG(UDG)
incident onu.

We first show that Algorithm 1 builds the structuf&= (U DG)
correctly. For any linkvw € GG(UDG), clearly, we cannot re-
move them in Algorithm 1. For a linkv ¢ GG(UDG), assume
that a nodev is insidedisk (u, v) and both linksuw andwwv belong
to UDG. If nodeu gets the message fromfirst, and then gets the
message from, clearly,uv cannot be added tBcc(u). If node
u gets the message fromfirst, then node: will remove link uv
from Eqc(u) (if it is there) whenu gets the information of node
w.
It is not difficult to prove that structur€ G(U DG) is connected
by induction if UDG is connected. In addition, since we remove
a link uv only if there are two linksuw andwv with w inside
disk(u,v), it is easy to show that the power stretch factor of struc-
ture GG(UDQG) is exactlyl [4]. In other words, the minimum
power consumption path for any two nodeandwv in UDG is still
kept in GG(UDG). Remember that here we assume the power
needed to support a linkv is |Juv||?, for 3 € [2, 5]. Notice that,
as mentioned in the literatur&G (U DG) is not degree bounded.
For example, when att — 1 nodes are uniformly distributed on a
unit circle with thenth nodeu as center, the node degree:ofs
n — 1. Figure 2(a) shows another example, whigre- 1) /2 nodes
are uniformly distributed on a unit circle, another— 1) /2 nodes
are on a half unit circle, and both circles have tith nodeu as
center. The node degree of centefris— 1)/2 = O(n) in GG, as
shown in Figure 2(c).

The following result is a folklore.

THEOREM 2. GG(UDQG) is a planar power spanner, whose
power stretch factor ig.

Hereafter, if it is clear that these structures are constructed on
UDG(V), we omit the(UDG) in the representation of all struc-
tures. For instance, we will us8G to denote Gabriel Graph in-
stead ofGG(UDG).

3.1 Degree-(k+5) Planar Power Spanner (Or-
dYaoGG)

One natural way to construct a degree-bounded planar power
spanner is to apply the Yao structure on Gabriel graph. In [4], Li,
et. alshowed that the final structure by directly applying the Yao
structure on GG is a planar power spanner, caledGG, how-
ever its in-degree can be as large®), as in the example shown
in Figure 2(c). In this paper, we present a new method by applying
the ordered Yao structures on Gabriel graph to bound node degree.
The idea is similar with the method in [13] where they apply Yao
structures on the localized Delaunay triangulations using a local
ordering of nodes to build a degree-bounded planar length spanner.
The major differences are 1) here we only use 1-hop information
instead of two hop information, which reduce communication cost
significantly; 2)we use Gabriel graph instead of the localized De-
launay triangulation, which makes the localized method much sim-
pler and more efficient; 3) the method used to bound the degree is
also different. The algorithm is as follows.

ALGORITHM 2. CONSTRUCTDEGREE(K+5) PLANAR POWER
SPANNER OrdY aoGG

1. First, each node self-construct the Gabriel gréfgh locally
based on the strategy described in Algorithm 1. Nets ()
be the neighbors set of noden GG.

. Second, each node decides its ordexs follows.
Two data structures at each nadare used in this algorithm:

(1) (u): the local order of node, which is initially set a$),
i.e., unordered.

(2)d(u): the number of its unordered neighbors known by
nodew so far, which is initially set as its degree@(G.

The strategy is follows:

(@) If node v hasw(u) = 0 andd(u) < 5, then node
u queries the node degree of each unordered neighbor
node. The query message contains only the ID of node
u, and each queried nodereplies node: with its cur-
rent degreel(v):

i. If some unordered neighberwith d(v) < 5 has
smaller ID, we call such query roundailed round
and nodeu does nothing. Node performs a new
round of queries only if it finds that the number of
its unordered neighbors has been reduced, so there
are at mosb rounds of queries.

ii. If nodewu has the smallest ID among all unordered
neighborsy with d(v) < 5, nodeu sets

m(u) = max{n(v) | v € Naa(u)} + 1,

and broadcasts(u) to its neighborsVg ¢ (u) through
messag®YORDER.

(b) If nodew receives &M Y ORDERmMessage from its neigh-
bor v in GG saying thatr(v) = k, it recordsn(v)
locally and updates itg(u) = d(u) — 1.

(c) When nodex finds thatd(u) = 0 andm(u) > 0, it can
go to next step to bound its degree in the final structure.

3. All nodes self-form the final topology based on local order
as follows. Initially, all nodes are marked witliHITE color,
i.e., unprocessed. Lé{oyca(u) be the set of neighbors of
w in the final topology, which is initialized a¥ ¢ (u).

(a) If nodew is unprocessed (markadHITE), and it has
the largest orderr(u) among all itSWHITE neighbors



(a) UDG

(b) BPS

(c) GG and YaoGG

(d) OrdYaoGG (d) SYaoGG

Figure 2: Several planar power spanners on the UDG shown in (a). Herk = 9 for Yao related construction.

in Ngc(u), it divides its transmission range (which is
a unit disk centered at the nodg into £ equal-sized
cones, keeps one near&§HITE neighborv (if avail-
able) inNoy e (u) and deletes others. Nodemarks
itself BLACK, i.e., processed, and notifies all nodes in
N (u) of the deleted edges.

(b) If the nodeu receives a message for deleting edge
from its neighbomw, it deletes the node from its local
list Noycg(u).

4. When all nodes are processed, all the remaining edges
{uvlv € Noyaa(u), Vv €GG} form the final network topol-
ogy OrdY aoGG. Each node then can shrink its transmis-
sion range as long as it sufficiently reaches its farthest neigh-
bor in the final topology.

LEMMA 3. The final topologyDrdY aoGG is a planar graph,
whose node degree is bounded/y 5 wherek > 6 is an ad-
justable parameter.

PROOF The Yao graph construction does not add any edges to

original graphs, on the contrast, it only deletes edges. Hence they.$°

planar property is inherited fro@G graph.
We then show that each node degree is bounded by5 in
OrdY aoGG. To prove this, we first review one important prop-

LEMMA 4. OrdY aoGG is a power spanner d DG, and its

power spanning ratio i = m wherek > 6 is an
" k

adjustable parameter an@ € [2, 5] is a constant depending on
the transmission environment.

PROOF Since theGG is a power spanner with spanning ratio
1, we only need prove th&@rdY aoGG is a power spanner afG
with spanning ratiqp = m The proof is similar to the

proof for Yao on UDG [3] and the later proof of Theorem 7. Due
to space limitation, we omit the details here.]

We then analyze the total communication cost of Algorithm 2.
(1) Clearly, the first step of building:G can be done using only
n messages: each message contains the ID and geometry position
of a node. (2) The second step of computing local ordering can be
done in21n messages: First, an unordered nadends out at most
5 query messages containing its ID and its actual numbey of
unordered neighbors. Each such query message is repliéttdy
neighbors. Since we perform a new query onlyi(f:) decreases
from last failed query, the total messages used for queries is at most
._1(i4+1) = 20n messages. Second, an ordered nodends
a message containing its ID and the local orderihgcomputed.
The second step can thus be done in at mast messages. (3)
In the third step, a processed nodewill inform all its WHITE

erty for planar graph, that s, there always exists a node with degreeneighborsy about the deletion of the edge from Gabriel Graph

at most5 in planar graph. Clearly, our local ordering is able to
start, since there is at least one node with degree at fringtally.
When we order these nodes with degree at niotat have ID
smaller than these neighbors in GG with degree at rhose will

(which has at mosin edges). In the final topology OrdYaoGG, at
leastn — 1 edges was kept to ensure the connectivity, thus, the total
number of such messages is at st In summary, the following
lemma directly follows.

mark these nodes ordered and update the degrees for the remain-

ing nodes. We clearly can repeat this procedure until all nodes are

LEMMA 5. Assuming that both the ID and the geometry posi-

ordered since the Gabriel graph induced on all unordered nodes istion can be represented liyg n bits each, the total communication

always planar. Lef?, be the neighbors of nodein GG that are
orderedafter u. From our processing order of nodes, these nodes
will be markedBLACK before node, i.e., being processed before
u. We will then call P, predecessors of node Clearly, in the
local orderingr, every node: has at most have edges to its pre-
decessor®, in GG, thatis to say, before itis marked wiBLACK,
it has at mosb processed neighbors.

When nodeu is being processed, it could select at mbstther

unprocessed neighbors into final structure, thus, its degree is bound

by k£ + 5. Once a node is marked wiBBlLACK color, its degree will
be kept unchanged according to our algorithm. This finishes our
proof. [

In Figure 2, we show that?G andY aoGG cannot bound the
node degree, while our structu@rdY aoGG is indeed degree-
bounded byt + 5 = 14, herek is set a®) in our experiment. We
then prove that the final structure is also power efficient.

cost of Algorithm 2 is then at mo3tn log n bits.

Notice that additional communication and computation cost can
be saved, if the degree is expected to be bounded {y5 only.
The modification is to let all nodes with degree at mbst 5 be
initially marked asBLACK, that is to say, they do not participate in
the third step in Algorithm 2.

&2 Degree-kPlanar Power Spanner (SYaoGG)

Algorithm 2 constructs a planar power efficient structure using
at mostO(nlogn) bits communications, and the final structure
has a theoretical degree bouhd+ 5, wherek > 6 is a param-
eter. We then study a more interesting method to build a degree-
bounded planar power spanner, which can be constructed easier
and demands less communication cost during construction. later.
We compare their practical performances through simulations. The
second structure is constructed as follows.



ALGORITHM 3. CONSTRUCTDEGREEK PLANAR POWER SPAN-
NER SY aoGG

1. First, each node self-construct the Gabriel gréfth locally
based on the strategy described in Algorithm 1.

2. All nodes together self-form the final topology as follows.
Initially, each nodeu is marked withWHITE color, i.e., un-
processed, and initializedVsycc(u) as the set of all the
neighbor nodes iG'G.

(a) Ifa WHITE nodeu has the smallest ID among M8HITE
neighbors inGG, it divides its transmission range into
k equal-sized cones wheke> 8 is an adjustable pa-
rameter. In each cone, nodehecks whether there are
someBLACK nodes inNsy ca (u) within same cone:

i. Yes. Nodeu keeps the close®LACK neighbor
among them aiVsy e (u) and deletes others in
the cone;

ii. No. Nodeu keeps a closestVHITE neighbor(if
available)among them &aVsy e (u) and deletes
others in the cone.

After processing alk cones, node marks itselBLACK,

PrROOF First, the node degree is obviously boundediblge-
cause each node only keeps one undirected edge in each cone. Fig-
ure 2(d) illustrates the self-construct8® aoGG structure on the
UDG graph shown in Figure 2(a). The node degree is indeed at
mostk = 9.

Second, the grapfY aoGG is planar, because the Gabriel graph
GG is planar and Algorithm 3 does not add any more edges, thus,
the planar property is inherited.

In the following, we show that the structuf®&” aoGG is a power
spanner. According to Theorem@(= has power spanning ratio
Hence, from Lemma 1, it is sufficient to show that for any nodes
andv with an edgewv € GG, there is a path connectingandv in
SY aoGG with power cost at mosi - [|uv||”.

Given any edgew € GG, we will construct a pathy «~ v
connectingu andwv in SYaoGG. If edgeuw is kept in the final
structure, theny «~ v is justuv. Otherwise, assume thav is
removed? when processing node. There must exist a linkw
selected by node in the same cone. Than« v is the concate-
nation of uw with w «w v, see Figure 3. Notice that nodeis
marked as processed in this stage. It is possible that theulink
could then be removed by nodelater on since node is not pro-
cessed when process naddf so, we replace linkuw by u «~ w,
see Figure 4 for illustration, details will be explained later.

i.e. processed, then notifies each deleted neighboring \ye then prove by induction, on the number of its edges, that

nodev in GG by a broadcasting messag@DATEN.

Once aWHITE nodev receives the messafieDATEN
from a neighboru in GG, it checks whether itself is

in the nodes set for deleting: if so, it deletes the send-
ing nodew from Nsyaa(v), otherwise, marks, as
BLACK inits local list Nsyca(v).

(c) Once aBLACK nodev receives the message DATEN
from a neighbor belonging t&Vsyca(v), it checks
whether itself is in the nodes set for deleting: if so,
it deletes the sending nodefrom Nsyca(v), other-
wise, marks: asBLACK in its local list Nsy ga (v).

(b)

3. When all nodes are processed, all selected edges <
Nsyaa(u), Vo €GG} form the final network topology, de-
noted bySYaoGG. Each node then can shrink its trans-
mission range as long as it sufficiently reaches its farthest
neighbor in the final topology.

Algorithm 3 further reduces the communication cost during con-

structing a degree-bounded planar power spanner, because we do

not demand the local ordering before construction.
Our analysis of the structur€Y aoGG relies on the following
simple observation.

LEMMA 6. In GG graph, if two edgesiw and uw emanates
from a single vertex, then both the angl€ wwv and Zuvw must
be acute.

PROOF We prove it by inducing contradiction. Suppose the an-
gle Zuvw is an obtuse angle, thehwv|| < |luw]|, hence, all the
three edgesw, vw anduw are in the UDG graph. Thus, the circle
with diameter.w contains the node inside, according to the prop-
erty of GG graph, edge:w can not be kept during GG construction.
The contradiction is induced. This finishes the prodfl

THEOREM 7. The structureSY aoGG is k degree-bounded pla-
nar power spanner, whose power stretch factor is at most

Nk . .
v )P wherek > 9 is an adjustable parameter anel €

[2,5] is a constant factor depending on the communication envi-
ronment.

the pathu «~ v has power cost, denoted pyu «~ v), at most
plluv]®.

Obviously, if there is only one edge in «~ v, p(u «~ v)
luv||® < p|luv||®. Assume that the claim is true for any path with
[ edges. Then consider a path~+ v with [+ 1 edges, which is the
concatenation of edgew (or pathu «~ w) and the pathv «~ v
with [ edges.

Without loss of generality, we always assume that the dinks
removed after node is processed and linkw is selected in the
cone. Notice that the linkw could be removed later by node
if w is processed aftesi, so there are two cases that need to be
discussed carefully:

1. The first case is that linkw is kept in the final structure. Re-
member that, as described in the algorithm, we always select
the nearesBLACK neighbor in a cone if it exists; otherwise
the nearestVHITE neighbor is selected if it exists.

(a) Bothw andv are
WHITE or BLACK

(b)w is BLACK
andv is WHITE

Figure 3: The link ww is kept in the final structure.

Figure 3 illustrates the situations that\HI1TE nodeu starts

Yao construction in the cone. Suppose, we deletén the

cone and choose edgav, which is also kept in the final
structure. Again, there are two subcases that need to be ana-
lyzed:

Subcase 1jjuw|| < ||uv||. This subcase happens only when
both nodes andw are processed(or unprocessed), and

2Notice that an edgev € GG can only be removed while pro-
cessing itendpoint nodeu or nodev.



nodeu deletes linkuwv since the existence of closer pro-
cessed(or unprocessed) neighbor Figure 3(a) illus-
trates the situation.

We bound the lengthwo|| respecting tq|uv\| Notice
that |luw| < [juv|| and Zwuv < § = 2*. The max-
imum length ofvw is achieved whefjuw|| = |Juv]|
because the angléuwwv is acute according to Lemma
6. Therefore

0
[wo|| < 2sin 2 |Juv|| = 2sin = ||luv.
2 k
By induction, we have
p(u e v) = [[uw]|” + p(w « v)
< JJuw||? + pllwo]”
< Juoll” + p- (2sin )’ Juv])”
< plluv]|?,

1

Subcase 2}|uwl| > ||uv||. This case happens only when node
w is processed while nodeis not processed yet, and
nodew deletes linkuv since any processed neighbor
has higher priority in our algorithm. Figure 3(b) illus-
trates the situation.

We bound the lengthwv|| respecting tduw||. Notice
that|juw|| > |luv|| andZwuv < § = 2T < T accord-
ing to Lemma 6. So we havg < Zuwv < Zuvw <

™. Consequentlylluw|| < S22 V2||uv|.

sz lluvll =
The maximum length ofw is achleved whetjuw|| =
|luv|| because the angléuwv is acute. Therefore

us

[wol| < QSin%HuwH < 2\/§sin%\|uv|\.

By induction, we have
p(u o ) = [[uw]|” + p(w ~~ v)
< Juw]|® + pl|wo]|”
< (V2)'(1+ p(2sin 7)) uv]®
< plluv]”,

B

2. The second case is that linko is later removed by node.
We show that the spanning ratio is still kept. Notice that, this
case could only succee&libcase 1The linkuw in Subcase
2, see Figure 3(b), can never be removed in our algorithm,
since both node: andw have processed and kept this edge.
An edge can only be removed by its endpoints. This is the
tricky case in this algorithm.

Figure 4(a) shows the situation tha?#HITE nodeu selects

a link ww in a cone, where the neighbor nodeis not pro-
cessed. Figure 4(b) illustrates the scenario when mopeo-
cesses its neighbors: since it has two processeigjhbors:
andz in the cone, it will select the nearest processed neigh-
bor in that cone, which is node. Observe that after node
w decided to keep linkvz and remove linkuw, the linkwx

will be kept in the final structure since both end nodeand

3Nodex must also be a processed node, otherwisell definitely
selectu instead ofr according to our rule.

‘ (b) processingv

(a) processing.

Figure 4: Link wwv is removed when processing node (illus-
trated in the left figure) and link ww is then removed by nodew
later (illustrated in the right figure).

x are processed and only an unprocessed node can remove its
incident links later. Obviously, from the selection procedure,
we know that

[wv[| = fluwl] = [wzl].

Notice that, both nodea andz select the nodev in one of
their cones when they are processed before nodtarts its
processing. Node then selects instead ofu becausevz is
shorter. Consequently, nodedoes not have any neighbors
kept in the nodeu's cone shown in Figure 4(b). This is a
sharp contrast to our first structuéerdY aoGG, in which
every node always keep an edge in each cone if it originally
has one neighbor from Gabriel graph. Then the path» u
connecting nodes, and v is composed of path «~ w,
link wx and pathr «~ wu. The total power cost of the path
vV e 1 IS

p(u o ) = fuz]” +-pla < 0) +plu < 2)
< [lwa|® + pllwo ]| + plluz||®
< JJwz||? + p(2 sin%)ﬁ(Hm)”ﬁ lluw]|?)
< Jluw]|? (1 + 2p(2sin %)ﬁ)
< plluv])?,

1
whenp > 1—-2(2sin )8 "

All conditions aboup are satisfied whep = This

finishes the proof. [

e
1—(2v2sin )P

We then analyze the communication cost of Algorithm 3. (1)
Clearly, the first step of building"G can be done using only
messages: each message contains the ID and geometry position of
anode. (2) In the second step of the algorithm, initially, the number
of edges in Gabriel Graph is less tham since it is a planar graph.
Clearly, there are at mo&t such removed edges since we keep at
leastn — 1 edges from the connectivity of the final structure. Thus
the total messages used to inform the deleted edges@Ghis at
most2n. Then the following lemma directly follows.

LEMMA 8. Assuming that both the ID and the geometry posi-
tion can be represented byg n bits each, the total communication
cost of Algorithm 3 is then at mo3t log n bits.



Theoretically, comparing withrdY aoGG, the topologySY aoGG

has lower node degree bound while higher power spanning ratio 1004 e
bound. Worth to mention that, our simulation later shows the power o s
. . . . 1.0035 7
spanning ratio 0DrdY aoGG andSY aoGG is very close in prac- B T
tice. | O P e
1003 B / N T Y
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1.0025 / 4
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4. EXPERIMENTS

We evaluated the performance of our new degree-bounded and
planar spanners by conducting simulations. In our experiments, we
randomly generated a sét of n wireless nodes and DG (V),
then tested the connectivity & DG(V'). If it is connected, we

1.0015 - il

Average Power Spanning Ratio

construct different localized topologies dhDG(V), including Lo01f e - L

our new topologie®rdY aoGG andSY aoGG, some well-known 97}% ] %\;\%é: L
planar spanner topologi€sG[10, 9], Y aoGG[4], and BPS[13]. 100051 A — ]

Then we measure the sparseness, the power efficiency and the com-

munication cost during construction of these topologies. Y £ 10 o 200 20 %o

Number of Nodes

In the experimental results presented here, we generatad-
dom wireless nodes in20 x 20 square; the parametér i.e., the
number of cones, is set fowhen we construcBP S, OrdY aoGG 1451 —
andSY aoGG; the transmission range is set®oWe tested all pre-

ferred properties described in Section 2.2 of these planar structures - e Rl
by varying node number fror80 to 300, wherel00 vertex sets are 1357 S~ 7o QuivaosG | 1

—£— BPS

generated for each case to smooth the possible peak effects caused
by some exception examples. The average and the maximum were
computed over all these0 vertex sets.

4.1 Power Efficiency

The most important design metric of wireless network topol-
ogy is perhaps the power efficiency, as it directly affects both the 1t
node and the network lifetime. So while our new topologies in-
crease the sparseness, how does it affect the power efficiency of
the constructed network? First, we test power stretch factors of il = s = s - -
all structures. In our simulations, we set power attenuation con- Number of Nodes
stantg = 2. In Figure 5, we summarize our experimental results
of power stretch factors of all these topologies. It shows all of Figure 5: Average and maximum power spanning ratio of dif-
the power stretch factors are small in practice, just aroufd2, ferent topologies.
exceptGG has power stretch factdr. In other words, the path
remaining in the sparse planar structures can estimate the short-
est path in the original communication graph without more power shown in Figure 7. It shows thadrdY aoGG and SY aoGG
consumption. It is not surprising that the average/maximum power have less number of edges (average node degrees}thafG,
stretch factors 0OrdY aoGG andSY aoGG are atthe same level GG and BPS. In other words, these graphs are sparser. Notice
of those of GG while they are much sparser. that the node degree @PS is much higher than those of other

Notice that after constructing the sparse structures, a node cangraphs, sincé3 P.S uses many edges fromDel which is a super-
shrink its transmission energy as long as it is enough to cover the graph (thus much denser than) Gf7, see Figures 2(b) and (c),
longest adjacent link in the structure. By this way, we define the while all the other structures discussed here are subgraphs of the
node transmission power for each nadim a constructed structure ~ Gabriel graph. Recall that theoretically, oBPS, OrdY aoGG
as follows. Ifu has a longest link, sayv, in the structure, then and SY aoGG have bounded node degree (both for in-degree and
the node transmission energyfs |luv||®. As expected, Figure  out-degree). In [3, 4], Liet al. gave an example to show that
6 shows the average node transmission energy of each topologyRNG, GG, and LDel could have large node degree (in-degree
decreases as the network density increases. The power needed bfpr Y'G andY aoGG). Notice that, in our experiments, since the

Maximum Power Spanning Ratio
=
N
&
T

each node in our new structur€s-dY aoGG andSY aoGG is al- wireless nodes are randomly distributed in two dimensional space,
most same with that bg#G, which is much less than its maximum it is easy to understand that the maximum node degré&(otind
transmission energy (which & hereg = 2 in our experiment). YaoGG are not as big as the extreme example, however, it can

Each node inBPS need to set higher transmission energy since happen. Recall that we provédrdY aoGG and SY aoGG have
it has more neighbors. Specifically, BPS is a supergraph of the bounded node degree+ 5 and k respectively. In Figure 2, we
Gabriel graph and our new structures are subgraphs of the Gabrielgive a special example to show the theoretical node degree bound

graph. for OrdY aoGG andSY ao, where two group wireless nodes, with
size 17 each, are uniformly distributed on a unit disk and a half-
4.2 Node Degree unit disk respectively. Both disks are centered at one nodith

The node degree is an important performance metric in wireless ID = 0. Figure 2 shows the unit disk graph, which is a com-
ad hoc networks, since the degree of each node directly relates toplete graph, and other structures built on it. Notice &t and
its power consumption and the global network performance. Y aoGG keep all the links ta: in the inner cycle, whileBP.S and
The average and maximum node degrees of each topology areOrdY aoGG can remove some links to bound node degree, and
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Figure 6: Average node transmission energy of different topolo- osl P |
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SY aoGG has the best node degree bound= 9. Notice that / 7 Srace

BPS is constructed based dnDel, and it also added some edges

to keep the length spanner property, so it is the densest among them.
Beside the node degree of all these structures, we are also inter-

ested in another kind of node degree, calpysical node degree

and defined as follows. For each noglet has a longest link, say

uw, in a constructed structure. Then the physical degreeistde-

fined as all nodes such that|uw|| < ||uv||. This is the total num- or

ber of nodes that can cause direct interference withhe average

and maximum physical node degrees of each topology are shown

in Figure 8. They are higher than the node degrees in Figure 7 as % % 100 150 20 250 300

expected, however they follow the same pattern of curves. More- umoer of Nodes

over, the possible interference increases slightly while the number _. . .

of wireless nodes grows. This is tolerable because each node alsg '9ure 7 Average and maximum node degree of different

decreases its transmission range as shown in Figure 6 and the avi°P0logies.

erage number of actual physical neighbors of a node is aréumd

our simulations. 5. CONCLUSION

4.3 Communication Cost During Construction We proposed several novel localized algorithms that construct
In Section 3 we proved that the localized algorithms construct- energy efficient routing structures, where each node has a bounded

ing OrdY aoGG andSY aoGG use at mosO(n) messages. We degree and the structures are planar, for wireless ad hoc networks

found that when the number of wireless nodes increases the aver-mOdeIIEd by unit disk graph (UDG). Our first structure has bounded

age messages used by each node for constructing them is still inntOdte crjlefgr?kfk’) wherek >th6 |s_an adjustable'pta.ramleter;'lts %oytver
the same level. Figure 9 summarizes our experimental results of Streteh factor is no more than= e LIS planar; and |

Maximum Node Degree
~
»n
T

1
1—(2sin
the communication costs in each node during the construction of can be constructed locally 24n log n bits for a wireless network
OrdY aoGG and SY aoGG. Here we do not compare our com-  Of n nodes. _
munication costs with that oBPS, since it use2-hop neigh- Our second method improves the degree bourl &nd keeps
bors information and needs to bui[dDel<2)(UDG) which costs all other properties, except that the theoretical power spanning ratio
much more messages for sure. It is clear that the network becomess relaxed top = %, wherek > 8 is an adjustable

. . . — sin T

more and more Qense while the number 01_‘W|reless nodes InCreas‘esparameter. We showed that the second structure can be constructed
However, experiment shows that the localized method does not cost

h nod hen th hb densysing at mossn log n bits.
more messages on each node even wnen the grapn becomes enser.We conducted extensive simulations to stUdy these new sparse

Shetwork topologies and compared them with previously known ef-
ficient structures. Theoretical results are corroborated by the simu-
lations.

per node for structure®rdY aoGG is around8 though the theo-
retical bound i24. It is reasonable because nodes do not always
query5 times in local ordering in practice. Notice thét" aoGG
costs much less messages thdanlY aoGG does, so itis indeed a
very efficient topology construction method. This is expected and 6. REFERENCES
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