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ABSTRACT
We propose several novel localized algorithms to construct energy
efficient routing structures for homogeneous wireless ad hoc net-
works, where all nodes have same maximum transmission ranges.
Our first structure has the following attractive properties: (1) It
is energy efficient: given any two nodesu andv, there is a path
connecting them in the structure with total energy cost at most
ρ = 1

1−(2 sin π
k

)β times of the energy cost of any path connect-

ing them in original communication graph; (2) Its node degree is
bounded from above by a positive constantk + 5 wherek > 6 is
an adjustable parameter; (3) It is a planar structure, which enables
several localized routing algorithms; (4) It can be constructed and
maintained locally and dynamically. Moreover, by assuming that
the node ID and its position can be represented inO(log n) bits
for a wireless network ofn nodes, we show that the structure can
be constructed using at most24n messages, where each message is
O(log n) bits. Our second method improves the degree bound tok,

relaxes the theoretical power spanning ratio toρ =
√

2
β

1−(2
√

2 sin π
k

)β ,

wherek > 8 is an adjustable parameter, and keeps all other proper-
ties. We show that the second structure can be constructed using at
most3n messages, where each message has size ofO(log n) bits.

We also experimentally evaluate the performance of these new
energy efficient network topologies. The theoretical results are cor-
roborated by the simulations: these structures are more efficient in
practice, compared with other known structures used in wireless ad
hoc networks and are easier to construct. In addition, the power
assignment based on our new structures shows low energy cost and
small interference at each wireless node.
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1. INTRODUCTION
Wirelessad hocnetworks have been undergoing a revolution that

promises to have a significant impact throughout society, one that
could quite possibly dwarf milestones in the information revolu-
tion. Unlike traditional fixed infrastructure networks, there are no
centralized control overad hocwireless networks, which consist
of an arbitrary distribution of radios in certain geographical area.
In Ad hocnetworks, mobile devices can communicate via multi-
hop wireless channels, a node can reach all nodes in its transmis-
sion range, while two far-away nodes communicate through the
messages relaying by intermediate nodes.Ad hocwireless net-
works intrigue many challenging research problems, as it intrin-
sically has many special characteristics and some unavoidable lim-
itations, compared with other wired or wireless network. An im-
portant requirement of these networks is that they should be self-
organizing, i.e., transmission ranges and data paths are dynamically
restructured with changing topology. Energy conservation and net-
work performance are probably the most critical issues inad hoc
wireless networks, because wireless devices are usually powered
by batteries only and has limited computing capability and mem-
ory.

The topology controltechnique is to let each wireless device
locally adjust its transmission range and select certain neighbors
for communication, while maintaining a structure that can support
energy efficient routing and improve the overall network perfor-
mance. By enabling each wireless node shrinking its transmis-
sion power (which is usually much smaller than the maximal trans-
mission power) to sufficiently cover the farthest selected neighbor,
topology control can not only save energy and prolong network
life, but also can improve network throughput through mitigating
the MAC-level medium contention. Unlike traditional wired net-
work and cellular wireless networks, the wireless devices are often
moving during the communication, which could change the net-
work topology in some extent. Hence it is more challenging to de-
sign a topology control algorithm forad hocwireless networks, the
topology should be locally and self-adaptively maintained without
affecting the global and the communication cost for maintaining
should not be too high.

Topology control has drawn significant research interest [1, 2,
3, 4, 5, 6, 7, 8] in last few years. Different topologies have dif-



ferent properties, however, none of them can achieve all three pre-
ferred properties for unicast applications on wireless ad hoc net-
works: power spanner, planar, degree-bounded. Until recently,
Wang and Li [13] proposed a localized algorithm to build a degree-
bounded planar spanner both in centralized and distributed way,
which is based on the combination oflocalized Delaunay triangu-
lations (LDel) [14] andY ao structure [15]. It is the first localized
algorithm that can achieve all the three desirable features. How-
ever, the theoretical node degree of their structure can reach25 in
the worst case; and the communication cost of their method can
be large, although it is shown that the total number of messages
is O(n), the hidden constant could be as high as several hundreds
since the method needs to collect the2-hop information for every
node.

In the paper, we propose two novel methods to build a power
efficient planar structures with much less communication costs and
lower node degree bounds. Our first structure has the following
attractive properties:

1. It is power efficient: given any two nodesu andv, there is
a path connecting them in the structure with total power cost
no more thanρ = 1

1−(2 sin π
k

)β times of the power cost of

any path connecting them in UDG;

2. Its node degree is bounded from above by a positive constant
k + 5 wherek > 6 is an adjustable parameter;

3. It is a planar structure, which enables several localized rout-
ing algorithms;

4. It can be constructed and maintained in localized and dy-
namic way.

Moreover, by assuming that the node ID and its position can be
represented inO(log n) bits for a wireless network ofn nodes, we
show that the structure can be constructed using at most24n mes-
sages, where each message isO(log n) bits. Our second method
reduces the degree bound tok, and keeps all other properties, ex-
cept that the theoretical power spanning ratio is relaxed toρ =√

2
β
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)β , wherek > 8 is an adjustable parameter. We show

that the second structure can be constructed using at most3n mes-
sages, where each message has size ofO(log n) bits.

We also experimentally evaluate the performance of these new
energy efficient network topologies. The theoretical results are cor-
roborated in the simulations: our new structures are more efficient
in practice and easier to construct, compared to other known struc-
tures used in wireless ad hoc networks. By shrinking the trans-
mission range of each node to reach the farthest neighbors in our
new structures, the experiment shows each node indeed costs low
energy and has small number ofphysical neighbors. The physi-
cal neighborsare those nodes within its transmission range, and
smaller number ofphysical neighborsmeans less interference.

The rest of the paper is organized as follows. In Section 2, we
describe some most preferred properties of topology control pro-
tocol in wireless ad hoc networks and review the priori arts in this
area. We then present our two localized methods, in Section 3,
to construct degree-bounded planar power spanners forUDG(V )
with total communication costO(n) under the broadcasting com-
munication model. In Section 4, we conduct extensive simulations
to validate our theoretical results. Finally, we conclude the paper in
Section 5.

2. PRELIMINARIES

2.1 Network Model
A wireless ad hoc network (or sensor network) consists of a set

V of n wireless nodes distributed in a two-dimensional plane. Each
node has the samemaximumtransmission rangeR. 1 By a proper
scaling, we assume that all nodes have the maximum transmission
range equal to one unit. These wireless nodes define aunit disk
graphUDG(V ) in which there is an edge between two nodes iff
their Euclidean distance is at most one. In other words, we assume
that two nodes can always receive the signal from each other di-
rectly if the Euclidean distance between them is no more than one
unit. Hereafter,UDG(V ) is always assumed to be connected. We
also assume that all wireless nodes have distinctive identities and
each wireless node knows its position information or the distance
to another node either through a low-power Global Position System
(GPS) receiver or some other ways. More specifically, in our proto-
col, it is would be enough if each node knows the relative position
of its one-hop neighbors. The relative position of neighbors can be
estimated by thedirection of signal arrivaland thestrength of sig-
nal. By one-hop broadcasting, each nodeu can gather the location
information of all nodes within its transmission range.

In the most common power-attenuation model, the power to sup-
port a linkuv is assumed to be‖uv‖β , where‖uv‖ is the Euclidean
distance betweenu andv, β is a real constant between2 and5 de-
pending on the wireless transmission environment.

2.2 Preferred Properties
Wireless ad hoc network topology control schemes are to main-

tain a structure that can be used for efficient routing [10, 9] or im-
prove the overall networking performance [1, 2, 6], by selecting a
subset of links or nodes used for communication. In the literature,
the following desirable features are well-regarded and preferred in
wireless ad hoc networks:

Power Spanner: In ad hoc wireless networks, two far-apart
nodes can communicate with each other through the relay of inter-
mediated nodes; hence, each node only need set small transmission
ranges. This has two advantages: (1) reducing the signal interfer-
ence (2) saving power for transmission. To guarantee the advan-
tage, a good network topology should be energy efficient, that is to
say, the total power consumption of the shortest path (most power
efficient path) between any two nodes in final topology should not
exceed a constant factor of the power consumption of the shortest
path in original graph. Given a pathv1v2 · · · vh connecting two
nodesv1 andvh, the energy cost of this path is

∑h−1
j=1 ‖vjvj+1‖.

The path with the least energy cost is called the shortest path in a
graph. Formally speaking, a subgraphH is called apower spanner
of a graphG if there is a positive real constantρ such that for any
two nodes, the power consumption of the shortest path inH is at
mostρ times of the power consumption of the shortest path inG.
The constantρ is called thepower stretch factor. A power spanner
is usually energy efficient for routing.

Obviously, for any weighted graphG and a subgraphH ⊆ G,
we have

LEMMA 1. SubgraphH of a graphG has stretch factorρ if
and only if for any linkuv ∈ G, dH(u, v) ≤ ρ · dG(u, v), where
dG(u, v) is the total power consumption of the shortest path be-
tweenu andv in G.

Lemma 1 implies that, to generate a power efficient structure, we
only need to guarantee that any two adjacent nodesu andv in G are
connected by a path inH with energy cost no more than a constant
factor of the cost of linkuv.
1In practice,R can be defined as the minimum of all the maximum
node transmission ranges.



Degree Bounded: It is also desirable that the node degree in the
constructed topology is small and bounded from above by a con-
stant. A small node degree reduces the MAC-level contention and
interference, also may help to mitigate the well known hidden and
exposed terminal problems. Especially in Bluetooth based wireless
ad hoc networks, themasternode degree is preferred be less than7,
according to Bluetooth specifications, to maximize the efficiency.
In addition, a structure with small degree will improve the overall
network throughout [16].

Planar: Many routing algorithms require the planar topology to
guarantee the message delivery, such asGreedy Perimeter Stateless
Routing(GPSR) [9],Greedy Face Routing(GFG) [10], Adaptive
Face Routing(AFR) [11], andGreedy Other Adaptive Face Routing
(GOAFR) [12].

Efficient Localized Construction: Due to the limited resources
and high mobility of the wireless nodes, it is preferred that the un-
derlying network topology can be constructed and maintained in
a localized manner. Here a distributed algorithm constructing a
graphG is a localized algorithmif every nodeu can exactly de-
cide all edges incident onu based only on the information of all
nodes within a constant hops ofu. More importantly, we expect
that the total communication cost of the algorithm isO(n) mes-
sages, where each message isO(log n) bits; the time complexity
of each node running the algorithm is at mostO(d log d), whered
is the number of 1-hop or 2-hop neighbors.

2.3 Priori Arts
Several structures (such as relative neighborhood graph RNG,

Gabriel graph GG, Yao structure, etc) have been proposed for topol-
ogy control in wireless ad hoc networks. Therelative neighbor-
hood graph, denoted byRNG(V ) [17], consists of all edgesuv
such that the intersection of two circles centered atu andv and
with radius‖uv‖ do not contain any vertexw from the setV . See
Figure 1(a) TheGabriel graph[18] GG(V ) contains edgeuv if and
only if disk(u, v) contains no other points ofS, wheredisk(u, v)
is the disk with edgeuv as a diameter. See Figure 1(b). Denote
GG(UDG) and RNG(UDG) as the intersection ofUDG(V )
with GG(V ) andRNG(V ) respectively. BothGG(UDG) and
RNG(UDG) are connected, planar, and contain the Euclidean
minimum spanning treeMST of V . Delaunay triangulation, de-
noted byDel, is also used as underlying structure by several rout-
ing protocols. Here a triangle4uvw belongs to Delaunay tri-
angulationDel if its circumcircle does not contain any node in-
side. LetDel(UDG) be the set of edges in Delaunay that is also
in UDG. It is well known thatRNG(UDG) ⊆ GG(UDG) ⊆
Del(UDG). The structureDel(UDG) has bounded length span-
ning ratio [14]; bothRNG(UDG) andGG(UDG) are not length
spanners;GG(UDG) is power efficient.

TheYao graph[15] with an integer parameterk > 6, denoted by−−→
Y Gk(UDG), is defined as follows. At each nodeu, anyk equally-
separated rays originating atu definek cones. In each cone, choose
the shortest edgeuv ∈ UDG(V ) among all edges emanated from
u, if there is any, and add a directed link−→uv. Ties are broken ar-
bitrarily or by ID. See Figure 1(c). The resulting directed graph
is called theYao graph. Let Y Gk(UDG) be the undirected graph

by ignoring the direction of each link in
−−→
Y Gk(UDG). Some re-

searchers used a similar construction namedθ-graph [19, 20], the
difference is that it chooses the edge which has the shortest projec-
tion on the axis of each cone instead of the shortest edge in each
cone.

In [10, 9], relative neighborhood graph and Gabriel graph are
used as underlying network topologies. However, Bose,et al. [21]
proved that the length stretch factors of these two graphs areΘ(n)
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(a) RNG (b) GG (c) YG

Figure 1: The definitions of RNG, GG, and Y G. The shaded
area is empty of nodes inside.

and Θ(
√

n) respectively. Actually, they are at mostn − 1 and√
n− 1 [22]. Moreover, in [3], Li,et al. showed that the power

stretch factor of RNG isn−1 while the power stretch factor of GG
is 1. Recently, some researchers [3, 8] proposed to construct the
wireless network topology based on Yao graph. It is known that the
length/power stretch factor and the node out-degree of Yao graph
are bounded by some positive constants. But as Liet al. mentioned
in [3], all these three graphs can not guarantee node degree bounded
(for Yao graph, the node in-degree could be as large asΘ(n)). In
[3, 4], Li, et al. further proposed to use another sparse topology,
Yao and Sink, that has both a constant bounded node degree and a
constant bounded length/power stretch factor. However, all these
graphs [3, 4, 8] are not guaranteed to be planar. In [14] Li,et
al. proposed a planar spannerlocalized Delaunay triangulations
(LDel), and in [23] Gaoet al. proposed a planar spannerRestricted
Delaunay Graphfor wireless ad hoc networks. Unfortunately, both
of them might result in an unbounded node degree.

Boseet al.[24] proposed a centralized method with running time
O(n log n) to build a degree-bounded planar spanner for a two-
dimensional point set. They construct a planart-spanner for a given
nodes setV , for t = (1 + π) · Cdel ' 10.02, such that the node
degree is bounded from above by27. Hereafter, we useCdel to
denote the spanning ratio of the Delaunay triangulation [25, 26,
20]. However the distributed implementation of this centralized
method takesO(n2) communications in the worst case for a setV
of n nodes.

Recently, Wang and Li [13] proposed the first efficient localized
algorithm to build a degree-bounded planar spannerBPS(UDG)
for wireless ad hoc networks. It has a length spanning ratiot =
max{π

2
, π sin α

2
+ 1} · Cdel(1 + ε), and each node has degree at

most19+d 2π
α
e. Here0 < α ≤ π/3 is an adjustable parameter, and

Cdel ≤ 4
√

3
9

π is the spanning ratio of the Delaunay triangulation.
Though their method can achieve all these three desirable features:
planar, degree-bounded, and power efficient, the theoretical bound
on the node degree of their structure is a large constant. For exam-
ple, whenα = π/6, the theoretical bound on node degree is25. In
addition, the communication cost of their method can be very high,
although it isO(n) theoretically, because it needs to collect the
2-hop information for every wireless node. Even as mentioned in
[13], the method by Calinescu [27] to collect2-hop neighbors infor-
mation takesO(n) messages, however the hidden constant can be
as high as several hundreds. Concerning this large communication
cost and the possible large node degree, we propose two communi-
cation efficient methods to construct small degree-bounded planar
power efficient structures, which are more practical in wireless ad
hoc networks. The construction of our second structure only needs
at most3n messages.

3. PROPOSED APPROACHES
We propose two novel methods to build power efficient planar

structures with much less communication costs and lower node de-



gree bounds compared with previously best known planar power
efficient structures [13] calledBPS, see Figure 2(b). Before pre-
senting our methods, we first present a localized construction of
Gabriel graph structure for homogeneous wireless ad hoc networks.

ALGORITHM 1. CONSTRUCTINGGABRIEL GRAPH

1. In the beginning, each nodeu locally broadcasts a message
with IDu, and its position(xu, yu) to all nodes in its trans-
mission range. Each nodeu initiates setsEUDG(u) and
EGG(u) to be empty. HereEUDG(u) andEGG(u) are the
set of links known byu in UDG and GG respectively.

2. At the same time, each nodeu processes the incoming mes-
sages. Assume that nodeu gets a message from some node
v, then it adds a linkuv to EUDG(u).

Nodeu checks whether there is another linkuw ∈ EUDG(u)
wherew ∈ disk(u, v), if no such linkuw, then it addsuv to
EGG(u). On the other hand, for any linkuw ∈ EGG(u),
nodeu checks whetherv ∈ disk(u, w), if the condition
holds, thenu removes linkuw from EGG(u).

Nodeu repeats this step until no new messages are received.

3. All links uv in EGG(u) are the final links inGG(UDG)
incident onu.

We first show that Algorithm 1 builds the structureGG(UDG)
correctly. For any linkuv ∈ GG(UDG), clearly, we cannot re-
move them in Algorithm 1. For a linkuv 6∈ GG(UDG), assume
that a nodew is insidedisk(u, v) and both linksuw andwv belong
to UDG. If nodeu gets the message fromw first, and then gets the
message fromv, clearly,uv cannot be added toEGG(u). If node
u gets the message fromv first, then nodeu will remove link uv
from EGG(u) (if it is there) whenu gets the information of node
w.

It is not difficult to prove that structureGG(UDG) is connected
by induction if UDG is connected. In addition, since we remove
a link uv only if there are two linksuw and wv with w inside
disk(u, v), it is easy to show that the power stretch factor of struc-
ture GG(UDG) is exactly1 [4]. In other words, the minimum
power consumption path for any two nodesu andv in UDG is still
kept in GG(UDG). Remember that here we assume the power
needed to support a linkuv is ‖uv‖β , for β ∈ [2, 5]. Notice that,
as mentioned in the literature,GG(UDG) is not degree bounded.
For example, when alln − 1 nodes are uniformly distributed on a
unit circle with thenth nodeu as center, the node degree ofu is
n− 1. Figure 2(a) shows another example, where(n− 1)/2 nodes
are uniformly distributed on a unit circle, another(n− 1)/2 nodes
are on a half unit circle, and both circles have thenth nodeu as
center. The node degree of center is(n − 1)/2 = O(n) in GG, as
shown in Figure 2(c).

The following result is a folklore.

THEOREM 2. GG(UDG) is a planar power spanner, whose
power stretch factor is1.

Hereafter, if it is clear that these structures are constructed on
UDG(V ), we omit the(UDG) in the representation of all struc-
tures. For instance, we will useGG to denote Gabriel Graph in-
stead ofGG(UDG).

3.1 Degree-(k+5) Planar Power Spanner (Or-
dYaoGG)

One natural way to construct a degree-bounded planar power
spanner is to apply the Yao structure on Gabriel graph. In [4], Li,
et. al showed that the final structure by directly applying the Yao
structure on GG is a planar power spanner, calledY aoGG, how-
ever its in-degree can be as large asO(n), as in the example shown
in Figure 2(c). In this paper, we present a new method by applying
the ordered Yao structures on Gabriel graph to bound node degree.
The idea is similar with the method in [13] where they apply Yao
structures on the localized Delaunay triangulations using a local
ordering of nodes to build a degree-bounded planar length spanner.
The major differences are 1) here we only use 1-hop information
instead of two hop information, which reduce communication cost
significantly; 2)we use Gabriel graph instead of the localized De-
launay triangulation, which makes the localized method much sim-
pler and more efficient; 3) the method used to bound the degree is
also different. The algorithm is as follows.

ALGORITHM 2. CONSTRUCTDEGREE-(K+5) PLANAR POWER

SPANNER OrdY aoGG

1. First, each node self-construct the Gabriel graphGG locally
based on the strategy described in Algorithm 1. LetNGG(u)
be the neighbors set of nodeu in GG.

2. Second, each node decides its orderπ as follows.

Two data structures at each nodeu are used in this algorithm:

(1)π(u): the local order of nodeu, which is initially set as0,
i.e., unordered.

(2)d(u): the number of its unordered neighbors known by
nodeu so far, which is initially set as its degree inGG.

The strategy is follows:

(a) If node u hasπ(u) = 0 and d(u) ≤ 5, then node
u queries the node degree of each unordered neighbor
node. The query message contains only the ID of node
u, and each queried nodev replies nodeu with its cur-
rent degreed(v):

i. If some unordered neighborv with d(v) ≤ 5 has
smaller ID, we call such query round afailed round
and nodeu does nothing. Nodeu performs a new
round of queries only if it finds that the number of
its unordered neighbors has been reduced, so there
are at most5 rounds of queries.

ii. If nodeu has the smallest ID among all unordered
neighborsv with d(v) ≤ 5, nodeu sets

π(u) = max{π(v) | v ∈ NGG(u)}+ 1,

and broadcastsπ(u) to its neighborsNGG(u) through
messageMYORDER.

(b) If nodeu receives aMYORDERmessage from its neigh-
bor v in GG saying thatπ(v) = k, it recordsπ(v)
locally and updates itsd(u) = d(u)− 1.

(c) When nodeu finds thatd(u) = 0 andπ(u) > 0, it can
go to next step to bound its degree in the final structure.

3. All nodes self-form the final topology based on local orderπ
as follows. Initially, all nodes are marked withWHITE color,
i.e., unprocessed. LetNOY GG(u) be the set of neighbors of
u in the final topology, which is initialized asNGG(u).

(a) If nodeu is unprocessed (markedWHITE), and it has
the largest orderπ(u) among all itsWHITE neighbors



(a) UDG (b) BPS (c) GG and YaoGG (d) OrdYaoGG (d) SYaoGG

Figure 2: Several planar power spanners on the UDG shown in (a). Herek = 9 for Yao related construction.

in NGG(u), it divides its transmission range (which is
a unit disk centered at the nodeu) into k equal-sized
cones, keeps one nearestWHITE neighborv (if avail-
able) inNOY GG(u) and deletes others. Nodeu marks
itself BLACK , i.e., processed, and notifies all nodes in
NGG(u) of the deleted edges.

(b) If the nodeu receives a message for deleting edgevu
from its neighborv, it deletes the nodev from its local
list NOY GG(u).

4. When all nodes are processed, all the remaining edges
{uv|v ∈ NOY GG(u),∀v ∈GG} form the final network topol-
ogy OrdY aoGG. Each node then can shrink its transmis-
sion range as long as it sufficiently reaches its farthest neigh-
bor in the final topology.

LEMMA 3. The final topologyOrdY aoGG is a planar graph,
whose node degree is bounded byk + 5 wherek > 6 is an ad-
justable parameter.

PROOF. The Yao graph construction does not add any edges to
original graphs, on the contrast, it only deletes edges. Hence the
planar property is inherited fromGG graph.

We then show that each node degree is bounded byk + 5 in
OrdY aoGG. To prove this, we first review one important prop-
erty for planar graph, that is, there always exists a node with degree
at most5 in planar graph. Clearly, our local ordering is able to
start, since there is at least one node with degree at most5 initially.
When we order these nodes with degree at most5 that have ID
smaller than these neighbors in GG with degree at most5, we will
mark these nodes ordered and update the degrees for the remain-
ing nodes. We clearly can repeat this procedure until all nodes are
ordered since the Gabriel graph induced on all unordered nodes is
always planar. LetPu be the neighbors of nodeu in GG that are
orderedafter u. From our processing order of nodes, these nodes
will be markedBLACK before nodeu, i.e., being processed before
u. We will then callPu predecessors of nodeu. Clearly, in the
local orderingπ, every nodeu has at most have5 edges to its pre-
decessorsPu in GG, that is to say, before it is marked withBLACK ,
it has at most5 processed neighbors.

When nodeu is being processed, it could select at mostk other
unprocessed neighbors into final structure, thus, its degree is bounded
by k +5. Once a node is marked withBLACK color, its degree will
be kept unchanged according to our algorithm. This finishes our
proof.

In Figure 2, we show thatGG andY aoGG cannot bound the
node degree, while our structureOrdY aoGG is indeed degree-
bounded byk + 5 = 14, herek is set as9 in our experiment. We
then prove that the final structure is also power efficient.

LEMMA 4. OrdY aoGG is a power spanner ofUDG, and its
power spanning ratio isρ = 1

1−(2 sin π
k

)β , wherek > 6 is an

adjustable parameter andβ ∈ [2, 5] is a constant depending on
the transmission environment.

PROOF. Since theGG is a power spanner with spanning ratio
1, we only need prove thatOrdY aoGG is a power spanner ofGG
with spanning ratioρ = 1

1−(2 sin π
k

)β . The proof is similar to the

proof for Yao on UDG [3] and the later proof of Theorem 7. Due
to space limitation, we omit the details here.

We then analyze the total communication cost of Algorithm 2.
(1) Clearly, the first step of buildingGG can be done using only
n messages: each message contains the ID and geometry position
of a node. (2) The second step of computing local ordering can be
done in21n messages: First, an unordered nodeu sends out at most
5 query messages containing its ID and its actual numberd(u) of
unordered neighbors. Each such query message is replied byd(u)
neighbors. Since we perform a new query only ifd(u) decreases
from last failed query, the total messages used for queries is at most
n·∑5

i=1(i+1) = 20n messages. Second, an ordered nodeu sends
a message containing its ID and the local orderingπu computed.
The second step can thus be done in at most21n messages. (3)
In the third step, a processed nodeu will inform all its WHITE

neighborsv about the deletion of the edgeuv from Gabriel Graph
(which has at most3n edges). In the final topology OrdYaoGG, at
leastn−1 edges was kept to ensure the connectivity, thus, the total
number of such messages is at most2n. In summary, the following
lemma directly follows.

LEMMA 5. Assuming that both the ID and the geometry posi-
tion can be represented bylog n bits each, the total communication
cost of Algorithm 2 is then at most24n log n bits.

Notice that additional communication and computation cost can
be saved, if the degree is expected to be bounded byk + 5 only.
The modification is to let all nodes with degree at mostk + 5 be
initially marked asBLACK , that is to say, they do not participate in
the third step in Algorithm 2.

3.2 Degree-k Planar Power Spanner (SYaoGG)
Algorithm 2 constructs a planar power efficient structure using

at mostO(nlogn) bits communications, and the final structure
has a theoretical degree boundk + 5, wherek > 6 is a param-
eter. We then study a more interesting method to build a degree-
bounded planar power spanner, which can be constructed easier
and demands less communication cost during construction. later.
We compare their practical performances through simulations. The
second structure is constructed as follows.



ALGORITHM 3. CONSTRUCTDEGREE-K PLANAR POWERSPAN-
NER SY aoGG

1. First, each node self-construct the Gabriel graphGG locally
based on the strategy described in Algorithm 1.

2. All nodes together self-form the final topology as follows.
Initially, each nodeu is marked withWHITE color, i.e., un-
processed, and initializedNSY GG(u) as the set of all the
neighbor nodes inGG.

(a) If a WHITE nodeu has the smallest ID among itsWHITE

neighbors inGG, it divides its transmission range into
k equal-sized cones wherek > 8 is an adjustable pa-
rameter. In each cone, nodeu checks whether there are
someBLACK nodes inNSY GG(u) within same cone:

i. Yes. Nodeu keeps the closestBLACK neighbor
among them atNSY GG(u) and deletes others in
the cone;

ii. No. Nodeu keeps a closestWHITE neighbor(if
available)among them atNSY GG(u) and deletes
others in the cone.

After processing allk cones, nodeu marks itselfBLACK ,
i.e. processed, then notifies each deleted neighboring
nodev in GG by a broadcasting messageUPDATEN.

(b) Once aWHITE nodev receives the messageUPDATEN
from a neighboru in GG, it checks whether itself is
in the nodes set for deleting: if so, it deletes the send-
ing nodeu from NSY GG(v), otherwise, marksu as
BLACK in its local listNSY GG(v).

(c) Once aBLACK nodev receives the messageUPDATEN
from a neighbor belonging toNSY GG(v), it checks
whether itself is in the nodes set for deleting: if so,
it deletes the sending nodeu from NSY GG(v), other-
wise, marksu asBLACK in its local listNSY GG(v).

3. When all nodes are processed, all selected edges{uv|v ∈
NSY GG(u), ∀v ∈GG} form the final network topology, de-
noted bySY aoGG. Each node then can shrink its trans-
mission range as long as it sufficiently reaches its farthest
neighbor in the final topology.

Algorithm 3 further reduces the communication cost during con-
structing a degree-bounded planar power spanner, because we do
not demand the local ordering before construction.

Our analysis of the structureSY aoGG relies on the following
simple observation.

LEMMA 6. In GG graph, if two edgesuv and uw emanates
from a single vertexu, then both the angle∠uwv and∠uvw must
be acute.

PROOF. We prove it by inducing contradiction. Suppose the an-
gle ∠uvw is an obtuse angle, then‖wv‖ < ‖uw‖, hence, all the
three edgesuv, vw anduw are in the UDG graph. Thus, the circle
with diameteruw contains the nodev inside, according to the prop-
erty ofGG graph, edgeuw can not be kept during GG construction.
The contradiction is induced. This finishes the proof.

THEOREM 7. The structureSY aoGG isk degree-bounded pla-
nar power spanner, whose power stretch factor is at mostρ =√

2
β

1−(2
√

2 sin π
k

)β , wherek ≥ 9 is an adjustable parameter andβ ∈
[2, 5] is a constant factor depending on the communication envi-
ronment.

PROOF. First, the node degree is obviously bounded byk be-
cause each node only keeps one undirected edge in each cone. Fig-
ure 2(d) illustrates the self-constructedSY aoGG structure on the
UDG graph shown in Figure 2(a). The node degree is indeed at
mostk = 9.

Second, the graphSY aoGG is planar, because the Gabriel graph
GG is planar and Algorithm 3 does not add any more edges, thus,
the planar property is inherited.

In the following, we show that the structureSY aoGG is a power
spanner. According to Theorem 2,GG has power spanning ratio1.
Hence, from Lemma 1, it is sufficient to show that for any nodesu
andv with an edgeuv ∈ GG, there is a path connectingu andv in
SY aoGG with power cost at mostρ · ‖uv‖β .

Given any edgeuv ∈ GG, we will construct a pathu ! v
connectingu andv in SY aoGG. If edgeuv is kept in the final
structure, thenu ! v is just uv. Otherwise, assume thatuv is
removed2 when processing nodeu. There must exist a linkuw
selected by nodeu in the same cone. Thenu ! v is the concate-
nation ofuw with w ! v, see Figure 3. Notice that nodeu is
marked as processed in this stage. It is possible that the linkuw
could then be removed by nodew later on since nodew is not pro-
cessed when process nodeu. If so, we replace linkuw by u ! w,
see Figure 4 for illustration, details will be explained later.

We then prove by induction, on the number of its edges, that
the pathu ! v has power cost, denoted byp(u ! v), at most
ρ‖uv‖β .

Obviously, if there is only one edge inu ! v, p(u ! v) =

‖uv‖β < ρ‖uv‖β . Assume that the claim is true for any path with
l edges. Then consider a pathu ! v with l+1 edges, which is the
concatenation of edgeuw (or pathu ! w) and the pathw ! v
with l edges.

Without loss of generality, we always assume that the linkuv is
removed after nodeu is processed and linkuw is selected in the
cone. Notice that the linkuw could be removed later by nodew
if w is processed afteru, so there are two cases that need to be
discussed carefully:

1. The first case is that linkuw is kept in the final structure. Re-
member that, as described in the algorithm, we always select
the nearestBLACK neighbor in a cone if it exists; otherwise
the nearestWHITE neighbor is selected if it exists.

w

u v

w

u v
(a) Bothw andv are (b)w is BLACK

WHITE or BLACK andv is WHITE

Figure 3: The link uw is kept in the final structure.

Figure 3 illustrates the situations that aWHITE nodeu starts
Yao construction in the cone. Suppose, we deleteuv in the
cone and choose edgeuw, which is also kept in the final
structure. Again, there are two subcases that need to be ana-
lyzed:

Subcase 1:‖uw‖ ≤ ‖uv‖. This subcase happens only when
both nodesv andw are processed(or unprocessed), and

2Notice that an edgeuv ∈ GG can only be removed while pro-
cessing itsendpoint nodeu or nodev.



nodeu deletes linkuv since the existence of closer pro-
cessed(or unprocessed) neighborw. Figure 3(a) illus-
trates the situation.
We bound the length‖wv‖ respecting to‖uv‖. Notice
that‖uw‖ ≤ ‖uv‖ and∠wuv < θ = 2π

k
. The max-

imum length ofvw is achieved when‖uw‖ = ‖uv‖
because the angle∠uwv is acute according to Lemma
6. Therefore

‖wv‖ ≤ 2 sin
θ

2
‖uv‖ = 2 sin

π

k
‖uv‖.

By induction, we have

p(u ! v) = ‖uw‖β + p(w ! v)

≤ ‖uw‖β + ρ‖wv‖β

≤ ‖uv‖β + ρ · (2 sin
π

k
)β‖uv‖β

< ρ‖uv‖β ,

whenρ ≥ 1
1−(2 sin π

k
)β .

Subcase 2:‖uw‖ > ‖uv‖. This case happens only when node
w is processed while nodev is not processed yet, and
nodeu deletes linkuv since any processed neighbor
has higher priority in our algorithm. Figure 3(b) illus-
trates the situation.
We bound the length‖wv‖ respecting to‖uw‖. Notice
that‖uw‖ > ‖uv‖ and∠wuv < θ = 2π

k
< π

4
accord-

ing to Lemma 6. So we haveπ
4

< ∠uwv < ∠uvw <
π
2

. Consequently,‖uw‖ <
sin π

2
sin π

4
‖uv‖ =

√
2‖uv‖.

The maximum length ofvw is achieved when‖uw‖ =
‖uv‖ because the angle∠uwv is acute. Therefore

‖wv‖ ≤ 2 sin
π

k
‖uw‖ ≤ 2

√
2 sin

π

k
‖uv‖.

By induction, we have

p(u ! v) = ‖uw‖β + p(w ! v)

≤ ‖uw‖β + ρ‖wv‖β

≤ (
√

2)β(1 + ρ(2 sin
π

k
)β)‖uv‖β

≤ ρ‖uv‖β ,

whenρ ≥
√

2
β

1−(2
√

2 sin π
k

)β .

2. The second case is that linkuw is later removed by nodew.
We show that the spanning ratio is still kept. Notice that, this
case could only succeedSubcase 1. The linkuw in Subcase
2, see Figure 3(b), can never be removed in our algorithm,
since both nodeu andw have processed and kept this edge.
An edge can only be removed by its endpoints. This is the
tricky case in this algorithm.

Figure 4(a) shows the situation that aWHITE nodeu selects
a link uw in a cone, where the neighbor nodew is not pro-
cessed. Figure 4(b) illustrates the scenario when nodew pro-
cesses its neighbors: since it has two processed3 neighborsu
andx in the cone, it will select the nearest processed neigh-
bor in that cone, which is nodex. Observe that after node
w decided to keep linkwx and remove linkuw, the linkwx
will be kept in the final structure since both end nodesw and

3Nodex must also be a processed node, otherwisew will definitely
selectu instead ofx according to our rule.

v

x

w u

v

x

w u

(a) processingu (b) processingw

Figure 4: Link uv is removed when processing nodeu (illus-
trated in the left figure) and link uw is then removed by nodew
later (illustrated in the right figure).

x are processed and only an unprocessed node can remove its
incident links later. Obviously, from the selection procedure,
we know that

‖uv‖ ≥ ‖uw‖ ≥ ‖wx‖.
Notice that, both nodeu andx select the nodew in one of
their cones when they are processed before nodew starts its
processing. Nodew then selectsx instead ofu becausewx is
shorter. Consequently, nodeu does not have any neighbors
kept in the nodeu’s cone shown in Figure 4(b). This is a
sharp contrast to our first structureOrdY aoGG, in which
every node always keep an edge in each cone if it originally
has one neighbor from Gabriel graph. Then the pathv ! u
connecting nodesu and v is composed of pathv ! w,
link wx and pathx ! u. The total power cost of the path
v ! u is

p(u ! v) = ‖wx‖β + p(w ! v) + p(u ! x)

≤ ‖wx‖β + ρ‖wv‖β + ρ‖ux‖β

≤ ‖wx‖β + ρ(2 sin
π

k
)β(‖uv‖β + ‖uw‖β)

≤ ‖uv‖β(1 + 2ρ(2 sin
π

k
)β)

≤ ρ‖uv‖β ,

whenρ ≥ 1
1−2(2 sin π

k
)β .

All conditions aboutρ are satisfied whenρ =
√

2
β

1−(2
√

2 sin π
k

)β . This

finishes the proof.

We then analyze the communication cost of Algorithm 3. (1)
Clearly, the first step of buildingGG can be done using onlyn
messages: each message contains the ID and geometry position of
a node. (2) In the second step of the algorithm, initially, the number
of edges in Gabriel Graph is less than3n since it is a planar graph.
Clearly, there are at most2n such removed edges since we keep at
leastn− 1 edges from the connectivity of the final structure. Thus
the total messages used to inform the deleted edges fromGG is at
most2n. Then the following lemma directly follows.

LEMMA 8. Assuming that both the ID and the geometry posi-
tion can be represented bylog n bits each, the total communication
cost of Algorithm 3 is then at most3n log n bits.



Theoretically, comparing withOrdY aoGG, the topologySY aoGG
has lower node degree bound while higher power spanning ratio
bound. Worth to mention that, our simulation later shows the power
spanning ratio ofOrdY aoGG andSY aoGG is very close in prac-
tice.

4. EXPERIMENTS
We evaluated the performance of our new degree-bounded and

planar spanners by conducting simulations. In our experiments, we
randomly generated a setV of n wireless nodes andUDG(V ),
then tested the connectivity ofUDG(V ). If it is connected, we
construct different localized topologies onUDG(V ), including
our new topologiesOrdY aoGG andSY aoGG, some well-known
planar spanner topologiesGG[10, 9], Y aoGG[4], andBPS[13].
Then we measure the sparseness, the power efficiency and the com-
munication cost during construction of these topologies.

In the experimental results presented here, we generatedn ran-
dom wireless nodes in a20 × 20 square; the parameterk, i.e., the
number of cones, is set to9 when we constructBPS, OrdY aoGG
andSY aoGG; the transmission range is set to8. We tested all pre-
ferred properties described in Section 2.2 of these planar structures
by varying node number from30 to 300, where100 vertex sets are
generated for each case to smooth the possible peak effects caused
by some exception examples. The average and the maximum were
computed over all these100 vertex sets.

4.1 Power Efficiency
The most important design metric of wireless network topol-

ogy is perhaps the power efficiency, as it directly affects both the
node and the network lifetime. So while our new topologies in-
crease the sparseness, how does it affect the power efficiency of
the constructed network? First, we test power stretch factors of
all structures. In our simulations, we set power attenuation con-
stantβ = 2. In Figure 5, we summarize our experimental results
of power stretch factors of all these topologies. It shows all of
the power stretch factors are small in practice, just around1.002,
exceptGG has power stretch factor1. In other words, the path
remaining in the sparse planar structures can estimate the short-
est path in the original communication graph without more power
consumption. It is not surprising that the average/maximum power
stretch factors ofOrdY aoGG andSY aoGG are at the same level
of those ofGG while they are much sparser.

Notice that after constructing the sparse structures, a node can
shrink its transmission energy as long as it is enough to cover the
longest adjacent link in the structure. By this way, we define the
node transmission power for each nodeu in a constructed structure
as follows. Ifu has a longest link, sayuv, in the structure, then
the node transmission energy ofu is ‖uv‖β . As expected, Figure
6 shows the average node transmission energy of each topology
decreases as the network density increases. The power needed by
each node in our new structuresOrdY aoGG andSY aoGG is al-
most same with that byGG, which is much less than its maximum
transmission energy (which is8β hereβ = 2 in our experiment).
Each node inBPS need to set higher transmission energy since
it has more neighbors. Specifically, BPS is a supergraph of the
Gabriel graph and our new structures are subgraphs of the Gabriel
graph.

4.2 Node Degree
The node degree is an important performance metric in wireless

ad hoc networks, since the degree of each node directly relates to
its power consumption and the global network performance.

The average and maximum node degrees of each topology are
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Figure 5: Average and maximum power spanning ratio of dif-
ferent topologies.

shown in Figure 7. It shows thatOrdY aoGG and SY aoGG
have less number of edges (average node degrees) thanY aoGG,
GG andBPS. In other words, these graphs are sparser. Notice
that the node degree ofBPS is much higher than those of other
graphs, sinceBPS uses many edges fromLDel which is a super-
graph (thus much denser than) ofGG, see Figures 2(b) and (c),
while all the other structures discussed here are subgraphs of the
Gabriel graph. Recall that theoretically, onlyBPS, OrdY aoGG
andSY aoGG have bounded node degree (both for in-degree and
out-degree). In [3, 4], Liet al. gave an example to show that
RNG, GG, andLDel could have large node degree (in-degree
for Y G andY aoGG). Notice that, in our experiments, since the
wireless nodes are randomly distributed in two dimensional space,
it is easy to understand that the maximum node degree ofGG and
Y aoGG are not as big as the extreme example, however, it can
happen. Recall that we provedOrdY aoGG andSY aoGG have
bounded node degreek + 5 andk respectively. In Figure 2, we
give a special example to show the theoretical node degree bound
for OrdY aoGG andSY ao, where two group wireless nodes, with
size17 each, are uniformly distributed on a unit disk and a half-
unit disk respectively. Both disks are centered at one nodeu with
ID = 0. Figure 2 shows the unit disk graph, which is a com-
plete graph, and other structures built on it. Notice thatGG and
Y aoGG keep all the links tou in the inner cycle, whileBPS and
OrdY aoGG can remove some links to bound node degree, and
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Figure 6: Average node transmission energy of different topolo-
gies.

SY aoGG has the best node degree boundk = 9. Notice that
BPS is constructed based onLDel, and it also added some edges
to keep the length spanner property, so it is the densest among them.

Beside the node degree of all these structures, we are also inter-
ested in another kind of node degree, calledphysical node degree
and defined as follows. For each nodeu, it has a longest link, say
uv, in a constructed structure. Then the physical degree ofu is de-
fined as all nodesw such that‖uw‖ ≤ ‖uv‖. This is the total num-
ber of nodes that can cause direct interference withu. The average
and maximum physical node degrees of each topology are shown
in Figure 8. They are higher than the node degrees in Figure 7 as
expected, however they follow the same pattern of curves. More-
over, the possible interference increases slightly while the number
of wireless nodes grows. This is tolerable because each node also
decreases its transmission range as shown in Figure 6 and the av-
erage number of actual physical neighbors of a node is around6 in
our simulations.

4.3 Communication Cost During Construction
In Section 3 we proved that the localized algorithms construct-

ing OrdY aoGG andSY aoGG use at mostO(n) messages. We
found that when the number of wireless nodes increases the aver-
age messages used by each node for constructing them is still in
the same level. Figure 9 summarizes our experimental results of
the communication costs in each node during the construction of
OrdY aoGG andSY aoGG. Here we do not compare our com-
munication costs with that ofBPS, since it uses2-hop neigh-
bors information and needs to buildLDel(2)(UDG) which costs
much more messages for sure. It is clear that the network becomes
more and more dense while the number of wireless nodes increases.
However, experiment shows that the localized method does not cost
more messages on each node even when the graph becomes denser.
An interesting observation is that the average number of messages
per node for structuresOrdY aoGG is around8 though the theo-
retical bound is24. It is reasonable because nodes do not always
query5 times in local ordering in practice. Notice thatSY aoGG
costs much less messages thanOrdY aoGG does, so it is indeed a
very efficient topology construction method. This is expected and
consistent with our theoretical analysis.

Moreover, simulations results in all charts also show that the per-
formances of our new topologiesOrdY aoGG andSY aoGG are
stable when number of nodes changes.
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Figure 7: Average and maximum node degree of different
topologies.

5. CONCLUSION
We proposed several novel localized algorithms that construct

energy efficient routing structures, where each node has a bounded
degree and the structures are planar, for wireless ad hoc networks
modelled by unit disk graph (UDG). Our first structure has bounded
node degreek+5 wherek > 6 is an adjustable parameter; its power
stretch factor is no more thanρ = 1

1−(2 sin π
k

)β ; it is planar; and it

can be constructed locally in24n log n bits for a wireless network
of n nodes.

Our second method improves the degree bound tok, and keeps
all other properties, except that the theoretical power spanning ratio

is relaxed toρ =
√

2
β

1−(2
√

2 sin π
k

)β , wherek > 8 is an adjustable

parameter. We showed that the second structure can be constructed
using at most3n log n bits.

We conducted extensive simulations to study these new sparse
network topologies and compared them with previously known ef-
ficient structures. Theoretical results are corroborated by the simu-
lations.
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