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With the increasing number of digital documents, the 

ability to automatically classify those documents both 

efficiently and accurately is becoming more critical and 

difficult. One of the major problems in text 

classification is the high dimensionality of feature 

space. We present the ambiguity measure (AM) 

feature-selection algorithm, which selects the most 

unambiguous features from the feature set. 

Unambiguous features are those features whose 

presence in a document indicate a strong degree of 

confidence that a document belongs to only one specific 

category. We apply AM feature selection on a naïve 

Bayes text classifier. We favorably show the 

effectiveness of our approach in outperforming eight 

existing feature selection methods, using five 

benchmark datasets with a statistical significance of at 

least 95% confidence. The support vector machine 

(SVM) text classifier is shown to perform consistently 

better than the naïve Bayes text classifier. The 

drawback, however, is the time complexity in training a 

model. We further explore the effect of using the AM 

feature-selection method on an SVM text classifier. Our 

results indicate that the training time for the SVM 

algorithm can be reduced by more than 50%, while still 

improving the accuracy of the text classifier. We 

favorably show the effectiveness of our approach by 

demonstrating that it statistically significantly (99% 

confidence) outperforms eight existing feature-selection 

methods using four standard benchmark datasets. 

Introduction 

There is an overflow of unorganized digital data in 

today’s world. Vast volumes of digital text are available 

via the World Wide Web (WWW), news feeds, electronic 

mail, corporate databases, medical patient records and 

digital libraries. The problem of classifying and storing 

these documents poses a significant challenge. Large 

companies filter incoming e-mail and store them in folders 

or route them to concerned departments. News agencies 

also use classification tools for filtering or routing the 

news from different sources to the appropriate client. 

Other applications of text classification are in the field of 

knowledge-base extraction, e-commerce and information 

extraction. Companies spend significant resources on 

classifying documents manually. The feasibility of manual 

classification decreases as the number of documents 

increases over time. As the number of documents is large, 

a fast and scalable automatic classifier is needed to classify 

the existing and incoming documents accurately and 

efficiently. We propose, design, develop and evaluate one 

such classifier. 

Text classification involves scanning through the text 

documents, and assigning categories to documents to 

reflect their content (Yang, 1999). One of the major 

characteristics of text classification is the high 

dimensionality of a feature set (Mladenić & Grobelnik, 

1998). The feature set for a dataset consists of the unique 

terms in training documents. However, the number of 

features in the text classification dataset is prohibitively 

high for many learning algorithms. Hence, it is highly 

desirable to reduce the feature set without sacrificing 

categorization accuracy. Feature selection is formally 

defined in Galavotti & Sebastiani (2000) as ―the activity of 

selecting, from the set of r distinct features (i.e., words) 

occurring in the collection, the subset of rr   features 

that are most useful for compactly representing the 

meaning of the documents.‖ Feature-selection methods are 

used to achieve two objectives: 

1. To reduce the size of the feature set to optimize the 

classification efficiency. 

2. To reduce noise in the feature set to optimize the 

classification effectiveness. 

Most existing feature selection algorithms such as odds 

ratio (Mladenić & Grobelnik, 1998), information gain 

(Quinlan J, 1986), Chi-Squared (Yang & Pedersen, 1997), 

bi-normal separation (Forman, 2003) and tficf (Chih & 

Kulathuramaiyer, 2004) calculate a score based on the 

probability that a feature belongs to a given category and 

the probability that a feature does not belong to the other 

categories. These algorithms perform poorly on the 

unbalanced text classification datasets. The nature of 

unbalanced datasets is such that a few categories have 

significantly more training documents than most of the 

categories, and hence, the term frequency of many features 

appearing in these few categories is significantly higher 

than their frequency in other categories.  Moreover, if such 

terms have the same term frequency in two or more 

categories, the feature can not confidently point to a given 

category.   Thus, such terms should not be considered 

important in a single-labeled text classification process 

and should be filtered. However, algorithms such as odds 

ratio, information gain, chi-squared, bi-normal separation 



and tficf assign a higher weight to these terms even if they 

appear in more than one category. We call these terms 

ambiguous terms. 

To tackle this problem, we present a feature selection 

method called Ambiguity Measure (AM; Mengle, 

Goharian & Platt, 2007) that assigns a high score to a 

term, if it appears consistently in only one specific 

category. The intuition is that the term that appears in only 

one category points more strongly to that specific category 

and thus, is a better indicator in a single-labeled 

classification decision.  

We apply AM on single labeled Naïve Bayes text 

classifier and  compare AM  with eight feature selection 

algorithms on five standard datasets from various subject 

domains, namely news feeds, web pages, and bio-medical 

text. Our results indicate that AM feature selection 

achieves statistically significant improvements on 

unbalanced datasets such as OHSUMED (20%) and 

Genomics (7.5%), and on balanced datasets such as 

WebKB (2.6%), 20NG (2.14%) and Reuters 21578 

(0.25%) when compared to the best performing feature 

selection method out of the eight methods. However, the 

improvements on the unbalanced datasets are larger than 

the improvements on the balanced datasets. 

Furthermore, we also explore the effects of the AM 

feature selection method when applied on the single 

labeled Support Vector Machine (SVM) algorithm (Cortes 

& Vapnik, 1995; Joachims, 1999; Yang, Zhang & Kisiel, 

2003). The SVM algorithm is one of the widely used text 

classification algorithms. Prior work (Joachims, 1998) 

indicates that SVM performs consistently better than Naïve 

Bayes, kNN, C4.5 and Rocchio text classifiers. However, 

one of the limitations of SVM is its training time 

complexity. Yang, Zhang & Kisiel 2003) shows that SVM 

has a higher time complexity for training a model than 

other text classification algorithms. To overcome this 

limitation of SVM, feature selection methods are used as a 

preprocessing step before training SVM (Wenqian et al., 

2007; Novovicova & Malik, 2005; Yan et al., 2005). Many 

well-known feature selection algorithms are used with 

SVM to improve its accuracy and efficiency. We use the 

AM feature selection method as a pre-processing step for 

the Support Vector Machine classifier (Mengle & 

Goharian, 2008). The features whose AM scores are below 

a given threshold, i.e., more ambiguous terms, are purged 

while the features whose AM scores are above a given 

threshold are used for the SVM learning phase. We 

favorably compare the results of AM feature selection 

algorithm with the same eight feature selection algorithms 

reported in (Wenqian et al., 2007; Yan et al., 2005) on 

four of the standard benchmark datasets. We also 

empirically show that using AM feature selection with 

SVM reduces the training time by more than 50%, while 

maintaining the accuracy of the classifier. 

Prior Work 

  Various techniques are used for finding an "optimal" 

subset of features from a larger set of possible features. 

Exhaustively trying all the subsets is not computationally 

feasible. Hence, automatic feature selection algorithms are 

used to find the most important features in the feature set. 

In this section, we present the commonly used feature 

selection algorithms.  

Odds Ratio 

The basic idea of using odds ratio (Mladenić & 

Grobelnik, 1998) is to calculate the odds of a term 

occurring in the positive class (the category a term is 

related to) normalized by the odds of that term occurring 

in the  negative class (the category a term is not related 

to). The odds ratio of a term tk for a category ci is defined 

using Equation 1: 
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Odds Ratio is known to work well with the Naive Bayes 

text classifier algorithm (Mladenić et al., 2004; Mladenić 

& Grobelnik, 1998). 

Information Gain 

Information gain (Quinlan, 1986) is commonly used as a 

surrogate for approximating a conditional distribution for 

text classification. In information gain, class membership 

and the presence/absence of a particular term in a given 

category are seen as random variables; one computes how 

much information about the class membership is gained by 

knowing the presence/absence statistics. If the class 

membership is interpreted as a random variable C with 

two values, positive ( c ) and negative ( c ), and a word is 

likewise seen as a random variable T with two values, 

present ( t ) and absent ( t ), then Information Gain is 

defined as Equation 2: 
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Chi-Squared 

The 2  test is used in statistics to test the independence 

between two events. In text classification, 2  (Yang & 

Pedersen, 1997; Galavotti & Sebastiani, 2000; Wu & 

Flach, 2001) is used to measure the association between a 

category and features. The 2 measure of a term tk for a 

category ci is defined using Equation 3: 
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Thus, the 2 (tk, ci) score indicates the weight of term tk 

with respect to category ci. If a term is close to more 

categories, then the score of that term is higher. The score 

of each term tk   is calculated using Equation 4: 
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Bi-Normal Separation 

   In the Bi-Normal Separation (BNS) feature selection 

method (Forman, 2003; Forman, 2008), the occurrence of 

a given term is modeled in each document by a random 

normal variable that exceeds a hypothetical threshold. The 

prevalence rate is calculated with respect to both positive 

and negative classes. Prevalence rate can be defined as the 

area under the curve past a certain threshold. Thus, if a 

term consistently appears in the positive class, the 

threshold is farther from the tail of the curve than that of 

the negative class. BNS is calculated based on the 

separation between these two thresholds. Thus, if a term 

appears more consistently in the positive class than the 

negative class, it is assigned a higher BNS score. BNS is 

calculated using the Equation 5. 
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   Where, tp is the number of positive cases containing the 

word; fp is the number of negative cases containing the 

word; fn is the number of positive cases that do not contain 

the word; tn is the number of negative cases that do not 

contain the word, and F-1 is the standard normal 

distribution’s inverse cumulative probability function. As 

reported in (Forman, 2003), BNS+F1 yields the best 

performance on most of the tasks in comparison with odds 

ratio, information gain and Chi-Squared. 

F1 metrics (Equation 6) is the harmonic mean of precision 

(Equation 7) and recall (Equation 8). 
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Improved Gini Index 

In Gini Index (Breiman, Friedman and Olshen, 1984), if 

a term appears in every document of class ci, then it 

receives a high Gini Index score. (This is regardless of 

term occurrence in other classes.) When a term is 

distributed evenly in the documents of various categories, 

the term is then assigned a lower Gini Index score. Gini 

Index for a term tk can be calculated using Equation 9. 
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However, the Gini Index fails to consider the frequency 

of documents where the term occurs within larger 

categories. The categories are generally unbalanced with 

respect to the number of training documents. Hence, the 

Gini Index score is biased with respect to categories that 

have a large number of training documents. (Wenqian et 

al., 2007) constructed a new function called Improved Gini 

Index that considers a term's condition probability and 

combines the posterior probability and condition 

probability to avoid the effects of unbalanced classes in 

datasets. Improved Gini Index of a given term tk is defined 

using Equation 10: 
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Tficf 

In tficf (Chih & Kulathuramaiyer, 2004), tf refers to term 

frequency of a term in a given category and icf refers to 

inverse category frequency, i.e., the ratio of total number 

of categories in a dataset to the number of categories a 

term falls into. The tficf scheme does not discriminate 

between terms that occur frequently in a small subset of 

documents in a category and terms that are present in a 

large number of documents throughout a category. Thus, 

tficf considers that the less a term occurs across categories, 

the higher is its score. The tficf of a term tk in category ci 

is defined using Equation 11: 
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Where |C| refers to the total number of categories in a 

dataset, tf(tk,ci) is the term frequency of a term tk in 

category ci and cf(tk) refers to the number of categories in 

which a term tk appears. 

Tfidf  

In tfidf (Chih & Kulathuramaiyer, 2004), tf refers to 

term frequency of a term in a given document. idf is 

defined as the inverse document frequency, i.e., the ratio of 

the total number of documents present in a dataset to the 

number of documents a given term appears in. A higher 

idf of a term indicates that the term appears in relatively 

few documents and may be more important during the 



process of text classification. tfidf is a commonly used 

technique for term weighing in the field of information 

retrieval (Grossman & Frieder, 2004) and is also used in 

text classification (Lavelli, Sebastiani & Zanoli, 2004; 

Debole & Sebastiani, 2003). tfidf of a term tk in document 

di is defined using Equation 12: 
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Where |D| refers to the total number of documents in a 

dataset, tf(tk,di) is the term frequency of a term tk in 

document di and df(tk) refers to the number of documents 

in which term tk appears. 

Orthogonal Centroid Feature Selection (OCFS) 

   The Orthogonal Centroid Feature Selection (OCFS) 

(Yan et al., 2005) selects features optimally according to 

the function implied by the Orthogonal Centroid 

algorithm. The centroid of each class (mj) and also for the 

entire dataset (m) is calculated using training data. A score 

for term tk is calculated using Equation 13. 
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  Where nj is the number of training samples that belong to 

category j and n is the total number of training samples. 

The feature set is pruned by selecting only the features 

whose scores are higher than a threshold. OCFS is not 

greedy in nature like odds ratio or information gain. 

Hence, the OCFS algorithm can be optimized based on the 

objective function that is implied by the Orthogonal 

Centroid algorithm and has been shown to improve over 

traditional algorithms. 

Methodology 

In this section, we initially describe our motivation 

behind our AM feature selection algorithm and formally 

define AM. Secondly, we discuss the differences between 

the AM measure and various feature selection algorithms. 

Finally we define a methodology for using the feature 

selection algorithms with text classification algorithms 

such as NB and SVM. 

 AM Feature Selection Algorithm 

Initially, we describe the intuitive motivation behind our 

AM feature selection approach and then provide a formal 

definition. First, we consider the human perception of the  

 

 

 

topic of a document by glancing at the document and 

capturing its keywords. Instead of using all the terms in a 

document to determine the subject of a text, normally one 

bases a decision on the most unambiguous words that the 

eye captures. The person then has an idea of the topic of 

the document. Some words can easily suggest the category 

in which the document can fall into. For example, if the 

document has phrases like Chicago White Sox and MLB 

World Series Champion, then one can suggest that the 

document relates to baseball in particular and sports in 

general. The sample text below is taken from Wikipedia1. 

By having a glance at this text, the reader can guess the 

category. 

 

“Metallica is a Grammy Award-winning American heavy 

metal/thrash metal band formed in 1981 and has become 

one of the most commercially successful musical acts of 

recent decades. They are considered one of the "Big Four" 

pioneers of thrash metal, along with Anthrax, Slayer, and 

Mega-death. Metallica has sold more than 90 million 

records worldwide, including 57 million albums in the 

United States alone.” 

 

The text seems to be about Music. Our human perception 

is based on our knowledge of the domain or what we hear 

or read on various subjects in daily life. Thus, without 

reading this specific text completely, one can confidently 

claim that the text belongs to Music rather than Terrorism 

or Politics.  

Some terms may be stronger indicators that a given text 

belongs to a certain category than others.  Thus, we can 

give a score as to how strongly a term suggests a particular 

category. We clarify this by giving the following 

hypothetical example. 

"Carolina Panthers lost the Superbowl title to Chicago 

Bears due to a last minute touchdown." 

In the above sentence, we have the terms Bears and 

Panthers, which are related to wildlife. On the other hand, 

they are also the names of famous NFL football teams. 

Here we notice uncertainty in classifying the text to 

Wildlife or to Sports categories. Terms such as Superbowl 

and touchdown, in the same given text suggest with more 

certainty that the text is about Sports. 

                                                        
1 Wikipedia. http://en.wikipedia.org/wiki/Metallica 



We define an Ambiguity Measure, AM, for each term tk 

with respect to category ci, using Equation 14. The 

maximum AM score for term tk with respect to all 

categories is assigned as AM score of term tk (Equation 

15). 
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 Where tf(tk,ci) is the term frequency of a term tk in 

category ci and tf(tk) is the term frequency of a term tk in 

the entire collection.  

We then assign a higher score to unambiguous terms. In 

the above example, the term touchdown has a higher AM 

than that of the terms Bears and Panthers. The AM score 

is close to 1 if the term is unambiguous.  Conversely, if 

AM is closer to 0, the term is considered more ambiguous 

and may point to more than one category. 

The AM score for the feature Metallica, for the sample 

text, is 0.99, which indicates that the feature Metallica is 

an unambiguous feature and should be kept and not 

filtered (Table 1). Anthrax is related to the Medicine 

category with an AM score of 0.80. Anthrax is also the 

name of a famous music band of the 1980s. Hence, it also 

appears in the category Music. Thus, the AM of Anthrax is 

less than Metallica.  In some cases the AM score of some 

features is low as they appear consistently in multiple 

categories. An example of such is the term Records, which 

may appear in all three (sports, music, and medicine) 

categories. Thus, the AM score of such a term is low 

(0.33), and it is desirable to filter out such features. This 

reduction in dimensionality of the feature set increases the 

accuracy by avoiding the terms that have lower AM scores. 

We empirically determine a threshold and filter out 

features whose AM scores are below that given threshold.  

Differences 

The feature selection methods of odds ratio, information 

gain, BNS+F1 and Chi-Squared assign a high score to a 

term even if it appears in more than one category. Using 

such features do not assist a single labeled text classifier in 

distinguishing between categories. AM feature selection 

method assigns a high score to a term, if it appears 

consistently in only one specific category. Such terms then 

can point the classifier to that specific category. For 

example, consider a term t1 with half of its occurrences in 

one category c1 and the other half distributed uniformly 

across the other categories. Term t1 confidently points to 

category c1 and hence is assigned an AM score of 0.50. 

Consider another term t2 with 49% of occurrences in 

category c1 and the other 51% of occurrences concentrated 

in two other categories c2 and c3. An AM score of 0.49 is 

assigned to term t2. As our goal is single-labeled 

classification, AM assigns a higher score to term t1 than 

term t2 as it points more confidently to category c1. 

However, algorithms such as information gain, odds ratio, 

BNS+F1 and Chi-Squared assign a score to a term that is 

inversely proportional to the number of categories that 

term appears in. Hence, term t2 (occurs in three categories) 

is assigned a higher score than t1 (occurs in all categories). 

However, the term t2 may mislead a single-labeled 

classifier as it also points to categories c2 and c3 each with 

a lower probability (25.5%). Term t1 confidently points to 

only category c1 and hence, should be assigned a higher 

score than t2.   

In the Improved Gini Index method, the probabilities of 

a term with respect to all the categories are considered. If 

the term tk appears in many documents of category ci, then 

tk is assigned a high score. In a situation where term 

frequency of the term tk in categories ci and cj is the same, 

and also it appears in every document of both categories ci 

and cj, then tk is assigned a high score. However, as term tk 

belongs to two different categories it is ambiguous. Our 

proposed AM feature selection method avoids such 

situation and assigns a low score to features like tk.  

Using tfidf and tficf methods, the terms that appear with 

a low frequency in only a single category are purged 

during the feature selection process. However, such terms 

are unambiguous and point to a single category. Another 

problem is that some terms have a similar distribution in 

more than one category (low idf or icf), but have a high 

term frequency. These terms are selected during the 

process of feature selection as the term frequency of such 

terms is high. These terms are ambiguous, as they do not 

point strongly to only a single category. The AM feature 

selection method avoids such situations by only 

considering the ratio between the numbers of occurrences 

of a term in a given category to the total number of 

Table 1. Ambiguity Measure (AM) example 

Term Metallica Anthrax Records 

Category Count AM Count AM Count AM 

Medicine 0 0.00 800 0.80 150 0.15 

Music 990 0.99 150 0.15 240 0.24 

Sports 10 0.01 00 0.00 330 0.33 

Politics 0 0.00 50 0.05 280 0.28 

       



occurrences of that term in the training set. Thus, both 

these situations are avoided. 

In OCFS the training and the testing time is quadratic as 

the centroids of each class and the entire dataset are 

calculated. However, AM feature selection method trains 

and tests in linear time (this is discussed later in the 

paper).  

Using feature selection algorithms on SVM and NB 

text classifiers 

We evaluate our feature selection algorithm on SVM and 

Naïve Bayes text classifiers. SVM is commonly used as it 

was shown to perform better in terms of effectiveness than 

other text classifiers such as Naïve Bayes, kNN, C4.5 and 

Rocchio (Joachims, 1998). Naïve Bayes algorithm is, 

however, more efficient and scalable than other algorithms 

(Yang, Zhang & Kisiel, 2003).  

We present the methodology for applying feature selection 

algorithms on SVM and NB text classifiers (Figure 1).  

This process is divided into four phases. 

 Phase 1. Calculating feature selection scores 

In the pre-processing step, feature selection score for 

each feature in training documents is calculated.  

Phase 2. Filtering terms with lower feature scores 

We only keep the features in training documents if the 

feature score of a term is above a certain empirically 

determined threshold. We determine these thresholds by 

exhaustively optimizing the results of each algorithm on 

the testing documents. The choice of testing versus 

separate validation set is to be consistent with the prior 

works (Wenqian, et al, 2007) (Yan, et al., 2005) (Chih, 

Kulathuramaiyer, 2004) that we compare our work with.  

We compare AM with both local and global feature 

selection algorithms. We globalize the local feature 

selection algorithms by selecting the terms with the 

highest local scores. Additionally, we also experiment with 

using round robin method (Forman, 2004) to convert local 

feature selection scores into global scores. 

Phase 3. Training the text classifier 

Pruned documents from Phase 2 are used by NB and 

SVM classifiers to train a text classification model. For 

NB, we use the traditional NB classifier as explained in 

(Mccullum and Nigam, 1998) to create a text classification 

model. We use the linear SVM kernel, as the non-linear 

versions gain very little in terms of performance (Mladenić 

et al., 2004). For training and testing the SVM model, we 

use LibSVM 2.842 software that is commonly used for 

classifying the documents into binary or multi-labeled 

categories.  

Phase 4. Classifying documents  

   In the testing phase, the trained text classification model 

is used to classify testing documents by predicting a  

                                                        
2 Chang C.C., Lin C.J., LIBSVM: a library for support vector 

machines, 2001. 

 

Figure 1. Block diagram for using feature selection method on a text classifier 



category for each. Unlike the traditional Naïve Bayes text 

classifier, we as in (Rennie, Teevan & Karger, 2003) do 

not consider prior probability while predicting the category 

for a testing document. As SVM only classifies documents 

into two classes (binary classifier), we use one against all 

(Yi & Zheng, 2005) technique to run SVM on multiclass 

datasets. 

   We use single labeled classification in this work to 

classify documents. Hence, only one category is predicted 

for each testing document by the text classifier.  

 

Time and Space Complexity Analysis 

AM scores are computed in linear time as training 

documents arrive. However, the scalability of using AM 

depends on the text classifier. The comparison of time and 

space complexity for applying AM on Naive Bayes and 

SVM are given in Table 2, and are discussed in the 

subsections that follow. 

Analysis of time complexity for applying AM on Naïve 

Bayes  

   The term frequency of each term per category is 

calculated. Thus, Naïve Bayes parses NLd terms during the 

training phase. For every term in the vocabulary, M 

different AM scores are calculated which takes O(MV) 

time. Thus, the training time for Naive Bayes using AM is 

also O(NLd+MV) and equates to O(NLd)(as MV<<NLd).  

During the testing phase, we calculate the product of AM 

of terms present in the testing document with respect to 

each category, which takes O(M Lv).  

A lexicon of all the terms in vocabulary (V) and their AM 

scores with respect to all M categories are stored as the NB 

model. Many of the features are filtered during feature 

selection process, thus only some of the features and their 

AM scores are stored.  Space needed by Naïve Bayes using 

AM is O(MV). 

 

 

Analysis of time complexity for applying AM on SVM 

   As shown, the training time for Naive Bayes using AM is 

O(NLd+MV). Thus, AM for all the features in training set 

can be found in linear time. SVM, however, trains in 

quadratic time. Algorithms used in LibSVM train in O(M 

Nc) where c≈1.2~1.5 (Yang, Zhang & Kisiel, 2003). 

Hence, the total time taken for training a model using AM 

as a preprocessing step of SVM is O(NLd+MV+MNc). 

However, as NLd and MV are much smaller than MNc, we 

consider the training and testing time for using AM with 

SVM as O (M Nc).  

The space taken for storing SVM model is O(N Lv + q2) 

where q is a constant that depends on the iterations 

needed. Hence, the space complexity for using AM with 

SVM is O(M V + N Lv+ q2).  

Experimental Setup 

We empirically evaluated the effectiveness of AM feature 

selection algorithm using five benchmark data sets 

(Reuters 21578, 20 Newsgroups, WebKB, OHSUMED, 

Genomics), which are commonly used in text classification 

evaluation. The details on these data sets are given in 

Table 3. We intentionally chose these datasets, which 

consist of news articles, web pages and bio-medical 

documents, to show the effects of AM on different 

domains. Although we observe different accuracies across 

different domains, AM consistently outperforms other 

feature selection algorithms over all domains. To show the 

scalability of our AM feature selection approach, using NB 

classifier, we also show the effectiveness and efficiency 

analysis on TREC 2005 Genomics dataset, which contains 

4.5 million documents. We do not show the results for 

TREC Genomics 05 on SVM classifier, as SVM is not 

scalable for use on very large datasets. (The training time 

for a SVM model for TREC 05 Genomics is almost 4 

days.)  

   In all our experiments, we use a single computer, with 

an AMD Athlon 2.16Ghz processor and 1 GB of RAM. A 

brief explanation about the benchmark datasets that are 

used in our experiments is given below.  

Table 2.  Time and space complexity  for applying AM on Naive Bayes and SVM 

Classifier Training time Testing time per document Space Complexity 

Naive Bayes using AM O( N Ld +M V) O(M Lv) O(M V) 

SVM using AM 
O(  N Ld +M V + M Nc ) 

c≈1.2~1.5 
O( M Lv) O(  M V + N Lv+ q2) 

N - number of training documents 

Ld- average document length 

M- number of categories 

Lv - average number of unique terms in document 

V – size of vocabulary (features) 

q – constant that depends on the iterations needed  



Reuters- 21578 Dataset 

The Reuters 215783 corpus contains the Reuters news 

articles from 1987. These documents range from multi-

labeled, single-labeled, or not labeled. The average 

document length in Reuters 21578 dataset is 200 (non-

unique) terms per document. Reuters dataset consists of a 

total number of 135 categories (labels), ten of which have 

significantly more documents than the rest of the 

categories. Thus, commonly the top 10 categories are used 

to evaluate the accuracy of the classification results. The 

top 10 categories of Reuters 21578 are ―earn‖, ―acq‖, 

―money-fx‖, ―grain‖, ―trade‖, ―crude‖, ―interest‖, ―wheat‖, 

―corn‖ and ―ship‖. 

20 Newsgroup (20NG) Dataset 

   20 Newsgroup4 (20NG) consists of total of 20,000 

documents that are categorized into twenty different 

categories. Each category contains 1,000 documents. The 

average document length in 20NG dataset is 311 terms per 

document. Thus, the average size of the documents is 

much larger than those in Reuters 21578 dataset. Some of 

the newsgroups categories are very closely related to each 

other (e.g., comp.sys.ibm.pc.hardware and comp.sys.mac.-

hardware), while others are highly unrelated (e.g., 

misc.forsale and soc.religion.christian). This characteristic 

contributes to the difficulty of categorization of documents 

that belong to very similar categories.  

WebKB Dataset 

The WebKB dataset5 is a collection of web pages from 

four different college websites namely Cornell, Texas, 

                                                        
3 Lewis D., Reuters-21578, http://www.daviddlewis.com/ 

resources/testcollections/reuters21578. 

4 Lang K., Original 20 Newsgroups Dataset. http:// 

people.csai.mit.edu/jrennie/20Newsgroups 

5 WebKB dataset. http://www.cs.cmu.edu/afs/ cs.cmu.edu/ 

project/theo-20/www/data/ 

Washington, Wisconsin and some miscellaneous web 

pages. These web pages are pre-classified into seven 

categories: student, faculty, staff, department, course, 

project and others. WebKB contains 8,282 web pages. The 

average document length in WebKB dataset is 130 terms. 

OHSUMED Dataset 

OHSUMED (Hersh, Buckley, Leone & Hickman, 1994) 

is a collection of Medline documents, i.e., medical 

citations, from 1987 to 1991, and is commonly used for 

bio-medical literature search evaluation and classification. 

We use only the top (largest) 50 categories with documents 

published in 1987. The average document length in 

OHSUMED dataset is 63 terms per document. The 

distribution of documents in OHSUMED dataset is 

uneven. The largest category contains 2,415 documents, 

while the smallest category contains 873 documents. 

Hence, more training data are available for some 

categories as compared to others.  

TREC 2005 Genomics Dataset 

TREC 05 GENOMICS is a collection of 4.5 million 

biomedical documents and is 15.5 GB in size. This is the 

largest publicly available benchmark dataset that contains 

categorized (labeled) documents in the domain of 

bioinformatics. The average document length is 183 terms 

per document. 

We are not aware of any text classification efforts on 

TREC 05 GENOMICS6 data set. Thus, for this dataset no 

comparison with prior efforts was possible. We used the 

data processed by (Urbain, Goharian & Frieder, 2007). 

They use a pre-processing model that breaks up gene 

names and is shown to perform well. Acronyms and their 

long-forms are identified during preprocessing using the 

Schwartz and Hearst algorithm (Schwartz & Hearst, 

2003). An example of such long-short form would include 

                                                        
6 TREC 2005 Genomics dataset. http://ir.ohsu.edu/genomics/ 

Table 3. Benchmark datasets used for our experiments 

Datasets No. of documents 
No. of 

Categories 

Size of 

dataset 
Domain 

Reuters 21578 21,578 
Top 10  

categories 
28 MB News Articles 

20 News Group 20,000 20  categories 61 MB News Articles 

WebKB 8,282 7  categories 43 MB 
Web Pages (University 

websites) 

OHSUMED 
54,710(Total) 

39,320 (Subset) 

Top 50  

categories 
382 MB Bio-medical Documents 

GENOMICS (TREC 

05) 

4.5 million (Total) 

591,689 (Subset) 

Top 50  

categories 
15.5 GB Bio-medical Documents 

     



―immuno deficiency enzyme (IDE)‖, and a short-long 

form would include ―IDE (immuno deficiency enzyme)‖. 

The algorithm works backwards through the long form 

text and attempts to identify corresponding letters in the 

acronym. All terms are tokenized, stop words removed, 

and lexical variants are generated. Porter stemming 

(Porter, 1997) is used on each token with the following 

exceptions: gene names (as defined by the Entrez Gene 

database); all upper case, mixed case, alpha-numeric 

terms; and non-gene terms that would become a gene 

name after being stemmed.     Similar to OHSUMED 

dataset, the top (largest) 50 categories are chosen—those 

that contain highest number of documents for GENOMICS 

dataset. Similarly, the categories are ranked based on the 

number of documents. This subset of Genomics dataset 

contains 591,589 documents. The category that contains 

the highest number of documents contains 295,773 

documents while the category among top 50 categories 

that contains least number of documents has 8,049 

documents. Hence, if we choose the categories after the top 

50, then the number of training documents in these 

categories is very low, leading to a lower classification 

accuracy. 

Evaluation Metrics 

  To evaluate the effectiveness of our approach and 

compare to the state of the art feature selection research 

results, we use the commonly used evaluation metrics 

precision, recall and F1 measure.  

 

PositiveFalsePositiveTrue

PositiveTrue
(P)Precision




               .. 16 

 Precision (Equation 16) is defined as the ratio of correct 

classification of documents into categories to the total 

number of attempted classifications.  

 

NegativeFalsePositiveTrue

PositiveTrue
(R)Recall


  

                   .. 17 

Recall (Equation 17) is defined as the ratio of correct 

classifications of documents into categories to the total 

number of labeled data in the testing set. 

 

 RecallPrecision

Recall*Precision*2
MeasureF1




                                  ..18 

F1 measure (Equation 18) is defined as the harmonic 

mean of precision and recall. Hence, a good classifier is 

assumed to have a high F1 measure, which indicates that 

classifier performs well with respect to both precision and 

recall.         

We present the micro-averaged results for precision, 

recall and F1 measure. Micro-averaging considers the sum 

of all the true positives, false positives and false negatives 

that are generated in ten runs of 10-fold cross validation 

(Lewis, 1991). 

Results 

We organize the results into two subsections. In the first 

subsection, we present the result for Naïve Bayes classifier 

using AM feature selection method. In the second 

subsection, the results for AM feature selection with SVM 

classifier are presented.  

Naive Bayes using AM 

We evaluated the experimental results using Reuters 

21578, 20NG, WebKB, OHSUMED and TREC 05 

Genomics datasets. We present the comparison of AM 

feature selection algorithm with the eight feature selection 

algorithms explained earlier in the prior work section. We 

varied the threshold to identify the optimal F1 measure for 

each feature selection method. The results show that AM 

outperforms the others statistically significantly with a 

confidence level of at least 95%. We demonstrate the 

effects of using round robin method, which is used for 

globalizing the localized feature selection score. We also 

present the effects of AM on the training and testing time 

for Naive Bayes classifier.  

Comparison with other feature selection algorithms 

using Naive Bayes classifier 

We used stratified 10-fold cross validation for all the 

datasets except WebKB. We used a standard 4-1 split for 

WebKB where the data for three universities are used for 

training and the data for one university is used as a testing 

set. We varied thresholds to observe the best results with 

respect to F1. Our results show that AM comparatively 

performs better than the next best performing feature 

selection algorithms by 20%, 7.5%, 0.25%, 2.14%, and 

2.6%, on OHSUMED, TREC 05 Genomics, Reuters 

21578, 20 Newsgroups, WebKB datasets, respectively.  

   Figure 2 shows the comparison of eight feature selection 

algorithms on Reuters 21578 dataset with respect to F1 

measure. Our experimental results show that AM 

(Precision: 92.36%, Recall: 85.72%, F1: 88.92%) performs 

better than tfidf (Precision: 90.78%, Recall: 86.69%, F1: 

88.69%) and BNS+F1 (Precision: 88.13%, Recall: 

88.01%, F1: 88.07%), which are the next best performing 

algorithms. As all the feature selection algorithms perform 

well on Reuters 21578 dataset, the F1 improvement when 

using AM measure is only 0.25% (95% confidence). 

Statistical significance of the AM with respect to other 

feature selection algorithms for various datasets is reported 

in Table 4. For 20 Newsgroups (Figure 3), AM (Precision: 



91.68%, Recall: 91.69%, F1: 91.72%) performs 

significantly better than the next best feature selection 

algorithm, improved gini index (Precision: 91.69%, 

Recall: 87.97%, F1: 89.79%), by 2.14%. Although the 

improvement is marginal, the results are statistically 

significant by at least 95% confidence.   

   The results on WebKB dataset, which are given in 

Figure 4, show that AM (Precision: 74.34%, Recall: 

73.76%, F1: 74.05%) performs better than the second best 

performing algorithm, improved gini index (Precision: 

71.74%, Recall: 72.56%, F1: 72.15%), by 2.6%. WebKB 

dataset consists of web pages, which contains images, 

tables and other anchor text. Classifying such documents 

is more difficult than  

  
Figure 2. Comparison of AM with other feature selection 

methods in  terms of F1 measure on Reuters 21578 

dataset for  Naive Bayes 

Figure 3. Comparison of AM with other feature selection 

methods in  terms of F1 measure on 20 Newsgroups 

dataset for  Naive Bayes 

  
Figure 4. Comparison of AM with other feature selection 

methods in  terms of F1 measure on WebKB dataset for  

Naive Bayes 

Figure 5. Comparison of AM with other feature selection 

methods in  terms of F1 measure on OHSUMED dataset 

for  Naive Bayes 

  
Figure 6. Comparison of AM with other feature selection 

methods in  terms of F1 measure on TREC 05 

Genomics dataset for  Naïve Bayes 

Figure 7. Effect of feature selection on training and 

testing time of Naïve Bayes using AM on TREC 05 

Genomics dataset 



classifying plain documents from Reuters 21578 and 20 

Newsgroups datasets. Hence, the classification 

effectiveness for WebKB dataset is lower than Reuters 

21578 and 20 Newsgroups datasets.  

On biomedical datasets, our results indicate that AM 

(Precision: 65.93%, Recall: 54.84%, F1: 59.88%) 

statistically significantly improves (20%) over improved 

gini index (Precision: 53.83%, Recall: 46.54%, F1: 

49.92%) on OHSUMED dataset (Figure 5). AM (Precision: 

61.71%, Recall: 60.54%, F1: 61.12%) also shows a 

statistically significant improvement of 7.5% over 

improved gini index (Precision: 61.71%, Recall: 52.64%, 

F1: 56.82%) for TREC Genomics 05 dataset (Figure 6). 

Improved Gini index is the second best performing 

algorithm on both these datasets.     

Discussion 

The motivation for using AM feature selection is to 

select terms that belong to only one category. As 

mentioned in introduction, ambiguous features lead to 

wrong classification predictions in unbalanced datasets. 

Our results indicate that AM performs better than odds 

ratio, information gain, tficf, tfidf, BNS+F1 and Chi-

Squared on OHSUMED and Genomics datasets by more 

than 30% (comparative gain). OHSUMED and Genomics 

datasets are unbalanced and a large number of training 

documents belong to the top two categories. The feature 

selection methods such as odds ratio, information gain, 

tficf, tfidf, BNS+F1 and Chi-Squared use both positive and 

negative examples to assign scores to the features. A high 

score is assigned to a feature even if it appears evenly in 

only 2 or 3 categories out of 50. As the number of training 

documents in the top two or three categories is large, many 

features only appear in the top two or top three categories. 

Such features are assigned high scores. These features 

mislead the text classifier and hence, many false positives 

are generated during the testing phase. Such features are 

assigned a low AM score and are filtered during the 

process of feature selection. 

Improved gini index nullifies the effects of unbalanced 

classes in dataset by combining the posterior probabilities 

and condition probabilities for each term. OCFS is 

optimized based on the number of documents available in 

each class. Hence, improved gini index and OCFS perform 

comparatively better than odds ratio, information gain, 

tficf, tfidf, BNS+F1 and Chi-Squared algorithms. 

However, our results indicate that improved gini index and 

OCFS perform statistically significantly worse than AM on 

unbalanced dataset such as OHSUMED and Genomics. 

Globalizing Feature Selection Scores 

  As feature selection algorithms such as tficf, odds ratio, 

information gain, chi-squared, BNS+F1 and AM are local 

feature selection algorithms, we have used the traditional 

method (selecting the terms with the highest local scores) 

to convert their local scores to global feature selection 

score. Additionally, similar as in (Forman, 2004), we used 

round robin method to convert the local feature selection 

score into global score. Round robin method selects the top 

n features from each category. Thus, the categories with 

low number of training documents also have the same 

number of features in the feature set that represent them. 

This method improves the effectiveness in identifying the 

documents that belong to categories that have less training 

documents and leads to an improvement in macro-F1, 

which is the average of F1 measure of all categories. 

Table 4. Statistical comparison of AM and other feature selection algorithms on Naïve Bayes with respect to F1 

measure (Paired t-test) 

Algorithm  
Datasets 

Reuters 21578 20 Newsgroups WebKB OHSUMED Genomics 

Odds Ratio + ++ ++ ++ ++ 

BNS+F1 + ++ ++ ++ ++ 

tfidf ++ ++ ++ ++ ++ 

tficf ++ ++ ++ ++ ++ 

Info Gain ++ ++ ++ ++ ++ 

Chi-Squared ++ ++ ++ ++ ++ 

OCFS ++ + ++ ++ ++ 

Imp. Gini + + ++ ++ ++ 

+ : AM is statistically significantly better than the feature selection algorithm by 95% confidence 

++ :  AM is statistically significantly better than the feature selection algorithm by 99% confidence 

 

 

Figure 8. Comparison between AM with/without round 

robin method 



However, the classification accuracy of the categories with 

a large number of training documents decreases. As we are 

using stratified splits for each dataset, the number of 

training documents that belong to a category is directly 

related to the number of testing documents that belong to 

that category. Hence, the micro-F1 measure when using 

round robin method decreases. We provide the results of 

AM versus using AM with round robin method in Figure 

8. We observed that using round robin method improves 

macro F1 measure by 1.7% while decreasing the micro F1 

by 5.2% for Reuters 21578 dataset.  

Tradeoff of accuracy and time with respect to AM 

thresholds for Naive Bayes  

   We now present the effects of AM threshold on the 

training and testing time of Naive Bayes using TREC 05 

Genomics dataset (Figure 7). We performed similar 

experiments on other datasets and observed the same 

trends. As the TREC 05 Genomics dataset is relatively 

large, the trends with respect to training and testing time 

are observed clearly. Hence, we only report the results for 

TREC 05 Genomics dataset.  

   The training time complexity of Naive Bayes using AM 

is O(NLd+MV) where N is the number of documents, Ld is 

the average document length, M is the number of 

categories and V is the total terms in the vocabulary. As N, 

Ld, M and V are all constant during the training phase, the 

training  

time of our algorithm is constant (Figure 7). The features 

whose AM is above the threshold are kept. The space 

complexity of our Naive Bayes using AM is O(MV). As 

the size of V decreases when the threshold increases, there 

is a slight drop in the training time. Though there is 

marginal decrease in training time during feature selection 

phase, the time complexity for applying AM on Naive 

Bayes classifier is linear and is faster than other commonly 

used algorithms such as SVM. 

   The time complexity in the testing phase is O(MLv), 

where Lv is the total number of unique terms per testing 

document. As we start selecting fewer features (increase 

the threshold), the value of M remains constant, while the 

value of Lv decreases. This is because fewer features are 

available in the feature set and hence, less unique terms 

are used from each document in testing set. Hence, as we 

  
Figure 9. Comparison of AM with other feature selection 

methods in  terms of F1 measure on Reuters 21578 

dataset for SVM 

Figure 10. Comparison of AM with other feature selection 

methods in  terms of F1 measure on 20 Newsgroups 

dataset for  SVM 

  
Figure 11. Comparison of AM with other feature 

selection methods in  terms of F1 measure on WebKB 

dataset for our  SVM 

Figure 12. Comparison of AM with other feature selection 

methods in  terms of F1 measure on OHSUMED dataset 

for our  SVM 



increase the threshold the testing time consistently 

decreases. It is also observed that as the threshold 

increases up to 0.4, F1 measure increases while there is a 

reduction in testing time.  

SVM using AM 

In this section, we favorably compare our results of 

applying AM feature selection using SVM to the results 

using the same eight feature-selection algorithm. We 

varied the threshold to identify the optimal F1 measure for 

each feature selection method. We demonstrate how AM 

feature selection reduces the training time while improving 

the F1 measure. We also explain the effects of the AM 

threshold score on the classification results. 

Comparison with other feature selection algorithms for 

SVM classifier 

SVM trains with a time complexity of   

O(NLd+MV+MNc)  where N is the number of documents, 

Ld is the average document length, M is the number of 

categories, V is the total terms in the vocabulary and c is a 

constant (c≈1.2~1.5). SVM in nature is not a scalable 

algorithm. We use the ModApte split for Reuters 21578 

dataset and 9-1 split for 20 Newsgroups dataset and 

OHSUMED dataset as given on the LibSVM dataset 

website. We use a standard 4-1 split for WebKB where the 

data for three universities is used for training, and the data 

for one university is used as a testing set. We use these 

splits as they are readily available and commonly used in 

the prior works (Wenqian et al., 2007; Yan et al., 2005). 

AM performs statistically significantly better than the 

eight feature selection algorithms with a confidence of 

99% (Table 5). 

Improved Gini Index is the second best performing 

algorithm for all the four datasets. Therefore, we present 

the comparison of AM with Improved Gini Index. Our 

experimental results on Reuters 21578 (Figure 9) dataset 

indicate that AM (F1: 89.1%) performs better than 

Improved Gini Index (F1: 88.6%) by 0.56%. For 20 

Newsgroups dataset (Figure 10), which is another dataset 

that contains news articles, AM (F1: 78.74%) outperforms 

improved gini index (F1: 77.3%) by 1.8%. The result on 

WebKB dataset (Figure 11), which is a dataset that 

contains web pages, indicates that AM (F1: 76.14%) 

outperforms Improved Gini Index (F1: 75.54%) by 0.8%. 

For the OHSUMED dataset (Figure 12) that contains 

biomedical documents, AM (F1: 60.74%) outperforms 

Improved Gini Index (F1: 58.23%) by 4.3%. 

Discussion 

Our results for SVM using AM also indicate that 

improvements in OHSUMED, which is very unbalanced 

dataset, are better than in other datasets. OHSUMED has 

the majority of documents in the first few (2-3) categories 

and fewer documents in the other 50 categories. This 

improvement is achieved due to the selection of the 

features that point to only one category (unambiguous 

features). SVM classification is based on the entire set of 

terms in the testing document and not on only 

unambiguous features. Hence, the improvements observed 

using SVM are smaller than those observed using Naïve 

Bayes classifier.  

All features from the testing documents are used for 

classifying a document. LibSVM always predicts one 

category for each document. When a category is wrongly 

predicted, a false positive is generated; a false negative is 

also generated because a true prediction is not made. 

Precision and recall for all the runs using LibSVM are the 

same. Precision and recall vary for Naïve Bayes because 

when the AM threshold is high, the number of keywords is 

sparse and some documents do not contain any terms that 

are above the thresholds. Such documents are predicted as 

uncertain and only a false negative is generated in such 

cases. As we filter more features from the feature set, the 

number of uncertain cases increases and recall decreases. 

 

Table 5. Statistical comparison of AM and other feature selection algorithms with respect to F1 measure (Paired t-

test) 

Algorithm  
Datasets 

Reuters 21578 20 Newsgroups WebKB OHSUMED Genomics 

Odds Ratio ++ ++ ++ ++ ++ 

BNS+F1 ++ ++ ++ ++ ++ 

tfidf ++ ++ ++ ++ ++ 

tficf ++ ++ ++ ++ ++ 

Info Gain ++ ++ ++ ++ ++ 

Chi-Squared ++ ++ ++ ++ ++ 

OCFS ++ ++ ++ ++ ++ 

Imp. Gini ++ ++ ++ ++ ++ 

++ :  AM is statistically significantly better than the feature selection algorithm by 99% confidence 

 

      



 Tradeoff of accuracy and time with respect to AM 

thresholds for SVM 

We now report the effect of the AM threshold on F1 

measure and the corresponding time taken to train the 

model and classify the documents using SVM classifier is 

depicted in Figure 13, which shows results for  

OHSUMED dataset. Other datasets also show the same 

trends. The x-axis represents different threshold values 

and the y-axis represents micro-F1 measure and time. The 

threshold value indicates that all features whose scores are 

above that threshold are selected and the remaining 

features are filtered. As we apply AM feature selection, 

micro-F1 increases (Figure 13). We obtain the best micro-

F1 when the threshold is set to 0.2. As the threshold is 

increased, the micro-F1 starts to decrease. This indicates 

that when the threshold is less than 0.2, most of the 

features that are filtered are ambiguous and lead to an 

improvement F1 measure. When the threshold is above 

0.2, most of the features that are filtered contain relevant 

information. Thus, the F1 measure of the classifier 

decreases. 

 The training time includes the feature selection time and 

the time taken to train the SVM model. The testing time is 

the time taken by LibSVM to classify the testing data.  

Figure 13 demonstrates that when no feature selection is 

used i.e., when threshold is equal to zero, the time taken 

for training on OHSUMED dataset is 3356 seconds. When 

we reduce the dimensionality of feature set, by setting the 

threshold to 0.2, the training time also decreases to 1623 

seconds. This shows that even though the learning time is 

reduced by more than 50%, we still obtain better F1 

measure than when we do not apply any feature selection.  

   One of the limitations of using feature selection 

algorithm on SVM is that a proper threshold must be 

found for a given dataset. We found the threshold for 

Reuters 21578 and WebKB dataset to be 0.2 and for 20 

Newsgroups and OHSUMED datasets’ threshold was 0.3. 

To further investigate this problem, we experimented on 

two additional standard datasets from statlog collection 

(Michie, Spiegelhalter & Taylor, 1994) called DNA 

dataset (3 categories; 2,000 training documents; 1,186 

testing documents) and Vehicle dataset (4 categories; 761 

training documents; 85 testing documents). Similarly, we 

found that a threshold between 0.2 to 0.3 yields the best 

results on all the four datasets we used for our 

experimentations. 

Conclusion 

We presented a new feature selection algorithm called 

Ambiguity Measure (AM). The underlying premise behind 

the AM approach is the quick identification of 

unambiguous terms. We define unambiguous terms as 

features that belong to only one category. We showed how 

AM is used with Naïve Bayes classifier. The most 

unambiguous terms (keywords) from the training 

documents are selected using AM and a classification 

model is built. Based on this model, the documents that 

are to be classified are scanned to identify the keywords; 

and the ambiguity measures (AM) of the keywords are used 

to calculate the probability that the document falls in a 

specific category. The category with the highest probability 

is selected as the category for that document.   

We empirically evaluated the performance of our 

methodology for using AM with Naive Bayes classifier 

using five standard benchmark data sets (Reuters 21578, 

20 News Groups, WebKB, OHSUMED and TREC 05 

Genomics collection). Our experimental results 

demonstrate that AM performs statistically significantly 

better than eight existing feature selection algorithms 

using five benchmark datasets with a confidence of at least 

95%.  

We also applied AM as a preprocessing step for SVM 

classification algorithm. We showed that AM feature 

selection reduces the training time of the SVM classifier, 

while maintaining its effectiveness. Experiments were 

performed on four standard benchmark datasets. Our 

results indicated that AM performs statistically 

significantly better than the current published state of the 

art feature selection algorithms on SVM classifier.  

Our results also indicated that AM feature selection 

improved over odds ratio, information gain, Chi-Squared, 

BNS+F1 and tficf on unbalanced datasets like OHSUMED 

and Genomics, where majority of documents belong to 

only 2-3 categories. Our analysis showed that selecting the 

features that point to only one category performs better 

than selecting features that point to more than one 

category. Words that point to more than one category may 

 

Figure 13. Effect of feature selection on training and 

testing time of SVM using AM on OHSUMED dataset  



mislead the classifier and hence decrease the effectiveness 

of a classifier on unbalanced datasets. 

Furthermore, we provided analysis of how the micro-F1 

is affected as we set more stringent thresholds for feature 

selection. We demonstrated that as the threshold for 

selecting the features is increased, the micro-F1 measure 

improves until up to a specific threshold. The training time 

for applying AM on Naïve Bayes classifier is not affected 

by feature selection algorithm. However, the time taken for 

training by SVM classifier is much lower than when no 

feature selection is used. The effectiveness of the text 

classifier decreases as the threshold increases beyond a 

certain point. 
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