
Ambiguity Measure Feature Selection Algorithm

Saket S.R. Mengle and Nazli Goharian

Information Retrieval Lab, Illinois Institute of Technology, Chicago, IL 60616. E-mail: {saket, nazli}@ir.iit.edu

With the increasing number of digital documents, the

ability to automatically classify those documents both

efficiently and accurately is becoming more critical and

difficult. One of the major problems in text

classification is the high dimensionality of feature

space. We present the ambiguity measure (AM)

feature-selection algorithm, which selects the most

unambiguous features from the feature set.

Unambiguous features are those features whose

presence in a document indicate a strong degree of

confidence that a document belongs to only one specific

category. We apply AM feature selection on a naïve

Bayes text classifier. We favorably show the

effectiveness of our approach in outperforming eight

existing feature selection methods, using five

benchmark datasets with a statistical significance of at

least 95% confidence. The support vector machine

(SVM) text classifier is shown to perform consistently

better than the naïve Bayes text classifier. The

drawback, however, is the time complexity in training a

model. We further explore the effect of using the AM

feature-selection method on an SVM text classifier. Our

results indicate that the training time for the SVM

algorithm can be reduced by more than 50%, while still

improving the accuracy of the text classifier. We

favorably show the effectiveness of our approach by

demonstrating that it statistically significantly (99%

confidence) outperforms eight existing feature-selection

methods using four standard benchmark datasets.

Introduction

There is an overflow of unorganized digital data in

today’s world. Vast volumes of digital text are available

via the World Wide Web (WWW), news feeds, electronic

mail, corporate databases, medical patient records and

digital libraries. The problem of classifying and storing

these documents poses a significant challenge. Large

companies filter incoming e-mail and store them in folders

or route them to concerned departments. News agencies

also use classification tools for filtering or routing the

news from different sources to the appropriate client.

Other applications of text classification are in the field of

knowledge-base extraction, e-commerce and information

extraction. Companies spend significant resources on

classifying documents manually. The feasibility of manual

classification decreases as the number of documents

increases over time. As the number of documents is large,

a fast and scalable automatic classifier is needed to classify

the existing and incoming documents accurately and

efficiently. We propose, design, develop and evaluate one

such classifier.

Text classification involves scanning through the text

documents, and assigning categories to documents to

reflect their content (Yang, 1999). One of the major

characteristics of text classification is the high

dimensionality of a feature set (Mladenić & Grobelnik,

1998). The feature set for a dataset consists of the unique

terms in training documents. However, the number of

features in the text classification dataset is prohibitively

high for many learning algorithms. Hence, it is highly

desirable to reduce the feature set without sacrificing

categorization accuracy. Feature selection is formally

defined in Galavotti & Sebastiani (2000) as ―the activity of

selecting, from the set of r distinct features (i.e., words)

occurring in the collection, the subset of rr  features

that are most useful for compactly representing the

meaning of the documents.‖ Feature-selection methods are

used to achieve two objectives:

1. To reduce the size of the feature set to optimize the

classification efficiency.

2. To reduce noise in the feature set to optimize the

classification effectiveness.

Most existing feature selection algorithms such as odds

ratio (Mladenić & Grobelnik, 1998), information gain

(Quinlan J, 1986), Chi-Squared (Yang & Pedersen, 1997),

bi-normal separation (Forman, 2003) and tficf (Chih &

Kulathuramaiyer, 2004) calculate a score based on the

probability that a feature belongs to a given category and

the probability that a feature does not belong to the other

categories. These algorithms perform poorly on the

unbalanced text classification datasets. The nature of

unbalanced datasets is such that a few categories have

significantly more training documents than most of the

categories, and hence, the term frequency of many features

appearing in these few categories is significantly higher

than their frequency in other categories. Moreover, if such

terms have the same term frequency in two or more

categories, the feature can not confidently point to a given

category. Thus, such terms should not be considered

important in a single-labeled text classification process

and should be filtered. However, algorithms such as odds

ratio, information gain, chi-squared, bi-normal separation

and tficf assign a higher weight to these terms even if they

appear in more than one category. We call these terms

ambiguous terms.

To tackle this problem, we present a feature selection

method called Ambiguity Measure (AM; Mengle,

Goharian & Platt, 2007) that assigns a high score to a

term, if it appears consistently in only one specific

category. The intuition is that the term that appears in only

one category points more strongly to that specific category

and thus, is a better indicator in a single-labeled

classification decision.

We apply AM on single labeled Naïve Bayes text

classifier and compare AM with eight feature selection

algorithms on five standard datasets from various subject

domains, namely news feeds, web pages, and bio-medical

text. Our results indicate that AM feature selection

achieves statistically significant improvements on

unbalanced datasets such as OHSUMED (20%) and

Genomics (7.5%), and on balanced datasets such as

WebKB (2.6%), 20NG (2.14%) and Reuters 21578

(0.25%) when compared to the best performing feature

selection method out of the eight methods. However, the

improvements on the unbalanced datasets are larger than

the improvements on the balanced datasets.

Furthermore, we also explore the effects of the AM

feature selection method when applied on the single

labeled Support Vector Machine (SVM) algorithm (Cortes

& Vapnik, 1995; Joachims, 1999; Yang, Zhang & Kisiel,

2003). The SVM algorithm is one of the widely used text

classification algorithms. Prior work (Joachims, 1998)

indicates that SVM performs consistently better than Naïve

Bayes, kNN, C4.5 and Rocchio text classifiers. However,

one of the limitations of SVM is its training time

complexity. Yang, Zhang & Kisiel 2003) shows that SVM

has a higher time complexity for training a model than

other text classification algorithms. To overcome this

limitation of SVM, feature selection methods are used as a

preprocessing step before training SVM (Wenqian et al.,

2007; Novovicova & Malik, 2005; Yan et al., 2005). Many

well-known feature selection algorithms are used with

SVM to improve its accuracy and efficiency. We use the

AM feature selection method as a pre-processing step for

the Support Vector Machine classifier (Mengle &

Goharian, 2008). The features whose AM scores are below

a given threshold, i.e., more ambiguous terms, are purged

while the features whose AM scores are above a given

threshold are used for the SVM learning phase. We

favorably compare the results of AM feature selection

algorithm with the same eight feature selection algorithms

reported in (Wenqian et al., 2007; Yan et al., 2005) on

four of the standard benchmark datasets. We also

empirically show that using AM feature selection with

SVM reduces the training time by more than 50%, while

maintaining the accuracy of the classifier.

Prior Work

 Various techniques are used for finding an "optimal"

subset of features from a larger set of possible features.

Exhaustively trying all the subsets is not computationally

feasible. Hence, automatic feature selection algorithms are

used to find the most important features in the feature set.

In this section, we present the commonly used feature

selection algorithms.

Odds Ratio

The basic idea of using odds ratio (Mladenić &

Grobelnik, 1998) is to calculate the odds of a term

occurring in the positive class (the category a term is

related to) normalized by the odds of that term occurring

in the negative class (the category a term is not related

to). The odds ratio of a term tk for a category ci is defined

using Equation 1:

)|()]|(1[

)]|(1)[|(
),(

ikik

ikik

ik
ctPctP

ctPctP
ctRatioOdds




 ..1

Odds Ratio is known to work well with the Naive Bayes

text classifier algorithm (Mladenić et al., 2004; Mladenić

& Grobelnik, 1998).

Information Gain

Information gain (Quinlan, 1986) is commonly used as a

surrogate for approximating a conditional distribution for

text classification. In information gain, class membership

and the presence/absence of a particular term in a given

category are seen as random variables; one computes how

much information about the class membership is gained by

knowing the presence/absence statistics. If the class

membership is interpreted as a random variable C with

two values, positive (c) and negative (c), and a word is

likewise seen as a random variable T with two values,

present (t) and absent (t), then Information Gain is

defined as Equation 2:

 
 


},{ },{

2
)()(

)|(
log)|(),(

ii kkccc ttt

ik
cPtP

ctP
ctPctIG ..2

Chi-Squared

The 2 test is used in statistics to test the independence

between two events. In text classification, 2 (Yang &

Pedersen, 1997; Galavotti & Sebastiani, 2000; Wu &

Flach, 2001) is used to measure the association between a

category and features. The 2 measure of a term tk for a

category ci is defined using Equation 3:

)()()()(

)|()|()|()|(
),(2

iikk

ikikikik

ik

cPcPtPtP

ctPctPctPctP
ct


 ..3

Thus, the 2 (tk, ci) score indicates the weight of term tk

with respect to category ci. If a term is close to more

categories, then the score of that term is higher. The score

of each term tk is calculated using Equation 4:





c

i

ikik ctcPt
1

22),()()( ..4

Bi-Normal Separation

 In the Bi-Normal Separation (BNS) feature selection

method (Forman, 2003; Forman, 2008), the occurrence of

a given term is modeled in each document by a random

normal variable that exceeds a hypothetical threshold. The

prevalence rate is calculated with respect to both positive

and negative classes. Prevalence rate can be defined as the

area under the curve past a certain threshold. Thus, if a

term consistently appears in the positive class, the

threshold is farther from the tail of the curve than that of

the negative class. BNS is calculated based on the

separation between these two thresholds. Thus, if a term

appears more consistently in the positive class than the

negative class, it is assigned a higher BNS score. BNS is

calculated using the Equation 5.

)()(11

tnfp

fp
F

fntp

tp
FBNS





  ..5

 Where, tp is the number of positive cases containing the

word; fp is the number of negative cases containing the

word; fn is the number of positive cases that do not contain

the word; tn is the number of negative cases that do not

contain the word, and F-1 is the standard normal

distribution’s inverse cumulative probability function. As

reported in (Forman, 2003), BNS+F1 yields the best

performance on most of the tasks in comparison with odds

ratio, information gain and Chi-Squared.

F1 metrics (Equation 6) is the harmonic mean of precision

(Equation 7) and recall (Equation 8).

RecallPrecision

Recall*Precision*2
F1




 ..6

fptp

tp
Precision


 ..7

fntp

tp
Recall


 ..8

Improved Gini Index

In Gini Index (Breiman, Friedman and Olshen, 1984), if

a term appears in every document of class ci, then it

receives a high Gini Index score. (This is regardless of

term occurrence in other classes.) When a term is

distributed evenly in the documents of various categories,

the term is then assigned a lower Gini Index score. Gini

Index for a term tk can be calculated using Equation 9.


















 

i

kik

i

kikk tcPtPtcPtPtGini)|(1)()|(1)()(..9

However, the Gini Index fails to consider the frequency

of documents where the term occurs within larger

categories. The categories are generally unbalanced with

respect to the number of training documents. Hence, the

Gini Index score is biased with respect to categories that

have a large number of training documents. (Wenqian et

al., 2007) constructed a new function called Improved Gini

Index that considers a term's condition probability and

combines the posterior probability and condition

probability to avoid the effects of unbalanced classes in

datasets. Improved Gini Index of a given term tk is defined

using Equation 10:





C

i

kiikk tcPctPtGiniI
1

22)|()|()(..10

Tficf

In tficf (Chih & Kulathuramaiyer, 2004), tf refers to term

frequency of a term in a given category and icf refers to

inverse category frequency, i.e., the ratio of total number

of categories in a dataset to the number of categories a

term falls into. The tficf scheme does not discriminate

between terms that occur frequently in a small subset of

documents in a category and terms that are present in a

large number of documents throughout a category. Thus,

tficf considers that the less a term occurs across categories,

the higher is its score. The tficf of a term tk in category ci

is defined using Equation 11:













)(

||
log),(),(

k

ikik
tcf

C
cttfcttficf

..11

Where |C| refers to the total number of categories in a

dataset, tf(tk,ci) is the term frequency of a term tk in

category ci and cf(tk) refers to the number of categories in

which a term tk appears.

Tfidf

In tfidf (Chih & Kulathuramaiyer, 2004), tf refers to

term frequency of a term in a given document. idf is

defined as the inverse document frequency, i.e., the ratio of

the total number of documents present in a dataset to the

number of documents a given term appears in. A higher

idf of a term indicates that the term appears in relatively

few documents and may be more important during the

process of text classification. tfidf is a commonly used

technique for term weighing in the field of information

retrieval (Grossman & Frieder, 2004) and is also used in

text classification (Lavelli, Sebastiani & Zanoli, 2004;

Debole & Sebastiani, 2003). tfidf of a term tk in document

di is defined using Equation 12:













)(

||
log),(),(

k

ikik
tdf

D
dttfdttfidf ..12

Where |D| refers to the total number of documents in a

dataset, tf(tk,di) is the term frequency of a term tk in

document di and df(tk) refers to the number of documents

in which term tk appears.

Orthogonal Centroid Feature Selection (OCFS)

 The Orthogonal Centroid Feature Selection (OCFS)

(Yan et al., 2005) selects features optimally according to

the function implied by the Orthogonal Centroid

algorithm. The centroid of each class (mj) and also for the

entire dataset (m) is calculated using training data. A score

for term tk is calculated using Equation 13.





c

j

tt

j

j

k
kk mm

n

n
tOCFS

1

2)()(..13

 Where nj is the number of training samples that belong to

category j and n is the total number of training samples.

The feature set is pruned by selecting only the features

whose scores are higher than a threshold. OCFS is not

greedy in nature like odds ratio or information gain.

Hence, the OCFS algorithm can be optimized based on the

objective function that is implied by the Orthogonal

Centroid algorithm and has been shown to improve over

traditional algorithms.

Methodology

In this section, we initially describe our motivation

behind our AM feature selection algorithm and formally

define AM. Secondly, we discuss the differences between

the AM measure and various feature selection algorithms.

Finally we define a methodology for using the feature

selection algorithms with text classification algorithms

such as NB and SVM.

 AM Feature Selection Algorithm

Initially, we describe the intuitive motivation behind our

AM feature selection approach and then provide a formal

definition. First, we consider the human perception of the

topic of a document by glancing at the document and

capturing its keywords. Instead of using all the terms in a

document to determine the subject of a text, normally one

bases a decision on the most unambiguous words that the

eye captures. The person then has an idea of the topic of

the document. Some words can easily suggest the category

in which the document can fall into. For example, if the

document has phrases like Chicago White Sox and MLB

World Series Champion, then one can suggest that the

document relates to baseball in particular and sports in

general. The sample text below is taken from Wikipedia1.

By having a glance at this text, the reader can guess the

category.

“Metallica is a Grammy Award-winning American heavy

metal/thrash metal band formed in 1981 and has become

one of the most commercially successful musical acts of

recent decades. They are considered one of the "Big Four"

pioneers of thrash metal, along with Anthrax, Slayer, and

Mega-death. Metallica has sold more than 90 million

records worldwide, including 57 million albums in the

United States alone.”

The text seems to be about Music. Our human perception

is based on our knowledge of the domain or what we hear

or read on various subjects in daily life. Thus, without

reading this specific text completely, one can confidently

claim that the text belongs to Music rather than Terrorism

or Politics.

Some terms may be stronger indicators that a given text

belongs to a certain category than others. Thus, we can

give a score as to how strongly a term suggests a particular

category. We clarify this by giving the following

hypothetical example.

"Carolina Panthers lost the Superbowl title to Chicago

Bears due to a last minute touchdown."

In the above sentence, we have the terms Bears and

Panthers, which are related to wildlife. On the other hand,

they are also the names of famous NFL football teams.

Here we notice uncertainty in classifying the text to

Wildlife or to Sports categories. Terms such as Superbowl

and touchdown, in the same given text suggest with more

certainty that the text is about Sports.

1 Wikipedia. http://en.wikipedia.org/wiki/Metallica

We define an Ambiguity Measure, AM, for each term tk

with respect to category ci, using Equation 14. The

maximum AM score for term tk with respect to all

categories is assigned as AM score of term tk (Equation

15).

 











)(

),(
),(

k

ik
ik

ttf

cttf
ctAM

..14

)),((max)(ikk ctAMtAM  ..15

 Where tf(tk,ci) is the term frequency of a term tk in

category ci and tf(tk) is the term frequency of a term tk in

the entire collection.

We then assign a higher score to unambiguous terms. In

the above example, the term touchdown has a higher AM

than that of the terms Bears and Panthers. The AM score

is close to 1 if the term is unambiguous. Conversely, if

AM is closer to 0, the term is considered more ambiguous

and may point to more than one category.

The AM score for the feature Metallica, for the sample

text, is 0.99, which indicates that the feature Metallica is

an unambiguous feature and should be kept and not

filtered (Table 1). Anthrax is related to the Medicine

category with an AM score of 0.80. Anthrax is also the

name of a famous music band of the 1980s. Hence, it also

appears in the category Music. Thus, the AM of Anthrax is

less than Metallica. In some cases the AM score of some

features is low as they appear consistently in multiple

categories. An example of such is the term Records, which

may appear in all three (sports, music, and medicine)

categories. Thus, the AM score of such a term is low

(0.33), and it is desirable to filter out such features. This

reduction in dimensionality of the feature set increases the

accuracy by avoiding the terms that have lower AM scores.

We empirically determine a threshold and filter out

features whose AM scores are below that given threshold.

Differences

The feature selection methods of odds ratio, information

gain, BNS+F1 and Chi-Squared assign a high score to a

term even if it appears in more than one category. Using

such features do not assist a single labeled text classifier in

distinguishing between categories. AM feature selection

method assigns a high score to a term, if it appears

consistently in only one specific category. Such terms then

can point the classifier to that specific category. For

example, consider a term t1 with half of its occurrences in

one category c1 and the other half distributed uniformly

across the other categories. Term t1 confidently points to

category c1 and hence is assigned an AM score of 0.50.

Consider another term t2 with 49% of occurrences in

category c1 and the other 51% of occurrences concentrated

in two other categories c2 and c3. An AM score of 0.49 is

assigned to term t2. As our goal is single-labeled

classification, AM assigns a higher score to term t1 than

term t2 as it points more confidently to category c1.

However, algorithms such as information gain, odds ratio,

BNS+F1 and Chi-Squared assign a score to a term that is

inversely proportional to the number of categories that

term appears in. Hence, term t2 (occurs in three categories)

is assigned a higher score than t1 (occurs in all categories).

However, the term t2 may mislead a single-labeled

classifier as it also points to categories c2 and c3 each with

a lower probability (25.5%). Term t1 confidently points to

only category c1 and hence, should be assigned a higher

score than t2.

In the Improved Gini Index method, the probabilities of

a term with respect to all the categories are considered. If

the term tk appears in many documents of category ci, then

tk is assigned a high score. In a situation where term

frequency of the term tk in categories ci and cj is the same,

and also it appears in every document of both categories ci

and cj, then tk is assigned a high score. However, as term tk

belongs to two different categories it is ambiguous. Our

proposed AM feature selection method avoids such

situation and assigns a low score to features like tk.

Using tfidf and tficf methods, the terms that appear with

a low frequency in only a single category are purged

during the feature selection process. However, such terms

are unambiguous and point to a single category. Another

problem is that some terms have a similar distribution in

more than one category (low idf or icf), but have a high

term frequency. These terms are selected during the

process of feature selection as the term frequency of such

terms is high. These terms are ambiguous, as they do not

point strongly to only a single category. The AM feature

selection method avoids such situations by only

considering the ratio between the numbers of occurrences

of a term in a given category to the total number of

Table 1. Ambiguity Measure (AM) example

Term Metallica Anthrax Records

Category Count AM Count AM Count AM

Medicine 0 0.00 800 0.80 150 0.15

Music 990 0.99 150 0.15 240 0.24

Sports 10 0.01 00 0.00 330 0.33

Politics 0 0.00 50 0.05 280 0.28

occurrences of that term in the training set. Thus, both

these situations are avoided.

In OCFS the training and the testing time is quadratic as

the centroids of each class and the entire dataset are

calculated. However, AM feature selection method trains

and tests in linear time (this is discussed later in the

paper).

Using feature selection algorithms on SVM and NB

text classifiers

We evaluate our feature selection algorithm on SVM and

Naïve Bayes text classifiers. SVM is commonly used as it

was shown to perform better in terms of effectiveness than

other text classifiers such as Naïve Bayes, kNN, C4.5 and

Rocchio (Joachims, 1998). Naïve Bayes algorithm is,

however, more efficient and scalable than other algorithms

(Yang, Zhang & Kisiel, 2003).

We present the methodology for applying feature selection

algorithms on SVM and NB text classifiers (Figure 1).

This process is divided into four phases.

 Phase 1. Calculating feature selection scores

In the pre-processing step, feature selection score for

each feature in training documents is calculated.

Phase 2. Filtering terms with lower feature scores

We only keep the features in training documents if the

feature score of a term is above a certain empirically

determined threshold. We determine these thresholds by

exhaustively optimizing the results of each algorithm on

the testing documents. The choice of testing versus

separate validation set is to be consistent with the prior

works (Wenqian, et al, 2007) (Yan, et al., 2005) (Chih,

Kulathuramaiyer, 2004) that we compare our work with.

We compare AM with both local and global feature

selection algorithms. We globalize the local feature

selection algorithms by selecting the terms with the

highest local scores. Additionally, we also experiment with

using round robin method (Forman, 2004) to convert local

feature selection scores into global scores.

Phase 3. Training the text classifier

Pruned documents from Phase 2 are used by NB and

SVM classifiers to train a text classification model. For

NB, we use the traditional NB classifier as explained in

(Mccullum and Nigam, 1998) to create a text classification

model. We use the linear SVM kernel, as the non-linear

versions gain very little in terms of performance (Mladenić

et al., 2004). For training and testing the SVM model, we

use LibSVM 2.842 software that is commonly used for

classifying the documents into binary or multi-labeled

categories.

Phase 4. Classifying documents

 In the testing phase, the trained text classification model

is used to classify testing documents by predicting a

2 Chang C.C., Lin C.J., LIBSVM: a library for support vector

machines, 2001.

Figure 1. Block diagram for using feature selection method on a text classifier

category for each. Unlike the traditional Naïve Bayes text

classifier, we as in (Rennie, Teevan & Karger, 2003) do

not consider prior probability while predicting the category

for a testing document. As SVM only classifies documents

into two classes (binary classifier), we use one against all

(Yi & Zheng, 2005) technique to run SVM on multiclass

datasets.

 We use single labeled classification in this work to

classify documents. Hence, only one category is predicted

for each testing document by the text classifier.

Time and Space Complexity Analysis

AM scores are computed in linear time as training

documents arrive. However, the scalability of using AM

depends on the text classifier. The comparison of time and

space complexity for applying AM on Naive Bayes and

SVM are given in Table 2, and are discussed in the

subsections that follow.

Analysis of time complexity for applying AM on Naïve

Bayes

 The term frequency of each term per category is

calculated. Thus, Naïve Bayes parses NLd terms during the

training phase. For every term in the vocabulary, M

different AM scores are calculated which takes O(MV)

time. Thus, the training time for Naive Bayes using AM is

also O(NLd+MV) and equates to O(NLd)(as MV<<NLd).

During the testing phase, we calculate the product of AM

of terms present in the testing document with respect to

each category, which takes O(M Lv).

A lexicon of all the terms in vocabulary (V) and their AM

scores with respect to all M categories are stored as the NB

model. Many of the features are filtered during feature

selection process, thus only some of the features and their

AM scores are stored. Space needed by Naïve Bayes using

AM is O(MV).

Analysis of time complexity for applying AM on SVM

 As shown, the training time for Naive Bayes using AM is

O(NLd+MV). Thus, AM for all the features in training set

can be found in linear time. SVM, however, trains in

quadratic time. Algorithms used in LibSVM train in O(M

Nc) where c≈1.2~1.5 (Yang, Zhang & Kisiel, 2003).

Hence, the total time taken for training a model using AM

as a preprocessing step of SVM is O(NLd+MV+MNc).

However, as NLd and MV are much smaller than MNc, we

consider the training and testing time for using AM with

SVM as O (M Nc).

The space taken for storing SVM model is O(N Lv + q2)

where q is a constant that depends on the iterations

needed. Hence, the space complexity for using AM with

SVM is O(M V + N Lv+ q2).

Experimental Setup

We empirically evaluated the effectiveness of AM feature

selection algorithm using five benchmark data sets

(Reuters 21578, 20 Newsgroups, WebKB, OHSUMED,

Genomics), which are commonly used in text classification

evaluation. The details on these data sets are given in

Table 3. We intentionally chose these datasets, which

consist of news articles, web pages and bio-medical

documents, to show the effects of AM on different

domains. Although we observe different accuracies across

different domains, AM consistently outperforms other

feature selection algorithms over all domains. To show the

scalability of our AM feature selection approach, using NB

classifier, we also show the effectiveness and efficiency

analysis on TREC 2005 Genomics dataset, which contains

4.5 million documents. We do not show the results for

TREC Genomics 05 on SVM classifier, as SVM is not

scalable for use on very large datasets. (The training time

for a SVM model for TREC 05 Genomics is almost 4

days.)

 In all our experiments, we use a single computer, with

an AMD Athlon 2.16Ghz processor and 1 GB of RAM. A

brief explanation about the benchmark datasets that are

used in our experiments is given below.

Table 2. Time and space complexity for applying AM on Naive Bayes and SVM

Classifier Training time Testing time per document Space Complexity

Naive Bayes using AM O(N Ld +M V) O(M Lv) O(M V)

SVM using AM
O(N Ld +M V + M Nc)

c≈1.2~1.5
O(M Lv) O(M V + N Lv+ q2)

N - number of training documents

Ld- average document length

M- number of categories

Lv - average number of unique terms in document

V – size of vocabulary (features)

q – constant that depends on the iterations needed

Reuters- 21578 Dataset

The Reuters 215783 corpus contains the Reuters news

articles from 1987. These documents range from multi-

labeled, single-labeled, or not labeled. The average

document length in Reuters 21578 dataset is 200 (non-

unique) terms per document. Reuters dataset consists of a

total number of 135 categories (labels), ten of which have

significantly more documents than the rest of the

categories. Thus, commonly the top 10 categories are used

to evaluate the accuracy of the classification results. The

top 10 categories of Reuters 21578 are ―earn‖, ―acq‖,

―money-fx‖, ―grain‖, ―trade‖, ―crude‖, ―interest‖, ―wheat‖,

―corn‖ and ―ship‖.

20 Newsgroup (20NG) Dataset

 20 Newsgroup4 (20NG) consists of total of 20,000

documents that are categorized into twenty different

categories. Each category contains 1,000 documents. The

average document length in 20NG dataset is 311 terms per

document. Thus, the average size of the documents is

much larger than those in Reuters 21578 dataset. Some of

the newsgroups categories are very closely related to each

other (e.g., comp.sys.ibm.pc.hardware and comp.sys.mac.-

hardware), while others are highly unrelated (e.g.,

misc.forsale and soc.religion.christian). This characteristic

contributes to the difficulty of categorization of documents

that belong to very similar categories.

WebKB Dataset

The WebKB dataset5 is a collection of web pages from

four different college websites namely Cornell, Texas,

3 Lewis D., Reuters-21578, http://www.daviddlewis.com/

resources/testcollections/reuters21578.

4 Lang K., Original 20 Newsgroups Dataset. http://

people.csai.mit.edu/jrennie/20Newsgroups

5 WebKB dataset. http://www.cs.cmu.edu/afs/ cs.cmu.edu/

project/theo-20/www/data/

Washington, Wisconsin and some miscellaneous web

pages. These web pages are pre-classified into seven

categories: student, faculty, staff, department, course,

project and others. WebKB contains 8,282 web pages. The

average document length in WebKB dataset is 130 terms.

OHSUMED Dataset

OHSUMED (Hersh, Buckley, Leone & Hickman, 1994)

is a collection of Medline documents, i.e., medical

citations, from 1987 to 1991, and is commonly used for

bio-medical literature search evaluation and classification.

We use only the top (largest) 50 categories with documents

published in 1987. The average document length in

OHSUMED dataset is 63 terms per document. The

distribution of documents in OHSUMED dataset is

uneven. The largest category contains 2,415 documents,

while the smallest category contains 873 documents.

Hence, more training data are available for some

categories as compared to others.

TREC 2005 Genomics Dataset

TREC 05 GENOMICS is a collection of 4.5 million

biomedical documents and is 15.5 GB in size. This is the

largest publicly available benchmark dataset that contains

categorized (labeled) documents in the domain of

bioinformatics. The average document length is 183 terms

per document.

We are not aware of any text classification efforts on

TREC 05 GENOMICS6 data set. Thus, for this dataset no

comparison with prior efforts was possible. We used the

data processed by (Urbain, Goharian & Frieder, 2007).

They use a pre-processing model that breaks up gene

names and is shown to perform well. Acronyms and their

long-forms are identified during preprocessing using the

Schwartz and Hearst algorithm (Schwartz & Hearst,

2003). An example of such long-short form would include

6 TREC 2005 Genomics dataset. http://ir.ohsu.edu/genomics/

Table 3. Benchmark datasets used for our experiments

Datasets No. of documents
No. of

Categories

Size of

dataset
Domain

Reuters 21578 21,578
Top 10

categories
28 MB News Articles

20 News Group 20,000 20 categories 61 MB News Articles

WebKB 8,282 7 categories 43 MB
Web Pages (University

websites)

OHSUMED
54,710(Total)

39,320 (Subset)

Top 50

categories
382 MB Bio-medical Documents

GENOMICS (TREC

05)

4.5 million (Total)

591,689 (Subset)

Top 50

categories
15.5 GB Bio-medical Documents

―immuno deficiency enzyme (IDE)‖, and a short-long

form would include ―IDE (immuno deficiency enzyme)‖.

The algorithm works backwards through the long form

text and attempts to identify corresponding letters in the

acronym. All terms are tokenized, stop words removed,

and lexical variants are generated. Porter stemming

(Porter, 1997) is used on each token with the following

exceptions: gene names (as defined by the Entrez Gene

database); all upper case, mixed case, alpha-numeric

terms; and non-gene terms that would become a gene

name after being stemmed. Similar to OHSUMED

dataset, the top (largest) 50 categories are chosen—those

that contain highest number of documents for GENOMICS

dataset. Similarly, the categories are ranked based on the

number of documents. This subset of Genomics dataset

contains 591,589 documents. The category that contains

the highest number of documents contains 295,773

documents while the category among top 50 categories

that contains least number of documents has 8,049

documents. Hence, if we choose the categories after the top

50, then the number of training documents in these

categories is very low, leading to a lower classification

accuracy.

Evaluation Metrics

 To evaluate the effectiveness of our approach and

compare to the state of the art feature selection research

results, we use the commonly used evaluation metrics

precision, recall and F1 measure.

PositiveFalsePositiveTrue

PositiveTrue
(P)Precision




 .. 16

 Precision (Equation 16) is defined as the ratio of correct

classification of documents into categories to the total

number of attempted classifications.

NegativeFalsePositiveTrue

PositiveTrue
(R)Recall




 .. 17

Recall (Equation 17) is defined as the ratio of correct

classifications of documents into categories to the total

number of labeled data in the testing set.

 RecallPrecision

Recall*Precision*2
MeasureF1




 ..18

F1 measure (Equation 18) is defined as the harmonic

mean of precision and recall. Hence, a good classifier is

assumed to have a high F1 measure, which indicates that

classifier performs well with respect to both precision and

recall.

We present the micro-averaged results for precision,

recall and F1 measure. Micro-averaging considers the sum

of all the true positives, false positives and false negatives

that are generated in ten runs of 10-fold cross validation

(Lewis, 1991).

Results

We organize the results into two subsections. In the first

subsection, we present the result for Naïve Bayes classifier

using AM feature selection method. In the second

subsection, the results for AM feature selection with SVM

classifier are presented.

Naive Bayes using AM

We evaluated the experimental results using Reuters

21578, 20NG, WebKB, OHSUMED and TREC 05

Genomics datasets. We present the comparison of AM

feature selection algorithm with the eight feature selection

algorithms explained earlier in the prior work section. We

varied the threshold to identify the optimal F1 measure for

each feature selection method. The results show that AM

outperforms the others statistically significantly with a

confidence level of at least 95%. We demonstrate the

effects of using round robin method, which is used for

globalizing the localized feature selection score. We also

present the effects of AM on the training and testing time

for Naive Bayes classifier.

Comparison with other feature selection algorithms

using Naive Bayes classifier

We used stratified 10-fold cross validation for all the

datasets except WebKB. We used a standard 4-1 split for

WebKB where the data for three universities are used for

training and the data for one university is used as a testing

set. We varied thresholds to observe the best results with

respect to F1. Our results show that AM comparatively

performs better than the next best performing feature

selection algorithms by 20%, 7.5%, 0.25%, 2.14%, and

2.6%, on OHSUMED, TREC 05 Genomics, Reuters

21578, 20 Newsgroups, WebKB datasets, respectively.

 Figure 2 shows the comparison of eight feature selection

algorithms on Reuters 21578 dataset with respect to F1

measure. Our experimental results show that AM

(Precision: 92.36%, Recall: 85.72%, F1: 88.92%) performs

better than tfidf (Precision: 90.78%, Recall: 86.69%, F1:

88.69%) and BNS+F1 (Precision: 88.13%, Recall:

88.01%, F1: 88.07%), which are the next best performing

algorithms. As all the feature selection algorithms perform

well on Reuters 21578 dataset, the F1 improvement when

using AM measure is only 0.25% (95% confidence).

Statistical significance of the AM with respect to other

feature selection algorithms for various datasets is reported

in Table 4. For 20 Newsgroups (Figure 3), AM (Precision:

91.68%, Recall: 91.69%, F1: 91.72%) performs

significantly better than the next best feature selection

algorithm, improved gini index (Precision: 91.69%,

Recall: 87.97%, F1: 89.79%), by 2.14%. Although the

improvement is marginal, the results are statistically

significant by at least 95% confidence.

 The results on WebKB dataset, which are given in

Figure 4, show that AM (Precision: 74.34%, Recall:

73.76%, F1: 74.05%) performs better than the second best

performing algorithm, improved gini index (Precision:

71.74%, Recall: 72.56%, F1: 72.15%), by 2.6%. WebKB

dataset consists of web pages, which contains images,

tables and other anchor text. Classifying such documents

is more difficult than

Figure 2. Comparison of AM with other feature selection

methods in terms of F1 measure on Reuters 21578

dataset for Naive Bayes

Figure 3. Comparison of AM with other feature selection

methods in terms of F1 measure on 20 Newsgroups

dataset for Naive Bayes

Figure 4. Comparison of AM with other feature selection

methods in terms of F1 measure on WebKB dataset for

Naive Bayes

Figure 5. Comparison of AM with other feature selection

methods in terms of F1 measure on OHSUMED dataset

for Naive Bayes

Figure 6. Comparison of AM with other feature selection

methods in terms of F1 measure on TREC 05

Genomics dataset for Naïve Bayes

Figure 7. Effect of feature selection on training and

testing time of Naïve Bayes using AM on TREC 05

Genomics dataset

classifying plain documents from Reuters 21578 and 20

Newsgroups datasets. Hence, the classification

effectiveness for WebKB dataset is lower than Reuters

21578 and 20 Newsgroups datasets.

On biomedical datasets, our results indicate that AM

(Precision: 65.93%, Recall: 54.84%, F1: 59.88%)

statistically significantly improves (20%) over improved

gini index (Precision: 53.83%, Recall: 46.54%, F1:

49.92%) on OHSUMED dataset (Figure 5). AM (Precision:

61.71%, Recall: 60.54%, F1: 61.12%) also shows a

statistically significant improvement of 7.5% over

improved gini index (Precision: 61.71%, Recall: 52.64%,

F1: 56.82%) for TREC Genomics 05 dataset (Figure 6).

Improved Gini index is the second best performing

algorithm on both these datasets.

Discussion

The motivation for using AM feature selection is to

select terms that belong to only one category. As

mentioned in introduction, ambiguous features lead to

wrong classification predictions in unbalanced datasets.

Our results indicate that AM performs better than odds

ratio, information gain, tficf, tfidf, BNS+F1 and Chi-

Squared on OHSUMED and Genomics datasets by more

than 30% (comparative gain). OHSUMED and Genomics

datasets are unbalanced and a large number of training

documents belong to the top two categories. The feature

selection methods such as odds ratio, information gain,

tficf, tfidf, BNS+F1 and Chi-Squared use both positive and

negative examples to assign scores to the features. A high

score is assigned to a feature even if it appears evenly in

only 2 or 3 categories out of 50. As the number of training

documents in the top two or three categories is large, many

features only appear in the top two or top three categories.

Such features are assigned high scores. These features

mislead the text classifier and hence, many false positives

are generated during the testing phase. Such features are

assigned a low AM score and are filtered during the

process of feature selection.

Improved gini index nullifies the effects of unbalanced

classes in dataset by combining the posterior probabilities

and condition probabilities for each term. OCFS is

optimized based on the number of documents available in

each class. Hence, improved gini index and OCFS perform

comparatively better than odds ratio, information gain,

tficf, tfidf, BNS+F1 and Chi-Squared algorithms.

However, our results indicate that improved gini index and

OCFS perform statistically significantly worse than AM on

unbalanced dataset such as OHSUMED and Genomics.

Globalizing Feature Selection Scores

 As feature selection algorithms such as tficf, odds ratio,

information gain, chi-squared, BNS+F1 and AM are local

feature selection algorithms, we have used the traditional

method (selecting the terms with the highest local scores)

to convert their local scores to global feature selection

score. Additionally, similar as in (Forman, 2004), we used

round robin method to convert the local feature selection

score into global score. Round robin method selects the top

n features from each category. Thus, the categories with

low number of training documents also have the same

number of features in the feature set that represent them.

This method improves the effectiveness in identifying the

documents that belong to categories that have less training

documents and leads to an improvement in macro-F1,

which is the average of F1 measure of all categories.

Table 4. Statistical comparison of AM and other feature selection algorithms on Naïve Bayes with respect to F1

measure (Paired t-test)

Algorithm
Datasets

Reuters 21578 20 Newsgroups WebKB OHSUMED Genomics

Odds Ratio + ++ ++ ++ ++

BNS+F1 + ++ ++ ++ ++

tfidf ++ ++ ++ ++ ++

tficf ++ ++ ++ ++ ++

Info Gain ++ ++ ++ ++ ++

Chi-Squared ++ ++ ++ ++ ++

OCFS ++ + ++ ++ ++

Imp. Gini + + ++ ++ ++

+ : AM is statistically significantly better than the feature selection algorithm by 95% confidence

++ : AM is statistically significantly better than the feature selection algorithm by 99% confidence

Figure 8. Comparison between AM with/without round

robin method

However, the classification accuracy of the categories with

a large number of training documents decreases. As we are

using stratified splits for each dataset, the number of

training documents that belong to a category is directly

related to the number of testing documents that belong to

that category. Hence, the micro-F1 measure when using

round robin method decreases. We provide the results of

AM versus using AM with round robin method in Figure

8. We observed that using round robin method improves

macro F1 measure by 1.7% while decreasing the micro F1

by 5.2% for Reuters 21578 dataset.

Tradeoff of accuracy and time with respect to AM

thresholds for Naive Bayes

 We now present the effects of AM threshold on the

training and testing time of Naive Bayes using TREC 05

Genomics dataset (Figure 7). We performed similar

experiments on other datasets and observed the same

trends. As the TREC 05 Genomics dataset is relatively

large, the trends with respect to training and testing time

are observed clearly. Hence, we only report the results for

TREC 05 Genomics dataset.

 The training time complexity of Naive Bayes using AM

is O(NLd+MV) where N is the number of documents, Ld is

the average document length, M is the number of

categories and V is the total terms in the vocabulary. As N,

Ld, M and V are all constant during the training phase, the

training

time of our algorithm is constant (Figure 7). The features

whose AM is above the threshold are kept. The space

complexity of our Naive Bayes using AM is O(MV). As

the size of V decreases when the threshold increases, there

is a slight drop in the training time. Though there is

marginal decrease in training time during feature selection

phase, the time complexity for applying AM on Naive

Bayes classifier is linear and is faster than other commonly

used algorithms such as SVM.

 The time complexity in the testing phase is O(MLv),

where Lv is the total number of unique terms per testing

document. As we start selecting fewer features (increase

the threshold), the value of M remains constant, while the

value of Lv decreases. This is because fewer features are

available in the feature set and hence, less unique terms

are used from each document in testing set. Hence, as we

Figure 9. Comparison of AM with other feature selection

methods in terms of F1 measure on Reuters 21578

dataset for SVM

Figure 10. Comparison of AM with other feature selection

methods in terms of F1 measure on 20 Newsgroups

dataset for SVM

Figure 11. Comparison of AM with other feature

selection methods in terms of F1 measure on WebKB

dataset for our SVM

Figure 12. Comparison of AM with other feature selection

methods in terms of F1 measure on OHSUMED dataset

for our SVM

increase the threshold the testing time consistently

decreases. It is also observed that as the threshold

increases up to 0.4, F1 measure increases while there is a

reduction in testing time.

SVM using AM

In this section, we favorably compare our results of

applying AM feature selection using SVM to the results

using the same eight feature-selection algorithm. We

varied the threshold to identify the optimal F1 measure for

each feature selection method. We demonstrate how AM

feature selection reduces the training time while improving

the F1 measure. We also explain the effects of the AM

threshold score on the classification results.

Comparison with other feature selection algorithms for

SVM classifier

SVM trains with a time complexity of

O(NLd+MV+MNc) where N is the number of documents,

Ld is the average document length, M is the number of

categories, V is the total terms in the vocabulary and c is a

constant (c≈1.2~1.5). SVM in nature is not a scalable

algorithm. We use the ModApte split for Reuters 21578

dataset and 9-1 split for 20 Newsgroups dataset and

OHSUMED dataset as given on the LibSVM dataset

website. We use a standard 4-1 split for WebKB where the

data for three universities is used for training, and the data

for one university is used as a testing set. We use these

splits as they are readily available and commonly used in

the prior works (Wenqian et al., 2007; Yan et al., 2005).

AM performs statistically significantly better than the

eight feature selection algorithms with a confidence of

99% (Table 5).

Improved Gini Index is the second best performing

algorithm for all the four datasets. Therefore, we present

the comparison of AM with Improved Gini Index. Our

experimental results on Reuters 21578 (Figure 9) dataset

indicate that AM (F1: 89.1%) performs better than

Improved Gini Index (F1: 88.6%) by 0.56%. For 20

Newsgroups dataset (Figure 10), which is another dataset

that contains news articles, AM (F1: 78.74%) outperforms

improved gini index (F1: 77.3%) by 1.8%. The result on

WebKB dataset (Figure 11), which is a dataset that

contains web pages, indicates that AM (F1: 76.14%)

outperforms Improved Gini Index (F1: 75.54%) by 0.8%.

For the OHSUMED dataset (Figure 12) that contains

biomedical documents, AM (F1: 60.74%) outperforms

Improved Gini Index (F1: 58.23%) by 4.3%.

Discussion

Our results for SVM using AM also indicate that

improvements in OHSUMED, which is very unbalanced

dataset, are better than in other datasets. OHSUMED has

the majority of documents in the first few (2-3) categories

and fewer documents in the other 50 categories. This

improvement is achieved due to the selection of the

features that point to only one category (unambiguous

features). SVM classification is based on the entire set of

terms in the testing document and not on only

unambiguous features. Hence, the improvements observed

using SVM are smaller than those observed using Naïve

Bayes classifier.

All features from the testing documents are used for

classifying a document. LibSVM always predicts one

category for each document. When a category is wrongly

predicted, a false positive is generated; a false negative is

also generated because a true prediction is not made.

Precision and recall for all the runs using LibSVM are the

same. Precision and recall vary for Naïve Bayes because

when the AM threshold is high, the number of keywords is

sparse and some documents do not contain any terms that

are above the thresholds. Such documents are predicted as

uncertain and only a false negative is generated in such

cases. As we filter more features from the feature set, the

number of uncertain cases increases and recall decreases.

Table 5. Statistical comparison of AM and other feature selection algorithms with respect to F1 measure (Paired t-

test)

Algorithm
Datasets

Reuters 21578 20 Newsgroups WebKB OHSUMED Genomics

Odds Ratio ++ ++ ++ ++ ++

BNS+F1 ++ ++ ++ ++ ++

tfidf ++ ++ ++ ++ ++

tficf ++ ++ ++ ++ ++

Info Gain ++ ++ ++ ++ ++

Chi-Squared ++ ++ ++ ++ ++

OCFS ++ ++ ++ ++ ++

Imp. Gini ++ ++ ++ ++ ++

++ : AM is statistically significantly better than the feature selection algorithm by 99% confidence

 Tradeoff of accuracy and time with respect to AM

thresholds for SVM

We now report the effect of the AM threshold on F1

measure and the corresponding time taken to train the

model and classify the documents using SVM classifier is

depicted in Figure 13, which shows results for

OHSUMED dataset. Other datasets also show the same

trends. The x-axis represents different threshold values

and the y-axis represents micro-F1 measure and time. The

threshold value indicates that all features whose scores are

above that threshold are selected and the remaining

features are filtered. As we apply AM feature selection,

micro-F1 increases (Figure 13). We obtain the best micro-

F1 when the threshold is set to 0.2. As the threshold is

increased, the micro-F1 starts to decrease. This indicates

that when the threshold is less than 0.2, most of the

features that are filtered are ambiguous and lead to an

improvement F1 measure. When the threshold is above

0.2, most of the features that are filtered contain relevant

information. Thus, the F1 measure of the classifier

decreases.

 The training time includes the feature selection time and

the time taken to train the SVM model. The testing time is

the time taken by LibSVM to classify the testing data.

Figure 13 demonstrates that when no feature selection is

used i.e., when threshold is equal to zero, the time taken

for training on OHSUMED dataset is 3356 seconds. When

we reduce the dimensionality of feature set, by setting the

threshold to 0.2, the training time also decreases to 1623

seconds. This shows that even though the learning time is

reduced by more than 50%, we still obtain better F1

measure than when we do not apply any feature selection.

 One of the limitations of using feature selection

algorithm on SVM is that a proper threshold must be

found for a given dataset. We found the threshold for

Reuters 21578 and WebKB dataset to be 0.2 and for 20

Newsgroups and OHSUMED datasets’ threshold was 0.3.

To further investigate this problem, we experimented on

two additional standard datasets from statlog collection

(Michie, Spiegelhalter & Taylor, 1994) called DNA

dataset (3 categories; 2,000 training documents; 1,186

testing documents) and Vehicle dataset (4 categories; 761

training documents; 85 testing documents). Similarly, we

found that a threshold between 0.2 to 0.3 yields the best

results on all the four datasets we used for our

experimentations.

Conclusion

We presented a new feature selection algorithm called

Ambiguity Measure (AM). The underlying premise behind

the AM approach is the quick identification of

unambiguous terms. We define unambiguous terms as

features that belong to only one category. We showed how

AM is used with Naïve Bayes classifier. The most

unambiguous terms (keywords) from the training

documents are selected using AM and a classification

model is built. Based on this model, the documents that

are to be classified are scanned to identify the keywords;

and the ambiguity measures (AM) of the keywords are used

to calculate the probability that the document falls in a

specific category. The category with the highest probability

is selected as the category for that document.

We empirically evaluated the performance of our

methodology for using AM with Naive Bayes classifier

using five standard benchmark data sets (Reuters 21578,

20 News Groups, WebKB, OHSUMED and TREC 05

Genomics collection). Our experimental results

demonstrate that AM performs statistically significantly

better than eight existing feature selection algorithms

using five benchmark datasets with a confidence of at least

95%.

We also applied AM as a preprocessing step for SVM

classification algorithm. We showed that AM feature

selection reduces the training time of the SVM classifier,

while maintaining its effectiveness. Experiments were

performed on four standard benchmark datasets. Our

results indicated that AM performs statistically

significantly better than the current published state of the

art feature selection algorithms on SVM classifier.

Our results also indicated that AM feature selection

improved over odds ratio, information gain, Chi-Squared,

BNS+F1 and tficf on unbalanced datasets like OHSUMED

and Genomics, where majority of documents belong to

only 2-3 categories. Our analysis showed that selecting the

features that point to only one category performs better

than selecting features that point to more than one

category. Words that point to more than one category may

Figure 13. Effect of feature selection on training and

testing time of SVM using AM on OHSUMED dataset

mislead the classifier and hence decrease the effectiveness

of a classifier on unbalanced datasets.

Furthermore, we provided analysis of how the micro-F1

is affected as we set more stringent thresholds for feature

selection. We demonstrated that as the threshold for

selecting the features is increased, the micro-F1 measure

improves until up to a specific threshold. The training time

for applying AM on Naïve Bayes classifier is not affected

by feature selection algorithm. However, the time taken for

training by SVM classifier is much lower than when no

feature selection is used. The effectiveness of the text

classifier decreases as the threshold increases beyond a

certain point.

ACKNOWLEDGEMENTS

 We like to thank Jay Urbain for providing us the

preprocessed and indexed Genomics dataset.

REFERENCES

Breiman, L., Friedman, J., & Olshen, R. (1984). Classification

and regression trees. Wadsworth International Group.

 Chih, H., & Kulathuramaiyer, N. (2004). An Empirical Study of

Feature Selection for Text Categorization based on Term

Weightage. IEEE/WIC/ACM International Conference on Web

Intelligence, (pp. 599-602).

Cortes, C., & Vapnik, V. (1995). Support-vector networks.

Machine Learning , 20 (3), (pp. 273-297).

Debole, F., & Sebastiani, F. (2003). Supervised term weighting

for automated text categorization. ACM symposium on Applied

computing, (pp. 784-788).

Forman, G. (2008). BNS Scaling: An Improved Representation

over TF·IDF for SVM Text Classification. ACM Conference on

Information and Knowledge Management, (pp. 263-270).

Forman, G. (2004). A pitfall and solution in multi-class feature

selection for text classification. Proceedings of the 21st

International Conference on Machine Learning, (pp. 38-46).

Forman, G. (2003). An Extensive Empirical Study of Feature

Selection Metrics for Text Classification. Journal of Machine

Learning Research , 3, (pp. 1289-1305).

Galavotti, L., & Sebastiani, F. (2000). Experiments on the Use of

Feature Selection and Negative Evidence in Automated Text

Categorization. 4th European Conference on Research and

Advanced Technology for Digital Libraries., (pp. 59-68).

Grossman, D., & Frieder, O. (2004). Information Retrieval:

Algorithms and Heuristics. 2nd Edition, Springer Publishers.

Hersh, W., Buckley, C., Leone, T., & Hickman, D. (1994).

OHSUMED: an interactive retrieval evaluation and new large

text collection for research. Annual ACM Conference on

Research and Development in Information Retrieval, (pp. 192 -

201).

Joachims, T. (1999). Making Large-scale support vector machine

learning practical. In B. S. al., Advances in kernel methods:

Support vector learning (pp. 169–184).

Joachims, T. (1998). Text Categorization with Support Vector

Machines: Learning with many relevant features. 10th European

Conference on Machine Learning, (pp. 137-142).

Lavelli, A., Sebastiani, F., & Zanoli, R. (2004). Distributional

term representations: an experimental comparison. thirteenth

ACM international conference on Information and knowledge

management, (pp. 615 - 624).

Lewis, D. (1991). Evaluating Text categorization. In Proceedings

of the workshop on Speech and Natural Language, (pp. 312-

318).

Mccallum, A., & Nigam, K. (1998). A Comparison of Event

Models for Naive Bayes Text Classification. AAAI/ICML-98

Workshop on Learning for Text Categorization, (pp. 41-48).

Mengle, S., & Goharian, N. (2008). Using Ambiguity Measure

Feature Selection Algorithm for Support Vector Machine

Classifier. ACM 23rd Symposium on Applied Computing, (pp.

916-920)

Mengle, S., Goharian, N., & Platt, A. (2007). FACT: Fast

Algorithm for Categorizing Text. IEEE 5th International

Conference on Intelligence and Security Informatics, (pp. 308-

315).

Michie, D., Spiegelhalter, D., & Taylor, C. (1994). Machine

Learning, Neural and Statistical Classification. Prentice Hall.

Mladenić, D., & Grobelnik, M. (1998). Feature selection for

classification based on text hierarchy. Text and the Web,

Conference on Automated Learning and Discovery CONALD-98.

Mladenić, D., Brank, J., Grobelnik, M., & Milic-Frayling, N.

(2004). Feature Selection using Linear Classifier Weights:

Interaction with Classification Models. In The 27th ACM SIGIR

Conference on Research and Development in Information

Retrieval, (pp. 234-241).

Novovicova, J., & Malik, A. (2005). Information-theoretic feature

selection algorithms for text classification. IEEE International

Joint Conference on Neural Networks, (pp. 3272- 3277).

Porter, M. (1997). An algorithm for suffix stripping. Morgan

Kaufmann Multimedia Information And Systems Series, (pp. 313

- 316).

Quinlan J. (1986) Induction of decision trees. Machine learning

1(1). (pp. 81-108)

Rennie, J., Teevan, J., & Karger, D. (2003). Tackling the poor

assumptions of Naive Bayes Text classifiers. 20th International

Conference on Machine Learning, (pp. 616-623).

Schwartz, A., & Hearst, M. (2003). A simple algorithm for

identifying abbreviation definitions in biomedical text. Pacific

Symposium on Biocomputing, (pp. 451-462).

Urbain, J., Goharian, N., & Frieder, O. (2007). Combining

Semantics, Context, and Statistical Evidence in Genomics

Literature Search. IEEE Seventh Symposium on Bio-Informatics

& Bio-Engineering, (pp. 1313 - 1317).

Wenqian, S., Houkuan, H., Haibin, Z., & Yongmin, L. (2007). A

novel feature selection algorithm for text classification. Expert

Systems with Applications: An International Journal , 33 (1),

(pp.1-5).

Yan, J., Liu, N., Zhang, B., Yan, S., Chen, Z., & Cheng, Q.

(2005). OCFS: optimal orthogonal centroid feature selection for

text categorization. 28th annual international ACM SIGIR

conference on Research and development in Information

Retrieval, (pp. 122-129).

Yang, Y. (1999). An Evaluation of Statistical Approaches to Text

Categorization. Information Retrieval , 1 (1-2), 69 - 90.

Yang, Y., & Pedersen, J. (1997). A comparative study on feature

set selection in text categorization. 14th International

Conference on Machine Learning, (pp. 412-420).

Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of

classifiers in text categorization. 26th ACM SIGIR Conference on

Research and Development in Information Retrieval, (pp. 96-

103).

Yi, L., & Zheng, Y. (2005). One-against-all multi-class SVM

classification using reliability measures. Conference on Neural

Networks, (pp. 849- 854).

