Exploiting Parallelism to Support Scalable Hierarchical
Clustering*

Rebecca Cathey, Eric C. Jensen, Steven M. Beitzel, Opladérj David Grossman
Information Retrieval Laboratory
Department of Computer Science
lllinois Institute of Technology
10 W. 31st Street
Chicago, IL 60616
{cathey,jensen,beitzel,frieder,grossman}@ir.iit.edu

Abstract

A distributed memory parallel version of the group averager&tchical Agglomerative Clustering algorithm is pro-
posed to enable scaling the document clustering problearge kollections. Using standard message passing opera-
tions reduces interprocess communication while maimagiefficient load balancing. In a series of experiments using
a subset of a standard TREC test collection, our parallehtghical clustering algorithm is shown to be scalable in
terms of processors efficiently used and the collection dresults show that our algorithm performs close to the
expected Q¢?/p) time onp processors, rather than the worst-case™@p) time . Furthermore, the @¢ /p) memory
complexity per node allows larger collections to be clusdess the number of nodes increases. While partitioning
algorithms such a&-means are trivially parallelizable, our results confirragh of other studies showing that hier-
archical algorithms produce significantly tighter clustar the document clustering task. Finally, we show how our
parallel hierarchical agglomerative clustering algaritban be used as the clustering subroutine for a parallgbvers
of the Buckshot algorithm to cluster the complete TREC abiten at near theoretical runtime expectations.

1 Introduction

Document clustering has long been considered as a meangentiply improve both retrieval effectiveness and
efficiency. However, the intensive computation necessacjuster the entire collection makes its application tgdar
data sets difficult. Accordingly, there is little work on egtively clustering entire large, standard text colletsiand
less with the intent of using these clusterings to aid reditieRather, much work has focused on either performing
simplified clustering algorithms or only using partial dki$ngs, such as clustering only the results for a givenyjuer
Clustering algorithms generally consist of a tradeoff ew accuracy and speed. Hierarchical agglomerative
clustering algorithms calculate a full document-to-doemtrsimilarity matrx. Their clusterings are typically vieds
as more accurate than other types of clusterings, howéecdmputational complexity required for the algorithm'’s
guadratic behavior makes it unrealistic for large docunoefiections. Other clustering algorithms such as the
means and single pass algorithms iteratively partitiorttita into clusters. Although these partitioning algorismm
in linear time, the assignment of documents to moving céadrproduces different clusterings with each run. Some
algorithms combine the accuracy of hierarchical agglotheralgorithms with the speed of partitioning algorithms
to get an algorithm that is fast with reasonable accuracg €uth algorithm is the buckshot algorithm which uses a
hierarchical agglomerative algorithm as a clustering sutine.
We propose a hierarchical agglomerative clustering algordesigned for a distributed memory system in which
we use the message passing model to facilitate interprecesmunication [1, 2]. Our algorithm has an expected

time of O("Tf) time onp processors. Although partitioning algorithms generallyéna linear time complexity, our
focus is on the quality of the clusters. We show how a disteblisystem can be used to produce accurate clusters
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in a reasonable amount of time. Since we use an optimizedl $gerrarchical agglomerative clustering algorithm,
our actual speedup is @3), half of the expected speedup. That is, only half of the swtnim matrix is used by

an optimized serial algorithm. In our parallel approachiguce inter-node communication, we process a complete
matrix. hence, our two node instances require roughly tiheesprocessing as the optimized serial version. The
speedup, however, is consistent and does not decay. Nafnoetyfwo nodes onwards, doubling the nodes roughly
halves runtime. We determine the quality of our clustersdmgaring them with clusters generated using a bisection
variant of the partitioning:-means algorithm. Furthermore, we show how our hierarthigglomerative clustering
algorithm can be used as highly accurate clustering suineirt the buckshot algorithm to facilitate clustering of
larger document collections. The buckshot algorithm tesalnear optimal speedup.

2 Background and Prior Work

Although many clustering techniques are currently avééléB], there are two main categories of approachms+
titioning andhierarchical clustering. Partitioning assigns every document to a single cluster iteratively [4n &n
attempt to determing partitions that optimize a certain criterion function [lartitioning algorithms do not require
every document to be compared to every other document,rrafiey compare every document to a set of centroids
which must be initialized through some external means afi@domly). For this reason, these algorithms commonly
run in O(kn) time wherek is the number of desired clusters.

A hierarchical clustering is a sequence of partitions inalihéach partition is nested into the next partition in
the sequence. Hierarchical clusterings generally fadl fmto categoriessplitting andagglomerativenethods.Split-
ting methods work in a top down approach to split clusters untiédain threshold is obtained. The more popular
agglomerativeclustering algorithms use a bottom-up approach to mergardents into a hierarchy of clusters [7].
Agglomerativealgorithms typically use atored matrixor stored dataapproach [8]. Thetored matrixapproach cre-
ates a similarity matrix to keep track of document-to-doeatsimilarity measurement§&tored matrixapproaches
include similarity matrix and priority queues. Similarityatrix methods use a matrix to store the document to doc-
ument similarities in a similarity matrix. The matrix is selaed to find the clusters that have the highest similarity.
When those clusters are merged, the similarities in theixnate also updated. The total time complexity for the
similarity matrix method is Q¢?) time. This can be reduced to &%(log n) time using heap based priority queues.

The priority queue method maintains a priority queue fohedaster, when a new cluster is found, a new priority
queue is created and all other priority queues are updategriofity queue requires @fg n) time for inserts and
deletes. Each priority queue is updated by performing twietde and one insert resulting in ®@{og n) time for
n priority queues. Thus the time reduces tan®(og n) time [9]. Both the similarity matrix and priority queue
methods require a memory complexity off3). It is important to note, however, that since the priorityege method
must also store document identifiers, it requires over dotii# memory of the similarity matrix metho8tored data
approaches require the recalculation of the similarity sneaments for each time clusters are merged. The nearest
neighbor method uses ttstored dataapproach to store an array of nearest neighbors for eacteclud/hen the
number of values that need to be changed after each iteiiatignthe time complexity is Q{n?) and the memory
complexity isO(n). When the memory is enough to storer) similarity values, thestored matrixapproach is
preferred as it performs less similarity computationseothise thestored dataapproach is preferred [8].

The main difference between hierarchical and partitiommaghods is the assignment of documents to clusters.
With hierarchical clustering, once a document is assigoed tluster it remains in that cluster. Partitioning algo-
rithms often move documents among clusters to obtain thé fésalt. Some studies have found that hierarchical
agglomerative clustering algorithms, particularly thts® use group-average cluster merging schemes, prodtice be
ter clusters, purportedly because of their complete dootiteedocument comparisons [10, 11, 12]. More recent work
has indicated that this may not be true across all metricsl@atdome combination of agglomerative and partitioning
algorithms can outperform either one or the other indivigyd 3, 14]. As these studies use a variety of different
experiments, using different metrics and (often very syrddicument collections, it is difficult to conclude which
clustering method is “definitively” superior, but they daag that hierarchical agglomerative clustering is an &ffec
choice.

There exist several algorithms that combine the accurathediierarchical approach with the lower time complex-
ity of the partitioning approach to form a hybrid approachdpular algorithm for accomplishing this is the Buckshot
algorithm, which combines a hierarchical agglomerativestgring algorithm performed on a subset of the collec-
tion with a partitioning algorithm [15]. This reduces thengoutational complexity t@(kn) time [16]. However,



this sequential algorithm is still very slow for today’sdercollections. Even the most simplistic modern clustering
algorithms are often too slow for real-time applicationg][1

There has been work done to develop scalable algorithmdusteting. A scalable clustering approach has three
main aspects [19]. The first aspect is scalability to a langmalver of documents. Linear algorithms as well as a
minimum number of collection scans are desirable for lagkections of data stored in secondary storage. Bradley,
et al minimizes the number of scans by usingthmeans algorithm with a limited memory buffer to store suniesa
of the documents already scanned [20]. Ordonez, et al useltional database to store the data set, generally
reducing the number of disk scans to three [21]. Another@gogr to deal with large document collections is to run
the clustering algorithm on a sample of the dataset or datersries instead of the entire collection [6, 22, 23, 24].
These methods can be used to compress very large data ioolteiito representative points that can be used to
hierarchically cluster data.

The second aspect is scalability to a large number of atethor dimensions. High dimensional data have prop-
erties that inhibit the performance of algorithms that waddl with low dimensions. Because text data are high
dimensional data, much work has gone into selecting the=cbfeatures [25, 26, 27]. He, et al represent the doc-
ument as a low dimensional vector from a compact representstibspace [28]. A tree index where the number
of dimensions increases towards the leaf level has beentasgabed up processing of high-dimensional k-nearest
neighbor queries [29]. Orlandic, et al use a data reductiethod that represents the data space as a set of dense cells
[30].

The third aspect is in number of processors, ideally spijtthe total computation involved info equal parts.
Work in this area involves the parallelization of severaglagithms. Dhillon, et al used a paralleimeans algorithm
to create up to 16 clusters from generated test collectibrouments having 8-128 terms in length, the largest
of which was 2GB [31]. In addition, Dhillon, et al multi-treded the spherical-means partitioning algorithm and
achieved near linear speedup and scaleup when running on1BINSF award abstracts averaging 72 terms in length
after term-filtering [32]. There exists some work on patdiierarchical agglomerative clustering, but most of these
algorithms have large computational overhead or have rest bealuated for document clustering [6, 22, 33, 34]. Our
approach addresses scalability primarily with respedtéatumber of nodes.

Document clustering is a unique clustering task becaude mimense and sparse feature space. Typical clustering
studies that focus on a small number of features are notcgiyi to the document clustering task. Dash, et al ex-
amines a parallel hierarchical agglomerative clusterlggrithm based on dividing the data into partially overlagp
partitions [8]. Experiments showed the sequential alpariteduced existing time and memory complexities, how-
ever, a small number of dimensions was used as the focus was document clustering. Some prior work developed
parallel algorithms for hierarchical document clusteyimgwever these algorithms require specialized intercctmme
networks [33, 35, 36]. Ruocco and Frieder’s single-passtigaring algorithm showed near linear speedup on subsets
of the Tipsterdocument collection, the largest of which contained 10@@fuments [18]. These collections have the
disadvantage of being small as compared to today’s caliesti

Prior work has gone into using document clustering to impnatrieval effectiveness. Salton performed experi-
ments on changing the spatial density of a document callectsing clustering with the vector space model [37, 38].
Xu and Croft described a method for improving distributeliegal effectiveness using language models of clustered
collections [39]. More recently, models were presented hyctvretrieval effectiveness might be improved through
modified term weighting in clustered document collectiof® [ Query-time efficiency can also be improved through
clustering given the additional collection metadata thptavides, namely which documents are similar. This presid
the opportunity to shortcut document retrieval.

3 Sequential Methods

Now we discuss two algorithms for sequential document ehirgg. The first is a hierarchical agglomerative clustering
algorithm. The second is the buckshot algorithm that usesigrarchical agglomerative clustering algorithm for the
clustering subroutine.

3.1 Hierarchical Agglomerative Clustering

For hierarchical agglomerative clustering, each docurseinitially a separate cluster. Then the clusters are neerge
in stages until the desired number of clusters are found. $¥ethe sequential hierarchical agglomerative algorithm



[41] shown in Figure 1. The complexities given for each stethe algorithm are relatively loose in terms of order,
they provide an upper bound for the number of computatiohss dlgorithm uses stored matrixmethod to store an

n x n similarity matrix. In addition two arrays of the nearestgteior to each cluster and the corresponding maximum
similarity measurement are also stored.

Algorithm Time Complexity
Preconditionsn = document sizek = desired number of clusters
Phase 1Build Similarity Matrix O(n?)
1. Assign each documedt to clustere; O(n)
2. For every cluster pairf, ¢;) wherei # j calculate the similarity between andc;, O(n?)

place in Similarity MatrixD

3. Find the nearest neighbor and corresponding similadtyefich cluster;, place in On?)
NNarray ANAMATarray

Phase 2Create the Clusters O(an?)
4. Repeat — k times
4.1. Searching,rqy andmaz.,,q, for the clusters and; with the O(n)
maximum similarity
4.2 Replace clustersand;j by an agglomerated clustér o)
4.3 UpdateD to reflect revised similarity betwednand all other clusters O(n)
4.4 Updatea elements immngyrqy aNdmazarray O(an)

4. Outputk clusters

Figure 1: Hierarchical Agglomerative Clustering Algorith

The hierarchical agglomerative clustering algorithm has distinct phases. The first phase builds a similarity
matrix and the nearest neighbor arrays for the entire didieof sizen. The similarity matrix contains the document-
to-document similarity scores for the entire collectiorheThearest neighbor to each cluster and the corresponding
maximum similarity measurement are found using the siitylanatrix and stored in two separate arrays. There
are many techniques for calculating a measure of similééyveen two documents [42]. Although any similarity
measure can be used, in our experimentation, we use a casiterisy measure [37, 38] that includes document and
guery length normalization factors estimated from theimber of unique terms [43] coupled with a modern term-
weighting scheme [44]. Since we calculate a similarity idor n» documents and find the maximum values for each
of n rows, the time complexity for this phase@n?) time. A sample document-to-document similarity matrix for
n = 6 documents is shown in Figure 2. Also shown are the arraysung the nearest neighbofs;q,,q,, and the
corresponding maximum similarity valuesaz.,rqy. Thennerqy iS an array that contains the nearest neighbor for
each cluster. Thewax,,rqy IS an array that contains the similarity score from eachtetus the nearest neighbor of
that cluster. Each row imazqrrqy @ndnng,rqy corresponds to the same row and represented cluster initfieadr
matrix. For example, The nearest neighbor to clustiercluster6. Thus,6 is placed in the first position 0fng;rqy-
Similarly, the first position ofnaz,,rq, contains the similarity score between clusteend6, in this casel0.

In this simple example, the columns and rows are labelled datcument identifiers, and the matrix is filled with
similarity coefficient scores. In practice, when using nesand other popular similarity measures, the scores are
very often real values between zero and one. For simplitigge scores are represented here as integers. A memory-
efficient sequential implementation of the hierarchicglamerative clustering algorithm requires only approxieha
"ZT*” entries (rounding to whole numbers is left out for simpliditroughout) in the similarity matrix, as the matrix
is symmetrical over the diagonal.



(@) (b) (©)
6

1 3| 4| 5 NMNarray MAT qrray
1 -1 9] 8| 7| 8] 10 6 10
21 9 -1 121 9] 2| 7 3 12
3| 8|12 - 6| 4|11 2 12
41 7| 9| 6 -110] 2 5 10
51 8| 2| 4] 10 -1 9 4 10
610 7|11 2| 9 - 3 11

Figure 2:A sample (a) document-to-document similarity matrix, (brest neighbor array, and (c) maximum similarity array

The final phase of the hierarchical agglomerative clusgeaigorithm is to create clusters from thedlocuments.
Once the document-to-document similarities for théocuments are known, each document is assigned to a cluster,
resulting inn clusters each containing one item. The similarity measergsbetween the clusters are the same as the
similarity measurements between the items they contaia.cldsest pair of clustersandj, are merged into a single
cluster,h. The similarity measurements betweerand every other cluster are recalculated and the similerégrix
is updated. We use a variation of the Voorhees method [454ktutate the group average similarity between two
clusters. The similarity between the new clugtend any arbitrary clustercan be found using Equation 3.1.1. Once
the matrix is updated, the nearest neighbor arrays are egpdathenever, the nearest neighbor of a clusteoig, the
corresponding row in the similarity matrix is searched talfihe newest nearest neighbor and maximum similarity,
which are used to updaten,,rqy andmaze,rqy. Assuminga updates are performed, this step runs imv@)(time.

The final phase is repeated until a specified threshold israataDifferent thresholds can be used to determine when
to stop clustering. We use the number of clustérss a threshold.

(I4 | sim(i, )+ | j | sim(j, ¢))
KAIFN

sim(h,c) = (3.1.1)

The computational complexity of the sequential hierarahégglomerative clustering algorithm is bothv3) and
Q(n?) [9]. In a worst-case scenario, when= n, the algorithm runs in O¢) time, however, Anderberg theorizes
thata averages a constant number of updates per iteration [4blurexperiments, we found thatwas generally a
constant number significantly less thapnmaking the expected time complexity:3). The memory complexity of
this algorithm is Of?2) as it stores the entire x n similarity matrix.

3.2 Buckshot Approach

The buckshot algorithm is a combination of hierarchical aaditioning algorithms designed to take advantage of
the accuracy of hierarchical clustering as well as the lompoatational complexity of partitioning algorithms. The
buckshot algorithm takes a random sample dbcuments from the collection and uses the hierarchicdbaggrative
clustering algorithm as the high-precision clusteringreuline to find initial centers from this random sample. Tra-
ditionally s = v/kn to reduce the computationally complex task of hierarchaggllomerative document clustering to
a rectangular runtime dfn wherek is much smaller than [16]. The initial centers generated from the hierarchical
agglomerative clustering subroutine can be used as the toagilustering the entire collection in a high-performanc
manner, by assigning the remaining documents in the calletd the most appropriate initial center. The original
Buckshot algorithm gives no specifics on how best to assigneginaining documents to appropriate centers, although
various techniques are given. We use an iterated assigearest algorithm with two iterations similar to the one
discussed in the original proposal of the Buckshot algorifh5].

The sequential buckshot clustering algorithm consistbetwo phases shown in Figure 3. The first is to cluster
s documents using the hierarchical agglomerative clusgjealgorithm. We use = v/kn wherek is the number of
desired clusters andis the total number of documents to be clustered. The secoaskpterates over the remaining
n — s documents in the collection and assigns them to the apatemiusters based on their similarities to the initial
centers. For each document, the similarity to every clustatroid is calculated to find the cluster that is most simila
to the document. The document is then assigned to the mostusotuster. This is repeated until every document



Algorithm Time Complexity

Precondition:s = # of sample documents,= document sizek=desired # of clusters
Phase 1Cluster random set of documents O(as?)
1. Run Clustering Subroutine (see Figure 1) witthocuments O(ws?)
Phase 2Group remaining documents O(kn)
2. Calculate Centroids df clusters O(s)
3. Repeat for each documedt,not initially clustered O(kn)

3.1. Calculate similarity betweeth and each centroic} O(k)

3.2. Assignd to clusteri wheresim(d, ¢;) > sim(d, c;) for all i # j o@)
4. Repeat Phase 2 O(kn)
5. Outputk clusters

Figure 3: Buckshot Clustering Algorithm

in the collection has been processed, taking?) time. Although, the second phase can be iterated indefinttes
quality of the resulting clusters improves the most in th&t fiew iterations. Thus, it is typically only iterated a sinal
fixed number of times [15]. Our algorithm performs two itéwas of the second phase.

4 Parallel Methods

Using a distributed architecture can reduce the time andangoomplexity of the sequential algorithms by a factor
of p wherep is the number of nodes used. Here we present our paralldbuen$ the hierarchical agglomerative
clustering algorithm. In addition, we present a paralleisien of the buckshot algorithm which uses our parallel
hierarchical agglomerative clustering algorithm as thestering subroutine.

Each communication is either a broadcast or gather perfbuigerecursive-doubling algorithms implemented in
the MPICH implementation of MPI [46]. The time for broadcasd gather are given in Equations 4.0.1 and 4.0.2
[47.

br oadcast : O((Clatency + betesCtransfeT)lg p) (401)

gat her : O(Clatencylg P+ betesctransfer) (402)
® Clatency - Startup cost of communicating
o Npytes - NUMber of bytes to be communicated

o Ciransfer - time required to transmit a single byte

4.1 Paralle Hierarchical Agglomerative Clustering Algorithm

The first phase of the Hierarchical agglomerative clustgalyorithm is fairly straightforward to parallelize, agth
data can be easily partitioned among nodes, and therelésriged for communication or coordination. The main
effort involves parallelizing the creation of the clusteia hierarchical agglomerative clustering. A single saritly
matrix must be kept consistent among all nodes, which reguiommunication whenever updates are performed.
Our proposed approach reduces the amount of necessary cooaton. The parallel hierarchical agglomerative



Algorithm Time Complexity

n = collection sizek = # of clustersp = # of nodes

Phase 1Build Similarity Matrix o)

1. Broadcast document IDs to all processors usindvife_Bcast collective operation O(Npytes log p)
2. In Parallel: Partition the document collectidriinto p collections of% documents each. 0o(1)

3. In Parallel: Load term vectors for all sample documents in partitigifirom disk into O(%)

memory on each processor

4.n Parallel: For each document;, € {C — p;} O(”Tf)
4.1. InParalle: Load term vector fot/; into memory o)
4.2. InParallel: Calculatesim(d;, d;) for eachd; € p;, place in submatrixD O()
2
5. In Parallel: Each processor search&srows of D to find the nearest neighbor and O(%)

. o P .
corresponding similarity for each clustgr place innng,rqy aNAdMazarray

6. Gather the size of each processor’s matrix portion on alcgssors using the O(log p)
MPI_Allgather collective operation

Phase 2Createk clusters O(=2)
7. Repeat — k times

7.1. InParallel: Each processor searches the respective partitiongf, .,

and f : o . N 0o®)

Maxqrray fOr clustersi andj with maximum similarity p

7.2 TheMPI_Allgather collective operation is used to gather the maximum o)
similarity from each processor

7.3 InParallel: Each processor determines clusteasnd; with the maximum op)
similarity.

7.4 In Parallel: Each Processor determines the managing proceBsefager ow)
responsible for the new cluster and updates the load courtfth processor

7.5 Pranager S€arches through all rows to find an empty row and broaddasteiv o(2)

p

number to all other processors via thid?l _Bcast collective operation
7.6 In Parallel: Each processor iterates through the respective partfidn
calculating the similarity between the clusters it managabsthe new O(%)
cluster,h, using thegr oup-aver age calculation.
7.7 Each Processor sends new similaritie$}g,,q4.- Via MPI_Gather collective

operation Ollog p)
7.8  Pranager Updates the respective partitionofwith the new o(2)

similarities P
7.9 InParallel: Each processor updates the respective partitiomgf, ., and o(en)

maxarray p

8. Outputk clusters

Figure 4: Parallel Hierarchical Agglomerative Clusterigorithm




clustering algorithm is shown in Figure 4. All parts otheattthose under the lab&),,,,,.4.r, indicating that they are
executed only on the managing node of the new cluster, amigaon every node.

Our parallel algorithm produces the same results as a s@glierplementation. We describe our parallel approach
for each phase of the hierarchical agglomerative cluggeaigorithm in the following two sections.

4.1.1 Phase1: Build similarity matrix for n documents

Each row in the document-to-document similarity matrixressgnts a document in the collection and the similarity
scores relating it to every other document. By using roweldgsartitioning, we are able to assign each node ap-
proximately® rows of the matrix to “manage”, whegeis the number of processing nodes. The managing node is
responsible for calculating its initial section of the demity matrix and maintaining the similarity scores durithg
clustering subroutine. In Figure 5, we illustrate our saggmilarity matrix after partitioning it among three nodes
N1, N2, and N3. Also shown are the nearest neighbor and gameng maximum similarity arrays. The data and
the computational load for the matrix and the nearest neightrays are evenly partitioned over the available nodes
in the system.

(@) (b) (c)
1 2 3 4 5 6 NMarray MAT array

N1|1 - 9| 8| 7| 8] 10 6 10
21 9 -112) 9| 2| 7 3 12
N2 | 3| 8] 12 - 6| 4|11 2 12
4| 7| 9| 6 -110| 2 5 10
N3|5| 8] 2| 4|10 - 9 4 10
6|10 7|11 2| 9 - 3 11

Figure 5: A partitioned (a) similarity matrix, (b) nearestighbor array, and (¢) maximum similarity array

By distributing the similarity matrix and nearest neighlborays in this fashion, the data and computational load
are nearly evenly partitioned among the available nodesumsgstem. Each node can perform its own updates
and similarity calculations with a limited amount of comneation. As stated in section 3.1, efficient sequential
implementations of the hierarchical agglomerative cliistealgorithm only require the storage of one half of the
symmetrical similarity matrix, consisting éfz;” matrix entries, instead of the full size of. Our parallel approach
requires the storage of the complete rows for the portiomefsimilarity matrix. This is done so that each node can
find similarities between its managed clusters and the n&wviyed clusters with minimum communication during
the clustering subroutine. If only half of the matrix is &dr there is a heavy cost associated with the communication
required to fill in the missing pieces each time two clusteesga into one.

In phase one, node zero broadcasts the document IDs to &sn@uhce each node has received the document set,
it proceeds with calculating similarity scores for each agad document to every other document in the collection.
Once the similarity measurements are calculated, eachfiratiethe nearest neighbor and corresponding similarity
for each of the managed rows. Nodes manage the documenésgonding to their sub-matrix rows which in turn
correspond to an even, horizontal partitioning of the erdistributed matrix. The memory complexity for our paralle
hierarchical agglomerative algorithm is é(), allowing us to cluster increasingly large document atits as the
number of nodes increases.

The complete algorithm including phase one is shown in lEégurThe total time taken to broadcast the document
identifiers, read the documents into memory, calculatelaiities for each node’s portion of the matrix, and find the
nearest neighbor and corresponding maximum similaritgémh cluster is given by Equation 4.1.1.

4.1.2 Phase?2: A Parallel Clustering Subroutine

Each node is only responsible for maintaining a partitiothefsimilarity matrix and nearest neighbor arrays. There-
fore, the first phase in the cluster subroutine is for eactenodcan the respective portion of the nearest neighbor and
corresponding maximum similarity arrays for the clusteithwhe highest similarity. Single documents are viewed as
clusters of size one. Once a node identifies the two mostasiciusters, it notifies all other nodes in the system.



n n n Tl2
O((Olatency + betesctransfer)lgp + E : C’r‘ead +n- 5 : Csim +n- 5 : Ccompare) - O(;) (411)

e C)eqq - COst Of reading a document from disk
e Cym - cost of calculating the similarity coefficient between tdacuments.

o Ceompare - COSt Of comparing two numbers

As the result of phase one on our example, node 1 broadcdses 12, along with the two cluster identifiers,
2 and 3, that correspond to that similarity. Node 2 broadci®tand its component cluster identifiers, and node 3
broadcasts 11, etc... Once each node has discovered therglilmat have the highest similarity over the entire matrix
it updates the respective portion of the similarity mataxeflect the merge of the most-similar clusters. This update
operation involves several steps. First, a node must betsdl¢o manage the new cluster. To enforce even cluster
distribution and load-balancing across nodes, the “mangpgode” for the new cluster is selected by keeping count
of how many clusters are currently being managed by each, modkselecting the node with the smallest load. To
avoid unnecessary communication, these counts are maudtain each node as merges take place. Ties are broken
by assigning the node with the lowest rank to manage the nestesl Once the managing node is selected, each
node must update the similarity scores to the new clusteaich eow of the respective portion of the similarity matrix.
There are several methods of updating the similarity scotes a new cluster is formed. We used a variation of the
group-average method to merge two clusters as defined intigqugal.1.

In our example, N1 and N2 both had their loads reduced to aveeter, N1 has the lower rank, so it is chosen to
manage the new cluster. Each node updates the scores beahgasgw cluster, created by merged clusters 2 and 3,
and each existing cluster. The matrix and arrays are up@atsdown in Figure 6.

() (b) ()
1/12]23|3 4 5 6 NMNarray MAZL grray
N1 1 -l -1 17| -] 7| 8] 10 2,3 17
2 Sl oo - - - -
23| 17| - -1 -]115| 6] 18 1 17
N2 3 -] - - - - - - - -
4| 71| - 15] - -110] 2 2,3 15
N3 5| 8| - 6| -] 10 -1 9 4 10
6(10| -| 18| -] 2| 9 - 2,3 18

Figure 6: A modified (a) similarity matrix, (b) nearest ndigi array, and (¢) maximum similarity array

Note that both the individual clusters, 2 and 3, are no lomglkavant in terms of the algorithm as indicated by
the dashes throughout. Nodes 1 and 2 are both under-used the merge of clusters 2 and 3; node 1 is selected
to manage the new cluster as it has a lower rank. Once the nimgraade is identified, the first available empty row
in the managing node’s sub-matrix is selected to hold thefoswhe new cluster. Consequently, all the similarity
values between each of the clusters and the new cluster @tenanto the corresponding location. This guarantees
the consistency of the entries in the matrix for all nodes| avoids allocating extra storage space to append new
columns and rows to the sub-matrix on each node.

Once each node calculates the similarity scores betweeathoitiements it manages and the newly created cluster,
it sends them to the new cluster's managing node. This allbersnanaging node to fill in the columns for the row in
its portion of the similarity matrix that represents the hefermed cluster. In our example, node 2 sefdsl5} to
node 1 to populate the similarities. Node 3 sefl$6} and{6, 18} to node 1. Once node 1 collects the scores from
each node and updates the respective partition of the métaxentire matrix has been updated. Once the matrix is
updated, the nearest neighbor arrays are updated. In #ism® the nearest neighbor is updated for the new cluster
and clusters 1, 4, and 6. Each pass of this algorithm resuttei merging of two existing clusters into one, and thus
requiresn — k steps to formk clusters. The total time taken in each step to find each nadaddmum similarity,
gather those similarities onto every node, scan thoseaitigls for the global maximum, find an open matrix row,



broadcast that row’s identifier, merge document identifiershe new cluster, calculate the group averages, gather
them onto the managing node, and update the nearest neiginagiis given in Equation 4.1.2.

n
O((TL - k)(; : Ccompare + (Olatencylg P + p- Ctransfe'r‘) + p- Ccompare + ; : Ccompare + (Olatency

n n
+Ctransfe7‘)lg p+ Cunion + 5 : Cgroupavg + (Olatencylg p+ Otransfer) +a- 5 . Ccompare)) (412)

Oé?’L2

= 0(%0)

o Ceompare - COSt Of comparing two numbers
e Clunion - COSt Of putting the merged document identifiers into theo§etentifiers in the merging cluster
o Cyroupavg - COSt Of calculating a group average similarity

Combining both phases of the parallel algorithm, the tana¢ttaken is shown in Equation 4.1.3. Note that in a worse
case scenaria. = n increasing the complexity td)(%s), however, since we assume that each iteration changes a

constant number of items, the expected complexity becorﬂé}‘)o

7’L2 om2 om2 n2
O(—)+0(—)=0(—) =0(— (4.1.3)
( ’ )+ 0( » ) =0( » ) =0( ’ )
Algorithm Time Complexity
Precondition:n = collection sizek = # of clustersp=+# of nodess=# of sample documents
Phase 1Run Cluster Subroutine O(anz)
1. Run parallel hierarchical agglomerative clusteringoatym (See Fig 4) withs docu- O(Q—SQ)
ments. P
Phase 2Group remaining documents O(%")
2.In Parallel: Each processor calculates the centroids of @fiitial clusters. O(s)

3.In Parallel: Each processor is assignégi of the remaining documents to be clustered O(%)

4. In Parallel: Each processor does the following for each docurdeintthe respective

kn

set of remaining documents: o( P )

4.1. InParalld: Load term vector for documedtinto memory o)

4.2. InParalld: Find similarity betweernl and each cluster centroigl O(k)

4.3. InParallel: Assignd to cluster; wheresim(d, ¢;) > sim(d, c;) for all i # j o)
5. Gather the cluster assignments for all remaining doctisrato the root processar, ol
via MPI_Gather collective operation. (log p)
6. Repeat Phase 2 O(%")

7. Outputk clusters

Figure 7: Parallel Buckshot Clustering Algorithm

10



4.2 Parallel Buckshot Algorithm

The first phase of the parallel buckshot algorithm uses orallehhierarchical agglomerative clustering algorithon t
clusters random documents. The final phase for the parallel versidheobuckshot algorithm groups the remaining
documentsin parallel. After the clustering subroutinefirashed k initial clusters have been created from the random
sample ofs = v/kn documents. From the total collectian— s documents remain that have not yet been assigned
to any cluster. The third phase of the Buckshot algorithnigasshese documents according to their similarity to the
centroids of the initial clusters. This phase of the aldnitis trivially parallelized via data partitioning. Firghe
initial cluster centroids are calculated on every nodesTas done in favor of communication because the centroids
are relatively large;; term vectors in size, making transmitting them a signifiyalarger cost than calculating all of
them. It should be noted that the effectiveness of loadrizithg in phase one of our parallel hierarchical agglomeeati
clustering algorithm and phase two of our parallel buckstigorithm depends to some degree on each node being
assigned documents of roughly similar length. The docusienthe 2GB TREC disks 4 and 5 test collection have
a mean length of 168 distinct terms with a maximum of 23,81Bhdugh this range is large, the standard deviation
for distinct term count in a document from this collectiorli4é4 and only 3.2% of documents have a distinct term
count more than one standard deviation from the mean. Inrgkrleis problem is easily alleviated by using simple
document metadata to ensure a balanced distribution oaéable nodes.

To achieve centroid calculation on every node, the docundemtifiers corresponding to each initial cluster are
gathered onto every node using thid°l _Gather collective operation. After centroid calculation is comig, each
node is assigned round-robin approximatéfi#z documents to process. Each node iterates through thesendats
in place, by reading the term vector from disk, comparing ieach centroid, making the assignment, discarding the
term vector, reading the next one, and so on until all docusn@re assigned. The third phase is iterated two times.
The second iteration recalculates the centroids and mggessil the documents to one of theclusters. Once this
process has completed, the document identifiers for eadicfirsder are gathered onto the root node for writing out
to disk. The complete algorithm for our parallel buckshgfoaithm is shown in Figure 7. There are no sequential
components to phase three; the nodes only synchronize ailetiom to combine their clusters onto node zero. The
total time taken to calculate the centroids, read each mnadocument, calculate the similarity to each centroid,
and gather the cluster identifiers assigned to each clusteaoh node onto node zero is shown in Equation 4.2.1.
Combined with phase 1 of the buckshot algorithm results ima tomplexity of O%).

ts? kn

n—s
O(t(S : C’Uectadd + T(Cread +k- Csim) + (Clatencylgp + Ctransfer))) = O( P ) = O(?) (421)

Chectadd - COSt Of sSumming two document vectors during centroid dattn

Cread - COSt Of reading a document from disk

Csim - cost of calculating the similarity coefficient between &dment and a centroid

e t - number of iterations, usually very small

4.3 Necessity to Maintain Fixed Memory

The serial version of our algorithms optimally store oiﬂgﬁyentries while the parallel version stores the entire matrix
to reduce communication costs. Our parallel approach regtine storage of the complete rows for a portion of the
similarity matrix. Each of these rows represents the shitylaneasurements between one document and all other
documents. Each specific node must Idadlocuments into memory. Then, for each document not in the’sod
partition, the document is loaded and the similarity measiamt is calculated between that document and all of the
documents in memory. Since ongl rows are maintained by each node, the memory complexity domparallel

hierarchical agglomerative clustering algorithm isﬂpéx. A key requirement is that each node in the system must
have sufficient memory available to hold the term vectorgHer® rows it manages. This is the dominating memory
cost in our parallel algorithm, as the storage requiremfemtthe similarity matrix are insignificant by comparison
(the similarity scores are stored as single-precisionifiggioint numbers). This also allows our parallel hieracahi
agglomerative clustering algorithm to cluster increaliteyge document collections as the number of nodes ineseas
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5 Methodology

To demonstrate that our algorithms are scalable in termsiofber of processing nodes and size of document col-
lection, we performed a series of experiments varying ed¢hese parameters while examining variation from the
expected scaling behavior. In addition we show the parbllkekshot algorithm is also scalable as the number of
clusters increases.

51 Setup

Our experiments were run using a Linux Beowulf cluster cetivej) of 12 total computers, each with two AMD Athlon
2GHz CPUs and 2GB of main memory. Communication is facdilahrough a copper gigabit ethernet switch that
interconnects the nodes. We implemented our algorithmda Jat, using the MPI for Java library [48] as a wrapper for
the MPICH [46] implementation of MPI. All communication apions in our implementation make use of underlying
recursive doubling collective algorithms in the MPICH bioy [47]. Experiments were run on dedicated nodes. All
experiments used only one of the two processors in the cargpas the implementation was single-threaded; this
prevented inaccuracies from contention for the machimegesnetwork and disk 1/0 channels.

We usedData Set 1a 73MB collection consisting of 20,000 documents to testsibalability of our hierarchical
agglomerative clustering algorithrdata Set 1s a subset of the 2GB SGMLcollection from TREC disks four el
[49] The entire TREC disks four and five were used to test th&abdity of our parallel buckshot algorithm. We used
our information retrieval engine, AIRE [50], to facilitatlocument parsing and similarity calculations. Documents
were parsed into term vectors prior to clustering using AsREdex process, which builds these term vectors for
use in relevance feedback. Stopwords from the Cornell's BW1842-word stopword list were removed and terms
were stemmed as we have done in past TREC experiments [44hhNge indexing or processing was performed.
Term vector files were replicated onto single local UDMA333@ard drives on each node. Lexicon data needed for
similarity calculations was loaded in its entirety into mayon each node from an NFS shared filesystem. No other
significant disk I/O was necessary.

5.2 Performance Metrics

We experimented with various configurations and measuretime using the JVM libraries. Our timings begin from
the completion of process launching and communicationigiiziation (MPI.Init) to the completion of the gathering
of the cluster definitions onto the root node. Disk I/O timasists of the sum of the time for bulk I/O sections such
as the loading of the term lexicon with the time for repeat@ldperations such as reading document vectors. The
hierarchical agglomerative clustering algorithm corgaime initial pass through the collection while the buckshot
algorithm contains a single pass through the collectiorefarh iteration. Since the majority of the processing time
for the hierarchical algorithm involves searching and madg the similarity matrix, 1/0 cost is very low and is not
included in the analysis of our hierarchical agglomeratiustering results. The buckshot algorithm, however, iacu

a much larger I/0O cost as each document needs to be loadedeation. Thus, I/O time is included in the analysis
of our buckshot results.

6 Results

Experiments vary the number of computation noggsafd the collection size to demonstrate scalability. Sthee
computational complexity of the buckshot algorithm isa®4), our experiments using the buckshot algorithm also
vary k. For the buckshot algorithm, increasikhgs computationally similar to an increase in the data set siace

all portions of the algorithm scale with the produdt and never its components individually. We show the cost of
our parallelization when increasings offset by the scaling of. Sequential implementations of the algorithm have
difficulty scaling to large data sets. Initial centers andilfitiusters for eack were verified to be identical across all
experiments with variant to ensure that our algorithm does indeed produce the sarseerdwvith different numbers
of nodes.

We first examine the scalability of our parallel hierarchiggglomerative clustering algorithm. Then we show
that using our parallel hierarchical agglomerative alidyonias the clustering subroutine for the parallel buckslyut-a
rithm scales linearly and allows larger document collewito be clustered at a faster rate than using the hierafchica
agglomerative clustering algorithm alone.
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Number of nodes
1 2 4 6 8| 10| 12
totalw/o 1O | 540 | 715 | 360 | 242 | 184 | 148 | 125

Table 1: Execution times (minutes) to clusiaita Set 1

Number of nodes
2 4 6 8 10 12
sequential| 0.76 | 1.50 | 2.23 | 2.93 | 3.65| 4.32
two node| 1.00| 1.99| 2.95| 3.89| 4.83| 5.72

Table 2: Speedup calculated using the sequential and twe miedarchical runs obata Set 1

6.1 Hierarchical Agglomerative Clustering Results

Our results focus on the examination of two key issues: bd#jein number of nodes and collection size. In Figure 1,
we provide the raw timings for the hierarchical agglomertilustering algorithm for clusterings &fata Set 1to
create 128 clusters with varying number of nodes. Figurea2vshthe speedup calculated using the sequential (one
node) and two node hierarchical agglomerative clustering corresponding to the timings in Figure 1.

In Figure 8, we plot the speedup corresponding to the valu€sgures 2. The sequential run uses a version of
the program optimized for sequential execution. Most siggut is that the serial version only performs the necessary
comparisons between distinct pairs of documents to budddguisite similarity matrix. That is, since the matrix is
symmetric, only half of the similarity matrix is needed. Ither words, the sequential time complexity of—%@(n?)

time is equal to the time complexity using two nodes 0&92() time. Furthermore, the sequential run does not incur
communication costs, making it faster than the two nodellghran. Clearly, as the number of nodes increases the
time to cluster decreases. Our goal is to demonstrate slifgials the nodes increase. Because the scalability i®bffs
by a factor of two, we expect our algorithm to exhibit a spgedif rather tharp. In Figure 8, we show the speedup
calculated using the sequential and two node runs. In additie theoretical speedup §fis also shown. As can

be seen from this experiment, when the number of nodes isased the execution time decreases in a nearly linear
fashion, as predicted by the algorithm)iaT?z) time. For 128 clusters, scaling from the two node paralleltauthe

12 node one provides a speedup of 5.72 out of the theorgtmatimal 6.0.

6

T T T T -
calculated using sequential run —=5— i)
calculated using two node run ----- e

theoretical ---O---

Nodes

Figure 8: Speedup obata Set 1
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Subsets of Data Set 1

Data Set 1| Data Set 2| Data Set 3| Data Set 4

nodes 20,000 15,000 10,000 5,000
1 540 303 139 34

2 715 378 158 37

4 360 191 80 19

6 242 129 54 13

8 184 100 41 10

10 148 79 34 8

12 128 68 29 7

Table 3: Execution times (minutes) for creating 128 clusters onextibns varying in size. Ideal performance is a quadratic
increase as the collection size increases and linear decasathe number of nodes increases

In Figures 3 and 9, we examine scaling the collection sizee& keparate collections are examined, one consisting
of 5,000 documentdjata Set 2, one of 10,000 documentBéta Set 3, and one of 15,000 documenidgta Set 3.
Data Set 2-4are all subsets dbata Set 1 As with scaling the number of clusters, we see that the @fgorscales
close to 0%2) run time. In one example from our experiments, when we dotii# collection size on 12 nodes, from
10,000 to 20,000 documents, our system takes 4.31 timesgs$d@xecute, in contrast to the 4 times predicted by the
theoretical analysis.

400 T T
p:4 —B8—

theoretical p=4 =
=8 ---o--- h

theoretical p=8 e
=12 —-o--

theoretical p=12 ---4--

350

300

250

200

Time (m)

150

100

50

20K
Collection Size

Figure 9: Scaling Collection Size for 128 Clusters

6.2 Cluster Quality

To evaluate the quality of our clusters we compared agaissection variant of the well-known and commonly
usedk-means algorithm generated using treusterprogram included in the CLUTO package [51]. We evaluate
the tightness of a cluster by measuring the average intsmmdlarity between each document in a cluster with that

cluster’s centroid, similar to the evaluation performe¢ba].
In Figure 4, we show the average internal normalized cosingasity measurements between the documents in
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a cluster and the centroid of the cluster. The fourth coluhows the results of a pairgetest significance test using
the similarity measurements from each document to thearlgsintroid. The rows with a checkmark show that there is
a statistically significant difference with a 95% confiden@ar results show that the hierarchical algorithm produces
clusters with better quality wheh is greater than 64. Furthermore, fasncreases, the quality of the hierarchical
clusters improves at a faster rate thanthmeans clusters.

clusters k-means| Hierarchical | 95% significance
32[387x1073 [ 3.13x 1073 v
64 | 4.29 x 1073 | 4.17x 1073 Vv
128 | 4.77 x 1073 | 5.34 x 1073 Vv
256 | 5.44 x 1073 | 6.88 x 1073 Vv
512 | 6.16 x 1073 | 8.22 x 1073 Vv

Table 4: Average Internal Normalized Cosine Measurements whegelaneasurements are preferred

6.3 Parallel Buckshot Clustering Algorithm Results

We show scalability of our parallel buckshot clusteringoaithm by performing experiments on the entire 2GB TREC
Disks four and five collection. Our experiments examine ttadability of the buckshot algorithm when our parallel
hierarchical agglomerative clustering algorithm is usedhe initial clustering subroutine. The principal compani

is between a fully-optimized implementation of the seqismuckshot algorithm from prior work and our paral-
lel Buckshot algorithm. Our results focus on the examimatb three key issues: scalability in number of nodes,
collection size, and number of clusters.

In Figure 5, we provide the raw timings with and without infputput cost (reading documents from disk, etc.) for
clusterings of the 2GB of SGML data on TREC disks 4 and 5 witlyivg numbers of nodes and clusters. Also shown
are the timings for phase one of the buckshot clusteringifgo, the hierarchical agglomerative clustering subirait
Figure 6 shows the speedup of the hierarchical agglomerealiistering subroutine and the entire buckshot algorithm
corresponding to the timings in Figure 5. Our results shoat #ithough our parallel hierarchical agglomerative
clustering subroutine runs in half of the expected timgg()(our parallel buckshot algorithm results in near optimal
speedup. This is clearly due to the dominance of the latsgyesin terms of processing time. In Figure 10, we plot
the speedup corresponding to the timings in Figure 5. As easeln from this graph, when the number of nodes is
increased the execution time decreases in a nearly linghiofa, as predicted by the algorithn&(a%) time. Since
the second phase of the parallel buckshot algorithm is gwdistributed among the nodes, the two node buckshot
run is expected to exhibit near optimal speedup. For 512asisscaling from the optimized sequential (one node)
run to the 12 node run including 10 time provides a speedup0c®2 compared to the theoretical speedup of 12.
Furthermore, the speedup of phase 1 is 4.49 compared togbeetital 6. The improved performancelamcreases
shows that the increased cost of our parallelization whereasing is offset by the scaling of.

In Figure 11, we examine scaling the number of clusters baretie same runs on TREC Disks four and five.
These experiments show that scaling the number of clustessfactor of two results in the less than the doubled
execution time expected Wy («kn) growth. For example, scaling from 256 to 512 clusters on Ifesancluding IO
time takes 2.04 times as long to execute, in contrast to theexstincrease projected by the theoretical analysis.

In Figures 7 and 12, we give timings for and examine scalimgctbilection size by beginning with the 484MB
subset of 131,890 LA Times documents and duplicating it bdea® collections of 968MB and 1452MB contcluaining
263,780 and 395,670 documents respectively. While this deerease the diversity of the term distributions used in
the resulting collections, it is not likely to drasticallffect running time which is primarily defined by the number of
document-to-document comparisons being performed. Rathplicating a reasonable-sized natural collection such
as we have done provides a fair approximation to a homogeraiection of like size as the documents themselves
are unaltered and comparisons between them are companablese we might expect to find. As with scaling the
number of clusters, we see that the algorithm scaléy(#2) run time. In one example from our experiments, when
we double the collection size on 12 nodes including 10 outesygakes 2.03 times as long to execute, in contrast to
the 2 times predicted by the theoretical analysis.

15



Number of clusters

32 64 128 256 512
w/ol/o I/O w/oI/O I/O w/ol/o I/O w/oI/O I/O w/oI/O |/O
nodes| rhase1 | total | total | rhase1 | total | total | phase1 | total | total | ehases| total | total phase1 | total | total
1| 49| 251 | 543 | 93| 493 | 1072 | 184 | 996 | 2152 | 358 | 1962 | 4241 | 840 | 4170 | 8737
2| 64| 167 | 316 | 134 | 339 | 639 | 258 | 671 | 1261 | 504 | 1327 | 2497 | 1028 | 2759 | 5067
4| 33| 86| 163| 67| 167| 316| 133 | 337| 630| 266 | 689 | 1274| 534 | 1378| 2542
6 21| 56| 110| 45| 113 | 216| 88| 223 | 423| 174 | 446 | 844| 360| 921| 1714
8 18| 45| 87| 34| 86| 163| 69| 172| 323| 134| 346| 640| 262| 693 | 1282
10| 15| 38| 72| 30| 71| 135| 58| 141| 265| 112 | 277| 521| 220| 553| 1027
12| 13| 32| 62| 24| 60| 115| 47| 115| 218| 89| 227| 427| 187| 478| 872

Table 5: Execution times on TREC Disks 4 and 5 (minutes)
Number of clusters
32 64 128 256 512

nodes| Phase 1| Total | Phase 1| Total | Phase 1| Total | Phase 1| Total | Phase 1| Total

2 0.77| 1.72 0.69| 1.68 071 1.71 0.71| 1.70 0.82| 1.72

4 1.48 | 3.33 1.39| 3.39 1.38| 3.42 1.35| 3.33 1.57| 3.44

6 2.33| 4.94 2.07| 4.96 2.09| 5.09 2.06| 5.02 2.33| 5.10

8 2.72| 6.24 2.74| 6.58 2.67| 6.66 2.67| 6.63 3.21| 6.82

10 3.27| 7.54 3.10| 7.94 3.17| 8.12 3.20| 8.14 3.82| 851

12 3.77| 8.76 3.88| 9.32 3.91| 9.87 4.02| 9.93 4.49| 10.02

12

10 -

Speedup

Table 6: Phase 1 and Total Buckshot Speedup on TREC Disks 8 and

T
k=32 —F—
k=64 M-
k=128 ---O---
k=256 @ -
k=512 —-A-—- A
theoretical --—-&-- -7

10 12

Nodes

Figure 10: Speedup on TREC Disks 4 and 5
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Figure 11: Scaling Number of Clusters on TREC Disks 4 and 5

Multiple of LA Times Collection
1X: 484MB 2X:968MB | 3X:1452MB
nodes| 1/O | w/ol/O | I/O | w/ol/O | I/O | w/ol/O
1| 286 131 | 568 259 | 839 379
2| 169 87 | 332 176 | 498 263
4| 84 45 | 169 89 | 255 135
6| 58 31| 115 61| 172 91
8| 43 23| 88 46 | 131 68
10| 35 18| 71 37| 107 56
12| 30 16| 61 32| 91 46

Table 7: Execution times for clustering multiples of LA Timeollection into 64 clusters (minutes)
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Figure 12: Scaling Collection Size for 64 Clusters

6.4 Cluster Quality

To evaluate the quality of our clusters we compared agaibsection variant of thé-means algorithm generated
using thevclusterprogram included in the CLUTO package [51]. We evaluateititeriess of a cluster by measuring
the average internal similarity between each document lnster with that cluster’'s centroid. This comparison was
made to validate our approach since ihmeans algorithm is commonly thought of as an efficient &talalgorithm

of choice.

Figure 8 gives the average internal normalized cosine measnts. The fourth column shows the results of a
pairedi-test significance test using the similarity measurementa £ach document to the cluster centroid. The rows
with a checkmark show that there is a statistically signifiaifference with a 99% confidence. Our results show that
the clusters generated using the buckshot algorithm hawafisantly better quality than those generated using the
k-means algorithm. Thus, our approach provides a credit#@erltive to parallet-means.

clusters k-means buckshot| 99% significance
32 3.86x1073 | 442 x 1073 v
64 | 4.30 x 1073 | 5.50 x 1073 v
128 | 4.75 x 1073 | 6.66 x 1073 Vv
256 | 5.38 x 1073 | 7.90 x 1073 Vv
512 | 6.04 x 1072 | 8.83 x 1073 v

Table 8: Average Internal Normalized Cosine Measurements whegelaneasurements are preferred

7 Summary and Future Work

We designed, implemented, and thoroughly evaluated alplvatsion of the Hierarchical Agglomerative Clustering
algorithm which is optimized for parallel computation withduced interprocess communication on semi large data
sets. In addition, we showed how our parallel hierarchiggl@merative clustering algorithm can be used as the clus-
tering subroutine of our parallel Buckshot clustering aildpon to facilitate clustering of large document colleciso
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We focused on showing the scalability of our parallel hiehéral agglomerative algorithm in terms of the number
of nodes and collection size. Our results showed that owriditgn scaled linearly as the number of nodes increased.
As the collection size increased, our algorithm performsesr theoretical expectations. In addition, the%z()(
memory complexity allows larger collections to be clustkas the number of nodes increases. Cluster quality was
evaluated and determined to be tighter than clusters geodog a bisection variant of tHemeans algorithm.

In addition to scalability in terms of number of nodes andemtlon size, we showed the scalability of our parallel
buckshot algorithm as the number of clusters increasedll thrae scalability requirements, we saw performance
near theoretical expectations, indicating that our paralgorithm could scale to much larger numbers of nodes and
collection sizes. When scaling collection size, we saw &ragaf execution time near to @§n). Our results showed
that our algorithm scaled linearly as the number of nodezamed. Informally, we have used this system to cluster a
filtered version of the 18GB TREC collection of governmenbwages into 256 clusters in approximately one day on
32 processors.

There are two high-level categories for future work: clsig efficiency and clustering effectiveness. We plan to
address efficiency by experimenting with an even largeru®gn more nodes. We will examine a memory-bounded
version of our algorithms which allows for a flexible balanéenemory footprint and speed of execution. Also planned
are experiments with load-balancing and communicatidadzang techniques geared towards a heterogeneous execu-
tion environment, perhaps residing on a grid of computemrelcommunication costs can vary greatly. Effectiveness
will be tested by attempting to integrate the clusters intretrieval process to improve average precision.
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