
Exploiting Parallelism to Support Scalable Hierarchical
Clustering∗

Rebecca Cathey, Eric C. Jensen, Steven M. Beitzel, Ophir Frieder, David Grossman
Information Retrieval Laboratory
Department of Computer Science
Illinois Institute of Technology

10 W. 31st Street
Chicago, IL 60616

{cathey,jensen,beitzel,frieder,grossman}@ir.iit.edu

Abstract

A distributed memory parallel version of the group average Hierarchical Agglomerative Clustering algorithm is pro-
posed to enable scaling the document clustering problem to large collections. Using standard message passing opera-
tions reduces interprocess communication while maintaining efficient load balancing. In a series of experiments using
a subset of a standard TREC test collection, our parallel hierarchical clustering algorithm is shown to be scalable in
terms of processors efficiently used and the collection size. Results show that our algorithm performs close to the
expected O(n2/p) time onp processors, rather than the worst-case O(n3/p) time . Furthermore, the O(n2/p) memory
complexity per node allows larger collections to be clustered as the number of nodes increases. While partitioning
algorithms such ask-means are trivially parallelizable, our results confirm those of other studies showing that hier-
archical algorithms produce significantly tighter clusters in the document clustering task. Finally, we show how our
parallel hierarchical agglomerative clustering algorithm can be used as the clustering subroutine for a parallel version
of the Buckshot algorithm to cluster the complete TREC collection at near theoretical runtime expectations.

1 Introduction

Document clustering has long been considered as a means to potentially improve both retrieval effectiveness and
efficiency. However, the intensive computation necessary to cluster the entire collection makes its application to large
data sets difficult. Accordingly, there is little work on effectively clustering entire large, standard text collections and
less with the intent of using these clusterings to aid retrieval. Rather, much work has focused on either performing
simplified clustering algorithms or only using partial clusterings, such as clustering only the results for a given query.

Clustering algorithms generally consist of a tradeoff between accuracy and speed. Hierarchical agglomerative
clustering algorithms calculate a full document-to-document similarity matrx. Their clusterings are typically viewed
as more accurate than other types of clusterings, however, the computational complexity required for the algorithm’s
quadratic behavior makes it unrealistic for large documentcollections. Other clustering algorithms such as thek-
means and single pass algorithms iteratively partition thedata into clusters. Although these partitioning algorithms run
in linear time, the assignment of documents to moving centroids produces different clusterings with each run. Some
algorithms combine the accuracy of hierarchical agglomerative algorithms with the speed of partitioning algorithms
to get an algorithm that is fast with reasonable accuracy. One such algorithm is the buckshot algorithm which uses a
hierarchical agglomerative algorithm as a clustering subroutine.

We propose a hierarchical agglomerative clustering algorithm designed for a distributed memory system in which
we use the message passing model to facilitate interprocesscommunication [1, 2]. Our algorithm has an expected
time of O(n

2

p
) time onp processors. Although partitioning algorithms generally have a linear time complexity, our

focus is on the quality of the clusters. We show how a distributed system can be used to produce accurate clusters

∗We would like to thank the National Science Foundation and the Army Research Office for their support of this effort under contract numbers
NSF EIA-0119469, NSF EIA-0130673, and ARO DAAD19-01-1-0432.

1

in a reasonable amount of time. Since we use an optimized serial hierarchical agglomerative clustering algorithm,
our actual speedup is O(n2

2p
), half of the expected speedup. That is, only half of the symmetric matrix is used by

an optimized serial algorithm. In our parallel approach, toreduce inter-node communication, we process a complete
matrix. hence, our two node instances require roughly the same processing as the optimized serial version. The
speedup, however, is consistent and does not decay. Namely,from two nodes onwards, doubling the nodes roughly
halves runtime. We determine the quality of our clusters by comparing them with clusters generated using a bisection
variant of the partitioningk-means algorithm. Furthermore, we show how our hierarchical agglomerative clustering
algorithm can be used as highly accurate clustering subroutine in the buckshot algorithm to facilitate clustering of
larger document collections. The buckshot algorithm results in near optimal speedup.

2 Background and Prior Work

Although many clustering techniques are currently available [3], there are two main categories of approaches:par-
titioning andhierarchicalclustering.Partitioning assigns every document to a single cluster iteratively [4, 5] in an
attempt to determinek partitions that optimize a certain criterion function [6].Partitioning algorithms do not require
every document to be compared to every other document, rather, they compare every document to a set of centroids
which must be initialized through some external means (often randomly). For this reason, these algorithms commonly
run inO(kn) time wherek is the number of desired clusters.

A hierarchical clustering is a sequence of partitions in which each partition is nested into the next partition in
the sequence. Hierarchical clusterings generally fall into two categories:splitting andagglomerativemethods.Split-
ting methods work in a top down approach to split clusters until a certain threshold is obtained. The more popular
agglomerativeclustering algorithms use a bottom-up approach to merge documents into a hierarchy of clusters [7].
Agglomerativealgorithms typically use astored matrixor stored dataapproach [8]. Thestored matrixapproach cre-
ates a similarity matrix to keep track of document-to-document similarity measurements.Stored matrixapproaches
include similarity matrix and priority queues. Similaritymatrix methods use a matrix to store the document to doc-
ument similarities in a similarity matrix. The matrix is searched to find the clusters that have the highest similarity.
When those clusters are merged, the similarities in the matrix are also updated. The total time complexity for the
similarity matrix method is O(n3) time. This can be reduced to O(n2 log n) time using heap based priority queues.

The priority queue method maintains a priority queue for each cluster, when a new cluster is found, a new priority
queue is created and all other priority queues are updated. Apriority queue requires O(log n) time for inserts and
deletes. Each priority queue is updated by performing two deletes and one insert resulting in O(n log n) time for
n priority queues. Thus the time reduces to O(n2 log n) time [9]. Both the similarity matrix and priority queue
methods require a memory complexity of O(n2). It is important to note, however, that since the priority queue method
must also store document identifiers, it requires over double the memory of the similarity matrix method.Stored data
approaches require the recalculation of the similarity measurements for each time clusters are merged. The nearest
neighbor method uses thestored dataapproach to store an array of nearest neighbors for each cluster. When the
number of values that need to be changed after each iterationis α, the time complexity is O(αn2) and the memory
complexity isO(n). When the memory is enough to store O(n2) similarity values, thestored matrixapproach is
preferred as it performs less similarity computations, otherwise thestored dataapproach is preferred [8].

The main difference between hierarchical and partitioningmethods is the assignment of documents to clusters.
With hierarchical clustering, once a document is assigned to a cluster it remains in that cluster. Partitioning algo-
rithms often move documents among clusters to obtain the final result. Some studies have found that hierarchical
agglomerative clustering algorithms, particularly thosethat use group-average cluster merging schemes, produce bet-
ter clusters, purportedly because of their complete document-to-documentcomparisons [10, 11, 12]. More recent work
has indicated that this may not be true across all metrics andthat some combination of agglomerative and partitioning
algorithms can outperform either one or the other individually [13, 14]. As these studies use a variety of different
experiments, using different metrics and (often very small) document collections, it is difficult to conclude which
clustering method is “definitively” superior, but they do agree that hierarchical agglomerative clustering is an effective
choice.

There exist several algorithms that combine the accuracy ofthe hierarchical approach with the lower time complex-
ity of the partitioning approach to form a hybrid approach. Apopular algorithm for accomplishing this is the Buckshot
algorithm, which combines a hierarchical agglomerative clustering algorithm performed on a subset of the collec-
tion with a partitioning algorithm [15]. This reduces the computational complexity toO(kn) time [16]. However,

2

this sequential algorithm is still very slow for today’s large collections. Even the most simplistic modern clustering
algorithms are often too slow for real-time applications [17].

There has been work done to develop scalable algorithms for clustering. A scalable clustering approach has three
main aspects [19]. The first aspect is scalability to a large number of documents. Linear algorithms as well as a
minimum number of collection scans are desirable for large collections of data stored in secondary storage. Bradley,
et al minimizes the number of scans by using thek-means algorithm with a limited memory buffer to store summaries
of the documents already scanned [20]. Ordonez, et al uses a relational database to store the data set, generally
reducing the number of disk scans to three [21]. Another approach to deal with large document collections is to run
the clustering algorithm on a sample of the dataset or data summaries instead of the entire collection [6, 22, 23, 24].
These methods can be used to compress very large data collections into representative points that can be used to
hierarchically cluster data.

The second aspect is scalability to a large number of attributes or dimensions. High dimensional data have prop-
erties that inhibit the performance of algorithms that workwell with low dimensions. Because text data are high
dimensional data, much work has gone into selecting the correct features [25, 26, 27]. He, et al represent the doc-
ument as a low dimensional vector from a compact representation subspace [28]. Aδ tree index where the number
of dimensions increases towards the leaf level has been usedto speed up processing of high-dimensional k-nearest
neighbor queries [29]. Orlandic, et al use a data reduction method that represents the data space as a set of dense cells
[30].

The third aspect is in number of processors, ideally splitting the total computation involved intop equal parts.
Work in this area involves the parallelization of several algorithms. Dhillon, et al used a parallelk-means algorithm
to create up to 16 clusters from generated test collections of documents having 8-128 terms in length, the largest
of which was 2GB [31]. In addition, Dhillon, et al multi-threaded the sphericalk-means partitioning algorithm and
achieved near linear speedup and scaleup when running on 113,716 NSF award abstracts averaging 72 terms in length
after term-filtering [32]. There exists some work on parallel hierarchical agglomerative clustering, but most of these
algorithms have large computational overhead or have not been evaluated for document clustering [6, 22, 33, 34]. Our
approach addresses scalability primarily with respect to the number of nodes.

Document clustering is a unique clustering task because of its immense and sparse feature space. Typical clustering
studies that focus on a small number of features are not applicable to the document clustering task. Dash, et al ex-
amines a parallel hierarchical agglomerative clustering algorithm based on dividing the data into partially overlapping
partitions [8]. Experiments showed the sequential algorithm reduced existing time and memory complexities, how-
ever, a small number of dimensions was used as the focus was not on document clustering. Some prior work developed
parallel algorithms for hierarchical document clustering, however these algorithms require specialized interconnection
networks [33, 35, 36]. Ruocco and Frieder’s single-pass partitioning algorithm showed near linear speedup on subsets
of theTipsterdocument collection, the largest of which contained 10,000documents [18]. These collections have the
disadvantage of being small as compared to today’s collections.

Prior work has gone into using document clustering to improve retrieval effectiveness. Salton performed experi-
ments on changing the spatial density of a document collection using clustering with the vector space model [37, 38].
Xu and Croft described a method for improving distributed retrieval effectiveness using language models of clustered
collections [39]. More recently, models were presented by which retrieval effectiveness might be improved through
modified term weighting in clustered document collections [40]. Query-time efficiency can also be improved through
clustering given the additional collection metadata that it provides, namely which documents are similar. This provides
the opportunity to shortcut document retrieval.

3 Sequential Methods

Now we discuss two algorithms for sequential document clustering. The first is a hierarchical agglomerative clustering
algorithm. The second is the buckshot algorithm that uses the hierarchical agglomerative clustering algorithm for the
clustering subroutine.

3.1 Hierarchical Agglomerative Clustering

For hierarchical agglomerative clustering, each documentis initially a separate cluster. Then the clusters are merged
in stages until the desired number of clusters are found. We use the sequential hierarchical agglomerative algorithm

3

[41] shown in Figure 1. The complexities given for each step of the algorithm are relatively loose in terms of order,
they provide an upper bound for the number of computations. This algorithm uses astored matrixmethod to store an
n×n similarity matrix. In addition two arrays of the nearest neighbor to each cluster and the corresponding maximum
similarity measurement are also stored.

Algorithm Time Complexity
Preconditions:n = document size,k = desired number of clusters

Phase 1: Build Similarity Matrix O(n2)
1. Assign each documentdi to clusterci O(n)

2. For every cluster pair (ci, cj) wherei 6= j calculate the similarity betweenci andcj,
place in Similarity MatrixD

O(n2)

3. Find the nearest neighbor and corresponding similarity for each clusterci, place in
nnarray andmaxarray

O(n2)

Phase 2: Create the Clusters O(αn2)
4. Repeatn − k times

4.1. Searchnnarray andmaxarray for the clustersi andj with the
maximum similarity

O(n)

4.2 Replace clustersi andj by an agglomerated clusterh O(1)
4.3 UpdateD to reflect revised similarity betweenh and all other clusters O(n)
4.4 Updateα elements innnarray andmaxarray O(αn)

4. Outputk clusters

Figure 1: Hierarchical Agglomerative Clustering Algorithm

The hierarchical agglomerative clustering algorithm has two distinct phases. The first phase builds a similarity
matrix and the nearest neighbor arrays for the entire collection of sizen. The similarity matrix contains the document-
to-document similarity scores for the entire collection. The nearest neighbor to each cluster and the corresponding
maximum similarity measurement are found using the similarity matrix and stored in two separate arrays. There
are many techniques for calculating a measure of similaritybetween two documents [42]. Although any similarity
measure can be used, in our experimentation, we use a cosine similarity measure [37, 38] that includes document and
query length normalization factors estimated from their number of unique terms [43] coupled with a modern term-
weighting scheme [44]. Since we calculate a similarity matrix for n documents and find the maximum values for each
of n rows, the time complexity for this phase isO(n2) time. A sample document-to-document similarity matrix for
n = 6 documents is shown in Figure 2. Also shown are the arrays containing the nearest neighbors,nnarray, and the
corresponding maximum similarity values,maxarray. Thennarray is an array that contains the nearest neighbor for
each cluster. Themaxarray is an array that contains the similarity score from each cluster to the nearest neighbor of
that cluster. Each row inmaxarray andnnarray corresponds to the same row and represented cluster in the original
matrix. For example, The nearest neighbor to cluster1 is cluster6. Thus,6 is placed in the first position ofnnarray.
Similarly, the first position ofmaxarray contains the similarity score between clusters1 and6, in this case10.

In this simple example, the columns and rows are labelled with document identifiers, and the matrix is filled with
similarity coefficient scores. In practice, when using cosine and other popular similarity measures, the scores are
very often real values between zero and one. For simplicity,these scores are represented here as integers. A memory-
efficient sequential implementation of the hierarchical agglomerative clustering algorithm requires only approximately
n2

−n
2

entries (rounding to whole numbers is left out for simplicity throughout) in the similarity matrix, as the matrix
is symmetrical over the diagonal.

4

(a)
1 2 3 4 5 6

1 - 9 8 7 8 10
2 9 - 12 9 2 7
3 8 12 - 6 4 11
4 7 9 6 - 10 2
5 8 2 4 10 - 9
6 10 7 11 2 9 -

(b)
nnarray

6
3
2
5
4
3

(c)
maxarray

10
12
12
10
10
11

Figure 2:A sample (a) document-to-document similarity matrix, (b) nearest neighbor array, and (c) maximum similarity array

The final phase of the hierarchical agglomerative clustering algorithm is to create clusters from then documents.
Once the document-to-document similarities for then documents are known, each document is assigned to a cluster,
resulting inn clusters each containing one item. The similarity measurements between the clusters are the same as the
similarity measurements between the items they contain. The closest pair of clusters,i andj, are merged into a single
cluster,h. The similarity measurements betweenh and every other cluster are recalculated and the similaritymatrix
is updated. We use a variation of the Voorhees method [45] to calculate the group average similarity between two
clusters. The similarity between the new clusterh and any arbitrary clusterc can be found using Equation 3.1.1. Once
the matrix is updated, the nearest neighbor arrays are updated. Whenever, the nearest neighbor of a cluster isi or j, the
corresponding row in the similarity matrix is searched to find the newest nearest neighbor and maximum similarity,
which are used to updatennarray andmaxarray. Assumingα updates are performed, this step runs in O(αn) time.
The final phase is repeated until a specified threshold is obtained. Different thresholds can be used to determine when
to stop clustering. We use the number of clusters,k, as a threshold.

sim(h, c) =
(| i | sim(i, c)+ | j | sim(j, c))

| i || j | (3.1.1)

The computational complexity of the sequential hierarchical agglomerative clustering algorithm is both O(n3) and
Ω(n2) [9]. In a worst-case scenario, whenα = n, the algorithm runs in O(n3) time, however, Anderberg theorizes
thatα averages a constant number of updates per iteration [41]. Inour experiments, we found thatα was generally a
constant number significantly less thann, making the expected time complexity O(n2). The memory complexity of
this algorithm is O(n2) as it stores the entiren × n similarity matrix.

3.2 Buckshot Approach

The buckshot algorithm is a combination of hierarchical andpartitioning algorithms designed to take advantage of
the accuracy of hierarchical clustering as well as the low computational complexity of partitioning algorithms. The
buckshot algorithm takes a random sample ofs documents from the collection and uses the hierarchical agglomerative
clustering algorithm as the high-precision clustering subroutine to find initial centers from this random sample. Tra-
ditionally s =

√
kn to reduce the computationally complex task of hierarchicalagglomerative document clustering to

a rectangular runtime ofkn wherek is much smaller thann [16]. The initial centers generated from the hierarchical
agglomerative clustering subroutine can be used as the basis for clustering the entire collection in a high-performance
manner, by assigning the remaining documents in the collection to the most appropriate initial center. The original
Buckshot algorithm gives no specifics on how best to assign the remaining documents to appropriate centers, although
various techniques are given. We use an iterated assign-to-nearest algorithm with two iterations similar to the one
discussed in the original proposal of the Buckshot algorithm [15].

The sequential buckshot clustering algorithm consists of the two phases shown in Figure 3. The first is to cluster
s documents using the hierarchical agglomerative clustering algorithm. We uses =

√
kn wherek is the number of

desired clusters andn is the total number of documents to be clustered. The second phase iterates over the remaining
n − s documents in the collection and assigns them to the appropriate clusters based on their similarities to the initial
centers. For each document, the similarity to every clustercentroid is calculated to find the cluster that is most similar
to the document. The document is then assigned to the most similar cluster. This is repeated until every document

5

Algorithm Time Complexity
Precondition:s = # of sample documents,n = document size,k=desired # of clusters

Phase 1: Cluster random set of documents O(αs2)
1. Run Clustering Subroutine (see Figure 1) withs documents O(αs2)

Phase 2: Group remaining documents O(kn)
2. Calculate Centroids ofk clusters O(s)

3. Repeat for each document,d, not initially clustered O(kn)

3.1. Calculate similarity betweend and each centroidci O(k)
3.2. Assignd to clusteri wheresim(d, ci) > sim(d, cj) for all i 6= j O(1)

4. Repeat Phase 2 O(kn)

5. Outputk clusters

Figure 3: Buckshot Clustering Algorithm

in the collection has been processed, takingO(s2) time. Although, the second phase can be iterated indefinitely, the
quality of the resulting clusters improves the most in the first few iterations. Thus, it is typically only iterated a small
fixed number of times [15]. Our algorithm performs two iterations of the second phase.

4 Parallel Methods

Using a distributed architecture can reduce the time and memory complexity of the sequential algorithms by a factor
of p wherep is the number of nodes used. Here we present our parallel version of the hierarchical agglomerative
clustering algorithm. In addition, we present a parallel version of the buckshot algorithm which uses our parallel
hierarchical agglomerative clustering algorithm as the clustering subroutine.

Each communication is either a broadcast or gather performed via recursive-doubling algorithms implemented in
the MPICH implementation of MPI [46]. The time for broadcastand gather are given in Equations 4.0.1 and 4.0.2
[47].

broadcast : O((Clatency + NbytesCtransfer)lg p) (4.0.1)

gather:O(Clatencylg p + NbytesCtransfer) (4.0.2)

• Clatency - startup cost of communicating

• Nbytes - number of bytes to be communicated

• Ctransfer - time required to transmit a single byte

4.1 Parallel Hierarchical Agglomerative Clustering Algorithm

The first phase of the Hierarchical agglomerative clustering algorithm is fairly straightforward to parallelize, as the
data can be easily partitioned among nodes, and there is little need for communication or coordination. The main
effort involves parallelizing the creation of the clustersvia hierarchical agglomerative clustering. A single similarity
matrix must be kept consistent among all nodes, which requires communication whenever updates are performed.
Our proposed approach reduces the amount of necessary communication. The parallel hierarchical agglomerative

6

Algorithm Time Complexity
n = collection size,k = # of clusters,p = # of nodes
Phase 1: Build Similarity Matrix O(n2

p
)

1. Broadcast document IDs to all processors using theMPI_Bcast collective operation O(Nbytes log p)

2. In Parallel: Partition the document collectionC into p collections ofn
p

documents each. O(1)

3. In Parallel: Load term vectors for all sample documents in partitionpi from disk into
memory on each processor

O(n
p

)

4. In Parallel: For each documentdi ∈ {C − pi} O(n2

p
)

4.1. In Parallel: Load term vector fordi into memory O(1)
4.2. In Parallel: Calculatesim(di, dj) for eachdj ∈ pi, place in submatrixD O(n

p
)

5. In Parallel: Each processor searchesn
p

rows of D to find the nearest neighbor and
corresponding similarity for each clusterci, place innnarray andmaxarray

O(n2

p
)

6. Gather the size of each processor’s matrix portion on all processors using the
MPI_Allgather collective operation

O(log p)

Phase 2: Createk clusters O(αn2

p
)

7. Repeatn − k times

7.1. In Parallel: Each processor searches the respective partition ofnnarray

andmaxarray for clustersi andj with maximum similarity
O(n

p
)

7.2 TheMPI_Allgather collective operation is used to gather the maximum
similarity from each processor

O(p)

7.3 In Parallel: Each processor determines clustersi andj with the maximum
similarity.

O(p)

7.4 In Parallel: Each Processor determines the managing processor,Pmanager ,
responsible for the new cluster and updates the load count for each processor

O(p)

7.5 Pmanager searches through all rows to find an empty row and broadcasts the row
number to all other processors via theMPI_Bcast collective operation

O(n
p

)

7.6 In Parallel: Each processor iterates through the respective partitionof D,
calculating the similarity between the clusters it managesand the new
cluster,h, using thegroup-average calculation.

O(n
p

)

7.7 Each Processor sends new similarities toPmanager via MPI_Gather collective
operation

O(log p)

7.8 Pmanager updates the respective partition ofD with the new
similarities

O(n
p

)

7.9 In Parallel: Each processor updates the respective partition ofnnarray and
maxarray

O(αn
p

)

8. Outputk clusters

Figure 4: Parallel Hierarchical Agglomerative ClusteringAlgorithm

7

clustering algorithm is shown in Figure 4. All parts other than those under the labelPmanager , indicating that they are
executed only on the managing node of the new cluster, are executed on every node.

Our parallel algorithm produces the same results as a sequential implementation. We describe our parallel approach
for each phase of the hierarchical agglomerative clustering algorithm in the following two sections.

4.1.1 Phase 1: Build similarity matrix for n documents

Each row in the document-to-document similarity matrix represents a document in the collection and the similarity
scores relating it to every other document. By using row-based partitioning, we are able to assign each node ap-
proximatelyn

p
rows of the matrix to “manage”, wherep is the number of processing nodes. The managing node is

responsible for calculating its initial section of the similarity matrix and maintaining the similarity scores duringthe
clustering subroutine. In Figure 5, we illustrate our sample similarity matrix after partitioning it among three nodes
N1, N2, and N3. Also shown are the nearest neighbor and corresponding maximum similarity arrays. The data and
the computational load for the matrix and the nearest neighbor arrays are evenly partitioned over the available nodes
in the system.

(a)
1 2 3 4 5 6

N1 1 - 9 8 7 8 10
2 9 - 12 9 2 7

N2 3 8 12 - 6 4 11
4 7 9 6 - 10 2

N3 5 8 2 4 10 - 9
6 10 7 11 2 9 -

(b)
nnarray

6
3
2
5
4
3

(c)
maxarray

10
12
12
10
10
11

Figure 5: A partitioned (a) similarity matrix, (b) nearest neighbor array, and (c) maximum similarity array

By distributing the similarity matrix and nearest neighborarrays in this fashion, the data and computational load
are nearly evenly partitioned among the available nodes in our system. Each node can perform its own updates
and similarity calculations with a limited amount of communication. As stated in section 3.1, efficient sequential
implementations of the hierarchical agglomerative clustering algorithm only require the storage of one half of the
symmetrical similarity matrix, consisting ofn

2
−n
2

matrix entries, instead of the full size ofn2. Our parallel approach
requires the storage of the complete rows for the portion of the similarity matrix. This is done so that each node can
find similarities between its managed clusters and the newlyformed clusters with minimum communication during
the clustering subroutine. If only half of the matrix is stored, there is a heavy cost associated with the communication
required to fill in the missing pieces each time two clusters merge into one.

In phase one, node zero broadcasts the document IDs to all nodes. Once each node has received the document set,
it proceeds with calculating similarity scores for each managed document to every other document in the collection.
Once the similarity measurements are calculated, each nodefinds the nearest neighbor and corresponding similarity
for each of the managed rows. Nodes manage the documents corresponding to their sub-matrix rows which in turn
correspond to an even, horizontal partitioning of the entire distributed matrix. The memory complexity for our parallel
hierarchical agglomerative algorithm is O(n2

p
), allowing us to cluster increasingly large document collections as the

number of nodes increases.
The complete algorithm including phase one is shown in Figure 4. The total time taken to broadcast the document

identifiers, read the documents into memory, calculate similarities for each node’s portion of the matrix, and find the
nearest neighbor and corresponding maximum similarity foreach cluster is given by Equation 4.1.1.

4.1.2 Phase 2: A Parallel Clustering Subroutine

Each node is only responsible for maintaining a partition ofthe similarity matrix and nearest neighbor arrays. There-
fore, the first phase in the cluster subroutine is for each node to scan the respective portion of the nearest neighbor and
corresponding maximum similarity arrays for the clusters with the highest similarity. Single documents are viewed as
clusters of size one. Once a node identifies the two most-similar clusters, it notifies all other nodes in the system.

8

O((Clatency + NbytesCtransfer)lg p +
n

p
· Cread + n · n

p
· Csim + n · n

p
· Ccompare) = O(

n2

p
) (4.1.1)

• Cread - cost of reading a document from disk

• Csim - cost of calculating the similarity coefficient between twodocuments.

• Ccompare - cost of comparing two numbers

As the result of phase one on our example, node 1 broadcasts value 12, along with the two cluster identifiers,
2 and 3, that correspond to that similarity. Node 2 broadcasts 12 and its component cluster identifiers, and node 3
broadcasts 11, etc... Once each node has discovered the clusters that have the highest similarity over the entire matrix,
it updates the respective portion of the similarity matrix to reflect the merge of the most-similar clusters. This update
operation involves several steps. First, a node must be selected to manage the new cluster. To enforce even cluster
distribution and load-balancing across nodes, the “managing node" for the new cluster is selected by keeping count
of how many clusters are currently being managed by each node, and selecting the node with the smallest load. To
avoid unnecessary communication, these counts are maintained on each node as merges take place. Ties are broken
by assigning the node with the lowest rank to manage the new cluster. Once the managing node is selected, each
node must update the similarity scores to the new cluster in each row of the respective portion of the similarity matrix.
There are several methods of updating the similarity scoreswhen a new cluster is formed. We used a variation of the
group-average method to merge two clusters as defined in Equation 3.1.1.

In our example, N1 and N2 both had their loads reduced to one, however, N1 has the lower rank, so it is chosen to
manage the new cluster. Each node updates the scores betweenthe new cluster, created by merged clusters 2 and 3,
and each existing cluster. The matrix and arrays are updatedas shown in Figure 6.

(a)
1 2 2,3 3 4 5 6

N1 1 - - 17 - 7 8 10
2 - - - - - -

2,3 17 - - - 15 6 18
N2 3 - - - - - - -

4 7 - 15 - - 10 2
N3 5 8 - 6 - 10 - 9

6 10 - 18 - 2 9 -

(b)
nnarray

2,3
-
1
-

2,3
4

2,3

(c)
maxarray

17
-

17
-

15
10
18

Figure 6: A modified (a) similarity matrix, (b) nearest neighbor array, and (c) maximum similarity array

Note that both the individual clusters, 2 and 3, are no longerrelevant in terms of the algorithm as indicated by
the dashes throughout. Nodes 1 and 2 are both under-used due to the merge of clusters 2 and 3; node 1 is selected
to manage the new cluster as it has a lower rank. Once the managing node is identified, the first available empty row
in the managing node’s sub-matrix is selected to hold the rowfor the new cluster. Consequently, all the similarity
values between each of the clusters and the new cluster are written into the corresponding location. This guarantees
the consistency of the entries in the matrix for all nodes, and avoids allocating extra storage space to append new
columns and rows to the sub-matrix on each node.

Once each node calculates the similarity scores between thedocuments it manages and the newly created cluster,
it sends them to the new cluster’s managing node. This allowsthe managing node to fill in the columns for the row in
its portion of the similarity matrix that represents the newly-formed cluster. In our example, node 2 sends{4, 15} to
node 1 to populate the similarities. Node 3 sends{5, 6} and{6, 18} to node 1. Once node 1 collects the scores from
each node and updates the respective partition of the matrix, the entire matrix has been updated. Once the matrix is
updated, the nearest neighbor arrays are updated. In this example the nearest neighbor is updated for the new cluster
and clusters 1, 4, and 6. Each pass of this algorithm results in the merging of two existing clusters into one, and thus
requiresn − k steps to formk clusters. The total time taken in each step to find each node’smaximum similarity,
gather those similarities onto every node, scan those similarities for the global maximum, find an open matrix row,

9

broadcast that row’s identifier, merge document identifiersfor the new cluster, calculate the group averages, gather
them onto the managing node, and update the nearest neighborarray is given in Equation 4.1.2.

O((n − k)(
n

p
· Ccompare + (Clatencylg p + p · Ctransfer) + p · Ccompare +

n

p
· Ccompare + (Clatency

+Ctransfer)lg p + Cunion +
n

p
· Cgroupavg + (Clatency lg p + Ctransfer) + α · n

p
· Ccompare))

= O(
αn2

p
)

(4.1.2)

• Ccompare - cost of comparing two numbers

• Cunion - cost of putting the merged document identifiers into the setof identifiers in the merging cluster

• Cgroupavg - cost of calculating a group average similarity

Combining both phases of the parallel algorithm, the total time taken is shown in Equation 4.1.3. Note that in a worse
case scenarioα = n increasing the complexity toO(n3

p
), however, since we assume that each iteration changes a

constant number of items, the expected complexity becomes O(n2

p
).

O(
n2

p
) + O(

αn2

p
) = O(

αn2

p
) = O(

n2

p
) (4.1.3)

Algorithm Time Complexity
Precondition:n = collection size,k = # of clusters,p=# of nodes,s=# of sample documents

Phase 1: Run Cluster Subroutine O(αs2

p
)

1. Run parallel hierarchical agglomerative clustering algorithm (See Fig 4) withs docu-
ments.

O(αs2

p
)

Phase 2: Group remaining documents O(kn
p

)
2. In Parallel: Each processor calculates the centroids of allk initial clusters. O(s)

3. In Parallel: Each processor is assignedn−s
p

of the remaining documents to be clustered O(n
p
)

4. In Parallel: Each processor does the following for each documentd in the respective
set of remaining documents:

O(kn
p

)

4.1. In Parallel: Load term vector for documentd into memory O(1)
4.2. In Parallel: Find similarity betweend and each cluster centroidci O(k)
4.3. In Parallel: Assignd to clusteri wheresim(d, ci) > sim(d, cj) for all i 6= j O(1)

5. Gather the cluster assignments for all remaining documents onto the root processor,P0

via MPI_Gather collective operation.
O(log p)

6. Repeat Phase 2 O(kn
p

)

7. Outputk clusters

Figure 7: Parallel Buckshot Clustering Algorithm

10

4.2 Parallel Buckshot Algorithm

The first phase of the parallel buckshot algorithm uses our parallel hierarchical agglomerative clustering algorithm to
clusters random documents. The final phase for the parallel version ofthe buckshot algorithm groups the remaining
documents in parallel. After the clustering subroutine hasfinished,k initial clusters have been created from the random
sample ofs =

√
kn documents. From the total collectionn − s documents remain that have not yet been assigned

to any cluster. The third phase of the Buckshot algorithm assigns these documents according to their similarity to the
centroids of the initial clusters. This phase of the algorithm is trivially parallelized via data partitioning. First,the
initial cluster centroids are calculated on every node. This was done in favor of communication because the centroids
are relatively large,s

k
term vectors in size, making transmitting them a significantly larger cost than calculating all of

them. It should be noted that the effectiveness of load-balancing in phase one of our parallel hierarchical agglomerative
clustering algorithm and phase two of our parallel buckshotalgorithm depends to some degree on each node being
assigned documents of roughly similar length. The documents in the 2GB TREC disks 4 and 5 test collection have
a mean length of 168 distinct terms with a maximum of 23,818. Although this range is large, the standard deviation
for distinct term count in a document from this collection is144 and only 3.2% of documents have a distinct term
count more than one standard deviation from the mean. In general, this problem is easily alleviated by using simple
document metadata to ensure a balanced distribution over available nodes.

To achieve centroid calculation on every node, the documentidentifiers corresponding to each initial cluster are
gathered onto every node using theMPI_Gather collective operation. After centroid calculation is complete, each
node is assigned round-robin approximatelyn−s

p
documents to process. Each node iterates through these documents

in place, by reading the term vector from disk, comparing it to each centroid, making the assignment, discarding the
term vector, reading the next one, and so on until all documents are assigned. The third phase is iterated two times.
The second iteration recalculates the centroids and reassigns all the documents to one of thek clusters. Once this
process has completed, the document identifiers for each final cluster are gathered onto the root node for writing out
to disk. The complete algorithm for our parallel buckshot algorithm is shown in Figure 7. There are no sequential
components to phase three; the nodes only synchronize at completion to combine their clusters onto node zero. The
total time taken to calculate the centroids, read each remaining document, calculate the similarity to each centroid,
and gather the cluster identifiers assigned to each cluster on each node onto node zero is shown in Equation 4.2.1.
Combined with phase 1 of the buckshot algorithm results in a time complexity of O(αkn

p
).

O(t(s · Cvectadd +
n − s

p
(Cread + k · Csim) + (Clatencylg p + Ctransfer))) = O(

ts2

p
) = O(

kn

p
) (4.2.1)

• Cvectadd - cost of summing two document vectors during centroid calculation

• Cread - cost of reading a document from disk

• Csim - cost of calculating the similarity coefficient between a document and a centroid

• t - number of iterations, usually very small

4.3 Necessity to Maintain Fixed Memory

The serial version of our algorithms optimally store onlyn2

2
entries while the parallel version stores the entire matrix

to reduce communication costs. Our parallel approach requires the storage of the complete rows for a portion of the
similarity matrix. Each of these rows represents the similarity measurements between one document and all other
documents. Each specific node must loadn

p
documents into memory. Then, for each document not in the node’s

partition, the document is loaded and the similarity measurement is calculated between that document and all of the
documents in memory. Since onlyn

p
rows are maintained by each node, the memory complexity for our parallel

hierarchical agglomerative clustering algorithm is O(n2

p
). A key requirement is that each node in the system must

have sufficient memory available to hold the term vectors forthe n
p

rows it manages. This is the dominating memory
cost in our parallel algorithm, as the storage requirementsfor the similarity matrix are insignificant by comparison
(the similarity scores are stored as single-precision floating point numbers). This also allows our parallel hierarchical
agglomerative clustering algorithm to cluster increasingly large document collections as the number of nodes increases.

11

5 Methodology

To demonstrate that our algorithms are scalable in terms of number of processing nodes and size of document col-
lection, we performed a series of experiments varying each of these parameters while examining variation from the
expected scaling behavior. In addition we show the parallelbuckshot algorithm is also scalable as the number of
clusters increases.

5.1 Setup

Our experiments were run using a Linux Beowulf cluster consisting of 12 total computers, each with two AMD Athlon
2GHz CPUs and 2GB of main memory. Communication is facilitated through a copper gigabit ethernet switch that
interconnects the nodes. We implemented our algorithm in Java 1.4, using the MPI for Java library [48] as a wrapper for
the MPICH [46] implementation of MPI. All communication operations in our implementation make use of underlying
recursive doubling collective algorithms in the MPICH library [47]. Experiments were run on dedicated nodes. All
experiments used only one of the two processors in the computers as the implementation was single-threaded; this
prevented inaccuracies from contention for the machines single network and disk I/O channels.

We usedData Set 1, a 73MB collection consisting of 20,000 documents to test the scalability of our hierarchical
agglomerative clustering algorithm.Data Set 1is a subset of the 2GB SGMLcollection from TREC disks four andfive
[49] The entire TREC disks four and five were used to test the scalability of our parallel buckshot algorithm. We used
our information retrieval engine, AIRE [50], to facilitatedocument parsing and similarity calculations. Documents
were parsed into term vectors prior to clustering using AIRE’s index process, which builds these term vectors for
use in relevance feedback. Stopwords from the Cornell’s SMART 342-word stopword list were removed and terms
were stemmed as we have done in past TREC experiments [44]. Nophrase indexing or processing was performed.
Term vector files were replicated onto single local UDMA33 SCSI hard drives on each node. Lexicon data needed for
similarity calculations was loaded in its entirety into memory on each node from an NFS shared filesystem. No other
significant disk I/O was necessary.

5.2 Performance Metrics

We experimented with various configurations and measured run time using the JVM libraries. Our timings begin from
the completion of process launching and communications initialization (MPI.Init) to the completion of the gathering
of the cluster definitions onto the root node. Disk I/O time consists of the sum of the time for bulk I/O sections such
as the loading of the term lexicon with the time for repeated I/O operations such as reading document vectors. The
hierarchical agglomerative clustering algorithm contains one initial pass through the collection while the buckshot
algorithm contains a single pass through the collection foreach iteration. Since the majority of the processing time
for the hierarchical algorithm involves searching and modifying the similarity matrix, I/O cost is very low and is not
included in the analysis of our hierarchical agglomerativeclustering results. The buckshot algorithm, however, incurs
a much larger I/O cost as each document needs to be loaded eachiteration. Thus, I/O time is included in the analysis
of our buckshot results.

6 Results

Experiments vary the number of computation nodes (p) and the collection size to demonstrate scalability. Sincethe
computational complexity of the buckshot algorithm is O(αkn), our experiments using the buckshot algorithm also
vary k. For the buckshot algorithm, increasingk is computationally similar to an increase in the data set size since
all portions of the algorithm scale with the productnk and never its components individually. We show the cost of
our parallelization when increasingp is offset by the scaling ofk. Sequential implementations of the algorithm have
difficulty scaling to large data sets. Initial centers and final clusters for eachk were verified to be identical across all
experiments with variantp to ensure that our algorithm does indeed produce the same clusters with different numbers
of nodes.

We first examine the scalability of our parallel hierarchical agglomerative clustering algorithm. Then we show
that using our parallel hierarchical agglomerative algorithm as the clustering subroutine for the parallel buckshot algo-
rithm scales linearly and allows larger document collections to be clustered at a faster rate than using the hierarchical
agglomerative clustering algorithm alone.

12

Number of nodes
1 2 4 6 8 10 12

total w/o IO 540 715 360 242 184 148 125

Table 1: Execution times (minutes) to clusterData Set 1

Number of nodes
2 4 6 8 10 12

sequential 0.76 1.50 2.23 2.93 3.65 4.32
two node 1.00 1.99 2.95 3.89 4.83 5.72

Table 2: Speedup calculated using the sequential and two node hierarchical runs onData Set 1

6.1 Hierarchical Agglomerative Clustering Results

Our results focus on the examination of two key issues: scalability in number of nodes and collection size. In Figure 1,
we provide the raw timings for the hierarchical agglomerative clustering algorithm for clusterings ofData Set 1to
create 128 clusters with varying number of nodes. Figure 2 shows the speedup calculated using the sequential (one
node) and two node hierarchical agglomerative clustering runs corresponding to the timings in Figure 1.

In Figure 8, we plot the speedup corresponding to the values in Figures 2. The sequential run uses a version of
the program optimized for sequential execution. Most significant is that the serial version only performs the necessary
comparisons between distinct pairs of documents to build the requisite similarity matrix. That is, since the matrix is
symmetric, only half of the similarity matrix is needed. In other words, the sequential time complexity of O(1

2
αn2)

time is equal to the time complexity using two nodes of O(αn2

2
) time. Furthermore, the sequential run does not incur

communication costs, making it faster than the two node parallel run. Clearly, as the number of nodes increases the
time to cluster decreases. Our goal is to demonstrate scalability as the nodes increase. Because the scalability is offset
by a factor of two, we expect our algorithm to exhibit a speedup of p

2
rather thanp. In Figure 8, we show the speedup

calculated using the sequential and two node runs. In addition the theoretical speedup ofp

2
is also shown. As can

be seen from this experiment, when the number of nodes is increased the execution time decreases in a nearly linear
fashion, as predicted by the algorithm’sO(αn2

p
) time. For 128 clusters, scaling from the two node parallel run to the

12 node one provides a speedup of 5.72 out of the theoretically optimal 6.0.

0

1

2

3

4

5

6

2 4 6 8 10 12

S
pe

ed
up

Nodes

calculated using sequential run
calculated using two node run

theoretical

Figure 8: Speedup onData Set 1

13

Subsets of Data Set 1
Data Set 1 Data Set 2 Data Set 3 Data Set 4

nodes 20,000 15,000 10,000 5,000
1 540 303 139 34
2 715 378 158 37
4 360 191 80 19
6 242 129 54 13
8 184 100 41 10

10 148 79 34 8
12 128 68 29 7

Table 3: Execution times (minutes) for creating 128 clusters on collections varying in size. Ideal performance is a quadratic
increase as the collection size increases and linear decrease as the number of nodes increases

In Figures 3 and 9, we examine scaling the collection size. Three separate collections are examined, one consisting
of 5,000 documents (Data Set 2), one of 10,000 documents (Data Set 3), and one of 15,000 documents (Data Set 4).
Data Set 2-4are all subsets ofData Set 1. As with scaling the number of clusters, we see that the algorithm scales
close to O(n

2

p
) run time. In one example from our experiments, when we double the collection size on 12 nodes, from

10,000 to 20,000 documents, our system takes 4.31 times as long to execute, in contrast to the 4 times predicted by the
theoretical analysis.

0

50

100

150

200

250

300

350

400

5K 10K 15K 20K

T
im

e
(m

)

Collection Size

p=4
theoretical p=4

p=8
theoretical p=8

p=12
theoretical p=12

Figure 9: Scaling Collection Size for 128 Clusters

6.2 Cluster Quality

To evaluate the quality of our clusters we compared against abisection variant of the well-known and commonly
usedk-means algorithm generated using thevclusterprogram included in the CLUTO package [51]. We evaluate
the tightness of a cluster by measuring the average internalsimilarity between each document in a cluster with that
cluster’s centroid, similar to the evaluation performed in[52].

In Figure 4, we show the average internal normalized cosine similarity measurements between the documents in

14

a cluster and the centroid of the cluster. The fourth column shows the results of a pairedt-test significance test using
the similarity measurements from each document to the cluster centroid.The rows with a checkmark show that there is
a statistically significant difference with a 95% confidence. Our results show that the hierarchical algorithm produces
clusters with better quality whenk is greater than 64. Furthermore, ask increases, the quality of the hierarchical
clusters improves at a faster rate than thek-means clusters.

clusters k-means Hierarchical 95% significance
32 3.87 × 10−3 3.13 × 10−3

√

64 4.29 × 10−3 4.17 × 10−3
√

128 4.77 × 10−3 5.34 × 10−3
√

256 5.44 × 10−3 6.88 × 10−3
√

512 6.16 × 10−3 8.22 × 10−3
√

Table 4: Average Internal Normalized Cosine Measurements where larger measurements are preferred

6.3 Parallel Buckshot Clustering Algorithm Results

We show scalability of our parallel buckshot clustering algorithm by performing experiments on the entire 2GB TREC
Disks four and five collection. Our experiments examine the scalability of the buckshot algorithm when our parallel
hierarchical agglomerative clustering algorithm is used as the initial clustering subroutine. The principal comparison
is between a fully-optimized implementation of the sequential Buckshot algorithm from prior work and our paral-
lel Buckshot algorithm. Our results focus on the examination of three key issues: scalability in number of nodes,
collection size, and number of clusters.

In Figure 5, we provide the raw timings with and without input/output cost (reading documents from disk, etc.) for
clusterings of the 2GB of SGML data on TREC disks 4 and 5 with varying numbers of nodes and clusters. Also shown
are the timings for phase one of the buckshot clustering algorithm, the hierarchical agglomerative clustering subroutine.
Figure 6 shows the speedup of the hierarchical agglomerative clustering subroutine and the entire buckshot algorithm
corresponding to the timings in Figure 5. Our results show that although our parallel hierarchical agglomerative
clustering subroutine runs in half of the expected time O(n2

2p
), our parallel buckshot algorithm results in near optimal

speedup. This is clearly due to the dominance of the latter stage in terms of processing time. In Figure 10, we plot
the speedup corresponding to the timings in Figure 5. As can be seen from this graph, when the number of nodes is
increased the execution time decreases in a nearly linear fashion, as predicted by the algorithm’sO(αkn

p
) time. Since

the second phase of the parallel buckshot algorithm is evenly distributed among the nodes, the two node buckshot
run is expected to exhibit near optimal speedup. For 512 clusters, scaling from the optimized sequential (one node)
run to the 12 node run including IO time provides a speedup of 10.02 compared to the theoretical speedup of 12.
Furthermore, the speedup of phase 1 is 4.49 compared to the theoretical 6. The improved performance ask increases
shows that the increased cost of our parallelization when increasingp is offset by the scaling ofk.

In Figure 11, we examine scaling the number of clusters basedon the same runs on TREC Disks four and five.
These experiments show that scaling the number of clusters by a factor of two results in the less than the doubled
execution time expected byO(αkn) growth. For example, scaling from 256 to 512 clusters on 12 nodes including IO
time takes 2.04 times as long to execute, in contrast to the 2 times increase projected by the theoretical analysis.

In Figures 7 and 12, we give timings for and examine scaling the collection size by beginning with the 484MB
subset of 131,890 LA Times documents and duplicating it to achieve collections of 968MB and 1452MB contcluaining
263,780 and 395,670 documents respectively. While this does decrease the diversity of the term distributions used in
the resulting collections, it is not likely to drastically affect running time which is primarily defined by the number of
document-to-document comparisons being performed. Rather, duplicating a reasonable-sized natural collection such
as we have done provides a fair approximation to a homogeneous collection of like size as the documents themselves
are unaltered and comparisons between them are comparable to those we might expect to find. As with scaling the
number of clusters, we see that the algorithm scales toO(αkn

p
) run time. In one example from our experiments, when

we double the collection size on 12 nodes including IO our system takes 2.03 times as long to execute, in contrast to
the 2 times predicted by the theoretical analysis.

15

Number of clusters
32 64 128 256 512

w/o I/O I/O w/o I/O I/O w/oI/O I/O w/o I/O I/O w/o I/O I/O
nodes Phase 1 total total Phase 1 total total Phase 1 total total Phase 1 total total Phase 1 total total

1 49 251 543 93 493 1072 184 996 2152 358 1962 4241 840 4170 8737
2 64 167 316 134 339 639 258 671 1261 504 1327 2497 1028 2759 5067
4 33 86 163 67 167 316 133 337 630 266 689 1274 534 1378 2542
6 21 56 110 45 113 216 88 223 423 174 446 844 360 921 1714
8 18 45 87 34 86 163 69 172 323 134 346 640 262 693 1282

10 15 38 72 30 71 135 58 141 265 112 277 521 220 553 1027
12 13 32 62 24 60 115 47 115 218 89 227 427 187 478 872

Table 5: Execution times on TREC Disks 4 and 5 (minutes)

Number of clusters
32 64 128 256 512

nodes Phase 1 Total Phase 1 Total Phase 1 Total Phase 1 Total Phase 1 Total
2 0.77 1.72 0.69 1.68 0.71 1.71 0.71 1.70 0.82 1.72
4 1.48 3.33 1.39 3.39 1.38 3.42 1.35 3.33 1.57 3.44
6 2.33 4.94 2.07 4.96 2.09 5.09 2.06 5.02 2.33 5.10
8 2.72 6.24 2.74 6.58 2.67 6.66 2.67 6.63 3.21 6.82

10 3.27 7.54 3.10 7.94 3.17 8.12 3.20 8.14 3.82 8.51
12 3.77 8.76 3.88 9.32 3.91 9.87 4.02 9.93 4.49 10.02

Table 6: Phase 1 and Total Buckshot Speedup on TREC Disks 4 and5

0

2

4

6

8

10

12

2 4 6 8 10 12

S
pe

ed
up

Nodes

k=32
k=64

k=128
k=256
k=512

theoretical

Figure 10: Speedup on TREC Disks 4 and 5

16

0

500

1000

1500

2000

2500

3000

32 64 128 256 512

T
im

e
(m

)

Number of clusters k

p=4
theoretical p=4

p=8
theoretical p=8

p=12
theoretical p=12

Figure 11: Scaling Number of Clusters on TREC Disks 4 and 5

Multiple of LA Times Collection
1X: 484MB 2X: 968MB 3X: 1452MB

nodes I/O w/o I/O I/O w/o I/O I/O w/o I/O
1 286 131 568 259 839 379
2 169 87 332 176 498 263
4 84 45 169 89 255 135
6 58 31 115 61 172 91
8 43 23 88 46 131 68

10 35 18 71 37 107 56
12 30 16 61 32 91 46

Table 7: Execution times for clustering multiples of LA Times collection into 64 clusters (minutes)

17

0

50

100

150

200

250

300

1X 2X 3X

T
im

e
(m

)

Collection Size

p=4
theoretical p=4

p=8
theoretical p=8

p=12
theoretical p=12

Figure 12: Scaling Collection Size for 64 Clusters

6.4 Cluster Quality

To evaluate the quality of our clusters we compared against abisection variant of thek-means algorithm generated
using thevclusterprogram included in the CLUTO package [51]. We evaluate the tightness of a cluster by measuring
the average internal similarity between each document in a cluster with that cluster’s centroid. This comparison was
made to validate our approach since thek-means algorithm is commonly thought of as an efficient scalable algorithm
of choice.

Figure 8 gives the average internal normalized cosine measurements. The fourth column shows the results of a
pairedt-test significance test using the similarity measurements from each document to the cluster centroid. The rows
with a checkmark show that there is a statistically significant difference with a 99% confidence. Our results show that
the clusters generated using the buckshot algorithm have significantly better quality than those generated using the
k-means algorithm. Thus, our approach provides a credible alternative to parallelk-means.

clusters k-means buckshot 99% significance
32 3.86 × 10−3 4.42 × 10−3

√

64 4.30 × 10−3 5.50 × 10−3
√

128 4.75 × 10−3 6.66 × 10−3
√

256 5.38 × 10−3 7.90 × 10−3
√

512 6.04 × 10−3 8.83 × 10−3
√

Table 8: Average Internal Normalized Cosine Measurements where larger measurements are preferred

7 Summary and Future Work

We designed, implemented, and thoroughly evaluated a parallel version of the Hierarchical Agglomerative Clustering
algorithm which is optimized for parallel computation withreduced interprocess communication on semi large data
sets. In addition, we showed how our parallel hierarchical agglomerative clustering algorithm can be used as the clus-
tering subroutine of our parallel Buckshot clustering algorithm to facilitate clustering of large document collections.

18

We focused on showing the scalability of our parallel hierarchical agglomerative algorithm in terms of the number
of nodes and collection size. Our results showed that our algorithm scaled linearly as the number of nodes increased.
As the collection size increased, our algorithm performs atnear theoretical expectations. In addition, the O(n2

p
)

memory complexity allows larger collections to be clustered as the number of nodes increases. Cluster quality was
evaluated and determined to be tighter than clusters generated by a bisection variant of thek-means algorithm.

In addition to scalability in terms of number of nodes and collection size, we showed the scalability of our parallel
buckshot algorithm as the number of clusters increased. In all three scalability requirements, we saw performance
near theoretical expectations, indicating that our parallel algorithm could scale to much larger numbers of nodes and
collection sizes. When scaling collection size, we saw a scaling of execution time near to O(αkn). Our results showed
that our algorithm scaled linearly as the number of nodes increased. Informally, we have used this system to cluster a
filtered version of the 18GB TREC collection of government web pages into 256 clusters in approximately one day on
32 processors.

There are two high-level categories for future work: clustering efficiency and clustering effectiveness. We plan to
address efficiency by experimenting with an even larger corpus on more nodes. We will examine a memory-bounded
version of our algorithms which allows for a flexible balanceof memory footprint and speed of execution. Also planned
are experiments with load-balancing and communication-balancing techniques geared towards a heterogeneous execu-
tion environment, perhaps residing on a grid of computers where communication costs can vary greatly. Effectiveness
will be tested by attempting to integrate the clusters into the retrieval process to improve average precision.

References

[1] W. Gropp, E. Lusk, A. Skjellum,Using MPI: Portable Parallel Programming with the Message Passing Interface.
The MIT Press, 1996.

[2] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra,MPI: The Complete Reference.The MIT
Press, 1997.

[3] D. Fasulo, An Analysis of Recent Work on Clustering Algorithms.Technical Report UW-CSE01 -03-02, Univer-
sity of Washington, 1999.

[4] J.A. Hartigan,Clustering Algorithms.Wiley, 1975.

[5] R.O. Duda, P.E. Hart,Pattern Classification and Scene Analysis.Wiley, 1973.

[6] S. Guha, R. Rastogi, K. Shim, CURE: An Efficient Clustering Algorithm for Large Databases.Proceedings of
the 1998 ACM-SIGMOD, pp. 73-84, 1998.

[7] N. Jardine, C.J. van Rijsbergen, The Use of HierarchicalClustering in Information Retrieval.Information Storage
and Retrieval, 1971.

[8] M. Dash, S. Petrutiu, P. Sheuermann. Efficient Parallel Hierarchical Clustering.In International Europar Con-
ference (EURO-PAR’04), 2004.

[9] W. H. E. Day and H. Edelsbrunner, Efficient Algorithms forAgglomerative Hierarchical Clustering Methods,
Journal of Classification, 1, pp.7-24.

[10] B. Larsen, C. Aone, Fast and effective text mining usinglinear-time document clustering.Proceedings of the 5th
ACM-SIGKDD, pp. 16-22, 1999.

[11] P. Willet, Recent trends in hierarchical document clustering: A critical review.Information Processing and Man-
agement, Vol 24:5 1988, pp. 577-597.

[12] R.C. Dubes, A.K. Jain,Algorithms for Clustering Data, Prentice Hall, 1988.

[13] Y. Zhao and G. Karypis, Evaluations of Algorithms for Obtaining Hierarchical Clustering SolutionsProceed-
ings of the 2002 ACM International Conference on Information and Knowledge Management (ACM-CIKM),
Washington D.C., November 2002.

19

[14] M. Steinbach, G. Karypis, V. Kumar, A Comparison of Document Clustering Techniques.Proceedings of the
KDD-2000 Workshop on Text Mining, 2000.

[15] D. Cutting, D. Karger, J. Pedersen, J. Tukey, Scatter/Gather: A Cluster-based Approach to Browsing Large
Document Collections.Proceedings of the Fifteenth Annual International ACM Conference on Research and
Development in Information Retrieval (SIGIR), 1992.

[16] O. Zamir, O. Etzioni, Web Document Clustering: A Feasibility Demonstration.21st Annual ACM Conference on
Research and Development in Information Retrieval (SIGIR), pp. 46-54, 1998.

[17] C. Schütze, C. Silverstein, Projects for Efficient Document Clustering.Proceedings of twentieth ACM-SIGIR, pp.
74-81, 1997.

[18] A. Ruocco, O. Frieder, Clustering and Classification ofLarge Document Bases in a Parallel Environment.Journal
of the American Society of Information Science, 48 (10), pp. 932-943, 1997.

[19] J. Ghosh, Scalable Clustering Methods for Data Mining.Chapter 10 inHandbook of Data Mining, 2003, pp.
247-277.

[20] P.S. Bradleey, U. Fayyad, and C. Reina, Scaling Clustering Algorithms to Large Databases,

[21] C. Ordonez, E. Omiecinski, Efficient Disk-Based K-Means Clustering for Relational Databases.IEEE Transac-
tions on Knowledge and Data Engineering, Vol 16:8 August 2004, pp. 909-921.

[22] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an EfficientData Clustering Method for Very Large Databases.
Proceedings of 1996 ACM-SIGMOD, pp. 103-114, Montreal, Canada, 1996.

[23] K. Chen and L. Liu, ClusterMap: Labeling Clusters in Large Datasets via Visualization. InProceedings of the
thirteenth ACM conference on Information and knowledge management, Washington, D.C., 2004.

[24] S. Nassar, J. Sander, and C. Cheng, Incremental and effective data summarization for dynamic hierarchical
clustering. InProceedings of the 2004 ACM SIGMOD international conference on Management of data, Paris,
France, 2004.

[25] J. Mao, A. Jain. Artifcial neural networks for feature extraction and multivariate data projection.IEEE Transac-
tions on Neural Networks, Vol 6:2, pp. 296-317.

[26] R.O.Duda, P.E. Hart, and D.G. Stork,Pattern Classification (2nd Ed), Wiley, 2001.

[27] A. Globerson and N. Tishby, Sufficient dimensionality reduction.The Journal of Machine Learning Research,
Vol. 3, pp.1307-1331, March, 2003.

[28] X. He, D. Cai, H. Liu, and W. Ma, Locality preserving indexing for document representation. InProceedings
of the 27th annual international ACM SIGIR conference on Research and development in information retrieval,
Sheffield, United Kingdom, 2004.

[29] B. Cui, B. C. Ooi, J. W. Su, and K. L. Tan, Contorting high dimensional data for efficient main memory KNN
processing. InProceedings of the 2003 ACM SIGMOD international conference on Management of data, San
Diego, CA, 2003.

[30] R. Orlandic, Y. Lai, W. Yee, Clustering High-Dimensional Data Using an Efficient and Effective Data Space Re-
duction.ACM Fourteenth Conference on Information and Knowledge Management (CIKM), Bremen, Germany,
2005.

[31] I.S Dhillon, D.S. Modha, A Data-Clustering Algorithm On Distributed Memory Multiprocessors.Large-Scale
Parallel Data Mining, Lecture Notes in Artificial Intelligence, Volume 1759, pages 245-260, 2000.

[32] I.S. Dhillon, J. Fan, Y. Guan, Efficient Clustering of Very Large Document Collections. invited book chapter in
Data Mining for Scientific and Engineering Applications, 2001.

20

[33] X. Li. Parallel Algorithms for Hierarchical Clustering and Cluster Validity.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 12, pp.1088-1092, 1990.

[34] S. Rajasekaran. Efficient Parallel Hierarchical Clustering Algorithms.IEEE Transactions on Parallel and Dis-
tributed Systems, 16:6, 2005.

[35] C. Olson. Parallel Algorithms for Hierarchical Clustering. Journal of Parallel Computing, 21, pp.1313-1325,
1995.

[36] C. Wu, S. Horng, H. Tsai. Efficient Parallel Algorithms for Hierarchical Clustering on Arrays with Reconfig-
urable Optical Buses.Journal of Parallel and Distributed Computing, 60, pp.1137-1153, 2000.

[37] G. Salton, A Vector Space Model for Automatic Indexing.Communications of the ACM, 18 (11), pp. 613-620,
November 1975.

[38] G. Salton, M.J. McGill,Introduction to Modern Information Retrieval.McGraw-Hill Book Company, 1983.

[39] J. Xu and B. Croft. Cluster-based Language Models for Distributed Retrieval,22st Annual ACM Conference on
Research and Development in Information Retrieval (SIGIR), 1999.

[40] Y. Zhao, G. Karypis, Improve Precategorized Collection Retrieval by Using Supervised Term Weighting
Schemes.IEEE Conference on Information Technology Coding and Computing, Information Retrieval Session,
April 2002.

[41] M. Anderberg,Cluster Analysis for Applications, Academic Press, Inc., New York, NY, 1973.

[42] D. Grossman and O. Frieder,Information Retrieval: Algorithms and Heuristics. SecondEdition Springer Pub-
lishers, 2004.

[43] D. Lee, H. Chuang, K. Seamons.Document Ranking and the vector-space model.IEEE Software, Vol 14:2, pp.
67-75, 1997.

[44] A. Chowdhury, S. Beitzel, E. Jensen, M. Saelee, D. Grossman, O. Frieder, IIT-TREC-9 - Entity Based Feedback
with Fusion.Proceedings of the Ninth Annual Text Retrieval Conference,NIST, November 2000.

[45] E. Voorhees, Implementing Agglomerative Hierarchic Clustering Algorithms for User in Document Retrieval.
Information Processing & Management, 22:6, pp.465-476, 1986.

[46] W. Gropp, E. Lusk, N. Doss, A. Skjellum. A high-performance, portable implementation of the MPI message
passing interface standard.Journal of Parallel Computing, 22:6, pp.789-828, September, 1996.

[47] R. Thakur and W. Gropp, Improving the Performance of Collective Operations in MPICH. InRecent Advances
in Parallel Virtual Machine and Message Passing Interface, number LNCS2840 in Lecture Notes in Computer
Science, Springer Verlag, pp. 257-267, 2003.

[48] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim. mpiJava: An Object-Oriented Java interface to MPI.
Presented at International Workshop on Java for Parallel and Distributed Computing, IPPS/SPDP 1999, San
Juan, Puerto Rico, April 1999.Proceedings of the 4th International Conference on Knowledge Discovery and
Data Mining, Menlo Park, CA, 1998.

[49] NIST Text Retrieval Conference.English Document Collectionshttp://trec.nist.gov/data/docs_eng.html

[50] T. Infantes-Morris, P. Bernhard, K. Fox, G. Faulkner, K. Stripling, Industrial Evaluation of a Highly-accurate
Academic IR System.Proceedings of the ACM Conference on Information and Knowledge Management, Novem-
ber 2003.

[51] G. Karypis,CLUTO - A Clustering Toolkit, Dept. of Computer Science, University of Minnesota, May 2002,
http://www-users.cs.umn.edu/∼karypis/cluto/.

[52] S. Zhong, Efficient Online Spherical K-Means Clustering. IEEE International Joint Conference on Neural Net-
works, Vol. 5 August 2005, pp. 3180-3185

21

