
Relationally Mapping XML Queries For Scalable
XML Search

Rebecca J. Cathey, Steven M. Beitzel, Eric C. Jensen, David Grossman, Ophir Frieder
Information Retrieval Laboratory
Illinois Institute of Technology

{cathey, beitzel, jensen, grossman, frieder}@ ir.iit.edu

Abstract—The growing trend of using XML to share security
data requires scalable technology to effectively manage the
volume and variety of data. Although a wide variety of methods
exist for storing and searching XML, the two most common
techniques are conventional tree-based approaches and relational
approaches. Tree-based approaches represent XML as a tree
and use indexes and path join algorithms to process queries.
In contrast, the relational approach seeks to utilize the power
of a mature relational database to store and search XML. This
method relationally maps XML queries to SQL and reconstructs
the XML from the database results.

We use the XBench benchmark to compare the scalability of
the SQLGenerator, our relational approach, with eXist, a popular
tree-based approach.

I. I NTRODUCTION

XML is a flexible and powerful tool that enables vital
security sharing in heterogeneous environments [1]. Since
XML can be extended to include domain specific tags, in-
formation can be encoded with meaningful structure and
semantics that allow rapid information sharing among devices
and organizations. We examine the conventional tree approach
and the relational mapping of XML queries to determine which
method has the potential to search large collections of XML
data.

We used XBench (http://db.uwaterloo.ca/ddbms/
projects/xbench/index.html) to create a heterogeneous
collection of multiple schema data-centric XML documents.
We generated an 8GB collection from the modified XBench
templates. The 500MB, 1GB, 2GB, and 4GB collections
were created from random subsets of the 1GB, 2GB, 4GB,
and 8GB collections respectively.

XBench provides a set of twenty queries that challenge a
system with XML-specific features as well as conventional
functionalities. The XML features covered by the queries
include exact match (Q1), ordered access (Q5), quantifier
expressions (Q6, Q7), regular path expressions (Q8, Q9), sort-
ing document construction (Q10, Q11), retrieving individual
documents (Q12), and text search (Q17).

II. RESULTS

Two XML retrieval systems are used: the SQLGenerator
(http://www.ir.iit.edu/projects/SQLGenerator.html) and eXist
1.0. The SQLGenerator uses a model mapping relational
approach [2] while eXist uses an XML-specific B+-tree index-
ing approach [3]. The SQLGenerator was run using MySQL
version 4.1.11.

In Fig. 1, we show the total query time for each query. Also
shown are the mean and total times for each run. All timings
given represent the average execution time of the queries (in
random order) over five runs. To ensure a cold cache, the server
was rebooted between runs. Overall, the relational approach
outperformed the tree-based approach on all five collections.
However, the tree based approach outperformed the relational
approach for both quantifier queries. On average, the relational
approach took 17.5 times as long to execute the 8GB queries
than the 500MB queries. This is very close to the expected
linear scaling factor of 16. On the other hand, the tree based
approach took 55.6 times as long to execute the queries on
the 8GB collection.

Collection Size
500MB 1GB 2GB 4GB 8GB

tree rel tree rel tree rel tree rel tree rel
Q1 15.52 0.43 26.75 0.44 59.41 0.51 131.11 0.71 484.24 0.67
Q5 14.52 0.77 25.72 0.78 56.20 0.96 129.61 1.27 498.83 1.47
Q6 2.03 31.08 4.64 50.26 18.97 52.37 28.73 183.10 TIMEOUT 466.58
Q7 2.85 25.0 6.43 38.88 10.32 71.70 26.94 243.15 217.72 594.19
Q8 14.57 0.58 25.89 0.51 56.52 0.69 131.00 0.87 478.43 1.10
Q9 14.73 0.40 25.38 0.41 53.50 0.46 124.22 0.63 426.58 0.72
Q10 16.22 1.16 29.89 1.51 68.35 2.73 139.53 5.97 1,850.99 13.22
Q11 16.75 0.68 29.73 0.76 65.58 1.46 137.04 2.81 1,829.84 6.17
Q12 14.35 0.64 25.41 0.63 54.03 0.79 129.80 0.89 458.05 1.06
Q16 14.41 0.58 25.11 0.52 51.29 0.70 125.06 0.76 440.00 0.80
Q17 32.33 1.78 53.14 2.25 97.53 19.50 638.29 37.29 1,317.18 21.86
mean 14.39 5.74 25.27 8.81 53.79 13.81 158.29 43.40 800.18 100.71
total 158.28 63.09 278.09 96.94 591.7 151.88 1741.33 477.44 8001.86 1107.84

Fig. 1. Total Query Time (seconds) for XBench Queries

From the timing results presented, we conclude that the
relational approach is highly scalable to increasing collection
sizes, and also provides a significant performance improve-
ment over the tree-based approach. The tree-based approach,
on the other hand is increasingly less able to handle queries
as the collections get larger. Furthermore, the superior perfor-
mance of the relational approach shows the potential to exhibit
similar performance on very large XML collections.

REFERENCES

[1] N. Suizo, “Xml propels security intelligence,”Network World, August
2006.

[2] D. Florescu and D. Kossman, “Storing and querying XML data using an
RDBMS,” IEEE Data Engineering Bulletin, vol. 22, no. 3, pp. 27–34,
1999.

[3] W. Meier, “eXist: An open source native XML database,”Web, Web-
Services, and Database Systems. NODe 2002 Web- and Database-Related
Workshops, October 2002, springer LNCS Series, 2593.


