
On the Parallel Implementation of Sparse Matrix
Information Retrieval Engine

Ankit Jain and Nazli Goharian
Information Retrieval Laboratory

Illinois Institute of Technology
Chicago, Illinois

{ajain, nazli@ir.iit.edu}

Abstract

We demonstrate a parallel implementation of a
sparse matrix information retrieval engine. We use a
shared nothing PC cluster. We perform our
experiments with TREC disk 4 and 5 data, a NIST 2
Gigabytes standard benchmark text collection on 2,
4, 6, 8, 10, 12 and 14 processing nodes with different
queries. We compare the results with the results of
sequential inverted index, a conventional and
common indexing and query processing method. The
experimental results are promising and show a
significant speedup.

1 Introduction and Prior Work

There are terabytes of text web data and
every day the amount of information present on
the World Wide Web (WWW) is growing. With
the large volume of data, the task of query
processing to identify relevant documents can be
significantly time consuming. Information
explosion demands scalable retrieval systems,
which motivates selecting indexing and search
algorithms that can support effectiveness and
efficiency of the search. A concern with the
development of scalable information retrieval
(IR) is the design of algorithms that yield
acceptable processing speeds when faced with
large data sets. Parallel Processing of large
volume of data in IR has several advantages
such as improving response time and capability
of searching larger collections [1].

Inverted Index is the most popular approach
for text retrieval search engines. However, the
parallization of inverted index is not a trivial
task. Thus, parallel processing is not taken
advantage of in the processing of large volume
of data by search engines. In this paper, we
evaluate the result of our implementation of a
parallel information retrieval engine as the
application of sparse matrix-vector
multiplication. The application of sparse matrix-
vector multiplication in an IR System was

described in the prior work of Goharian, et al. [2]
and [3]. They showed that using sparse matrix IR,
with compressed sparse row format (CSR), a
storage reduction of 35%-40% could be achieved
over the storage requirement of the conventional
inverted index while the accuracy of the search
would remain the same. The readers are referred to
[4] for sparse matrix description and formats, and
to [5], [6], and [7] for information retrieval topics.

In the remaining part of this paper, we present
the parallel implementation, experiments and
results. We evaluate our results based on the best
sequential approach in IR, i.e., inverted index.

2 Experimental Framework
2.1 Text Collection

We used a standard text collection, TREC
disk 4 and 5 data, benchmark data provided by
TREC (Text Retrieval Conference) sponsored by
National Institute of Standards and Technology
(NIST) for our experiments [8]. The text collection
is a SGML tagged collection. A sample document
from TREC text collection with the SGML tag is
shown below.

</DOC>
<DOC>
<DOCNO> FT911-10 </DOCNO>
<HEADLINE>
FT 14 MAY 91 / World News in Brief: Brussels rioting
</HEADLINE>
<DATELINE> BRUSSELS </DATELINE>
<TEXT>
Almost 200 North African immigrants were arrested in
Brussels at the weekend during the worst racial rioting ever
seen in the normally placid Belgian capital.
</TEXT>
</DOC>
<DOC>

A parser as described in [9] is used to parse
the SGML tagged TREC collection. The Parser
tokenizes the text and eliminates the stop words.
Stop word elimination is a technique to effectively

remove the frequently used words such as “a”,
“an”, and “the”. We used a stemmer, i.e.,
Porter stemmer [10], to stem the words. The
stemming process removes the prefixes and
suffixes such as “ing”, “ion”,” kilo”, and
“mega”. These techniques result in a more
effective indexing and retrieval system. The
parsing and indexing process create the vector
representation of text for query processing.
Table 1 shows the document collection size,
number of documents in the collection, total
number of terms in the collection, and the
number of distinct terms. The total number of
terms in the collection corresponds to the non-
zero elements in the sparse matrix.

Table 1- TREC Disk 4 and 5 Text Collection
Document Collection Size 2GB
Number of Files Parsed 2,295
Number of Documents Parsed 524,939
Total Number of Terms, distinct
in a document (excluding Stop
Terms)

78,896,566

Number of Distinct Terms
(excluding Stop Terms)

820,581

2.2 Queries

We used 7 queries from the list of 50 Topic
TREC queries. Topic queries are the short
queries that contain 1-3 terms. Each query is
numbered. We based our decision for choosing
these seven queries, i.e., queries 362, 364, 376,
377, 382, 383, and 389 on the number of
documents retrieved by each of the 50 Topics
queries. We believe that the number of retrieved
results for a query could be an indicator of the
behavior of the parallel system, as the retrieved
results are proportional to the amount of work
for query processing. Table 2 shows the number
of retrieved results for each of these three
queries. The following are two sample queries
used in our experiments:

<top>
<num> Number: 362
<title> human smuggling
</top>

<top>
<num> Number: 383
<title> mental illness drugs
</top>

Table 2: Query and Number of Retrieved
Documents

Query Retrieved Results
364 131 Minimum
377 5628
382 19208
362 28617 Average
383 34152 Median
389 56631
376 114785 Maximum

2.3 Hardware and software
requirements:

Tests were conducted on a High Performance
16 nodes Ethernet 10/100 LAN cluster. Each node
in the cluster is Dual Pentium III (Coppermine)
Intel 1GHz CPU and 1024 Megabyte RAM
machine. We used JAVA Remote method
invocation (RMI) for the implementation [11].

3 Parallel Implementation

In parallel CSR information retrieval the
vectors that hold the indexing information of the
text collection can be broken into smaller parts
that can be evenly distributed among the nodes.
All nodes take part in the query processing, which
leads to a good speedup. Figure 1 shows how the
CSR vectors can be divided into smaller parts, so
that the vector elements belonging to each
document are kept together at one node. In this
example, the distinct terms of document 1 with
term identifiers 1, 2 and 3 in column vector and
the corresponding term weight 2, 1, and 1 in non-
zero vector can be located on one node. Load
balancing in case of inverted index is not a trivial
process. The load balancing in Compressed Sparse
Row (CSR) matrix results in balanced nodes and
can be done at the time of building the index.

Figure 1: Vectors of CSR and the Elements of a
Document

In our approach to parallel implementation of
CSR information retrieval engine, we describe the
following components of our system: load
balancing of index for the query processing nodes,
architecture of the system, and the query
processing and result generation:

3.1 Load Balancing
Now the challenge is to distribute the load

equally among the participating nodes. The
assumption is that if equal number of terms is on
each node, then the workload can be almost
equally distributed as all the terms are to be
processed in CSR approach. To achieve this, we
used the Greedy load allocation algorithm [12]
that almost equally distributes the load among
all the processors. Figure 2 shows an example of
Greedy algorithm load balancing, taking a
collection of 9 documents and 3 nodes with
different number of distinct terms per node. As
the result, node 1 has 56 terms, node 2 has 542
terms and node 3 has 54 terms. Table 3
demonstrates the result of the Greedy load
balancing on our 2GB collection, using 15
nodes. The retrieved results column shows the
number of documents retrieved by each node
during processing query 376, which retrieves a
total of 114,785 documents. Each node has an
average of 5,260,025 terms, a median of
5,269,918 terms, and the standard deviation of
59.126 terms. Note that the number of retrieved
results per node is directly proportional to the
load on the nodes. The mean, median and
standard deviation of retrieved results on each
node is 7,652, 7642, and 81.8, respectively.

Figure 2: Greedy Load Allocation on a Sample
Collection

3.2 System Architecture

The parsing of the data collection, the
indexing, and the load balancing are done at the
server. These processes are sequential and done
prior to the query processing. The major tasks
during query processing are parsing the query,
processing the query and sorting the results, i.e.,
ranking the computed scores. Figure 3 shows the
different components of the architecture for our
parallel Sparse Matrix IR that are described
further:

Table 3: Greedy Load Allocation of TREC6-7
data on 15 Nodes

Nodes Load Retrieved Results
1 5,259,939 7,528
2 5,259,959 7,555
3 5,259,963 7,571
4 5,259,982 7,576
5 5,259,990 7,583
6 5,259,990 7,629
7 5,259,997 7,633
8 5,260,018 7,642
9 5,260,029 7,657

10 5,260,033 7,674
11 5,260,068 7,709
12 5,260,070 7,717
13 5,260,089 7,752
14 5,260,111 7,767
15 5,260,138 7,792

Mean 5,260,025 7,652
Median 5,269,918 7,642

Standard Deviation 59.126 81.8

Figure 3: Parallel System Architecture

Query Client: Query client receives the query
from the user and sends it to the server. Query
client waits until the query processors process the
query and then receives the document scores form
the server and prints the formatted results.
Server or Master Node: Server distributes the data,
i.e., the elements of the vectors, as determined by
Greedy load allocation algorithm to the query
processor nodes. Upon receiving the query from
the query client, the server sends the query to each
query processor node and delegates the nodes to
process the query. The server receives the
retrieved documents from the query processor
nodes. It sorts and merges the results and sends the
formatted document scores to the query client.
Query Processors: Each query processor node
receives the query from the server. The index, i.e.,
vector elements resides in the memory of each
node. Each node processes the query by using the
CSR sparse matrix-vector multiplication algorithm
described in [2] and [3]. The result of the

multiplication computation is the relevance
ranking score demonstrating the relevance of
each document to the query. Each document
has a score associated with the document. The
query processor nodes sort their document
scores and send the scores to the server.

3.2.1 Search Protocol and Events on the
Time Line

The events that happen during the query
processing are shown on the time line, and the
algorithm is highlighted in the following five
steps:

Step 1) Initialization Step

Java RMI registry starts at the server. It acts
as a directory and stores the address of each
query processor node. Then the server starts and
allocates memory for the recourses and
initializes. Query processor nodes start one by
one. Each query processor node connects itself
to the server and requests for the registration to
the server by sending its IP address and host
name to the server. The server receives an IP
address and host name from a node and returns
an identification number, i.e., a node id, to that
node. The server stores all IP addresses and host
names in a hash table called the registration
table (Figure 4).

Figure 4: Initialization Step

Step 2) Load Distribution Step
Upon receiving the identification number

from the server, each query processing node
requests the server for indexed data, i.e., part of
the vectors. After receiving the request from the
node, the server reads the portion of the vectors
that belongs to the respective node from the disk
and sends it to the node. The query-processing
node receives the part of the vectors and
requests the server for a query. Until this point
server does not have the query; server puts the
node into wait state (Figure 5).

Figure 5: Load Distribution Step

Step 3) Query Parsing and Distribution Step

At this time, the query client starts and
requests the mapping of term tokens to term
identifiers (word map) from the server to parse the
query. The server responds and sends the required
data. Query client gets the query from the user,
parses it and sends the query vector to the server.
The server broadcasts the query to all the query
processors. All nodes get back to ready status and
start to process the query (Figure 6).

Figure 6: Query Parsing and Distribution Step

Step 4) Query Processing Step

Each query-processing node processes the
query on its portion of data and keeps on
collecting the relevance ranking scores on its
transmission queue. The query processor checks
the size of the transmission list and if the
transmission list is bigger than the specified
transmission limit, it sorts the scores of the
transmission list and transmits them to the server
and clears the transmission list. The server
receives the results, i.e., scores, from the query
processor nodes and appends the scores to its score
list (Figure 7).

Figure 7: Query Processing Step

Step 5) Final Relevance Ranking Scores
Compilation Step

During the whole process, the query
client, server and the query processor nodes
keep collecting the various statistics. Once a
query processor completes the query processing
on its node, it sends the final transmission list to
the server along with its task completion signal.
At this time the query processor node goes in the
wait state. When the server receives the done
signal from all the query processor nodes, it
sorts the scores and formats the results. The
server sends the results to the query client along
with a done signal. Upon receiving the done
signal from server, the query client finally writes
the results to the disk and goes to the wait state.
Query processors and query client send their
statistics to the server and server writes the
statistics on the disk. The total time for query
processing recorded in every experiment
includes the timing for query parsing,
processing, results merging, sorting and
formatting (Figure 8).

Figure 8: Final Relevance Ranking Scores

Compilation Step

4 Experimental Results

We performed our experiments using a 2 GB
text collection and different number of nodes, i.e.,
2, 4, 6, 8, 10, 12 and 14 nodes to process the
queries. Each configuration of the nodes is tested
with all seven queries listed earlier in the section
of experimental framework. Each experiment with
different number of nodes and different queries are
also done with five combinations of transmission
list sizes. Thus, we gathered the performance
results for 245 different experimental runs on the
system. As demonstrated in figure 9 the query
processing time reaches to a minimum and then
increases again if we keep on increasing the
number of nodes. The optimum number of nodes
for this data collection is 12 nodes.

Figure 9: Query Processing Time for different
Number of Nodes

Figure 10 shows query processing timing for

different sizes of transmission list on node 12. A
similar pattern can be noted here as well. The
query processing time reaches to a minimum and
then increases again if we keep on increasing the
transmission list size. On the X-axis the
transmission list size is the percentage of the
average retrieved results per node and Y-axis is
the query processing time.
Our experimental results show that with the
optimum number of nodes and optimum size of
transmission list, parallel CSR Information
Retrieval (IR) outperforms inverted index with
substantial margin. Table 4 shows the comparison
of the query processing timing on inverted index
and parallel CSR using the optimum number of
nodes and optimum size of transmission list for
our test data

Figure 10: Query Processing time for
Transmission List Size using 12 Nodes

Table 4: Query Processing time for Inverted

Index and Parallel CSR
Query Retrieved

Results
Query
Processing Time
Inverted Index
milliseconds

Query
Processing
Time CSR
Parallel
milliseconds

364 131 9499 165
377 5628 10427 214
382 19208 11460 260
362 28617 13376 302
383 34152 13738 351
389 56631 15071 431
376 114785 20468 779

Figure 11 depicts the nature of parallel

CSR query processing with increasing retrieved
results, i.e., retrieved documents. Parallel
processing overheads, i.e., communication
overhead and additional computations increase,
if the number of retrieved results increases.

Figure 11: CSR Parallel: Query Processing time

vs. Retrieved results

Table 5 shows the speedup and the efficiency
achieved with the optimum settings for number of
nodes and transmission list size by parallel CSR
over inverted index. A super linear speedup is
noticed for our experiments. In an inverted index
IR system, because of the memory limitations the
whole storage structure cannot be kept in the
memory at a time and hence query processor reads
the posting lists of the query tokens from the disk
to process the query. While in the case of the CSR
parallel implementation, since many nodes take
part in query processing and each node has enough
memory to keep it’s part of index, the need of I/O
at the time of query processing can be omitted.
Superior performance of the parallel
implementation and the fact that index is accessed
from the cache contributes to the super linear
speedup. We acknowledge that a fare comparison
and measure of speedup requires a fully memory
resident of data in the case of inverted index, i.e.
running inverted index experiments on a machine
with 12 GB memory, for the 12 nodes that
participated in parallel experiments each with
1GB. Such a hardware requirement was not
available to us. On the other hand, as mentioned
earlier the parallel implementation of inverted
index is not reported as a successful approach.

Table 5: Speedup and Efficiency
Query Speedup (S) Efficiency = S/N

364 57.57 4.8
377 48.72 4.1
382 44.07 3.7
362 44.29 3.7
383 39.13 3.3
389 34.97 2.9
376 26.27 2.2

4.1 Analysis

Query performance is very system specific.
Among the machines we used in our experiments,
the server had to be of a good configuration. A
faster LAN reduces the communication overheads.
The queries that retrieve larger number of
documents take longer, as the nodes have to clear
the transmission list several times, which results in
a higher parallel processing overheads. If the
transmission list is bigger than the optimum size,
the degree of parallelism reduces. At the same
time, if transmission list size is smaller than the
optimum size, communication overheads
deteriorates the performance. The number of
nodes participating in the query processing also

affects the performance. For a specific text
collection and type of queries, using only the
optimum number of nodes is the most
advantageous.

The sequential processing component that
includes parsing the query and final compilation
of the results also affects the total timing. Based
on our experiments on different collection sizes,
we observed that the sequential processing time
remains constant and almost independent of the
collection size. As the result of this observation,
we expect a better speedup for larger collections
and larger number of processing nodes. The
significance of optimum transmission list size is
a factor to be considered. This threshold can be
defined as fixed or determined dynamically on
the run time based on the size of collection on
which the tests are to be performed. Our
experimental results suggest that for our
collection the optimum transmission list size
should be 60% of the average results retrieved
on a node.

One other advantage of our parallel query
processing approach is the process of adding a
new node to the system takes very minimal time
and effort. Based on our experiments, a new
node initialization takes 150 seconds. One issue
can be raised in our architecture is the
repercussions of a node failure. The server will
endlessly keep on waiting for the done signal
from the failed node and will never be able to
complete the processing. One approach to this
problem is relaxing the requirements of
processing all the documents with the notion that
it does not effect the retrieval accuracy as the
search engines today only index a fewer
percentage of the web. However, a timer can be
used on the server to handle this situation. If the
timer expires and server receives nothing from
the node, server will compile the received
document relevance ranking scores and
conclude.

5 Conclusion and Future Work

We presented a parallel information retrieval
engine based on compressed sparse row matrix-
vector multiplication algorithm approach. Since
the majority of the current information retrieval
systems are based on the inverted index and the
proposed approach is an alternative approach to
inverted index, we compared our experimental
results with Inverted Index. Our experimental
results on parallelizing CSR information

retrieval system showed a significant speedup
compare to inverted index. Another concern
regarding inverted index is the complexity of the
update. We believe that CSR vectors can be
updated easily for adding new documents to the
collection without the need of rebuilding the
whole index.

References
[1] E. Rasmussen, Parallel Information
Processing,. American Society of Information
Science,1992.
[2] N. Goharian, T. El-Ghazawi, D. Grossman, A.
Chowdhury, On the Enhancements of a Sparse
Matrix Information Retrieval Approach,
PDPTA’2000.
[3] N. Goharian, T. El-Ghazawi, D. Grossman,
“Enterprise Text Processing: A Sparse Matrix
Approach”, Proc.of the IEEE Int. Conf. on
Information Technology: Computing and
Coding(ITCC01), LV, 2001.
[4] BLAST Forum, “Documentation for the Basic
Linear Algebra Subprograms”,
http://www.netlib.org/blast/blast-forum,1999.
[5] G. Salton, “Automatic Text Processing”,
Addison Wesley, Massachusetts, 1989.
[6] D. Grossman and O. Frieder, “Information
Retrieval: Algorithm and Heuristics”, Kluwer
Academic Publishers, 1998.
[7] ACM SIGIR Proceedings, http://sigir.acm.org
[8] Text Retrieval Conference, http://trec.nist.gov
[9] D. Grossman and O. Frieder, “Anatomy of a
Search Engine: A Java-based Introduction to
Scaleable Information Retrieval”,manuscript 2002.
[10] Porter, M. F. An algorithm for suffix
stripping. Program Automated Library and
Information Systems, 14 (3), 130-137. 1980.
[11] J. Maassen, R. Nieuwpoort, R. Veldema, H.
Bal, A. Plaat, An Efficient Implementation of
Java’s Remote Method Invocation, Seventh ACM
SIGPLAN Symp. on Principles and Practice of
Parallel Programming, Atlanta,1999.
[12] S. Nastea, O. Frieder and T. El-Ghazawi,
Load Balanced Sparse Matrix-Vector
Multiplication on Parallel Computers, Journal of
Parallel and Distributed Computing (JPDC),
46:180-193, 1997.
[13] O. Sornil, Parallel Inverted Index for Large-
Scale, Dynamic Digital Libraries, Virginia Tech
Computer Science, Blacksburg, Ph. D.
Dissertation Draft, 2000.

