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Abstract 

We demonstrate a parallel implementation of a  
sparse matrix information retrieval engine.  We use a 
shared nothing PC cluster. We perform our 
experiments with TREC disk 4 and 5 data, a NIST 2 
Gigabytes standard benchmark text collection on 2, 
4, 6, 8, 10, 12 and 14 processing nodes with different 
queries. We compare the results with the results of 
sequential inverted index, a conventional and 
common indexing and query processing method. The 
experimental results are promising and show a 
significant speedup.  
 
1 Introduction and Prior Work 

There are terabytes of text web data and 
every day the amount of information present on 
the World Wide Web (WWW) is growing. With 
the large volume of data, the task of query 
processing to identify relevant documents can be 
significantly time consuming. Information 
explosion demands scalable retrieval systems, 
which motivates selecting indexing and search 
algorithms that can support effectiveness and 
efficiency of the search.  A concern with the 
development of scalable information retrieval 
(IR) is the design of algorithms that yield 
acceptable processing speeds when faced with 
large data sets. Parallel Processing of large 
volume of data in IR has several advantages 
such as improving response time and capability 
of searching larger collections [1]. 

Inverted Index is the most popular approach 
for text retrieval search engines. However, the 
parallization of inverted index is not a trivial 
task. Thus, parallel processing is not taken 
advantage of in the processing of large volume 
of data by search engines. In this paper, we 
evaluate the result of our implementation of a 
parallel information retrieval engine as the 
application of sparse matrix-vector 
multiplication. The application of sparse matrix-
vector multiplication in an IR System was 

described in the prior work of Goharian, et al. [2] 
and [3]. They showed that using sparse matrix IR, 
with compressed sparse row format (CSR), a 
storage reduction of 35%-40% could be achieved 
over the storage requirement of the conventional 
inverted index while the accuracy of the search 
would remain the same. The readers are referred to 
[4] for sparse matrix description and formats, and 
to [5], [6], and [7] for information retrieval topics. 

In the remaining part of this paper, we present 
the parallel implementation, experiments and 
results. We evaluate our results based on the best 
sequential approach in IR, i.e., inverted index.  
 

2 Experimental Framework 
2.1 Text Collection 

We used a standard text collection, TREC 
disk 4 and 5 data, benchmark data provided by 
TREC (Text Retrieval Conference) sponsored by 
National Institute of Standards and Technology 
(NIST) for our experiments [8]. The text collection 
is a SGML tagged collection. A sample document 
from TREC text collection with the SGML tag is 
shown below. 

 
</DOC> 
<DOC> 
<DOCNO> FT911-10 </DOCNO> 
<HEADLINE> 
FT 14 MAY 91 / World News in Brief: Brussels rioting 
</HEADLINE> 
<DATELINE> BRUSSELS </DATELINE> 
<TEXT> 
Almost 200 North African immigrants were arrested in 
Brussels at the weekend during the worst racial rioting ever 
seen in the normally placid Belgian capital. 
</TEXT> 
</DOC> 
<DOC> 
 

A parser as described in [9] is used to parse 
the SGML tagged TREC collection. The Parser 
tokenizes the text and eliminates the stop words. 
Stop word elimination is a technique to effectively 



remove the frequently used words such as “a”, 
“an”, and “the”. We used a stemmer, i.e., 
Porter stemmer [10], to stem the words. The 
stemming process removes the prefixes and 
suffixes such as “ing”, “ion”,” kilo”, and 
“mega”. These techniques result in a more 
effective indexing and retrieval system. The 
parsing and indexing process create the vector 
representation of text for query processing.  
Table 1 shows the document collection size, 
number of documents in the collection, total 
number of terms in the collection, and the 
number of distinct terms. The total number of 
terms in the collection corresponds to the non-
zero elements in the sparse matrix.  
 

Table 1- TREC Disk 4 and 5 Text Collection 
Document Collection Size 2GB 
Number of Files Parsed  2,295 
Number of Documents Parsed  524,939 
Total Number of Terms, distinct 
in a document (excluding Stop 
Terms)  

78,896,566 

Number of Distinct Terms 
(excluding Stop Terms)  

820,581 

 
2.2 Queries 

We used 7 queries from the list of 50 Topic 
TREC queries. Topic queries are the short 
queries that contain 1-3 terms. Each query is 
numbered. We based our decision for choosing 
these seven queries, i.e., queries 362, 364, 376, 
377, 382, 383, and 389 on the number of 
documents retrieved by each of the 50 Topics 
queries. We believe that the number of retrieved 
results for a query could be an indicator of the 
behavior of the parallel system, as the retrieved 
results are proportional to the amount of work 
for query processing. Table 2 shows the number 
of retrieved results for each of these three 
queries.  The following are two sample queries 
used in our experiments: 
 
<top> 
<num> Number: 362 
<title> human smuggling  
</top> 
 
<top> 
<num> Number: 383 
<title> mental illness drugs 
</top> 
 
 

Table 2:  Query and Number of Retrieved 
Documents 

Query Retrieved Results  
364 131 Minimum 
377 5628  
382 19208  
362 28617 Average 
383 34152 Median 
389 56631  
376 114785 Maximum 

 
2.3 Hardware and software 
requirements:  

Tests were conducted on a High Performance 
16 nodes Ethernet 10/100 LAN cluster. Each node 
in the cluster is Dual Pentium III (Coppermine) 
Intel 1GHz CPU and 1024 Megabyte RAM 
machine. We used JAVA Remote method 
invocation (RMI) for the implementation [11]. 

 
3 Parallel Implementation  

In parallel CSR information retrieval the 
vectors that hold the indexing information of the 
text collection can be broken into smaller parts 
that can be evenly distributed among the nodes. 
All nodes take part in the query processing, which 
leads to a good speedup. Figure 1 shows how the 
CSR vectors can be divided into smaller parts, so 
that the vector elements belonging to each 
document are kept together at one node. In this 
example, the distinct terms of document 1 with 
term identifiers 1, 2 and 3 in column vector and 
the corresponding term weight 2, 1, and 1 in non-
zero vector can be located on one node. Load 
balancing in case of inverted index is not a trivial 
process. The load balancing in Compressed Sparse 
Row (CSR) matrix results in balanced nodes and 
can be done at the time of building the index.  

Figure 1: Vectors of CSR and the Elements of a 
Document 

In our approach to parallel implementation of 
CSR information retrieval engine, we describe the 
following components of our system: load 
balancing of index for the query processing nodes, 
architecture of the system, and the query 
processing and result generation: 
 

 



3.1 Load Balancing 
Now the challenge is to distribute the load 

equally among the participating nodes. The 
assumption is that if equal number of terms is on 
each node, then the workload can be almost 
equally distributed as all the terms are to be 
processed in CSR approach. To achieve this, we 
used the Greedy load allocation algorithm [12] 
that almost equally distributes the load among 
all the processors. Figure 2 shows an example of 
Greedy algorithm load balancing, taking a 
collection of 9 documents and 3 nodes with 
different number of distinct terms per node. As 
the result, node 1 has 56 terms, node 2 has 542 
terms and node 3 has 54 terms. Table 3 
demonstrates the result of the Greedy load 
balancing on our 2GB collection, using 15 
nodes. The retrieved results column shows the 
number of documents retrieved by each node 
during processing query 376, which retrieves a 
total of 114,785 documents. Each node has an 
average of 5,260,025 terms, a median of 
5,269,918 terms, and the standard deviation of 
59.126 terms. Note that the number of retrieved 
results per node is directly proportional to the 
load on the nodes. The mean, median and 
standard deviation of retrieved results on each 
node is 7,652, 7642, and 81.8, respectively.  

Figure 2: Greedy Load Allocation on a Sample 
Collection 

 
3.2 System Architecture 

The parsing of the data collection, the 
indexing, and the load balancing are done at the 
server. These processes are sequential and done 
prior to the query processing. The major tasks 
during query processing are parsing the query, 
processing the query and sorting the results, i.e., 
ranking the computed scores. Figure 3 shows the 
different components of the architecture for our 
parallel Sparse Matrix IR that are described 
further: 

Table 3: Greedy Load Allocation of TREC6-7 
data on 15 Nodes 

Nodes Load Retrieved Results 
1 5,259,939 7,528 
2 5,259,959 7,555 
3 5,259,963 7,571 
4 5,259,982 7,576 
5 5,259,990 7,583 
6 5,259,990 7,629 
7 5,259,997 7,633 
8 5,260,018 7,642 
9 5,260,029 7,657 

10 5,260,033 7,674 
11 5,260,068 7,709 
12 5,260,070 7,717 
13 5,260,089 7,752 
14 5,260,111 7,767 
15 5,260,138 7,792 

Mean 5,260,025 7,652 
Median 5,269,918 7,642 

Standard Deviation 59.126 81.8 

 
 

 
Figure 3: Parallel System Architecture 

 
Query Client: Query client receives the query 
from the user and sends it to the server. Query 
client waits until the query processors process the 
query and then receives the document scores form 
the server and prints the formatted results.  
Server or Master Node: Server distributes the data, 
i.e., the elements of the vectors, as determined by 
Greedy load allocation algorithm to the query 
processor nodes. Upon receiving the query from 
the query client, the server sends the query to each 
query processor node and delegates the nodes to 
process the query. The server receives the 
retrieved documents from the query processor 
nodes. It sorts and merges the results and sends the 
formatted document scores to the query client. 
Query Processors: Each query processor node 
receives the query from the server. The index, i.e., 
vector elements resides in the memory of each 
node. Each node processes the query by using the 
CSR sparse matrix-vector multiplication algorithm 
described in [2] and [3]. The result of the 

 



multiplication computation is the relevance 
ranking score demonstrating the relevance of 
each document to the query.   Each document 
has a score associated with the document. The 
query processor nodes sort their document 
scores and send the scores to the server. 
 
3.2.1 Search Protocol and Events on the 
Time Line 

The events that happen during the query 
processing are shown on the time line, and the 
algorithm is highlighted in the following five 
steps: 

 
Step 1)  Initialization Step 

Java RMI registry starts at the server. It acts 
as a directory and stores the address of each 
query processor node. Then the server starts and 
allocates memory for the recourses and 
initializes. Query processor nodes start one by 
one. Each query processor node connects itself 
to the server and requests for the registration to 
the server by sending its IP address and host 
name to the server. The server receives an IP 
address and host name from a node and returns 
an identification number, i.e., a node id, to that 
node.  The server stores all IP addresses and host 
names in a hash table called the registration 
table (Figure 4). 

 
Figure 4: Initialization Step 
 

Step 2)  Load Distribution Step 
Upon receiving the identification number 

from the server, each query processing node 
requests the server for indexed data, i.e., part of 
the vectors. After receiving the request from the 
node, the server reads the portion of the vectors 
that belongs to the respective node from the disk 
and sends it to the node. The query-processing 
node receives the part of the vectors and 
requests the server for a query. Until this point 
server does not have the query; server puts the 
node into wait state (Figure 5).  

 
Figure 5: Load Distribution Step  

 
Step 3)  Query Parsing and Distribution Step 

At this time, the query client starts and 
requests the mapping of term tokens to term 
identifiers (word map) from the server to parse the 
query. The server responds and sends the required 
data. Query client gets the query from the user, 
parses it and sends the query vector to the server. 
The server broadcasts the query to all the query 
processors. All nodes get back to ready status and 
start to process the query (Figure 6).  

 

 
Figure 6: Query Parsing and Distribution Step 

 
Step 4)  Query Processing Step 

Each query-processing node processes the 
query on its portion of data and keeps on 
collecting the relevance ranking scores on its 
transmission queue. The query processor checks 
the size of the transmission list and if the 
transmission list is bigger than the specified 
transmission limit, it sorts the scores of the 
transmission list and transmits them to the server 
and clears the transmission list. The server 
receives the results, i.e., scores, from the query 
processor nodes and appends the scores to its score 
list (Figure 7). 



 
Figure 7: Query Processing Step 

 
Step 5)  Final Relevance Ranking Scores 
Compilation Step 

During the whole process, the query 
client, server and the query processor nodes 
keep collecting the various statistics. Once a 
query processor completes the query processing 
on its node, it sends the final transmission list to 
the server along with its task completion signal. 
At this time the query processor node goes in the 
wait state. When the server receives the done 
signal from all the query processor nodes, it 
sorts the scores and formats the results. The 
server sends the results to the query client along 
with a done signal. Upon receiving the done 
signal from server, the query client finally writes 
the results to the disk and goes to the wait state. 
Query processors and query client send their 
statistics to the server and server writes the 
statistics on the disk. The total time for query 
processing recorded in every experiment 
includes the timing for query parsing, 
processing, results merging, sorting and 
formatting (Figure 8). 

 
Figure 8: Final Relevance Ranking Scores 

Compilation Step 

 
4 Experimental Results 

We performed our experiments using a 2 GB 
text collection and different number of nodes, i.e., 
2, 4, 6, 8, 10, 12 and 14 nodes to process the 
queries. Each configuration of the nodes is tested 
with all seven queries listed earlier in the section 
of experimental framework. Each experiment with 
different number of nodes and different queries are 
also done with five combinations of transmission 
list sizes. Thus, we gathered the performance 
results for 245 different experimental runs on the 
system. As demonstrated in figure 9 the query 
processing time reaches to a minimum and then 
increases again if we keep on increasing the 
number of nodes. The optimum number of nodes 
for this data collection is 12 nodes. 

 
 

Figure 9: Query Processing Time for different 
Number of Nodes 

 
Figure 10 shows query processing timing for 

different sizes of transmission list on node 12.  A 
similar pattern can be noted here as well. The 
query processing time reaches to a minimum and 
then increases again if we keep on increasing the 
transmission list size. On the X-axis the 
transmission list size is the percentage of the 
average retrieved results per node and Y-axis is 
the query processing time. 
Our experimental results show that with the 
optimum number of nodes and optimum size of 
transmission list, parallel CSR Information 
Retrieval (IR) outperforms inverted index with 
substantial margin. Table 4 shows the comparison 
of the query processing timing on inverted index 
and parallel CSR using the optimum number of 
nodes and optimum size of transmission list for 
our test data 

 



 

 
Figure 10: Query Processing time for 
Transmission List Size using 12 Nodes 

 
Table 4: Query Processing time for Inverted 

Index and Parallel CSR 
Query Retrieved 

Results 
Query 
Processing Time 
Inverted Index 
milliseconds  

Query 
Processing 
Time CSR 
Parallel 
milliseconds

364 131 9499 165 
377 5628 10427 214 
382 19208 11460 260 
362 28617 13376 302 
383 34152 13738 351 
389 56631 15071 431 
376 114785 20468 779 

 
Figure 11 depicts the nature of parallel 

CSR query processing with increasing retrieved 
results, i.e., retrieved documents. Parallel 
processing overheads, i.e., communication 
overhead and additional computations increase, 
if the number of retrieved results increases. 

 
 

 
Figure 11: CSR Parallel: Query Processing time 

vs. Retrieved results 

Table 5 shows the speedup and the efficiency 
achieved with the optimum settings for number of 
nodes and transmission list size by parallel CSR 
over inverted index. A super linear speedup is 
noticed for our experiments. In an inverted index 
IR system, because of the memory limitations the 
whole storage structure cannot be kept in the 
memory at a time and hence query processor reads 
the posting lists of the query tokens from the disk 
to process the query. While in the case of the CSR 
parallel implementation, since many nodes take 
part in query processing and each node has enough 
memory to keep it’s part of index, the need of I/O 
at the time of query processing can be omitted. 
Superior performance of the parallel 
implementation and the fact that index is accessed 
from the cache contributes to the super linear 
speedup.   We acknowledge that a fare comparison 
and measure of speedup requires a fully memory 
resident of data in the case of inverted index, i.e. 
running inverted index experiments on a machine 
with 12 GB memory, for the 12 nodes that 
participated in parallel experiments each with 
1GB. Such a hardware requirement was not 
available to us. On the other hand, as mentioned 
earlier the parallel implementation of inverted 
index is not reported as a successful approach.   
 

Table 5: Speedup and Efficiency 
Query Speedup (S) Efficiency = S/N 

364 57.57 4.8 
377 48.72 4.1 
382 44.07 3.7 
362 44.29 3.7 
383 39.13 3.3 
389 34.97 2.9 
376 26.27 2.2 

 
4.1 Analysis 

Query performance is very system specific. 
Among the machines we used in our experiments, 
the server had to be of a good configuration. A 
faster LAN reduces the communication overheads. 
The queries that retrieve larger number of 
documents take longer, as the nodes have to clear 
the transmission list several times, which results in 
a higher parallel processing overheads. If the 
transmission list is bigger than the optimum size, 
the degree of parallelism reduces. At the same 
time, if transmission list size is smaller than the 
optimum size, communication overheads 
deteriorates the performance. The number of 
nodes participating in the query processing also 



affects the performance. For a specific text 
collection and type of queries, using only the 
optimum number of nodes is the most 
advantageous.   

The sequential processing component that 
includes parsing the query and final compilation 
of the results also affects the total timing. Based 
on our experiments on different collection sizes, 
we observed that the sequential processing time 
remains constant and almost independent of the 
collection size. As the result of this observation, 
we expect a better speedup for larger collections 
and larger number of processing nodes. The 
significance of optimum transmission list size is 
a factor to be considered. This threshold can be 
defined as fixed or determined dynamically on 
the run time based on the size of collection on 
which the tests are to be performed. Our 
experimental results suggest that for our 
collection the optimum transmission list size 
should be 60% of the average results retrieved 
on a node.  

One other advantage of our parallel query 
processing approach is the process of adding a 
new node to the system takes very minimal time 
and effort. Based on our experiments, a new 
node initialization takes 150 seconds. One issue 
can be raised in our architecture is the 
repercussions of a node failure. The server will 
endlessly keep on waiting for the done signal 
from the failed node and will never be able to 
complete the processing. One approach to this 
problem is relaxing the requirements of 
processing all the documents with the notion that 
it does not effect the retrieval accuracy as the 
search engines today only index a fewer 
percentage of the web.  However, a timer can be 
used on the server to handle this situation.  If the 
timer expires and server receives nothing from 
the node, server will compile the received 
document relevance ranking scores and 
conclude.  
 
5 Conclusion and Future Work 

We presented a parallel information retrieval 
engine based on compressed sparse row matrix-
vector multiplication algorithm approach. Since 
the majority of the current information retrieval 
systems are based on the inverted index and the 
proposed approach is an alternative approach to 
inverted index, we compared our experimental 
results with Inverted Index. Our experimental 
results on parallelizing CSR information 

retrieval system showed a significant speedup 
compare to inverted index. Another concern 
regarding inverted index is the complexity of the 
update. We believe that CSR vectors can be 
updated easily for adding new documents to the 
collection without the need of rebuilding the 
whole index.  
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