
07/26/98

Autonomous Garbage Collection: Resolve Memory

Leaks In Long Running Server Applications

Brian Willard Ophir Frieder

willabr@mail.northgrum.com ophir@csam.iit.edu

Electronics and
Systems Integration Division

Department of Computer Science
and Applied Mathematics

Northrop Grumman Illinois Institute of Technology
Melbourne, FL 32902 Chicago, IL 60616

Abstract

We demonstrate the benefits of a garbage collection technique that requires

neither programmer assistance or rebuilding (compiling or linking) of target

applications. Thus, it effectively mitigates performance degeneration due to memory

leaks in applications when source code and object code is not available. Our technique

is an extension of the garbage collection method known as conservative garbage

collection. We refer to this as autonomous garbage collection. Autonomous garbage

collection is especially useful for long running server applications in large-scale

information processing server environments. Our prototype demonstrates that this

garbage collection technique is feasible. Our experimental results show that this

technique is more general and easier to use than many of the previous garbage collection

proposals targeted at resolving memory leaks in non-cooperative server applications.

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 2

Index Terms

dynamic memory allocation, garbage collection, heap storage, information retrieval,

memory leaks, object-oriented languages, software performance degeneration

1. Introduction

Memory management defects related to dynamic storage allocation account for

some of the most problematic and complex defects in existence today. It is not

uncommon for long running information server applications to be plagued with memory

leaks. This is especially true for large-scale information processing systems, developed

with a programming language that employs dynamic memory allocation under the

paradigm that places the responsibility on programmers to explicitly deallocate

dynamically allocated storage after it is no longer in use by the program.

Memory leaks are especially problematic in large-scale information processing

systems where long running servers are involved. In such systems it is not uncommon

for software not totally devoid of memory leak defects to be fielded into operational

configuration. Memory leaks accrue over time leading to degeneration of system

performance and ultimately system failure.

Information retrieval systems are a prime example of the type of software

intensive systems in which memory leaks cause significant havoc. In this digital

information age, massive volumes of electronic information are interconnected on the

Internet, and steady advancements in information retrieval technology continue to

improve the exploitation this massive base of information. The intense, concentrated I/O

processing characteristics of these large-scale information retrieval systems has notably

impacted traditional management of dynamic storage. The symptoms associated with

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 3

weaknesses in traditional dynamic storage management often become much more visible

in such systems, causing serious degradation to system performance.

The demands on the memory systems within large-scale information processing

systems are massive, and, as information becomes increasingly available in electronic

form, these I/O demands continue to escalate. Because of massive I/O demands, we

recognize that servers in large scale information processing systems cannot long endure

even small memory leaks. We also recognize that a large base of such systems exist and

have been fielded, implemented in C/C++. The C/C++ language requires the

programmer to manage the dynamic memory allocation/deallocation. Furthermore, in

these systems, not unlike other types of software intensive systems developed in C/C++,

some level of memory leaks inevitably go undetected and are fielded with the system,

despite the application of mature software development methodology by disciplined and

highly skilled C/C++ programmers and system test engineers. Thus, we focused on

developing a capability to resolve memory leak defects without programmer assistance,

requiring neither source code nor object code.

Garbage collectors are effective because they are capable of bounding the amount

of storage lost due to memory leaks. As long as the amount of lost storage is bounded,

memory and its associated page files can be sized to accommodate the usage of the

application. Thus, our research has targeted a solution that bounds memory storage loss

due to memory leaks. In addition, we targeted a solution that addresses such problems in

fielded systems. Traditionally, all garbage collectors, including conservative garbage

collectors, require some level of programmer assistance. We describe an autonomous

garbage collection method that meets the research objective: detect and resolve memory

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 4

leaks without programmer, compiler or linker assistance. We demonstrate successful

operation of the algorithm and illustrate its effective performance. The algorithm

performs well in soft real-time execution environments, similar to the execution paradigm

in information retrieval systems. In information retrieval systems, it is important, from a

usability perspective, to maintain rapid query response time the majority of the time. For

example, query response time should be less than 2 seconds 95% of the time. However,

in an information retrieval system, if the target query response time, for example less than

2 seconds, is missed, then no catastrophic failure is incurred as is the case in hard real-

time systems.

2. Overview Of The Garbage Collector Architecture And
Operation

Before describing the internal workings of the autonomous garbage collection

algorithm in Section 3, this section describes the architectural framework in which the

algorithm is implemented. The garbage collector is implemented in C and executes on

DEC’s OpenVMS operating system.

2.1 Acquiring Essential Information

To accomplish autonomous garbage collection, the following information must be

automatically acquired from within the target application:

• location of heap storage

• location (starting address and size) of all allocated heap segments

• location of the program stacks

• location of writable program memory

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 5

With this information a conservative garbage collection [boeh88] technique can

be employed. When the garbage collector interrupts the target application, the contents

of the registers in use by the application code are saved on the program stack. Thus, the

garbage collector knows that all active pointers are either on the program stack or in

writable program memory. The garbage collector can then conservatively identify all

active pointers by evaluating each word in the program stack and writable program

memory and determining whether it has the value of an address within the allocated heap

segments. After all words in the program stack and writable program memory are

conservatively evaluated, it is safe to declared as garbage and reclaimed allocated heap

segments for which not one reference was found.

Granted, with a conservative collection approach it is possible for a value to be

found that equates to an address of an allocated heap segment, but the word semantically

not be a pointer. Such cases are referred to as pointer misidentification. Pointer

misidentification is safe as it merely results in false retention of an inactive heap segment.

In practice pointer misidentification has a low rate of occurrence.

2.2 VMS Terms

Definitions of several VMS specific terms will be helpful in the explanation of the

garbage collection architecture developed in this research project; namely image,

executable image, shareable image and main image. These terms refer to program

execute concepts that are common to most modern operating system paradigms. The

terms are defined in the table below.

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 6

Term Definition

image an image is a file, containing binary code and data, that can be

executed by the VMS operating system

executable image an executable image has a unique entry point called a transfer

address and can be activated at the command line by issuing the

RUN command.

shareable image a shareable image is a collection of procedures that can be

called by code in an executable image or other shareable

images, and is equivalent to the term dynamic link libraries in

other OS environments.

main image the term main image refers to an executable image invoked by

a user via the RUN command. Activation of a main image

results in activation of any shareable images with which it was

linked and in turn any with which they were linked.

Table 4.3.1 Definition of VMS terms

2.3 Obtaining Heap Allocation Information

The implementation chosen is a simplification of, and serves as proof of concept

for, the more robust, preferred embodiment of the approach. The preferred embodiment

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 7

is realized by creating a shareable image that dynamically (via dynamic binding)

intercepts all run-time library invocations, including specifically the dynamic memory

management services. This shareable image need not implement the services, but rather

only intercept the invocation of such services in order to obtain heap allocation addresses

and forward the calls to the stock operating system run-time library routines to perform

the actual dynamic memory operation requested. In addition, this shareable image would

perform the responsibilities of the gcKernel in our architecture. Figure 2.1 shows this

concept.

Application
Program
(Main Image)

Shareable Image
Intercepting
Dynamic Memory
Manager Calls

Stock OS
Dynamic Memory
Manager
(Shareable Image)

performs the roll of
the gcKernal

Figure 2.1 Preferred Embodiment of gcKernal

In OpenVMS, the OS provides one run-time library of general purpose routines

(including dynamic memory management services) for the entire system that is

compatible with, yet separate from, all the language compilers. Thus, the insertion of one

shareable image (i.e., dynamic link library), as shown in Figure 2.1, between the

Resolve Memory Leaks Long Running Server Applications

♦♦

07/26/98 8

application programs and the run-time library works for programs developed in all

languages.

Without incurring the large implementation task of emulating all the interfaces in

the general purpose LIB$RTL OpenVMS library that would be required to actually

accomplish insertion of a shareable image between the application programs and the run-

time library as described, the feasibility of the concept was demonstrated in our

implementation as follows. The garbage collector (gc) obtains heap allocation

information by replacing, and intercepting calls to, DEC’s Heap Analyzer1 shareable

image. The memory allocation and deallocation procedures in the OpenVMS run time

library (LIB$RTL) are instrumented to provide statistics on memory allocation events to

the Heap Analyzer. Thus, by replacing the Heap Analyzer with a shareable image (called

gcKernel), heap allocation information is easily obtained on any executable image.

Figure 2.2 shows the image interfaces that occur when a main image, written in

C++, allocates memory using new or malloc. The memory allocation service new

resides in the DECC$SHR shareable image, and new in turn call

