

HAPI: Hardware Assisted Pruned Index for
Consumer Electronics
S. Kagan Agun and Ophir Frieder, Fellow, IEEE

Abstract — We describe HAPI, a novel Hardware Assisted

Pruned Index (HAPI) component. HAPI is a content indexing
device based on a modified inverted index structure. HAPI
accommodates patterns of different lengths and supports a
varied posting list versus term count feature sustaining high
reusability and efficiency. The developed component can be
used either as an internal slave component or as an external
co-processor. HAPI is efficient in resource demands since the
component controllers take only a minimal percentage of the
target device space leaving the majority of the space to term
and posting entries1.

Index Terms — Inverted index, information retrieval,
accelerator, hardware support.

I. INTRODUCTION
Inverted index file structures support the efficient searching

of documents. Static index pruning [5] reduces the number of
posting entries stored in the index while still providing
comparable accuracy in query processing. By storing the
posting entries of only those documents for which a given
term appears in frequently, the size of the posting list is
reduced, improving runtime performance. Implementing such
an approach in hardware, e.g., our Hardware Assisted Pruned
Index (HAPI) component, aids in high-speed document
searching of relatively small collections found on consumer
devices such as a PDA or intelligent cell phone. The HAPI
system was initially introduced as the HAT component [1],
but the new name was recently adopted due to
commercialization trademark considerations.

Research in application acceleration of consumer electronic
devices via hardware support is common. For example, in
[11], a multi-resolution block-matching algorithm was
proposed for MPEG-2 video encoding with a large search
capability. A flexible Block Matching Unit was designed to
accelerate content-based motion estimation for real-time
MPEG-4 video coding in [9], and in [10], a hardware
accelerator to reduce distortion optimization in the new H.264
video coding standard is discussed.

Indexing algorithms for consumer electronics devices
likewise exist. In [6], an index-coding algorithm for image
vector quantization that uses dynamic tree coding is described.

Fast content-based image browsing and retrieval in a database
based on the rosette pattern is also proposed for consumer
electronics in [8]. Using a neural network extraction
technique together with a Discrete Cosine Transform (DCT)
domain watermark allows the indexing of the image entirely
in [3]. That technique allows for the real-time embedding of
indexing data in popular image (JPEG) and video (MPEG)
formats.

1 S. K. Agun was with the Department of Computer Science, Illinois

Institute of Technology, Chicago, Illinois 60616 USA. He is now with
Multivision, Inc., a private consulting company, Naperville, Illinois 60563
USA (e-mail: agunsal@iit.edu).

O. Frieder is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, Illinois 60616 USA (e-mail: ophir@ir.iit.edu).

Regarding our domain of interest, accelerated text search,
few hardware-supported accelerators exist. A Field
Programmable Gate Array search accelerator that packs the
information into pre-formatted text vectors and compares with
a query for similarity is introduced in [13], while a
programmable approximate string matching processor
implementing a parallel similarity pattern matching is found in
[4]. A recent effort presented in [2] is a reconfigurable
memory based string-matching accelerator for intrusion
detection. These efforts demonstrate the research community’s
interest in hardware acceleration as a means to support
efficient search. In terms of commercial interest, the
TextFinder FDF4 [12] and the Fast Search Chip [7] are both
recent search accelerator products. The HAPI component
described herein is a search accelerator custom suited for
small text databases found in personal consumer devices.

Rather than focusing on pattern matching or similarity
measure computation, HAPI is a component that assists in the
management of the inverted index. Mapping the highly
accessed inverted index software structure onto a re-
configurable chip reduces the processing time associated with
index access and simplifies the maintenance. HAPI also
achieves high performance through hardware parallelism. The
precision and feature-oriented design of the HAPI system
supports component instantiation in multiple semiconductor
process technologies so as to potentially increase the longevity
of the approach.

The remainder of this paper is organized as follows. In
Section 2, we review the pruned inverted index algorithm. In
Section 3, we present the HAPI architecture, while in Section
4 we present our prototype VHDL implementation of a HAPI
component. A comparison of the performance of a VHDL
specification of HAPI versus that of a software pruned index
module is presented in Section 5. We conclude the paper in
Section 6.

II. PRUNED INVERTED INDEX
Static index pruning [5] bounds the posting list by

removing those posting entries corresponding to documents

for which the term has lower significance. That is, for each
term in the index, up to a maximum number of posting entries
is maintained. The retained entries are stored in sorted order
and correspond to documents where the given term appears
the greatest number of times or has the greatest relevance.

A pruned inverted index approach reduces the storage size,
I/O, and processing times without noticeably degrading
retrieval accuracy. Besides these advantages, the pruned
index approach bounds the posting list size and “regularizes”
the storage, simplifying the design of a corresponding
hardware accelerator.

Fig. 1. Logical pruned inverted index structure.

An illustrative example is shown in Figure 1. As shown,

for each term stored in the index, corresponding posting
entries, up to a maximum number, say 500, are maintained.
These posting entries are stored in a sorted order according to
the term’s frequency of appearance in the given document.
Note that although logically pointers are shown, in practice,
contiguous blocks of fixed length are allocated to each posting
array. This eliminates the need to store the “pointer”
addresses, reducing the memory requirements of the posting
list as shown in Figure 2.

Fig. 2. Physical pruned inverted index structure.

III. HAPI ARCHITECTURE
Each HAPI component design is parameterized so that it

can be instantiated to any precision and promotes a variable

maximum number of posting entries per term as well as a
varying maximum term length. The number of bits is the most
common precision in the design (bit-sliced precision), but a
component can be divided into identical slices that can be
reused to form any size of the same component known as
component-sliced precision. The HDL generic statements can
instantiate both small components (e.g., 1-bit pattern-matcher)
and n-bit pattern-matcher systems in an iterative fashion. Such
an approach results in a reusable design. A configuration file
is used to keep the precision parameters that instantiate a
particular HAPI structure.

Flexibility is critical to maintaining longevity of the
approach. Thus, for example, the memory used to construct
the term and posting list storage offer both generic memories
suitable for any platform or custom memories for a specific
target device. It is convenient to implement related features in
one design so that this design can be reused, as different
features are required. Using the right design component also
optimizes the performance through synthesis tools. While a
single generic memory of HAPI takes 120 cells at a maximum
clock speed of 100 MHz, Xilinx Virtex FPGA internal
memory blocks based on select RAM take 55 cells at 300
MHz.

HAPI operates as either a co-processor or as an embedded
component. When HAPI is used as an embedded component,
it is associated with a general-purpose processor on a single
chip as a logical processing unit in the same manner as an
Arithmetic Logic Unit (ALU). The HAPI external interface
(Figure 3) includes an address bus (Address) and a bi-
directional data bus (Data), both can be instantiated to any
width. The output lines RW, Enable, and Ready are used to
handle the memory access. HAPI also includes asynchronous
Reset and Halt signals where reset initializes and halt
terminates the operation of the HAPI component. The clock
signal is the system clock. The Error output indicates an
unrecoverable error state. The term Found, Lstatus (Left
Status), and Rstatus (Right Status) signals are used to stack up
to 16 HAPI components in an array (Figure 4). These control
signals are used to pass the status information including term
full signal and term found signal between HAPI units.

Fig. 3. The HAPI External Interface.

The HAPI architecture includes two main component types:

term matching units and array of posting units. Each posting
unit handles one posting list which stores the top M

HHAAPPII

Reset
Halt
Cloc
kSelect
LStatus

Data
Addres
sR/
WEnabl
eErro
rRstatus

actor D151 56 D15 71 D35 43 D135 3

D51 88 D111 91 D5 53 D13 1

D5 10 D11 17 D7 3

D15 16 D19 22 D3 16 D135 3

D7 1

adaptation

addiction

crackdown

rubber

Term List Posting Lists

(Memory array)

(M
em

or
y

ar
ra

y)

adaptation
actor

addiction

D15 71 D151 56 D35 43 D135 3
D111 91
D11 17 D5 10

Term List Posting List sorted by weight
(500 nodes per term)

crackdown

rubber

D7 3
D7 1

D19 22 D15 16 D3 16 D135 3

D51 88 D5 53 D13 1

documents in sorted order. These units are connected to the
internal data bus and controller signals. These units are highly
parallel and support master - slave (client - server) operations.
While a query is retrieving data from a posting list unit,
another unit executes sorted list update operations.

Fig. 4. A Possible HAPI Bank System.

A third component, the HAPI Controller is the master

controller that distributes the work and manages the
communication with the main processor. The high
performance bus interface can be a PCI bus or any other bus
available on the market for re-configurable computing. This
controller includes a FIFO queue to fetch main processor data
and instructions. A DMA unit is considered to provide
efficient memory access for the co-processor approach. The
entire HAPI Architecture is shown in Figure 5.

Fig. 5. HAPI Architecture.

A. Term Unit
Rather than a character-by-character comparison, in the

developed HAPI Term Unit, term matching is a single atomic
action. Matching is achieved by simultaneously comparing all
the characters of the term with the characters of the pattern. N
terms can be scanned in N clock cycles; that is, an average of
one term per cycle. The data retrieval response time increases

when the size of the term list increases. HAPI exploits the
parallelism in term-matching to reduce the document search
time. This provides faster execution since pattern search is
done in parallel. The multiple, term-matching units that
execute in parallel are shown in Figure 6.

Fig. 6. Term Unit Architecture.

Each term unit stores one section of the term list. Term

scanning can be achieved in parallel on all the units, but a new
term is inserted (added) into the last unit, if previous units
confirm that the term does not exist in their portion (list). A
found signal is sent to other units to stop the execution of
pattern searching. The result of the search, an index of the
term, is returned to the HAPI Controller.

Term lengths between 4 and 12 characters are supported.
The HAPI term matching unit provides two approaches for
word comparison, namely, either a single 12 character (96-bit
comparator) or three 32-bit comparators are available insuring
consistency with the 32-bit data path. Each slice has its own
memory and comparator. Unused characters in a word are set
to zero. A mask signal is provided to compare relevant slices
of the word. The parameterized precision-oriented design of
the term-matching unit supports a varying number of
components and dimensions.

B. Posting List Units
The posting list unit is very similar to the term matching

structure. In our implementation, eight bits are used for the
term frequency count that supports up to 255 occurrences.
(Actually, eight bits can accommodate 256 occurrences since
a case with no occurrences will not result in a posting entry;
yet for simplicity, we allow only up to 255 occurrences.)
Given our 32-bit word instantiation, this leaves 24 bits for the
document identifier. Clearly, a collection comprising of more
than 16 million documents requires different instantiation
parameters. However, at least for current instantiations of
HAPI, we do not see a consumer device application requiring
the storage of more than 16 million documents. The posting
list block architecture is illustrated in Figure 7.

There is one posting list per term. Each posting unit forms a
one-dimensional array that is connected to an internal data and
control bus and supports master - slave operations. Posting list

HAPI
Controller 1 2 N

Term Unit 1

Posting Units

TermTerm

Unit 2 Unit 3

3 4

Term1
Term2
Term3

Dual
Port

Memo

Register

Comparator

Term
Control

CPU

HHAAPPII

HHAAPPII

HHAAPPII

HHAPAPII

MEMORY

sub-processors execute list update and posting list retrieval
operations in parallel.

Fig. 7. HAPI Posting List Block Architecture.

The updating of a posting list involves inserting a single

document into a list in the proper location, potentially
requiring the removal of the least relevant posting entry. It is
clearly desirable to accomplish this within a single scan.
Thus, the HAPI posting list memory component was designed
to read the list at the rising edge of the clock and to write the
entry at the falling edge, providing fast self-document list
update.

C. HAPI Controller
 The HAPI master controller accepts requests from the

main processor and executes the operation by synchronizing
its subordinate components, namely, the term matching and
posting-list processors. A FIFO queue is used to store
sequential user or main processor queries. A Direct Memory
Access (DMA) unit is used to direct memory transfer between
the HAPI and external system memory. An internal register
file stores the document identifier number for the posting list
insert or update operation.

Two control processes run in parallel to handle the HAPI
operations. One process handles the incoming instructions
either storing them into the FIFO queue or starting the term
related operation of the instructions on the term unit. The
immediate status of the term unit and internal bus determines
whether the instruction is immediately executed or queued.

IV. IMPLEMENTATION
We used the Altera Leonardo Spectrum, a suite of high-

level design tools for hardware synthesis, to design HAPI. In
Table 1, we illustrate the logic cell usage and speed
requirement of the various HAPI components for the target
device Cyclone EP1C20T400C, the smallest device in this
category. It is worth noting that the control logic of the
components requires only a small amount of cell resources. In

addition, embedding internal chip memory as a cache into the
design increases the performance. Later we used Altera
Quartus 4.1 web edition and Xilinx Foundation series ISA 6.2i
synthesis tools to compare the results.

FPGA chip memory varies from device to device. Different
hardware synthesis tools result in different memory sizes and
speeds. Thus, the generic memory design used in the HAPI
system can therefore support varying memory sizes and
speeds depending on the particular synthesis tool used. For
example, a logic block can be used as memory rather than in-
chip memory. Using feature oriented design methodologies,
device specific memory components were designed. This
approach also supports adding new memory components to
the design for future FPGA.

Dual port memory is used in the HAPI components. By
initiating the target specific memory feature described above,
the HAPI memory component can be mapped into device
memory blocks. For example, a HAPI memory component of
32 bit data width and 256 length takes only 8 Kbit (32 x 256)
memory space in the target device (Table 1) and runs at 356.2
MHz. The HAPI dual port memory is also the main
component of TermUnit and PostingUnit. Controllers of these
components (TermUnit and PostingUnit) with 32 x 256
memory unit use only 93 and 178 logic cells, respectively.
These totals are less than 1% of the target device.

We instantiated a 100 term HAPI unit with a single 32 bit
wide term unit and 32 bit wide 64-entry maximum posting list
units as a prototype system. The prototype has a 32-bit data
width. Scalable and flexible term and posting list components
optimized the performance of the HAPI system. The
configured HAPI component runs at 79.7 MHz for the
selected target device (Table 1). It should be noted that only
academic free-ware tools were used in the design, and hence,
the available optimization for both chip speed and space were
severely limited.

TABLE I
RESOURCES CLAIMED BY HAPI COMPONENTS.

Component LogicCell
(LC)

Memory
(bits)

Frequency
(MHz)

Generic DualPort
Memory (256x32) -- 8192

(3.13%) 356.2

TermUnit (256x32) 178
(0.89%)

8192
(3.13%) 146.1

Posting Unit (256x32) 93
(0.46%)

8192
(3.13%) 110.8

HAPI (100 terms) 8340
(41.58%)

212992
(81.25%) 79.7

(*Cyclone EP1C20T400C (20,060 LC, 294,912 Memory bits))

A project configuration file is used to instantiate the

configuration of the various HAPI components (Figure 8).
Clearly, configuring the HAPI system with multiple term units
exploits parallelism but at a cost of limiting further the
number of supported posting entries per term. Clearly chip
space is fixed; hence the greater number of terms, the lower is
the maximum number of posting entries per term. Similarly,
the maximum character length of the term affects chip space.
Regardless, all of these parameters can be instantiated to any

Buffer

Dual
Port

Memory

Post
Controller

Comparator

Mux

size or number.

Fig.8. HAPI Configuration File.

In Tables 2 and 3, various configurations of the HAPI

design were evaluated for FPGA and CPLD target devices.
Due to availability of target devices and their sizes, all the
desired configurations of HAPI could not be tested on all the
devices. A HAPI processor with a single term unit and
multiple term units running in parallel were also evaluated.
Term (16 x 32) unit represents a term unit with 16 terms and
each term is 32-bit word length. On the other hand Post (64 x
32) unit consists of 64 posting entries, and each posting entry
has a 32-bit length. By default a 32-bit posting list is divided
into a 24-bit term number and an 8-bit frequency value. A
Term (16 x 32) Unit requires 16 post units of configured size.
HAPI with 4 Terms (16 x 32) Posts (64 x 32) consists of 4
Term units and runs at 52.88 MHz while HAPI with 1 Terms
(64 x 32) Posts (64 x 32) has the same size term list but runs
at 37.52 MHz on an Altera Stratix II device (Table 3). HAPI
with 16 Terms (16 x 32) Posts (64 x 32) runs at 49.29 MHz
and HAPI with 1 Term (256 x 32) Posts (64 x 32) runs at
18.84 MHz respectively on a Xilinx Virtex II device (Table
3).

TABLE II

RESOURCES CLAIMED BY VARIOUS HAPI COMPONENTS FOR CPLD
TARGET DEVICE

Components Logic Cells Memory Bits MHz

1 Term (16x32) Posts(64x32) 2279(12%) 25472(6%) 59.84
1 Term (32x32) Posts(64x32) 4287(23%) 50560(10%) 43.45
1 Term (64x32) Posts(64x32) 8181(46%) 100736(24%) 37.78
1 Term (128x32) Posts(64x32) -- -- --
1 Term (256x32) Posts(64x32) -- -- --
2 Term (16x32) Posts(64x32) 4307(34%) 50560(12%) 55.23
4 Term (16x32) Posts(64x32) 8411(67%) 100736(24%) 52.88
8 Term (16x32) Posts(64x32) -- -- --
16 Term (16x32) Posts(64x32) -- -- --

TABLE III

RESOURCES CLAIMED BY VARIOUS HAPI COMPONENTS FOR FPGA
TARGET DEVICE

Components LUT Memory MHz

1 Term (16x32) Posts(64x32) 2879(3%) 18 53.58
1 Term (32x32) Posts(64x32) 5428(6%) 37 43.37
1 Term (64x32) Posts(64x32) 10512(11%) 66 33.29
1 Term (128x32) Posts(64x32) 20635(19%) 130 23.08
1 Term (256x32) Posts(64x32) 40997(46%) 258 18.84
2 Term (16x32) Posts(64x32) 5508(6%) 35 50.30
4 Term (16x32) Posts(64x32) 10790(12%) 69 50.08
8 Term (16x32) Posts(64x32) 21302(24%) 137 49.64
16 Term (16x32) Posts(64x32) 42451(48%) 279 49.29

HAPI provides a Reduced Instruction Set Computer (RISC)

like instruction set. Five basic instructions are defined to
perform document update and retrieval. The HAPI instruction
set layout is illustrated in Figure 9 with the HAPI instructions
listed in Table 4. Posting list identifiers are stored in the
register file by calling the StoreDoc instruction before calling
the UpdateTerm or InserTermDoc instructions. The StoreDoc
instruction is an independent operation, which can be called at
any time while HAPI is running. Term data follows the HAPI
instruction. The OpX function value determines the number
of the term slices that are the width of the data. The HAPI
controller reads the term from the data bus and either directs it
to TermUnit or stores it in FIFO if TermUnit is busy.

Fig.

St
Up

In
Re

In

T

list
inse
term
on
Ins
term
ide

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

PACKAGE HAPIconfig IS

type syntools is (Synopsis,Maxplus2,LeonardoSpectrum);
type targetdevices is (GEN, GENBUF, LEO, VIRTEX,
XILINX_SELECT, FLEX10K, MAX7000);

CONSTANT TARGET_DEVICE : targetdevices := VIRTEX;
CONSTANT TARGET_TOOL : syntools := LeonardoSpectrum;
..
CONSTANT TERM_address_width : POSITIVE := 7;
CONSTANT TERM_word_width : POSITIVE := 32;
CONSTANT TERM_slice : POSITIVE := 3;
CONSTANT Term_Slice_Address_Width : POSITIVE := 2;
..
CONSTANT TotalTERMUnit : POSITIVE := 1;
CONSTANT TotalTERMUnitAddressWidth : POSITIVE := 8;
..
CONSTANT POSTLIST_address_width : POSITIVE := 5;
CONSTANT POSTLIST_DocID_width : POSITIVE := 8;
CONSTANT POSTLIST_DocFrequency_width : POSITIVE := 16;

5) OpX(11)

 Opcode : instruction code from table 2
 Rs1, Rs2 : source registers
 Rd : target register
 OpX: number of term slices

Opcode(6) Rs1(5) Rs2(5) Rd(
 9. HAPI R – Type instruction layout.

TABLE IV
HAPI R–TYPE INSTRUCTION SET

OpCodes Code Description

oreDoc B"010001" Store document id into the registers.
dateTerm B"000101" Searches or adds the term, adds the

posting list.
sertTerm B"001001" Inserts the term without searching.
trieveTerm B"000001" Searches the term, returns posting

list
sertTermDoc B"011001" Inserts the term without searching,

adds the posting list.

he UpdateTerm instruction searches the term in the term
. If it does not find the term it adds it to the term list and
rts the posting as the first entry. However, if it finds the
, the posting entry is inserted into the right location based

the frequency of the updated term. On the other hand
ertTerm and InsertTermDoc are used to upload pre-listed

s into term unit. InsertTermDoc also inserts the document
ntifier and the frequency into the posting unit. The

RetrieveTerm searches the term in the TermUnit and returns
the corresponding entries from Posting Unit.

Figure 10 shows the waveform results of the posting list
operations. Additional I/O signals were added to the design to
demonstrate the internal operation of the posting list unit of
HAPI processor. We explain those signals respectively in the
next paragraphs. The posting list is configured to show clear
waveform results. The size of the document identifier field
and the frequency are set to one byte length. Input and output
data are represented in hexadecimal form in the waveform.
Documents with different frequency are inserted randomly.
The last read instruction shows the data in sorted order.

The Rst signal resets the HAPI component by setting all the
index references and counters to zeros. HAPI processes /
reads the instruction when the Select signal is set to one. The
Clk signal represents clock signal. Postno, Busy,
ReadComplete, OpCode, and InOutData are internal signals to
demonstrate how the HAPI system works. The InOutData is
the internal data bus that connects the HAPI controller, the
posting units, and the term units. The Read Doc1, 5
instruction is divided into 2 sections; opcode “Read” and the
data “0105”. “01” is the document and “05” the frequency,
respectively. The ReadComplete signal is a response signal
from the posting units. It indicates that the last posting list
data were put into databus in this case InOutData.

In waveform part 1, first we reset the posting unit, and then
execute the read instruction. The response of the unit was
complete because there are no data in the posting list unit. The
second instruction is insert document 1 with frequency
number of 16. The third instruction is read. In the first clock
cycle of the read instruction, the posting list unit gets the
instructions. In the second clock cycle, it puts the first entry
on the data bus (see InOutData output port), and in the third
clock cycle, the posting list unit sets the ReadComplete signal.
We inserted several documents into the posting list. In part 3
of the waveform, while the posting list is updating its entries
for the insert instructions, we send another insert instruction,
and the posting list busy signal is set to ‘0’ (busy). The last
instruction shown in part 4 is the read instruction, and the
results of the posting list appear on the output port of the
InOutData.

(a)

(b)

(c)

(d)

Fig. 10. Waveform of Posting List reads and updates.

V. EVALUATION
We compare the HAPI component against a software

implementation of a pruned inverted index file approach using
500 documents, a total of 378989 words. These documents
were chosen among the various web sites. In Table 5, we
show the source of these web pages. The web pages were
indexed and saved for both a software implementation and a
HAPI emulation. A total of 182736 words were indexed. Both
the software pruned indexing and HAPI emulation program
were written using c++ in the Visual Studio .NET 2003
development platform and compiled for high performance to
demonstrate a real world software approach for pruned
indexing. The program implements a software-implemented
pruned inverted index file algorithm and measures the
computation time for the requested operations. The same
program also executes the HAPI specification and counts
clock ticks to emulate the hardware.

TABLE V

SOURCE OF THE DOCUMENTS

Web Sites Links

www.abcnews.com 112
www.bbc.co.uk 78
www.cbsnews.com 65
www.cnn.com 47
www.foxnews.com 63
www.msnbc.com 40
www.dailynews.com 16
www.chicagosuntimes.com 43
Others 7

To eliminate unnecessary graphics and advertisement
information, printable versions of the pages were scanned to
get the word and term counts. In Figure 11, we present the
distribution of the total word count results. 65.3% of the
words of the 500 web sites were unique. Pronouns,
conjunction, and auxiliary verbs were counted as known
words. Numbers were counted separately. These two types of
words represented 32.1% and 2.5% of the total words,
respectively. In Figure 12, we show the processed term
distribution: the unique terms (85.6%), known terms (10.8%),
and numeric terms (3.6%).

Known Words
32.1%

Numeric Words
2.5%

Words
65.3%

Fig. 11. Total word distribution of the documents.

Numeric Terms
3.6%

Known Terms
10.8%

Terms
85.6%

Fig. 12. Distribution of the processed terms in the documents.

TABLE VI
WORD AND TERM COUNTS

 Unique Known Numeric

Total Words 247551 121776 9662
Processed Terms 156489 19664 6584
Result Terms 18542 54 533

The HAPI component demonstrates high performance for

the 500 web page document collection. In Figure 13, we show
the average number of ticks in hardware (including term units
of size 512 and posting units of size 256) and the software
implementation. While the software implementation depends
on the computer hardware and the operating system, we ran
the application several times with the same data and calculated

the average number of ticks used to insert every term. A total
of 182736 terms (Table 6) were used to evaluate the various
operations. It is worth noting that the software implementation
needs more time when the term list grows. The measured
computation times of the software and hardware
implementations do not include the input-output time.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0 20 40 60 80 100 120 140 160 180
Terms (thousand)

Ti
ck

s
(m

ill
io

ns
)

Software

Hardware

Fig 13. Software and hardware ticks.

TABLE VII

RESULTS OF HARDWARE AND SOFTWARE EMULATIONS IN TICKS

Number of Words Hardware Ticks* Software Ticks*

 40,000 12 15,825
 80,000 23 45,524
 120,000 34 78,511
 160,000 44 118,110
 180,000 49 138,588

* Millions of ticks, hardware system includes term units of size 512 and
posting units of size 256

In Table 7, we show the average number of ticks in

hardware (including term units of size 512 and posting units
of size 256) and the software implementation. We
instrumented the software inverted index algorithm on a 2.8
GHz Pentium IV machine running Windows XP. A two-plus
order of magnitude performance improvement in terms of
execution time over the software approach was noted.

Finally, we compared various configurations of a HAPI
component. We chose term unit sizes of 2048, 1024, 512, 256,
and 128 terms. Smaller term unit sizes result in a higher
control logic cost. In Figure 14, we show the average number
of ticks measured in the various HAPI systems based on
varying term unit sizes. The fastest one term processing speed
of the software inverted index algorithm measured on 2.8 GHz
Pentium IV machine running Windows XP is 773955 ticks. If
we choose a 512 Term HAPI, the overall speed-up factor is
2817 assuming that the HAPI component can run at equal
speeds. Even at a speed of only 70 MHz (slower than even
our implementation), HAPI still yields a speed-up factor of
over 70.

961.47

524.58

274.69

78.96
147.32

0

200

400

600

800

1000

1200

128 Term 256 Term 512 Term 1024 Term 2048 Term

Fig. 14. Various size HAPI units.

VI. CONCLUSION
HAPI sustains high search performance through hardware

acceleration and is ideally suited for consumer devices that
maintain small search repositories. In comparison to a
corresponding software implementation, up to a three order of
magnitude improvement was found for some configurations.
Using a pruned index algorithm improves response time and
the performance of inverted index files. We developed a re-
configurable and reusable hardware architecture called HAPI
that maintains a pruned inverted index. Using a parameterized
design, a varying number of varying length terms can be
stored in each system. The HAPI system executes as either an
attached co-processor or as a master-slave component.

We developed HAPI that maintains a pruned inverted
index. Efficient text search was our primary problem. The
HAPI design approach achieved high performance through
hardware parallelism and flexibility to changes in retrieval
algorithms and data structures through reconfigurable
computing. HAPI can be adopted by many applications that
use inverted index or pruned index algorithms. HAPI can
easily be modified for such application. Finding those
applications and adjusting HAPI for them can be done in the
future.

Using 500 web documents, we analyzed our
implementation of the HAPI component. The timings of a
software pruned inverted index implementation and HAPI
were compared over 182736 term operations. The various
term length HAPI systems evaluated outperformed the fastest
average speed recorded on the software approach.
Intellectual property related discussions are ongoing.

REFERENCES
[1] S. K. Agun and O. Frieder, “HAT: a hardware assisted Top-Doc

inverted index component,” ACM Twenty-Sixth SIGIR, Toronto, Ontario,
Canada, July 2003.

[2] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching
hardware for speeding up intrusion detection,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 1, pp. 99-107, 2005.

[3] A. Armstrong and J. Jiang, “Watermark embedded DCT indexing keys
for portable imaging devices,” International Conference on Consumer
Electronics, Digest of Technical Papers, pp. 126-127, 2002.

[4] H.-M. Bluthgen, and T. G. Noll, “A programmable processor for
approximate string matching with high throughput rate,” IEEE
International Conference on Application-Specific Systems,
Architectures, and Processors, pp. 309-316, 2000.

[5] D. Carmel and et al., “Static index pruning for information retrieval
systems,” ACM Twenty-Fourth SIGIR, pp. 43-50, Sept. 2001.

[6] P.-Y. Chen and R.-D. Chen, “An index coding algorithm for image
vector quantization,” Transaction on Consumer Electronics, vol. 49, no.
4, pp. 1513-1520, Nov. 2003.

[7] Fast Search Chip, www.fastsearch.com, 2002.
[8] E. K. Kang, S. G. Jahng and J. S. Choi “A new indexing method for

video retrieval using the rosette pattern,“ Transaction on Consumer
Electronics, vol. 46, no. 3, pp. 780-784, 2000.

[9] S. Li, T. Ikenaga, H. Takeda, M. Matsui and S. Goto, “A hardware
implementation of a content-based motion estimation algorithm for real-
time MPEG-4 video coding,” Transaction on Fundamentals of
Electronics, Communications and Computer Sciences, vol. E89-A, no. 4,
pp. 932-40, 2006.

[10] J. L. Nunez-Yanez, V. A. Chouliaras, D. Alfonso, “Hardware assisted
rate distortion optimization with embedded CABAC accelerator for the
H. 264 advanced video codec,” International Conference on Consumer
Electronics, pp. 95-96, 2005.

[11] B. C. Song; N. H. Kim, D. K. Lim, T. H. Kim, J. H. Ko, and K. W.
Chun, “Fast multi-resolution motion estimation algorithm and its VLSI
architecture,” International Conference on Consumer Electronics, pp.
71-72, 2005.

[12] TextFinder FDF4, www.paracel.com/products/textfinder.html, Paracel
Corporation, 2002.

[13] H. Xu, Y. Mita, and T. Shibata, “Intelligent internet search applications
based on VLSI associate processors,” Symposium on Applications and
the Internet, pp. 230-237, Feb. 2002.

S. Kagan Agun received Ms degree in computer science
in 1996 and PhD degree in 2004 from Illinois Institute of
technology. He was a student member of IEEE from 1994
to 2004, He has lectured at Illinois Institute of
Technology in the Computer Science Department while
he is completing his doctoral studies. He was a computer
consultant to the information technology companies since

2004. His research interests include information retrieval, hardware support to
information retrieval and reconfigurable computing.

Ophir Frieder (SM’93, F’02) is the IITRI Chair
Professor of Computer Science and the Director of the
Information Retrieval Laboratory at the Illinois Institute
of Technology. His research focuses on scalable
information processing systems. In addition to the IEEE,
he is a Fellow of the AAAS and ACM.

	Introduction
	Pruned Inverted Index
	HAPI Architecture
	Term Unit
	Posting List Units
	HAPI Controller

	Implementation
	Evaluation
	Conclusion

