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Abstract — We describe HAPI, a novel Hardware Assisted 

Pruned Index (HAPI) component. HAPI is a content indexing 
device based on a modified inverted index structure.  HAPI 
accommodates patterns of different lengths and supports a 
varied posting list versus term count feature sustaining high 
reusability and efficiency. The developed component can be 
used either as an internal slave component or as an external 
co-processor. HAPI is efficient in resource demands since the 
component controllers take only a minimal percentage of the 
target device space leaving the majority of the space to term 
and posting entries1. 
 

Index Terms — Inverted index, information retrieval, 
accelerator, hardware support.  

I. INTRODUCTION 
Inverted index file structures support the efficient searching 

of documents. Static index pruning [5] reduces the number of 
posting entries stored in the index while still providing 
comparable accuracy in query processing.  By storing the 
posting entries of only those documents for which a given 
term appears in frequently, the size of the posting list is 
reduced, improving runtime performance. Implementing such 
an approach in hardware, e.g., our Hardware Assisted Pruned 
Index (HAPI) component, aids in high-speed document 
searching of relatively small collections found on consumer 
devices such as a PDA or intelligent cell phone. The HAPI 
system was initially introduced as the HAT component [1], 
but the new name was recently adopted due to 
commercialization trademark considerations. 

Research in application acceleration of consumer electronic 
devices via hardware support is common. For example, in 
[11], a multi-resolution block-matching algorithm was 
proposed for MPEG-2 video encoding with a large search 
capability. A flexible Block Matching Unit was designed to 
accelerate content-based motion estimation for real-time 
MPEG-4 video coding in [9], and in [10], a hardware 
accelerator to reduce distortion optimization in the new H.264 
video coding standard is discussed. 

Indexing algorithms for consumer electronics devices 
likewise exist.  In [6], an index-coding algorithm for image 
vector quantization that uses dynamic tree coding is described. 

Fast content-based image browsing and retrieval in a database 
based on the rosette pattern is also proposed for consumer 
electronics in [8].  Using a neural network extraction 
technique together with a Discrete Cosine Transform (DCT) 
domain watermark allows the indexing of the image entirely 
in [3]. That technique allows for the real-time embedding of 
indexing data in popular image (JPEG) and video (MPEG) 
formats. 
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Regarding our domain of interest, accelerated text search, 
few hardware-supported accelerators exist. A Field 
Programmable Gate Array search accelerator that packs the 
information into pre-formatted text vectors and compares with 
a query for similarity is introduced in [13], while a 
programmable approximate string matching processor 
implementing a parallel similarity pattern matching is found in 
[4]. A recent effort presented in [2] is a reconfigurable 
memory based string-matching accelerator for intrusion 
detection. These efforts demonstrate the research community’s 
interest in hardware acceleration as a means to support 
efficient search. In terms of commercial interest, the 
TextFinder FDF4 [12] and the Fast Search Chip [7] are both 
recent search accelerator products.  The HAPI component 
described herein is a search accelerator custom suited for 
small text databases found in personal consumer devices. 

Rather than focusing on pattern matching or similarity 
measure computation, HAPI is a component that assists in the 
management of the inverted index. Mapping the highly 
accessed inverted index software structure onto a re-
configurable chip reduces the processing time associated with 
index access and simplifies the maintenance. HAPI also 
achieves high performance through hardware parallelism. The 
precision and feature-oriented design of the HAPI system 
supports component instantiation in multiple semiconductor 
process technologies so as to potentially increase the longevity 
of the approach. 

The remainder of this paper is organized as follows. In 
Section 2, we review the pruned inverted index algorithm. In 
Section 3, we present the HAPI architecture, while in Section 
4 we present our prototype VHDL implementation of a HAPI 
component. A comparison of the performance of a VHDL 
specification of HAPI versus that of a software pruned index 
module is presented in Section 5.  We conclude the paper in 
Section 6. 

II. PRUNED INVERTED INDEX 
Static index pruning [5] bounds the posting list by 

removing those posting entries corresponding to documents 



 

for which the term has lower significance.   That is, for each 
term in the index, up to a maximum number of posting entries 
is maintained.  The retained entries are stored in sorted order 
and correspond to documents where the given term appears 
the greatest number of times or has the greatest relevance.    

A pruned inverted index approach reduces the storage size, 
I/O, and processing times without noticeably degrading 
retrieval accuracy.   Besides these advantages, the pruned 
index approach bounds the posting list size and “regularizes” 
the storage, simplifying the design of a corresponding 
hardware accelerator. 

 

 
 

Fig. 1.  Logical pruned inverted index structure. 
 
An illustrative example is shown in Figure 1.  As shown, 

for each term stored in the index, corresponding posting 
entries, up to a maximum number, say 500, are maintained.  
These posting entries are stored in a sorted order according to 
the term’s frequency of appearance in the given document.  
Note that although logically pointers are shown, in practice, 
contiguous blocks of fixed length are allocated to each posting 
array.  This eliminates the need to store the “pointer” 
addresses, reducing the memory requirements of the posting 
list as shown in Figure 2. 

 

 
 

Fig. 2.  Physical pruned inverted index structure. 
 

III. HAPI ARCHITECTURE 
Each HAPI component design is parameterized so that it 

can be instantiated to any precision and promotes a variable 

maximum number of posting entries per term as well as a 
varying maximum term length. The number of bits is the most 
common precision in the design (bit-sliced precision), but a 
component can be divided into identical slices that can be 
reused to form any size of the same component known as 
component-sliced precision. The HDL generic statements can 
instantiate both small components (e.g., 1-bit pattern-matcher) 
and n-bit pattern-matcher systems in an iterative fashion. Such 
an approach results in a reusable design. A configuration file 
is used to keep the precision parameters that instantiate a 
particular HAPI structure. 

Flexibility is critical to maintaining longevity of the 
approach. Thus, for example, the memory used to construct 
the term and posting list storage offer both generic memories 
suitable for any platform or custom memories for a specific 
target device. It is convenient to implement related features in 
one design so that this design can be reused, as different 
features are required. Using the right design component also 
optimizes the performance through synthesis tools. While a 
single generic memory of HAPI takes 120 cells at a maximum 
clock speed of 100 MHz, Xilinx Virtex FPGA internal 
memory blocks based on select RAM take 55 cells at 300 
MHz. 

HAPI operates as either a co-processor or as an embedded 
component. When HAPI is used as an embedded component, 
it is associated with a general-purpose processor on a single 
chip as a logical processing unit in the same manner as an 
Arithmetic Logic Unit (ALU). The HAPI external interface 
(Figure 3) includes an address bus (Address) and a bi-
directional data bus (Data), both can be instantiated to any 
width. The output lines RW, Enable, and Ready are used to 
handle the memory access. HAPI also includes asynchronous 
Reset and Halt signals where reset initializes and halt 
terminates the operation of the HAPI component. The clock 
signal is the system clock. The Error output indicates an 
unrecoverable error state.  The term Found, Lstatus (Left 
Status), and Rstatus (Right Status) signals are used to stack up 
to 16 HAPI components in an array (Figure 4). These control 
signals are used to pass the status information including term 
full signal and term found signal between HAPI units. 

 

 
 
Fig. 3.  The HAPI External Interface. 

 
The HAPI architecture includes two main component types: 

term matching units and array of posting units. Each posting 
unit handles one posting list which stores the top M 
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documents in sorted order. These units are connected to the 
internal data bus and controller signals. These units are highly 
parallel and support master - slave (client - server) operations. 
While a query is retrieving data from a posting list unit, 
another unit executes sorted list update operations. 

 

 
 

Fig. 4.  A Possible HAPI Bank System. 
 
A third component, the HAPI Controller is the master 

controller that distributes the work and manages the 
communication with the main processor. The high 
performance bus interface can be a PCI bus or any other bus 
available on the market for re-configurable computing. This 
controller includes a FIFO queue to fetch main processor data 
and instructions.  A DMA unit is considered to provide 
efficient memory access for the co-processor approach.  The 
entire HAPI Architecture is shown in Figure 5.   

 

 
 

Fig. 5.  HAPI Architecture. 
 

A. Term Unit 
Rather than a character-by-character comparison, in the 

developed HAPI Term Unit, term matching is a single atomic 
action.  Matching is achieved by simultaneously comparing all 
the characters of the term with the characters of the pattern. N 
terms can be scanned in N clock cycles; that is, an average of 
one term per cycle. The data retrieval response time increases 

when the size of the term list increases. HAPI exploits the 
parallelism in term-matching to reduce the document search 
time. This provides faster execution since pattern search is 
done in parallel. The multiple, term-matching units that 
execute in parallel are shown in Figure 6. 

 

 
 
Fig. 6.  Term Unit Architecture. 

 
Each term unit stores one section of the term list. Term 

scanning can be achieved in parallel on all the units, but a new 
term is inserted (added) into the last unit, if previous units 
confirm that the term does not exist in their portion (list). A 
found signal is sent to other units to stop the execution of 
pattern searching. The result of the search, an index of the 
term, is returned to the HAPI Controller. 

Term lengths between 4 and 12 characters are supported. 
The HAPI term matching unit provides two approaches for 
word comparison, namely, either a single 12 character (96-bit 
comparator) or three 32-bit comparators are available insuring 
consistency with the 32-bit data path. Each slice has its own 
memory and comparator. Unused characters in a word are set 
to zero. A mask signal is provided to compare relevant slices 
of the word. The parameterized precision-oriented design of 
the term-matching unit supports a varying number of 
components and dimensions. 

B. Posting List Units 
The posting list unit is very similar to the term matching 

structure. In our implementation, eight bits are used for the 
term frequency count that supports up to 255 occurrences.  
(Actually, eight bits can accommodate 256 occurrences since 
a case with no occurrences will not result in a posting entry; 
yet for simplicity, we allow only up to 255 occurrences.)  
Given our 32-bit word instantiation, this leaves 24 bits for the 
document identifier. Clearly, a collection comprising of more 
than 16 million documents requires different instantiation 
parameters. However, at least for current instantiations of 
HAPI, we do not see a consumer device application requiring 
the storage of more than 16 million documents.  The posting 
list block architecture is illustrated in Figure 7. 

There is one posting list per term. Each posting unit forms a 
one-dimensional array that is connected to an internal data and 
control bus and supports master - slave operations. Posting list 
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sub-processors execute list update and posting list retrieval 
operations in parallel. 

 

 
 

Fig. 7.  HAPI Posting List Block Architecture. 
 
The updating of a posting list involves inserting a single 

document into a list in the proper location, potentially 
requiring the removal of the least relevant posting entry. It is 
clearly desirable to accomplish this within a single scan.  
Thus, the HAPI posting list memory component was designed 
to read the list at the rising edge of the clock and to write the 
entry at the falling edge, providing fast self-document list 
update. 

C. HAPI Controller 
  The HAPI master controller accepts requests from the 

main processor and executes the operation by synchronizing 
its subordinate components, namely, the term matching and 
posting-list processors. A FIFO queue is used to store 
sequential user or main processor queries. A Direct Memory 
Access (DMA) unit is used to direct memory transfer between 
the HAPI and external system memory.  An internal register 
file stores the document identifier number for the posting list 
insert or update operation. 

Two control processes run in parallel to handle the HAPI 
operations. One process handles the incoming instructions 
either storing them into the FIFO queue or starting the term 
related operation of the instructions on the term unit. The 
immediate status of the term unit and internal bus determines 
whether the instruction is immediately executed or queued. 

IV. IMPLEMENTATION 
We used the Altera Leonardo Spectrum, a suite of high-

level design tools for hardware synthesis, to design HAPI. In 
Table 1, we illustrate the logic cell usage and speed 
requirement of the various HAPI components for the target 
device Cyclone EP1C20T400C, the smallest device in this 
category. It is worth noting that the control logic of the 
components requires only a small amount of cell resources. In 

addition, embedding internal chip memory as a cache into the 
design increases the performance. Later we used Altera 
Quartus 4.1 web edition and Xilinx Foundation series ISA 6.2i 
synthesis tools to compare the results.  

FPGA chip memory varies from device to device. Different 
hardware synthesis tools result in different memory sizes and 
speeds.  Thus, the generic memory design used in the HAPI 
system can therefore support varying memory sizes and 
speeds depending on the particular synthesis tool used. For 
example, a logic block can be used as memory rather than in-
chip memory. Using feature oriented design methodologies, 
device specific memory components were designed. This 
approach also supports adding new memory components to 
the design for future FPGA.  

Dual port memory is used in the HAPI components. By 
initiating the target specific memory feature described above, 
the HAPI memory component can be mapped into device 
memory blocks. For example, a HAPI memory component of 
32 bit data width and 256 length takes only 8 Kbit (32 x 256) 
memory space in the target device (Table 1) and runs at 356.2 
MHz. The HAPI dual port memory is also the main 
component of TermUnit and PostingUnit. Controllers of these 
components (TermUnit and PostingUnit) with 32 x 256 
memory unit use only 93 and 178 logic cells, respectively.  
These totals are less than 1% of the target device.  

We instantiated a 100 term HAPI unit with a single 32 bit 
wide term unit and 32 bit wide 64-entry maximum posting list 
units as a prototype system. The prototype has a 32-bit data 
width. Scalable and flexible term and posting list components 
optimized the performance of the HAPI system.  The 
configured HAPI component runs at 79.7 MHz for the 
selected target device (Table 1).  It should be noted that only 
academic free-ware tools were used in the design, and hence, 
the available optimization for both chip speed and space were 
severely limited. 

TABLE I  
RESOURCES CLAIMED BY HAPI COMPONENTS. 

Component LogicCell 
(LC) 

Memory 
(bits) 

Frequency 
(MHz) 

Generic DualPort 
Memory (256x32) -- 8192 

(3.13%) 356.2 

TermUnit (256x32) 178 
(0.89%) 

8192 
(3.13%) 146.1 

Posting Unit (256x32) 93 
(0.46%) 

8192 
(3.13%) 110.8 

HAPI (100 terms)  8340 
(41.58%) 

212992 
(81.25%) 79.7 

(*Cyclone EP1C20T400C (20,060 LC, 294,912 Memory bits)) 
 
A project configuration file is used to instantiate the 

configuration of the various HAPI components (Figure 8). 
Clearly, configuring the HAPI system with multiple term units 
exploits parallelism but at a cost of limiting further the 
number of supported posting entries per term. Clearly chip 
space is fixed; hence the greater number of terms, the lower is 
the maximum number of posting entries per term. Similarly, 
the maximum character length of the term affects chip space. 
Regardless, all of these parameters can be instantiated to any 
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Fig.8.  HAPI Configuration File. 

 
In Tables 2 and 3, various configurations of the HAPI 

design were evaluated for FPGA and CPLD target devices. 
Due to availability of target devices and their sizes, all the 
desired configurations of HAPI could not be tested on all the 
devices. A HAPI processor with a single term unit and 
multiple term units running in parallel were also evaluated. 
Term (16 x 32) unit represents a term unit with 16 terms and 
each term is 32-bit word length. On the other hand Post (64 x 
32) unit consists of 64 posting entries, and each posting entry 
has a 32-bit length. By default a 32-bit posting list is divided 
into a 24-bit term number and an 8-bit frequency value. A 
Term (16 x 32) Unit requires 16 post units of configured size. 
HAPI with 4 Terms (16 x 32) Posts (64 x 32) consists of 4 
Term units and runs at 52.88 MHz while HAPI with 1 Terms 
(64 x 32) Posts (64 x 32) has the same size term list but runs 
at 37.52 MHz on an Altera Stratix II device (Table 3). HAPI 
with 16 Terms (16 x 32) Posts (64 x 32) runs at 49.29 MHz 
and HAPI with 1 Term (256 x 32) Posts (64 x 32) runs at 
18.84 MHz respectively on a Xilinx Virtex II device (Table 
3). 

 
TABLE II  

RESOURCES CLAIMED BY VARIOUS HAPI COMPONENTS FOR CPLD 
TARGET DEVICE 

Components Logic Cells Memory Bits MHz 

1 Term (16x32) Posts(64x32) 2279(12%) 25472(6%) 59.84 
1 Term (32x32) Posts(64x32) 4287(23%) 50560(10%) 43.45 
1 Term (64x32) Posts(64x32) 8181(46%) 100736(24%) 37.78 
1 Term (128x32) Posts(64x32) -- -- -- 
1 Term (256x32) Posts(64x32) -- -- -- 
2 Term (16x32) Posts(64x32) 4307(34%) 50560(12%) 55.23 
4 Term (16x32) Posts(64x32) 8411(67%) 100736(24%) 52.88 
8 Term (16x32) Posts(64x32) -- -- -- 
16 Term (16x32) Posts(64x32) -- -- -- 

 
TABLE III 

RESOURCES CLAIMED BY VARIOUS HAPI COMPONENTS FOR FPGA 
TARGET DEVICE 

Components LUT Memory MHz 

1 Term (16x32) Posts(64x32) 2879(3%) 18 53.58 
1 Term (32x32) Posts(64x32) 5428(6%) 37 43.37 
1 Term (64x32) Posts(64x32) 10512(11%) 66 33.29 
1 Term (128x32) Posts(64x32) 20635(19%) 130 23.08 
1 Term (256x32) Posts(64x32) 40997(46%) 258 18.84 
2 Term (16x32) Posts(64x32) 5508(6%) 35 50.30 
4 Term (16x32) Posts(64x32) 10790(12%) 69 50.08 
8 Term (16x32) Posts(64x32) 21302(24%) 137 49.64 
16 Term (16x32) Posts(64x32) 42451(48%) 279 49.29 
 
HAPI provides a Reduced Instruction Set Computer (RISC) 

like instruction set. Five basic instructions are defined to 
perform document update and retrieval. The HAPI instruction 
set layout is illustrated in Figure 9 with the HAPI instructions 
listed in Table 4. Posting list identifiers are stored in the 
register file by calling the StoreDoc instruction before calling 
the UpdateTerm or InserTermDoc instructions. The StoreDoc 
instruction is an independent operation, which can be called at 
any time while HAPI is running. Term data follows the HAPI 
instruction.  The OpX function value determines the number 
of the term slices that are the width of the data.  The HAPI 
controller reads the term from the data bus and either directs it 
to TermUnit or stores it in FIFO if TermUnit is busy. 
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LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
 
PACKAGE HAPIconfig IS 
 
type syntools is (Synopsis,Maxplus2,LeonardoSpectrum); 
type targetdevices is (GEN, GENBUF, LEO, VIRTEX, 
XILINX_SELECT, FLEX10K, MAX7000); 
 
CONSTANT TARGET_DEVICE : targetdevices := VIRTEX; 
CONSTANT TARGET_TOOL : syntools := LeonardoSpectrum; 
.. 
CONSTANT TERM_address_width : POSITIVE := 7; 
CONSTANT TERM_word_width : POSITIVE := 32; 
CONSTANT TERM_slice : POSITIVE := 3;    
CONSTANT Term_Slice_Address_Width : POSITIVE := 2; 
.. 
CONSTANT TotalTERMUnit : POSITIVE := 1; 
CONSTANT TotalTERMUnitAddressWidth : POSITIVE := 8; 
.. 
CONSTANT POSTLIST_address_width : POSITIVE := 5;  
CONSTANT POSTLIST_DocID_width : POSITIVE := 8; 
CONSTANT POSTLIST_DocFrequency_width : POSITIVE := 16;

5) OpX(11)

 
 
 
        Opcode : instruction code from table 2 
        Rs1, Rs2 : source registers 
        Rd : target register 
        OpX: number of term slices 

Opcode(6) Rs1(5) Rs2(5) Rd(
 9.  HAPI R – Type instruction layout. 

TABLE IV 
HAPI R–TYPE INSTRUCTION SET 

OpCodes Code Description 

oreDoc B"010001" Store document id into the registers. 
dateTerm B"000101" Searches or adds the term, adds the 

posting list. 
sertTerm B"001001" Inserts the term without searching. 
trieveTerm B"000001" Searches the term, returns posting 

list 
sertTermDoc B"011001" Inserts the term without searching, 

adds the posting list. 

he UpdateTerm instruction searches the term in the term 
. If it does not find the term it adds it to the term list and 
rts the posting as the first entry. However, if it finds the 
, the posting entry is inserted into the right location based 

the frequency of the updated term. On the other hand 
ertTerm and InsertTermDoc are used to upload pre-listed 

s into term unit. InsertTermDoc also inserts the document 
ntifier and the frequency into the posting unit. The 



 

RetrieveTerm searches the term in the TermUnit and returns 
the corresponding entries from Posting Unit. 

Figure 10 shows the waveform results of the posting list 
operations. Additional I/O signals were added to the design to 
demonstrate the internal operation of the posting list unit of 
HAPI processor. We explain those signals respectively in the 
next paragraphs. The posting list is configured to show clear 
waveform results. The size of the document identifier field 
and the frequency are set to one byte length. Input and output 
data are represented in hexadecimal form in the waveform. 
Documents with different frequency are inserted randomly. 
The last read instruction shows the data in sorted order. 

The Rst signal resets the HAPI component by setting all the 
index references and counters to zeros. HAPI processes / 
reads the instruction when the Select signal is set to one. The 
Clk signal represents clock signal. Postno, Busy, 
ReadComplete, OpCode, and InOutData are internal signals to 
demonstrate how the HAPI system works. The InOutData is 
the internal data bus that connects the HAPI controller, the 
posting units, and the term units. The Read Doc1, 5 
instruction is divided into 2 sections; opcode “Read” and the 
data “0105”. “01” is the document and “05” the frequency, 
respectively. The ReadComplete signal is a response signal 
from the posting units. It indicates that the last posting list 
data were put into databus in this case InOutData. 

In waveform part 1, first we reset the posting unit, and then 
execute the read instruction. The response of the unit was 
complete because there are no data in the posting list unit. The 
second instruction is insert document 1 with frequency 
number of 16. The third instruction is read. In the first clock 
cycle of the read instruction, the posting list unit gets the 
instructions. In the second clock cycle, it puts the first entry 
on the data bus (see InOutData output port), and in the third 
clock cycle, the posting list unit sets the ReadComplete signal. 
We inserted several documents into the posting list. In part 3 
of the waveform, while the posting list is updating its entries 
for the insert instructions, we send another insert instruction, 
and the posting list busy signal is set to ‘0’ (busy). The last 
instruction shown in part 4 is the read instruction, and the 
results of the posting list appear on the output port of the 
InOutData. 

 

 
(a) 

 
(b) 
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Fig. 10.  Waveform of Posting List reads and updates. 

V. EVALUATION 
We compare the HAPI component against a software 

implementation of a pruned inverted index file approach using 
500 documents, a total of 378989 words. These documents 
were chosen among the various web sites.  In Table 5, we 
show the source of these web pages. The web pages were 
indexed and saved for both a software implementation and a 
HAPI emulation. A total of 182736 words were indexed. Both 
the software pruned indexing and HAPI emulation program 
were written using c++ in the Visual Studio .NET 2003 
development platform and compiled for high performance to 
demonstrate a real world software approach for pruned 
indexing. The program implements a software-implemented 
pruned inverted index file algorithm and measures the 
computation time for the requested operations. The same 
program also executes the HAPI specification and counts 
clock ticks to emulate the hardware. 

 
TABLE V 

SOURCE OF THE DOCUMENTS 

Web Sites Links 

www.abcnews.com 112 
www.bbc.co.uk 78 
www.cbsnews.com 65 
www.cnn.com 47 
www.foxnews.com 63 
www.msnbc.com 40 
www.dailynews.com 16 
www.chicagosuntimes.com 43 
Others 7 

 



 

To eliminate unnecessary graphics and advertisement 
information, printable versions of the pages were scanned to 
get the word and term counts. In Figure 11, we present the 
distribution of the total word count results.  65.3% of the 
words of the 500 web sites were unique. Pronouns, 
conjunction, and auxiliary verbs were counted as known 
words.  Numbers were counted separately.  These two types of 
words represented 32.1% and 2.5% of the total words, 
respectively. In Figure 12, we show the processed term 
distribution: the unique terms (85.6%), known terms (10.8%), 
and numeric terms (3.6%).    
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Fig. 11.  Total word distribution of the documents. 
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Fig. 12.  Distribution of the processed terms in the documents. 

 
 

TABLE VI 
WORD AND TERM COUNTS 

 Unique Known Numeric 

Total Words 247551 121776 9662 
Processed Terms 156489 19664 6584 
Result Terms 18542 54 533 
 
The HAPI component demonstrates high performance for 

the 500 web page document collection. In Figure 13, we show 
the average number of ticks in hardware (including term units 
of size 512 and posting units of size 256) and the software 
implementation. While the software implementation depends 
on the computer hardware and the operating system, we ran 
the application several times with the same data and calculated 

the average number of ticks used to insert every term. A total 
of 182736 terms (Table 6) were used to evaluate the various 
operations. It is worth noting that the software implementation 
needs more time when the term list grows. The measured 
computation times of the software and hardware 
implementations do not include the input-output time. 

 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0 20 40 60 80 100 120 140 160 180
Terms (thousand)

Ti
ck

s 
(m

ill
io

ns
)

Software

Hardware

 
 
Fig 13. Software and hardware ticks. 

 
TABLE VII 

RESULTS OF HARDWARE AND SOFTWARE EMULATIONS IN TICKS 

Number of Words Hardware Ticks* Software Ticks* 

          40,000 12 15,825 
          80,000 23 45,524 
        120,000 34 78,511 
        160,000 44 118,110 
        180,000 49 138,588 

* Millions of ticks, hardware system includes term units of size 512 and 
posting units of size 256 

 
In Table 7, we show the average number of ticks in 

hardware (including term units of size 512 and posting units 
of size 256) and the software implementation. We 
instrumented the software inverted index algorithm on a 2.8 
GHz Pentium IV machine running Windows XP. A two-plus 
order of magnitude performance improvement in terms of 
execution time over the software approach was noted. 

Finally, we compared various configurations of a HAPI 
component. We chose term unit sizes of 2048, 1024, 512, 256, 
and 128 terms. Smaller term unit sizes result in a higher 
control logic cost. In Figure 14, we show the average number 
of ticks measured in the various HAPI systems based on 
varying term unit sizes. The fastest one term processing speed 
of the software inverted index algorithm measured on 2.8 GHz 
Pentium IV machine running Windows XP is 773955 ticks. If 
we choose a 512 Term HAPI, the overall speed-up factor is 
2817 assuming that the HAPI component can run at equal 
speeds.  Even at a speed of only 70 MHz (slower than even 
our implementation), HAPI still yields a speed-up factor of 
over 70. 
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Fig. 14.  Various size HAPI units. 

VI. CONCLUSION  
HAPI sustains high search performance through hardware 

acceleration and is ideally suited for consumer devices that 
maintain small search repositories. In comparison to a 
corresponding software implementation, up to a three order of 
magnitude improvement was found for some configurations. 
Using a pruned index algorithm improves response time and 
the performance of inverted index files. We developed a re-
configurable and reusable hardware architecture called HAPI 
that maintains a pruned inverted index.  Using a parameterized 
design, a varying number of varying length terms can be 
stored in each system.  The HAPI system executes as either an 
attached co-processor or as a master-slave component. 

We developed HAPI that maintains a pruned inverted 
index. Efficient text search was our primary problem. The 
HAPI design approach achieved high performance through 
hardware parallelism and flexibility to changes in retrieval 
algorithms and data structures through reconfigurable 
computing. HAPI can be adopted by many applications that 
use inverted index or pruned index algorithms. HAPI can 
easily be modified for such application. Finding those 
applications and adjusting HAPI for them can be done in the 
future. 

Using 500 web documents, we analyzed our 
implementation of the HAPI component. The timings of a 
software pruned inverted index implementation and HAPI 
were compared over 182736 term operations. The various 
term length HAPI systems evaluated outperformed the fastest 
average speed recorded on the software approach.   
Intellectual property related discussions are ongoing. 
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