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ABSTRACT

The fast evolution of scanning and computing technologies have led to the creation of large collections of scanned
paper documents. Examples of such collections include historical collections, legal depositories, medical archives, and
business archives. Moreover, in many situations such as legal litigation and security investigations scanned collections
are being used to facilitate systematic exploration of the data. It is almost always the case that scanned documents
suffer from some form of degradation. Large degradations make documents hard to read and substantially deteriorate
the performance of automated document processing systems. Enhancement of degraded document images is normally
performed assuming global degradation models. When the degradation is large, global degradation models do not
perform well. In contrast, we propose to estimate local degradation models and use them in enhancing degraded
document images. Using a semi-automated enhancement system we have labeled a subset of the Frieder diaries
collection.1 This labeled subset was then used to train an ensemble classifier. The component classifiers are based
on lookup tables (LUT) in conjunction with the approximated nearest neighbor algorithm. The resulting algorithm
is highly efficient. Experimental evaluation results are provided using the Frieder diaries collection.1

Keywords: image enhancement, historical documents, document degradation models, ensemble classification, doc-
ument image analysis

1. INTRODUCTION

The enhancement of old typewritten historical documents is very essential and needful for preservation and contin-
uation of information. They currently exist electronically as scanned document images. Not only is the quality of
the typewritten text poor and non-uniform, many of these documents have also deteriorated due to age of paper and
ink used. The characteristics of the deterioration include noisy background, paper discoloration, creases, blurred,
merged and faint text.2 Usually, typewritten text contains non-uniform characters, some darker or faint than others,
depending on the amount of force used in striking the typewriter keys3 while some of the characters may be blotted
such as the ’e’s, as illustrated in Fig. 1. The degradation of the text hinder the readability of these documents, as
seen in Fig. 1, and the level and type of degradation vary from document to document. Thus, there is need for an
adaptable automated system to enhance these documents to improve their readability.

The existing state of the art document enhancement systems for processing historical documents focus primarily on
segmentation techniques which involves foreground-background separation. The text in the documents is classified
as foreground while everything else is rendered as background. While these systems perform well in obtaining a
relatively uniform background, they are unable to effectively correct the distortions in the foreground such as blotted
text, broken characters, or overwritten characters. Sometimes, the text in the document are further degraded during
the foreground-background process. Our proposed approach goes beyond the current state of the art systems in its

(a) ”blotted/filled characters” (b)”fainted text”
Figure 1. Different Degradations in Typewritten Documents



(a) Original distorted document image (b) Binary form of distorted image (c) Ground Truth image obtained manually
Figure 2. Example of the binary image format and the ground truth data derived from an original distorted document image
using the interactive document enhancement software

ability to enhance text degradations in typewritten documents, beyond the foreground-background separation phase,
to improve the readability of the documents. We present an automated adaptive system, based on look up table
(LUT) training and classification algorithms, which learns the patterns of text degradation and the corresponding
enhancements in the document images. We train on real degraded historical documents obtained from a subset of the
Yad Vashem Holocaust museum document collection.1 The ground truth data for these degraded document images
is generated manually by a human expert using an interactive document enhancement software (a continuation of
the existing work of Agam et al.4). The software allows the human expert to manually correct the distortions in a
document character by character to generate the ideal uniform clean text document image of the degraded image, as
illustrated in Fig. 2. We evaluate the performance of our system by applying it to a set of test data also obtained from
the collection. The performance of our system is measured both quantitatively (Pixel Accuracy) and qualitatively
(enhanced readability) in comparison to the ground truth data. Our system is able to perform the task of enhancing
a single document image in less than 1 minute thus making it a more efficient way to correct a large set of documents
quickly compared to the manual process using the interactive software which can take up to 5 hours per document.

Our main contributions are (1) the simplicity and novelty of the design of degraded document image enhancement
LUT classifiers; and (2) an efficient system that can process multiple documents in one pass. Our LUT classifier
system can be used as an add-on to existing foreground-background separation systems to further improve their
results. In the subsequent sections, we describe the proposed approach fully and then present the experimental
results obtained to validate our approach. We also compare our work to related systems in Sec. 2.

2. RELATED WORK

Some work has been done on conversion of historical documents to a logically indexed, searchable form by An-
tonacoupoulos et al. in.2 Their approach is based on content extraction using semantic information which involves
the expert knowledge of a historian/archivist. In contrast, our approach does not entail having knowledge of the
underlying information contained in the document. Antonacoupoulos et al. in5 attempt to enhance these documents
to prepare them for optimal OCR performance using an off-shelf OCR package. They attempt to enhance the doc-
uments by individually segmenting and enhancing each character while our proposed approach learns degradation
patterns of the characters in the context of an entire document image.

The existing foreground-background separation based systems for enhancing degraded historical documents in-
cludes the work done by Gatos et al. in6 and Agam et al. in.4 The system developed by Gatos et al. binarizes
historical documents based on adaptive threshold segmentation and various pre- and post-processing steps. An it-
erative approach for segmenting degraded document images is described by Kavallieratou et al.7 The work done by
Agam et al. is based on probabilistic models utilizing the expectation maximization (EM) algorithm. Our proposed
system goes beyond this class of system as we focus on correction of degradations in the foreground. We handle
the foreground-background separation during the preprocessing stage of our system. Our system can be employed
as an add-on to these systems. This is beneficial, as such systems sometimes introduce additional distortions in the
foreground during the process of background removal. Our classifier can be applied to the binary image outputs to
correct any additional foreground distortions incurred during the segmentation process.

Molton et al. in8 apply pattern recognition concepts of illumination and shadowing to enhancement of incised
documents. Their work deals with tablets, which are a special class of historical documentary source, unlike our work
which focuses on typewritten documents. Andra et al. in9 train classifiers to detect styles of pattern in documents
in order to classify documents from similar sources. The context and focus of their work differs from our proposed
approach as we focus on learning degradation patterns with the goal of enhancement, not to determine the source.
As-Sadhan et al. in10 did a comparative study of applying different algorithms such as Support Vector Machine



(SVM), Principal Component Analysis (PCA), and Single-Nearest-Neighbor Method (1-NNM) to distorted-character
recognition for OCR-based techniques.

Zheng et al. in11 train classifiers to restore document images based on morphological degradation models. They
build a look up table, similar to our approach, using a 3× 3 filter. However, their look up table consist of a matrix
mapping each entry to at most 512 possible outputs, unlike our approach that maps each entry to two possible
outputs. We also use real degraded document images during our training phase which differs from their approach
of utilizing synthetic images generated using the Kanungo morphological degradation model.12 Their degradation
model is well suited for uniform text document images corrupted during document generation and copying processes
but unable to handle the degradation characteristics of historical typewritten document images, the core of our work.
We discuss more extensively the detail of the comparison of our approach to Zheng et al.’s restoration algorithm
based on Kanungo’s degradation model in Sec. 4.

3. ENSEMBLE LUT CLASSIFICATION

The core of our work is the design of effective classifiers that enhance the readability of historical typewritten
documents by learning the patterns of degradation and enhancement from the training data set. The training data
set consists of pairs of a binary degraded document image and the corresponding ground truth image. The goal of
the training phase is to build the look up table (LUT) which is utilized during the enhancement phase to correct the
degradations in the document image, as we describe in detail in Sec. 3.1 and Sec. 3.2.

The LUT classifier processes binary document images consisting of only black (foreground) and white (back-
ground) pixels. Historical documents are currently stored electronically as scanned color or grayscale document
images. Thus, we preprocess the document images to convert each scanned degraded document image to a binary
image by separating the foreground from the background. The binary image can then be effectively processed by
our classifier. The preprocessing phase attempts to remove the background degradations to generate a uniform back-
ground. The nature of degradation of the backgrounds varies from document to document for example, some have a
really dark streaky background while others have blots of ink stains, wrinkling, etc.2 There are different segmentation
algorithms that are adaptive to the varied nature of degradation of background in the document images which can
be employed to obtain a binary document image, as discussed in Sec. 2. We utilize the adaptive Min-Max threshold
algorithm4 (a Bremen segmentation technique) in the segmentation process because of its known efficiency.4 Our
LUT classifier system is portable in that it is adaptable to other foreground-background separation systems. If there
is an existing binary document image, obtained using another segmentation technique, the distortions in the text in
the binary image can still be enhanced by feeding it directly into our system, bypassing our preprocessing stage.

3.1 Training Phase: Building the Look Up Table (LUT)
Suppose we have an image pair in our training data set T = {(D,G)}, where D is the binary degraded document
image and G, the corresponding ground truth image. Let N represent an arbitrary w×w neighborhood bit pattern in
D with pi representing its center pixel located at position (x, y) while po denote the pixel at same position (x, y) in G.
Let p(x, y) represent the pixel value at (x, y) and b(x, y) represent the binary code for the neighborhood N centered
at (x, y). The i -th bit of b(x, y), where i ∈ [0, w2−1], is denoted by bi(x, y). We have bi(x, y) = p(x+Lx(i), y+Ly(i))
where L(i) ≡ (Lx(i), Ly(i)) is the relative displacement of the i -th pixel in the neighborhood with respect to (x, y).
The relative displacements are given by Lx(i) = i%w−bw/2c and Ly(i) = i/w−bw/2c. E.g. for a 3×3 neighborhood:
Lx = [-1 0 1 -1 0 1 -1 0 1] and Ly = [-1 -1 -1 0 0 0 1 1 1]. Using bi(x, y) as above, the binary code b(x, y) is given
by: b(x, y) =

∑w2−1
i=0 bi ∗ 2i.

Let P (po|N) be the conditional probability of the output center pixel po at (x, y) in D given the neighborhood
information N centered at (x, y) in D. The goal of the training phase is to obtain the data needed to estimate
P (po|N) for all neighborhood patterns found in D. For each occurrence of a N in D, we obtain its frequency set
{F (1|N), F (0|N)}, defined as the number of times po is a foreground pixel, and background pixel respectively, for all
occurrences of N ∈ D. (We represent foreground pixels as 1 and background pixels as 0). We estimate P (po|N) using
its frequency set information. The LUT is a mapping of all the unique patterns of N existing in D to its frequency
set {F (1|N), F (0|N)}, as illustrated in Fig. 3. The neighborhood size the LUT considers, w×w, can also be viewed
as the dimensionality of its filter window.

To build the LUT, we scan each pixel p in D to obtain its corresponding N except for two sets of pixels which
we consider not-relevant. The first not-relevant set are all pixels for we cannot obtain a complete neighborhood



Figure 3. An example of the 12 most occurring entries in a look up table (LUT) generated using a 3x3 filter window. Each
entry consists of unique neighborhood bit patterns N found in the degraded document image and the corresponding frequency
set of F (1|N) and F (0|N).

pattern in D, i.e., the boundary pixels located at position {(x, y)|x < w/2∨ x > n−w/2∨ y < w/2∨ y > m−w/2}
where (m,n) are the image dimensions of D. This does not diminish the effectiveness of the classifier, as there
are generally no foreground data contained in the border region of document images. The second set are all pixels
having a neighborhood of only white pixels, i.e. pixels at position {(x, y)|b(x, y) = 0} . These pixels are also
overlooked since N has no foreground data. This greatly reduces the number of pixels we have to process in D. The
algorithm to build a LUT (w, T ), given T = {(D,G)i, i = 1, . . . , t}, is detailed in algorithm 1.

Algorithm 1 Build-LUT

Build-LUT (w, T = {(D, G)i, i = 1, . . . , t})
1: F (1|N) = 0; F (0|N) = 0 //initialize frequency sets to zero
2: for all (D,G)i ∈ T do
3: for all relevant pi(x, y) ∈ D do
4: obtain N = b(x, y)
5: if po(x, y) = 1 then
6: F (1|N) + 1
7: else {po(x, y) = 0}
8: F (0|N) + 1
9: end if

10: end for
11: end for
end buildLUT

3.2 Enhancement Phase: LUT Classification

During the enhancement phase, we apply the LUT classifier to a given degraded document image D 6∈ T (i.e. the
training data set) to obtain its enhanced image Ĝ. The basic LUT classifier is an ensemble of two classifiers: (i)
ANN cluster classifier, and (ii) Maximum Likelihood (M-L) decision classifier. To enhance D given a LUT (w, T ) we
scan each pixel p(x, y) ∈ D, using the filter window size w, to obtain its corresponding N = b(x, y). (The same set
of pixels ignored during the training phase are also overlooked during the enhancement phase). There are two main
steps in the enhancement process: the first step is the lookup operation of N , handled by the ANN cluster classifier,
while the second step is the pixel classification decision of the output center pixel, performed by the M-L decision
classifier. Both steps are described in detail below.

ANN Cluster Classifier

During the enhancement process, it is important that our LUT can generalize well to be able to process unseen
samples (i.e. values of N not encountered during the training phase). For example if we have a 5× 5 neighborhood,
even a small difference in one pixel out of the 25 total pixels can cause the lookup operation of N in the LUT to
fail, if the slight variation was never trained for. To overcome this, we perform the lookup operation using an ANN



cluster classifier which utilizes the k -Nearest Neighbors Search Algorithm by ANN13 to search for similar entries
to the unseen sample. ANN performs approximate nearest neighbor searching, based on the use of standard and
priority search in kd-trees and balanced box-decomposition (bbd) trees. The ANN classifier returns the frequency
set of N, if N is found in the LUT, or the frequency sets for k most similar entries of N found in the LUT. This
output is passed on to the M-L Classifier to make a pixel classification decision. Thus, the lookup operation classifies
each pattern of degradation i.e. N to exactly the same or k most similar patterns of N existing in the LUT.

Each entry N in a given LUT is represented using its binary code b(x, y), as described in Sect. 3.1, that are
preprocessed by ANN into a kd-tree14 data structure. To compute the similarity distance for any two entries, ANN
uses the Euclidean distance between their binary codes. For any query point N 6∈ LUT the ANN classifier is able to
report the k nearest entries with ε approximation to N efficiently. The ε specifies the maximum approximation error
bound, which permits us to control the tradeoff between accuracy and running time. We show the impact of both
ANN parameters, k and ε, on the running time and accuracy of our LUT classifier in Sec. 4.

Maximum Likelihood Classifier

The M-L classifier makes a pixel classification decision by estimating the conditional probability of the output pixel
P (po|N), as defined in Sect. 3.1, using the frequency set information of N obtained from the ANN classifier.

po(x, y) = argmax
p∈{0,1}

P(p|N) (1)

The computation of the value of output center pixel given its neighborhood information N is essentially the maximum
likelihood estimate of po(x, y) being a foreground or a background pixel using the conditional probability obtained
from the associated frequency set {F (1|N), F (0|N)}. Given the frequency of occurrence of po(x, y) ∈ G being 1 or
0 for N during training, we estimate the value of po(x, y) ∈ Ĝ to be 1 if F (1|N) > F (0|N), and vice-versa for 0. If
F (1|N) = F (0|N), we take no action: po(x, y) = p(x, y).

The ANN classifier may determine k neighbors. It sends the frequency set information for a set {Ni, i = 1, . . . , k} ⊂
LUT (w, T ) to the M-L classifier. If k > 1, the pixel classification decision of po(x, y) is based on the majority vote
over the set {Ni, i = 1, . . . , k}. For each N in the set, we obtain its estimate of po(x, y) using equation (1) and then
compute the majority vote over the individual estimates obtained. If there is no majority vote, then no action is
taken i.e. po(x,y) = p(x,y).

The enhancement process is summarized in Algorithm 2.

3.3 Performance of LUT Classifier

Theoretically, the size of the LUT (‖{N }‖) is bounded by O(2w2
) as N = b(x, y) has a length of w2. This implies

an exponential memory requirement which will translate to a very inefficient system. For example, using a w-5 filter
for an LUT would require a memory storage of about 33MB ( 225) while for w-7 filter 524288GB ( 249)! Intuitively,
the actual bound of the LUT will be much less given that not all possible pixel pattern configurations will exist
in typewritten document images. To validate this assumption we measured the number of different neighborhoods
occurring in actual documents images. We used a set of 25 document image pairs to observe the size of the LUT for
w = 5, 7, 9. From the experimental results, we saw that a small percentage of all the possible bit patterns exist in
document images. The percentage of entries to the total number of theoretically possible entries actually decreased
exponentially as w increased. Therefore the bound on the size of the LUT is ¿ 2w2

. Our experiments, as discussed
in Sect. 4, demonstrate that a small set of images is sufficient to learn the degradation and enhancement patterns.
To improve the performance of the LUT, we utilize the map container data structure. The performance of lookup
operation for each N is O(log(||T ||)). For a given entry N in the LUT, we define the frequency marginal difference
as the difference between {F (1|N) and F (0|N)} in its corresponding frequency set. Usually in a LUT, there are
some entries that have very little or no marginal differences for example, frequency sets such as {1, 0}, {245, 247}.
This implies that the probability for choosing foreground or background as the output pixel when we encounter
the pattern N during the enhancement phase is almost equal. Thus, if we eliminate these entries that have very
small marginal difference from our LUT, we may improve the performance of our classifier by trimming away trivial
entries. This process is referred to as ’Pruning’ the LUT. The pruning threshold PT is defined as the minimum
absolute marginal difference allowed for the frequency set of each N retained in the LUT. We present and discuss
experimental results of pruning on the performance of the classifier in Sec. 4.



Algorithm 2 Enhance-D to obtain Ĝ

Enhance-D(w, LUT, ε, k)
1: arrange LUT into ANN structure with parameters ε and k
2: for all relevant pi(x, y) ∈ D do
3: obtain N = b(x, y)
4: if N ∈ LUT then
5: ANN Classifier returns {F (1|N), F (0|N)} for N
6: set po(x, y) ∈ Ĝ = 0\1\pi(x, y) using equation 1
7: else {N 6∈ LUT}
8: vote0 = 0; vote1 = 0 //counters for majority voting
9: ANN Classifier returns {F (1|N), F (0|N)} for {Ni, i = 1, . . . , k}

10: for i = 1 to k do
11: (using equation 1 based on Ni)
12: if po(x, y) = 0 then
13: vote0 + 1
14: else if po(x, y) = 0 then
15: vote1 + 1
16: end if
17: end for
18: //time to take majority vote to set po(x, y) ∈ Ĝ
19: if vote0 > vote1 then
20: po(x, y) = 0
21: else if vote1 > vote0 then
22: po(x, y) = 0
23: else {vote1 = vote0 }
24: po(x, y) = pi(x, y)
25: end if
26: end if
27: end for
end enhance-D: output Ĝ

3.4 Cascade LUT Classification

To further improve the performance of our LUT classifiers, we propose a method of applying the classifiers in a
cascaded configuration. When we train a basic LUT classifier, as described in Section 3.1, we compare a degraded
binary document image D to its ground truth image G, given T = {(D, G)i, i = 1, . . . , t}, to produce a single
LUT. In the cascade LUT classifier configuration, we produce multiple LUTs during the training phase from the
same training data set T . Let LUT1 denote the first LUT obtained by comparing each D ∈ T to its corresponding
G. We apply LUT1 on each D ∈ T to obtain its estimated enhanced image Ĝ. We then build LUT2 using
T ′ = {(Ĝ,G)i, i = 1, . . . , t}. We compare the output image Ĝ resulting from applying LUT1 on the degraded binary
image D to the ground truth image G again to obtain another LUT. A two-stage cascade LUT classifier comprises
of LUT1 and LUT2. To enhance a document image D 6∈ T , we apply LUT1 and LUT2 in the same sequential order
as they were built. Thus we apply LUT1 initially to D to get Ĝ1, then we apply LUT2 on Ĝ1 to obtain Ĝ, which is
the final enhanced image of D given by the cascade configuration.

The goal of the cascade is that, with each stage, the next LUT improves on the work done by the previous LUT.
Each stage in the cascade attempts to correct the more difficult points to classify in the original document. There
is an additional overhead cost of increased training and execution time - twice the cost of training a single LUT.
We can generalize the cascade LUT classifier to comprise of m LUTs with a cost equivalent to m times the cost of
training and using one LUT. The cascaded LUT is a different variant of the ensemble LUT classifier - it consists of a
set of m classifiers applied in sequential order. While building a m-cascade LUT classifier, the process is terminated
if during the iterations of training new LUTs, we obtain an LUTi+1 that yields no more improvement on the training
data compared to the former LUTi. The performance of the cascaded LUT classifier is discussed in Sec. 4.



4. EXPERIMENTAL RESULTS AND ANALYSIS

Evaluation of our proposed approach is done by comparing the resultant images obtained to the ground truth images
generated by human expert, as explained in Sec. 1. To quantitatively measure the performance of LUT classifier,
we use Pixel Accuracy PA as the performance measure. PA is defined as (M/P ) × 100, where M is the number
of pixels in the output image Ĝ that match with the ground truth image G and P is the number of pixels in the
original binary degraded image D. Given that our goal is to improve the readability of these documents and the
ground truth image is a perfect standard of readability, based on human judgment, we relate the pixel accuracy to
readability. Usually, an improvement in pixel accuracy to the known truth implies improvement in readability. We
also perform a qualitative analysis of the results obtained by observing them visually to validate that there is actually
an improvement in the readability. The efficiency of the classifier is measured by its execution time in seconds.

The base PA is the value of PA obtained by comparing the binary image (obtained after preprocessing) to its
ground truth image before we apply the classifier to the image. This is the effect of applying a classifier that
does nothing to the image beyond the background removal stage. The base PA enable us to quantify how much
improvement is obtained by our LUT classifiers beyond the foreground-background separation systems. We show
preliminary results obtained thus far on six document images in our ground truth data set. Each document image
is approximately 1200 by 1750 pixels in size and contain 2400 character instances on the average, bringing the total
number of characters to roughly 15,000. We performed character segmentation on each document image prior to
applying the filter to ensure that as we scan the document image pixel by pixel, the filter window does not overlap
neighboring characters. It ignores any neighboring character’s pixel information contained in its window.

Figure 4a illustrates the performance of the LUT classifier for three different winsize values { 5, 7, 9 } as a function
of the size of training data set T . From Fig. 4a , we observe that the w-9 classifier attains the best performance on
enhancement of the degraded images. This implies that the larger the size of locality of neighborhood considered by
the filter, the better the enhancement. A quantitative result is shown in Fig. 5. We can observe that the output
image of the w-5 filter, as shown in Fig. 5d, is blurred compared to the results of the others filters. The characters
in the output image of w-9 filter are much clearer and distinct though some are still slightly broken. Increase in
the winsize of the filter implies a greater complexity cost which affects the execution time of the classifier, as shown
in Fig. 4b. The average execution time per document image using a w-9 filter when the training set size T is one
is 550s while for a w-5 filter, it is 13.7s. As we increase the training set size T , the performance of the classifiers
generally improves though the marginal improvement decreases. The PA using a LUT based on T of size 5 is actually
less than that of T = 4. This implies that very large training set is not needed to enhance the degraded document
images. What is more important is that the document images in T have very similar degradation patterns to the test
document images. A few images, used during the training phase, is sufficient for the classifier to learn the patterns
of degradation and enhancement. We can also observe, from Fig. 4b, that he execution time generally decreases
as T increases. The execution time is mainly affected by the number of times the ANN classifier has to search for
similar entries to N . As the size of T increases, the probability of locating the exact N in the LUT is increased so
the frequency of searching for similar entries is decreased which results in lower execution time.

Figure 6 demonstrate the effect of pruning on the accuracy of the LUT classifier for the three winsize values.
For w-5 and w-7 filters, the best result is obtained when the pruning threshold PT is set to 1. After that, the
accuracy begins to diminish. Pruning however greatly diminishes the performance of the w-9 filter. This is because
the LUT is very sparse, given the large window size, and so most of the entries do have very low marginal differences
therefore the seemingly trivia entries actually do matter. We lose a lot of information by pruning the w-9 LUT. We
can conclude that for the smaller winsizes of 5 and 7, pruning with PT set to 1, does help improve the performance
of the classifier. When we prune the LUT, we lose a lot of information compared to the w-5 classifier. Pruning
increases the running time of the LUT, as can be observed in Fig. 6, because the probability of having to resort to
search for similar entries using ANN structure increases and more entries are pruned from the LUT.

Figures 7 and 8 show the performance of the w-5 LUT classifier as a function of ANN parameters. As can be
observed in Fig. 7b, as we increase the number of neighbors k, we obtain a higher PA at an increased cost of execution
time. As shown in Fig. 8, the distance approximation error bound parameter ε does not impact the performance of
the classifier significantly. Using these graphs, we fix k and ε at a value that ensure a reasonable execution time and
accuracy for our experiments.
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Figure 5. Result of applying LUT classifier of different winsizes on a test document image. The size of the training data set
T used is 1.
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Figure 7. Performance of the w-5 LUT classifier as a function of k (ANN parameter) with ε fixed at 1.25
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Figure 8. Performance of the w-5 LUT classifier as a function of ε (ANN parameter) with k fixed at 3
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Performance of Cascade LUT Classifiers

The performance of the m-stage cascaded LUT classifiers results in an improved performance compared to using a
single stage classifier, as shown in Fig. 9. We observe, however, that there is a bound on the number of stages m that
results in improved performance. This is because during training, as more stages are added, when the winsize value
increases, the resulting image obtained is almost the same as the ground truth image. The classifier is able to learn
the training data images almost perfectly. The resulting LUTi thus provides little or no information in correction
of the degradation. Improved performance is guaranteed up to the optimal value of m = 3 beyond which the PA
decreases.

Comparison to Kanungo’s method

As mentioned in Sec. 2, Zheng et al. design a LUT table using a 3×3 filter window to perform restoration of degraded
documents using their morphological degradation model. Their LUT is a 512×512 matrix. During training, for each
3 × 3 neighborhood pattern N in the degraded image, all possible occurrences of the corresponding output in the
ideal image are stored. During restoration, each patch in the degraded image is replaced with the most occurring
output pattern encountered during training. We applied this LUT to degraded typewritten document images and the
performance was much worse, compared to our proposed algorithm. (Note that from the algorithm documentation
in,11 it is not clear how to determine the starting pixel for placing the filter window). In our study, we use real
degraded typewritten document images which have degradation patterns that are more pronounced compared to the
degraded images generated by their degradation models. A 3×3 filter window size is too small to learn the degradation
patterns. In contrast to the Kanungo’s method in which a complete window is replaced with a complete window, our
approach of correcting a pixel at a time, taking into account the neighborhood pixel information, gives more accurate
results. We also applied our proposed algorithm to the morphological degraded images using Kanungo’s algorithm15

and obtained finer results which suggest that our algorithm is capable of learning and correcting the degradations
produced by the Kanungo model. The Kanungo degradation model is suitable for small perturbations16 encountered
during photocopying and scanning of uniform text documents but not to large degradations found in old typewritten
documents.

5. CONCLUSION

We present a novel method for enhancing the degradation in historical typewritten documents using LUT ensemble
classifiers that have been trained to learn the corrections of degradation patterns in the document images. Currently,
our basic LUT classifier processes an entire document image in less than 1 minute using a w-5 filter. The effectiveness
of the LUT classifier can be further improved by pruning and arranging the LUT classifiers in a cascade configuration.
In future work we plan to combine the effectiveness of these classifiers using more complex ensemble of cascade
configurations to improve performance and exploring non-square filter window size options.



REFERENCES
1. “The diaries of Rabbi Dr. Avraham Abba Frieder.” http://ir.iit.edu/collections/.
2. A. Antonacopoulos and D. Karatzas, “Semantics-based content extraction in typewritten historical documents,”

in Proc. International Conference on Document Analysis and Recognition ICDAR’05, 2005.
3. A. Antonacopoulos and D. Karatzas, “A complete approach to the conversion of typewritten historical documents

for digital archives,” in Proc. IAPR International Workshop on Document Analysis Systems DAS’04, pp. 90–101,
2004.

4. G. Agam, G. Bal, G. Frieder, and O. Frieder, “Degraded document image enhancement,” in Document Recog-
nition and Retrieval XIV, X. Lin and B. A. Yanikoglu, eds., Proc. SPIE 6500, pp. 65000C–1 – 65000C–11,
2007.

5. A. Antonacopoulos and D. Karatzas, “Document image analysis for world war ii personal records,” in
Proc.International Workshop on Document Image Analysis for Libraries DIAL’04, 2004.

6. B. Gatos, I. Pratikakis, and S. J. Perantonis, “An adaptive binarization technique for low quality historical
documents,” in Int’l Workshop Document Analysis Systems (DAS), pp. 102–113, 2004.

7. E. Kavallieratou and E. Stamatatos, “Improving the quality of degraded document images,” in Int’l Conf.
Document Image Analysis for Libraries DIAL’06, 2006.

8. N. Molton, X. Pan, M. Brady, A. Bowman, C. Crowther, and R. Tomlin, “Visual enhancement of incised text,”
Pattern Recognition 36, pp. 1031–1043, April 2003.

9. S. Andra and G. Nagy, “Combining dichotomizers for map field classification,” in Proc. 18th International
Conference on Pattern Recognition ICPR’06, pp. 210–214, 2006.

10. B. As-Sadhan, Z. A. Bawab, A. E. Seed, and M. Noamany, “Comparative evaluation of different classifiers for
robust distorted character recognition,” in Proc. SPIE ’06, 2006.

11. Q. Zheng and T. Kanungo, “Morphological degradation models and their use in document image restoration,”
in International Conference on Image Processing, pp. 193–196, 2001.

12. Q. Zheng and T. Kanungo, “Estimation of morphological degradation model parameters,” in Proc. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, ICASSP ’01, pp. 1961–1964, 2001.

13. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate
nearest neighbor searching,” Journal of the ACM (45), pp. 891–923, 1998.

14. Friedman, Bentley, and Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM
Transactions on Mathematical Software 3(3), pp. 209–226, 1977.

15. T. Kanungo, Document Degradation Models and a Methodology for Degradation Model Validation. PhD thesis,
University of Washington, 1996.

16. H. Baird, “Document image quality: Making fine discriminations,” in Proc., Int’l Conf. on Document Analysis
and Recognition, 1999.


