
Tr e a t i n g t e x t a s a r e l a t i o n a l a p p l i c a t i o n
i s a v i a b l e a l t e r n a t i v e f o r m a n y d a t a
w a r e h o u s e s

VAST VO L U M ES O F both stru c t u red and unstru c t u red data com m on ly reside in a data ware-
house.Data items such as name, address,and phone number are inherently structured
and re p e t i t i ve in nature .T h u s , s t o ring such data in re l a t i onal platforms is easily ac-
c om p l i s h e d . M a ny organiza t i ons have vast re p o s i t o ries of unstru c t u red data such as
e m a i l ,c o rp o rate policy documents, i n t e rnal system documentation , and pro c e d u res for
dealing with customers. Users want this data in the warehouse, too.

But incorp o rating these text documents into a data warehouse typ i ca lly poses a pro b-
l e m : Prev i o u s ly, accessing stru c t u red data and text with a single SQL query was not an
o p t i on — re l a t i onal systems were too slow to easily access text. The conve n t i onal con c e rn
with incorp o rating text into the warehouse typ i ca lly stems from the belief that re l a-
t i onal databases were never designed for text. T h u s ,m a ny of today’s applica t i ons in-
c o rp o rate text into a warehouse via Character Large Objects (CLOBs) or by implementing
user-defined data types.

The pri m a ry difficulty with storing data in CLOBs is that these stru c t u res typ i ca lly
s u p p o rt on ly stri n g - m a t ching opera t i on s .C onve n t i onal search queries such as “find doc-
uments that describe all types of ca r s ”w i ll not find a document about a “Nissan Se n t ra”
unless the document also lists the word “ca r. ” User-defined opera t o r s , on the other hand,
l a ck standard i za t i on across platforms and applica t i on s , limiting query optimiza t i on .
Qu e ry optimizers know quite a bit about in-house function s , but training the optimize r
to support newly developed, special purpose operators is a nontrivial task.

G i ven this re a l i ty, our Inform a t i on Retri eval Lab foll owed the deve l o pment of re-
lational systems and took a fresh look at the problem in the early 1990s.After several
years of testing in the lab, we deployed numerous applications through our consulting
re l a t i onships using this tech n o l o gy. Most notably, in 1999, a Web search engine ru n-
ning entire ly on top of an Ora cle database was deployed for the Na t i onal Center for
C om p l e m e n t a ry and Altern a t i ve Medicine. With this sys t e m , users are able to com-
bine stru c t u red data and text in a single SQL query, making a separate text search sys-
tem unnecessary.

HOW IT WORKS
Text is first parsed into a set of tokens or term s .E a ch term is then stored in a stru c t u re
ca lled an “i nve rted index.” This stru c t u re indicates the documents that contain each
term. Consider the following example:

D1: The GDP increased 2 percent this quarter.
D2: The economic slowdown continued this quarter.
For these two documents, a typ i cal search engine would build an inve rted index that

c ontains a list of terms and a list of which documents contain each term . A possible in-
verted index implementation for the previous example is the following:

2 SEP TE MBE R 1 8, 200 1 I n t e l l i g e n t E n t e r p r i s e . c o m

I n t e g rating St r u c t u re d
Data and Te x t

DAVID GROSSMAN
OPHIR FRIEDER

EDITED BY ERIK THOMSEN

A N A L Y T I C S O L U T I O N S
DAVID GROSSMAN

[grossman@iit.edu]

is an assistant professor of

computer science and

OPHIR FRIEDER
[frieder@iit.edu]

is the IITRI professor of computer

science at the Information

Retrieval Laboratory, Illinois

Institute of Technology.IMPERATIVE 4

Realize the value of
operational ITinvestments
through integration and
analysis aimed at delivering
business advantage.

For a complete list of imperatives
for the intelligent enterprise,visit
IntelligentEnterprise.com.

CONTINUED > [D2]

ECONOMIC > [D2]

GDP > [D1]

INCREASED > [D1]

PERCENT > [D1]

QUARTER > [D1] > [D2]

SLOWDOWN > [D2]

THE > [D1] > [D2]

THIS > [D1] > [D2]

TWO > [D1]

Typ i ca lly, you eliminate “s t o p - w o rd s ” —
words that appear in almost all the docu-
ments such as “ t h e” and “ t h i s ” — from the
index because they don’t diffe rentiate amon g
the documents. We kept them for ill u s-
t ra t i ve purp o s e s . In our example, the term
“quarter” also appears in both documents
and thus contains a pointer to a list that
contains both D1 and D2.

Essentially, the inverted index is just a
m a ny - t o - m a ny re l a t i onship between term s
and documents. One term can be in many
d o c u m e n t s , and cert a i n ly one document ca n
c ontain many term s .The ER diagram show n
in Figure 1 illustrates this relationship.

The “document re l a t i on” in the ER di-
a g ram contains an entry for each document.

This entry is usually a
unique document identi-
f i e r, s u ch as the author,
c re a t i on date, or title. T h e

“ t e rm re l a t i on” s t o res inform at i on about
e a ch term ,s u ch as weights. The weights
a re ultimately used to rank documents in

the order of a computed estimate of their
re l evance to the query. Nu m e rous weights
e x i s t , but for now you on ly need to know
that they can be stored in the term re l a t i on .

Once you have this ER diagra m ,you ca n
build tables and start running queri e s . A
possible key w o rd search to find all docu-
ments that contain a term is the foll ow i n g :

SELECT DOCID

FROM INDEX

W H E R E T E R M = <F I L L I N Y O U R

FAVORITE KEYWORD>

TEXT AS A RELATIONAL APP
Nu m e rous benefits exist for treating text
as a re l a t i onal applica t i on . For start e r s , yo u
d on’t need to acquire, i n s t a ll , or integrate a
text package into the data warehouse to sup-
port access to a few text columns. For ex-
a m p l e, almost eve ry warehouse has a “c om-
m e n t s ” column or two that lets users enter
w h a t ever unstru c t u red data they feel is re l-
evant to the tra n s a c t i onal re c o rd . But search-
ing these text columns with a LIKE isn’t
re a lly a good idea because it is typ i ca lly im-
plemented as a sequential sca n .B u i l d i n g
your own inve rted index in a native OS file
s ystem may seem like an efficient altern a-
t i ve, but then you get to write a few thou-
sand lines of code to do all the file manip-
u l a t i on , c on c u r re n cy con t ro l , and access
c on t rol that already comes with a re l a t i on a l
database management system.

Treating text as a re l a t i onal applica t i on
also opens the door to parallel processing
— something that has eluded the com-
m e rcial text world because of the inhere n t ly
sequential nature of the inve rted index. T h e
d ow n s i d e, o bv i o u s ly, is that extra ove rh e a d
happens when you use a re l a t i onal appli-
ca t i on , but didn’t we go through this ar-
gument in the ’70s when people were gri p-

ing that the re l a t i onal appro a ch was too
slow and the best thing to do was to stick
with ISAM files?

MORE NEXT MONTH
In the next column, w e’ll show how you ca n
implement more complex text function a l-
i ty (such as re l evance ranking) and give
s ome more details, p e rf o rmance statistics,
and tuning hints on this appro a ch . The bot-
t om line is that treating text as a re l a t i on a l
a p p l i ca t i on is a viable altern a t i ve for many
data ware h o u s e s , and it has been deploye d
in a number of re a l - w o rld applica t i on s . We
suspect that as the need for integra t i on of
s t ru c t u red data and text incre a s e s , m o re
a p p l i ca t i ons will consider solutions simi-
lar to the one discussed here. ie

4 SEP TE MBE R 1 8, 200 1 I n t e l l i g e n t E n t e r p r i s e . c o m

Rate this column at
IntelligentEnterprise.com

FI GUR E 1 An ER diagram showing the inverted index.

Frieder, O., A. Chowdhury, D. Grossman, M. C. McCabe,

“On the Integration of Structured Data and Text: A

Review of the SIRE Architecture,” DELOS Workshop on

Information Seeking, Searching, and Querying in Digital

Libraries, Zurich, Switzerland, December 2000.

Grossman, D., D. Holmes, and O. Frieder, “A Parallel

DBMS Approach to IR in TREC-3,” Overview of the

Third Text Retrieval Conference (TREC-3), NIST Special

Publication 500-225, April 1995.

Grossman, D. and O. Frieder. Information Retrieval:

Algorithms and Heuristics. Kluwer Academic Press,

1998.

Grossman, D., D. Holmes, O. Frieder, D. Roberts.

“Integrating Structured Data and Text: A Relational

Approach.” Journal of the American Society of

Information Science, February 1997.

A SCALABLE INFORMATION Retrieval

Engine (SIRE) was developed using the

concepts of integrating structured data

and text. The National Institute of Health

(NIH) chose the SIRE approach as the

basis for searching medical citations for

its National Center for Complementar y

and Alternative Medicine because, in

addition to typical search engine

functions, it contains all the basic DBMS

features, such as concurrency control,

recovery, access control, and portability.

More important, the medical citations

index can now modify a document that

has already been indexed for search.

Such updates are difficult or impossible

for a typical inverted index, but easy with

DBMSs.

With SIRE, the system is easily

extended to access other structured data

in databases at NIH. Back at the lab, w e

are working to add XML functionality to

SIRE and have built a prototype that uses

XML-QL(a popular XML query language)

that should be ready at the end of 2001.

REAL-WORLD
APPLICATION
THE SIRE APPROACH

