EDITED BY ERIK THOMSEN

Treating text as a relational application
is a viable alternative for many data
warehouses

ANALYTIC SOLUTIONS

[grossman@iit.edu]
is an assistant professor of
computer science and

[frieder@iit.edu]

is the IITRI professor of computer
science at the Information
Retrieval Laboratory, Illinois

MPERATIVE 4 Institute of Technology.
Realize the value of

»perational ITinvestments
hrough integration and
nalysis aimed at delivering
yusiness advantage.

‘or a complete list of imperatives
‘or the intelligent enterprise,visit
ntelligentEnterprise.com.

2 SEPTEMBER 18, 2001

Integrating Structured
Data and Text

Vasr vorumes of both structured and unstructured data commonly reside in a data ware-
house.Data items such as name, address,and phone number are inherently structured
and repetitive in nature.Thus, storing such data in relational platforms is easily ac-
complished. Many organizations have vast repositories of unstructured data such as
email,corporate policy documents, internal system documentation, and procedures for
dealing with customers. Users want this data in the warehouse, too.

But incorporating these text documents into a data warehouse typically poses a prob-
lem: Previously, accessing structured data and text with a single SQL query was not an
option — relational systems were too slow to easily access text. The conventional concern
with incorporating text into the warehouse typically stems from the belief that rela-
tional databases were never designed for text. Thus,many of today’s applications in-
corporate text into a warehouse via Character Large Objects (CLOBsS) or by implementing
user-defined data types.

The primary difficulty with storing data in CLOBs is that these structures typically
support only string-matching operations.Conventional search queries such as “find doc-
uments that describe all types of cars”will not find a document about a “Nissan Sentra”
unless the document also lists the word “car.” User-defined operators, on the other hand,
lack standardization across platforms and applications, limiting query optimization.
Query optimizers know quite a bit about in-house functions, but training the optimizer
to support newly developed, special purpose operators is a nontrivial task.

Given this reality, our Information Retrieval Lab followed the development of re-
lational systems and took a fresh look at the problem in the early 1990s.After several
years of testing in the lab, we deployed numerous applications through our consulting
relationships using this technology. Most notably, in 1999, a \Web search engine run-
ning entirely on top of an Oracle database was deployed for the National Center for
Complementary and Alternative Medicine. With this system, users are able to com-
bine structured data and text in a single SQL query, making a separate text search sys-
tem unnecessary.

HOW IT WORKS
Text is first parsed into a set of tokens or terms.Each term is then stored in a structure
called an “inverted index.” This structure indicates the documents that contain each
term. Consider the following example:

D1: The GDP increased 2 percent this quarter.

D2: The economic slowdown continued this quarter.

For these two documents, a typical search engine would build an inverted index that
contains a list of terms and a list of which documents contain each term. A possible in-
verted index implementation for the previous example is the following:

IntelligentEnterprise.com



Frieder, O., A. Chowdhury, D. Grossman, M. C. McCabe,
“On the Integration of Structured Data and Text: A

Review of the SIRE Architecture,” DELOS Workshop on
Information Seeking, Searching, and Querying in Digital

Libraries, Zurich, Switzerland, December 2000.

Grossman, D., D. Holmes, and O. Frieder, “A Parallel
DBMS Approach to IR in TREC-3,” Overview of the

Third Text Retrieval Conference (TREC-3), NIST Special

Publication 500-225, April 1995.

Grossman, D. and O. Frieder. Information Retrieval:
Algorithms and Heuristics. Kluwer Academic Press,
1998.

Grossman, D., D. Holmes, O. Frieder, D. Roberts.
“Integrating Structured Data and Text: A Relational
Approach.” Journal of the American Society of
Information Science, February 1997.

Rate this column at
IntelligentEnterprise.com

CONTINUED > [D21]
economic > [D21]

GDP >LCD11]

INCREASED > [D11]
PERCENT > [D11]
QUARTER > [D11 > L[D21]
sLowpowN > [D21]

THE > [D11 > L[CD21
THIs > [D11>LCD21]
Two > LCD11]

Typically, you eliminate “stop-words” —
words that appear in almost all the docu-
ments such as “the” and “this” — from the
index because they dont differentiate among
the documents. We kept them for illus-
trative purposes. In our example, the term
“quarter” also appears in both documents
and thus contains a pointer to a list that
contains both D1 and D2.

Essentially, the inverted index is just a
many-to-many relationship between terms
and documents. One term can be in many
documents, and certainly one document can
contain many terms. The ER diagram shown
in Figure 1 illustrates this relationship.

The “document relation” in the ER di-
agram contains an entry for each document.
This entry is usually a
unique document identi-
fier, such as the author,
creation date, or title. The
“term relation” stores information about
each term,such as weights. The weights
are ultimately used to rank documents in

the order of a computed estimate of their
relevance to the query. Numerous weights
exist, but for now you only need to know
that they can be stored in the term relation.

Once you have this ER diagram, you can
build tables and start running queries. A
possible keyword search to find all docu-
ments that contain a term is the following:

SELECT pocIp

FROM INDEX

WHERE TERM = <FILL IN YOUR
FAVORITE KEYWORD>

TEXT AS A RELATIONAL APP
Numerous benefits exist for treating text
as a relational application. For starters, you
don't need to acquire, install, or integrate a
text package into the data warehouse to sup-
port access to a few text columns. For ex-
ample, almost every warehouse has a “com-
ments” column or two that lets users enter
whatever unstructured data they feel is rel-
evant to the transactional record. But search-
ing these text columns with a LIKE isn't
really a good idea because it is typically im-
plemented as a sequential scan.Building
your own inverted index in a native OS file
system may seem like an efficient alterna-
tive, but then you get to write a few thou-
sand lines of code to do all the file manip-
ulation, concurrency control, and access
control that already comes with a relational
database management system.

Treating text as a relational application
also opens the door to parallel processing
— something that has eluded the com-
mercial text world because of the inherently
sequential nature of the inverted index. The
downside, obviously, is that extra overhead
happens when you use a relational appli-
cation, but didn't we go through this ar-
gument in the '70s when people were grip-

FIGURE 1 AnER diagram showing the inverted index.

4 SEPTEMBER 18, 2001

REAL-WORLD
APPLICATION
THE SIRE APPROACH

A SCALABLE INFORMATION Retrieval
Engine (SIRE) was developed using the
concepts of integrating structured data
and text. The National Institute of Health
(NIH) chose the SIRE approach as the
basis for searching medical citations for
its National Center for Complementary
and Alternative Medicine because, in
addition to typical search engine
functions, it contains all the basic DBMS
features, such as concurrency control,
recovery, access control, and portability.
More important, the medical citations
index can now modify a document that
has already been indexed for search.
Such updates are difficult or impossible
for a typical inverted index, but easy with
DBMSs.

With SIRE, the system is easily
extended to access other structured data
in databases at NIH. Back at the lab, we
are working to add XML functionality to
SIRE and have built a prototype that uses
XML-QL(a popular XML query language)
that should be ready at the end of 2001.

ing that the relational approach was too
slow and the best thing to do was to stick
with ISAM files?

MORE NEXT MONTH

In the next column, we'll show how you can
implement more complex text functional-
ity (such as relevance ranking) and give
some more details, performance statistics,
and tuning hints on this approach. The bot-
tom line is that treating text as a relational
application is a viable alternative for many
data warehouses, and it has been deployed
in a number of real-world applications. \We
suspect that as the need for integration of
structured data and text increases, more
applications will consider solutions simi-
lar to the one discussed here. 1 €

IntelligentEnterprise.com



