

ON THE DESIGN OF RELIABLE EFFICIENT INFORMATION SYSTEMS

BY

ABDUR CHOWDHURY

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved ___________________________
 Advisor

Chicago, Illinois
May 2001

ii

 Copyright by

Abdur R. Chowdhury

2001

iii

ACKNOWLEDGMENT

I would like to thank the many people who have supported and helped me with

this work. First, I would like to thank my wife Ana who provided me the strength to keep

going. My parents who instilled the joy of learning and taught me there is always a way.

Dr. Ophir Frieder for being the best friend and advisor that one could hope for, without

whose advice and support none of this would have been possible.

I would also like to thank Dr. David Grossman for the uncountable help he has

provided me over the years. Dr. Peng-Jun Wan for all his help with the probability

models. Dr. Catherine McCabe for her help in testing, validating and countless other

things that came up through the years. A special thanks to Robert Ellis who believed in

me when things were tough. Lastly to all of my friends that have put up with my lack of

availability.

aut viam inveniam aut faciam

"I’ll either find a way or make one"

ARC

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT.. iii

LIST OF TABLES………….…………………………………………………………….vi

LIST OF FIGURES..…….………………………………………………………………vii

ABSTRACT... ix

CHAPTER

 I. INTRODUCTION - RELIABLE INFORMATION SYSTEMS.................... 1

1.1 Generalized Information Retrieval Architecture 2
1.2 Thesis Reliability and Effectiveness Issues Addressed 3

 II. DISTRIBUTED SYSTEM NETWORK FAULT TOLERANCE 7

2.1 Prior Work ... 10
2.2 DRS Algorithm.. 13
2.3 DRS in the Presence of Network Failures 18
2.4 Detection of Network Repairs ... 22
2.5 DRS Performance Results ... 24
2.6 DRS Model System ... 24
2.7 DRS Network Measurements .. 26
2.8 Hardware Failure Rates ... 28
2.9 Dynamic Routing Survivability Probability Models 30
2.10 DRS Simulation... 38
2.11 DRS Model Results ... 39
2.12 DRS Conclusions... 41

III. FAST DUPLICATE DOCUMENT DETECTION...................................... 45

3.1 Prior Work ... 48
3.2 Algorithm... 50
3.3 I-Match Results.. 53
3.4 Experimental Layout.. 53
3.5 Syntactic Filtration... 58
3.6 Duplicate Sets .. 61
3.7 Short Documents ... 65
3.8 Runtime Performance .. 68
3.9 Duplication Effecting Accuracy... 70
3.10 Conclusions and Future Work ... 71

v

CHAPTER Page

 IV. DELAYED IDF UPDATES ... 73

4.1 Vector Space Model... 75
4.2 IDF Experimentation ... 81
4.3 Results.. 83
4.4 IDF Update Conclusions.. 87

 V. CONCLUSIONS AND FUTURE DIRECTIONS...................................... 90

5.1 Reliability, Efficiency and Effectiveness... 92
5.2 Future Direction... 96

APPENDIX ... 99

BIBLIOGRAPHY ... 104

vi

LIST OF TABLES

Table Page

1. Experimental Collections .. 57

2. Syntactic Experiments... 60

3. Documents Found Ratio.. 63

4. Document Clusters Formed... 64

5. DSC-SS Short Document Filtration .. 66

6. Post Average Document Size.. 67

7. Duplicate Processing Time.. 69

8. Processing Time for 2GB NIST Web Collection.. 70

9. Document Table .. 79

10. Average Precision / Recall for Training Set (1-160)... 85

11. Average Precision / Recall for Training Set (161-320)... 85

12. Training Sets and Number of Unique Terms .. 87

13. I-Match WT2G Experiments (page 1 of 2) ... 100

14. I-Match Experiment Legend.. 102

15. WT2G DSC-SS Experiments.. 103

vii

LIST OF FIGURES

Figure Page

1. Dual Network Setup Details.. 14

2. DRS Network Stack .. 15

3. DRS Architecture .. 16

4. Single Network Failure ... 18

5. Multiple Network Failure.. 20

6. Communication Route Diagram for Host A to Host C via Host B 22

7. Communication Route Diagram for Host A to Host C via Host D....................... 22

8. Complete Network Separation .. 22

9. Restored Network Communication... 24

10. 10Mb Network Performance... 26

11. 100Mb Network Performance... 26

12. Bandwidth Usage .. 28

13. Percentage of Failures by Type ... 29

14. Case 1 - Both Backplanes.. 30

15. Case 2 - Hub and NIC Failure ... 31

16. Case 3.1, 3.3 - Both NIC ... 31

17. Case 3.2 ... 31

18. Case 3.2.1 .. 32

19. Case 3.2.2 .. 32

20. Unconditional Failure Probability... 34

21. Convergence of Simulation Results to Equation Results...................................... 39

viii

Figure Page

22. Dual Meshed Network with DRS Algorithm.. 40

23. 2-3 Failure Comparison... 41

24. Restrictiveness of Techniques ... 51

25. Thresholds for Document Nidf Values ... 53

26. Differing Documents... 62

27. Super Shingle Size vs. Documents Dropped... 66

28. Precision - Recall for Different Update Frequencies (1-160) 84

29. Precision - Recall for Different Update Frequencies (161-320) 86

30. Precision - Recall for Different Training Sets... 87

ix

ABSTRACT

This thesis presents computer algorithms for the design of reliable information

server clusters. As information systems grow in size the need for reliability,

parallelization and speed grow. Provided within are algorithms that address reliability

and efficiency. A novel algorithm called DRS (Dynamic Routing System) is presented.

The DRS algorithm sustains continuous availability of clusters of information or compute

servers even during network failures. We continue with a new duplicate data detection

algorithm that is several times faster than the state of the art and more precise. By

detecting duplicate data, redundant work is eliminated from indexing and retrieval

processing. Additionally higher retrieval accuracy is provided by reducing the amount of

redundant information returned to users. Finally, automatic term weighting utilities are

examined; results are presented showing that as dynamic collections grow, automatic

term weights do not need to be recalculated and still maintain system effectiveness.

1

CHAPTER I

INTRODUCTION - RELIABLE INFORMATION SYSTEMS

With the ever-increasing amount of information, one of the greatest challenges of

the twenty-first century is the organization and retrieval of that information. Currently,

the WWW (World Wide Web) has 1-2 billion publicly accessible pages of information

[60]∗. Two to five billion pages are estimated to be available via private networks and

hidden content that is dynamically generated from databases. Available information has

grown at exponential rates for the last few years [60] and no slow down appears to

coming soon [1]. This growth of information and the access to it provides ample

incentive to develop new algorithms and approaches to organize and retrieve that

information.

As greater amounts of information are being stored, indexed and retrieved via a

single system, scalability issues are becoming greater and greater problems. Single CPU

solutions are not able to keep up with the exponential information growth even with

growing CPU power. Parallelization of storage and indexing are current research

problems [2, 3] along with distributed retrieval algorithms providing the parallelism for

this growing workload [4, 5, 6, 7]. In the words of Grace Hopper:

∗ Corresponding to references in the Bibliography

2

In pioneer days, they used oxen for heavy pulling, and when one ox
couldn’t budge a log they didn’t try to grow a larger ox. We shouldn’t be
trying for bigger computers, but for more systems of computers.
In this thesis, a generalized software architecture for a reliable information system

is presented. This thesis addresses essential issues of that architecture namely, network

fault tolerance for a distributed information system, efficiency of the system in terms of

duplicate data and lastly speed improvements by delaying automatic term weight

calculations in a dynamic system.

In the next section, we present a generalized distributed information retrieval

architecture, which our new algorithms will support. In Chapter II, we present a

distributed fault tolerant routing solution for distributed information server clusters that

guarantees server-to-server communication in the event of a network failure. In Chapter

III, we then present a duplicate information detection system that uses collection statistics

to efficiently determine when duplicate information is inserted into the system. In

Chapter IV, automatic term weighting strategies are examined and experimental results

show that reduced term weight updates can be applied to dynamic systems without loss of

overall effectiveness to the system.

1.1 Generalized Information Retrieval Architecture

In this section, we present a generalized information retrieval architecture. For

this architecture, we will make several assumptions:

1. Data/Information are growing at a faster rate than compute power.
2. Parallelism of systems is the most promising solution to the growing needs of

retrieval systems.
3. Data/Information are coming from many sources.
4. Any algorithm that helps efficiency or effectiveness is beneficial.

3

Given the above assumptions, new retrieval systems will be parallel / distributed

in nature. Data will be stored on a number of systems, indexing of that data will be done

with multiple machines and CPUs. Retrieval of information will be distributed to

multiple machines and CPUs. New large-scale information systems will be closely

coupled creating a large server array controlled by a single entity. These distributed and

parallel information systems will solve complex information needs via many computers.

In the next section, we present our contributions in the context of such a distributed large-

scale system.

1.2 Thesis Reliability and Effectiveness Issues Addressed

This thesis is comprised of three parts. The first part presents a proactive routing

algorithm for distributed systems, the second presents a duplicate data detection

algorithm and the third part presents empirical evidence that shows automatic term

weight calculations can be delayed in order to reduce maintenance overhead and still

provide effective rankings for large dynamic retrieval systems.

As client needs grow, server systems have become more complicated and require

additional compute needs. While many techniques were applied to improve the

performance of a single machine, these improvements are insufficient to keep up with the

growth. To combat the additional demands for computational resources, server systems

are distributed among multiple computers to handle the additional computational

requirements [8, 9, 10, 11]. As information systems get larger, they too are distributed to

provide the additional processing needs. This distributed approach of dividing the

problem into either multiple workers for the same problem or multiple workers working

4

on different client problems all depend on network communication. Since a network

connecting the servers is the backbone of the computational server, it must be reliable.

We provide data that show that network failures constitute 13% of all hardware failures

and are a problem for large systems, thus validating the need for reliable network

communication in the presence of network failure. As part of the described effort a

proactive network routing protocol that reroutes network communication around failures

is presented. This protocol and topology provides a fault tolerant network

communications system for server clusters in the presence of failures. This type of

system provides the reliability that new Information Retrieval (IR) systems need as they

become distributed [46, 12, 13]. We present a quantitative probability model showing the

advantages of our dynamic routing approach for tightly coupled server clusters. We also

describe the advantages in performance in using a proactive approach as opposed to a

reactive routing approach when dealing with server clusters. We show that additional

overhead incurred by our approach does not adversely affect network performance and

does greatly improve the reliability by 267% over traditional topologies of a distributed

server cluster. We validate our hypothesis of network reliability improving the reliability

of distributed server clusters with two probability models.

As information retrieval systems collect data, the likelihood of multiple copies of

the same data, or near duplicate documents being added to the system, increases [59].

We hypothesize that if the duplicate information is detected and eliminated in a fast

efficient manner, the system accuracy and performance is enhanced. We present a

duplicate document algorithm based on collection statistics of terms in a given collection.

This algorithm selectively chooses what terms represent a document by using term

5

collection statistics. Once the document’s subset of terms is selected, a hash is created of

those terms. With a single value representing each document, a collection can be scanned

in O(log d) time where d is the number of documents in the collection. We show that this

algorithm performs five to nine times faster than comparable algorithms. We also show

that the use of this system clusters near duplicate documents better than the other state of

the art algorithms. Lastly, we show that by ignoring the detection and removal of

duplicates, results are effected, by misjudgments of relevant documents. Furthermore, the

same document is presented to the user multiple times forcing end users to filter the same

information when looking for new information.

There are many efficiency issues for information retrieval systems. Most of the

prior work focuses on efficient data representation to improve the efficiency of the system

[14]. We hypothesize that the efficient update of collection statistics improves the overall

efficiency of dynamic IR systems by delaying work until necessary. Very little work was

applied to the efficiency issues of collection statistics. While collection statistics are used

to improve precision and recall for information systems, very little work has gone into

efficient update approaches to maintain their currency [15, 16, 17, 18, 19, 74, 77].

One type of common collection statistics used is Inverse Document Frequency

(IDF). We hypothesize that the recalculation of idf values for each new document added

is not necessary [20]. We present empirical data that show that the recalculation of IDF

values, after an initial training set is used, does not improve the overall precision and

recall of the information retrieval system. By reducing the time to recalculate IDF values,

the overall performance of the system can be improved. Unnecessary additional work, in

a dynamic environment, adversely affects the performance. By finding a good training set

6

of documents, those IDF values may be used by the system for an extended period

without having to recompute IDF values for each additional document added to the

system. These fundamental issues for reliability and efficiency for information retrieval

systems are addressed in this thesis.

7

CHAPTER II

DISTRIBUTED SYSTEM NETWORK FAULT TOLERANCE

The ever-increasing demands on server applications are resulting in many new

server services being implemented using a distributed server cluster architecture where

many servers act together providing end user services. Twenty-seven such server clusters

were evaluated each containing four to eight servers for a one-year period; thirteen

percent of the hardware failures were network related. To provide end-user services, the

server clusters must guarantee server-to-server communication in the presence of these

network failures. In this thesis, a novel proactive routing algorithm called the Dynamic

Routing System (DRS) is presented. The DRS continuously searches for failures via

frequent ICMP echo requests. This approach differs from its predecessors in that it is

proactive instead of reactive. That is, we continuously search for failures before they

affect server-to-server communication. When a failure is detected, an alternative route is

identified and used.

With growing compute needs, traditional supercomputers are becoming scarce

and distributed compute server clusters are becoming the solution of choice. These

smaller computers are coupled by networks to achieve the same objective at a

substantially lower cost. The Berkley NOW (Network Of Workstations) project was one

of the first projects pushing this solution [21]. PVM (Parallel Virtual Machine) [22] and

MPI (Message Passing Interface) [23] libraries provide messaging and synchronization

constructs that are needed for distributed parallel computing with NOW solutions.

Projects like Beowulf [24] for Linux are continuing the distributed / parallel

8

approach. Research operating systems, like Spring from Sun [25], focus on distributed

computing via the network. All of these approaches have one thing in common, the use

of a network as a communication media. While the network is very important, relatively

little attention has been focused on providing fault tolerance and redundancy for the

network of workstations. Additionally, little work has addressed the issues involved in

providing time constraints on detecting and resolving network errors for higher-level

applications.

As part of this dissertation, we developed a network routing algorithm to provide

fault-tolerance to networks of servers by proactively monitoring network communication

links between servers. This is different from reactive routing techniques [26, 27, 28, 29]

that wait for a failure to occur and then react by finding an alternative route. The

proactive algorithm constantly looks for errors via continuous ICMP echo requests.

When a failure is identified, a new route bypassing the failed portion of the network is

selected. This new route is often found in the time for a TCP retransmit, so server

applications are unaware that a network failure has occurred.

The Dynamic Routing System (DRS) is built on top of existing hardware and a

variety of operating systems (Solaris, SunOS and LynxOS), making its use and

deployment economical. This algorithm improves reliability via two network interface

cards per server to provide an alternate method of physical communications in the case of

hardware failure. The DRS works by frequent link checks between all pairs of nodes to

determine if the link between pairs of computers is valid. This algorithm uses redundant

network links between two nodes to provide multiple communication channels. When

9

one link fails, the second direct link is checked and used if possible. However, if no link

exists, a broadcast is sent to identify whether or not some other node is able to act as a

router to create a new path between the sender and the proposed recipient. The algorithm

discovers the failure before application performance is affected. The essential goal of our

algorithm is to hide network failures from distributed applications.

Based on deployed commercial implementations, we developed an analytical

model of the DRS to evaluate its potential use for large networks. Using this model, we

computed, for various network sizes, the fault identification times given a percentage of

network usage. For a typical 10Mb ethernet, a sixteen-host network has sub-second fault

identification when using 10 percent of the total theoretical packet throughput of an

ethernet network. Sixteen hosts may seem small given that large corporations often have

tens of thousands of workstations all on various LANs. However, the application domain

of this solution is distributed server applications running on a separate network. A

characteristic of Distributed Server Applications (DSA) is a tightly coupled server host

array where clients exist apart from the server network, and the server array appears as a

single server handling distributed data and requests. A word processor running off a file

server is not a DSA.

A Network Survivability Analysis (NSA) of the DRS algorithm shows that the

DRS algorithm provides a more resilient solution to network failures than a single

network, and a simple dual network solution [30]. Results from the probability model,

showing the probability of success of the system as a whole and in terms of the number of

network failures are presented. In addition, results from a simulation validating the

10

probability model are presented.

2.1 Prior Work

There is an abundance of literature on routing algorithms and protocols. We

partitioned the prior art into routing algorithms, routing daemons, hardware solutions, and

network survivability analysis. We will review each category separately.

One of the most common routing solutions today is the Routing Information

Protocol (RIP) [31, 32]. Its popularity stems from the fact that RIP is included in most

versions of UNIX. RIP is a dynamic routing protocol that automatically creates and

maintains network routes. Although popular, RIP has many shortcomings. One of the

major problems of RIP is its reactive nature. When a link has not been heard from for a

predetermined amount of time it is considered down and an alternative route is sought.

This down time can be in the minutes or longer range, thus disrupting server-to-server

communication. Another problem with RIP1 is its inability to work with subnets. RIP2

now can work with subnets but most implementations are still RIP1 [33].

Open Shortest Path First (OSPF) [34, 35, 36, 37] is a routing protocol for IP

networks based on the DARPA Internet Protocol (IP) network layer. The basic routing

algorithm is called the Shortest Path First Algorithm. OSPF is an Interior Gateway

Protocol and is intended to be used within an IP network under common administration,

such as a campus, corporate, or regional network. The OSPF approach is a passive

approach. Therefore, an OSPF routing daemon does not know that a problem has

occurred until a time-out value has been reached before a new route is sought out. OSPF

11

is not designed or intended for server cluster routing.

The External Gateway Protocol (EGP) [38, 39, 40, 41, 42, 43, 44], sometimes

referred to as Border Gateway Protocol (BGP), are network to network routing protocols

as opposed to host to host routing protocols. These protocols are used in constructing

Wide Area Networks, however they do not provide fault tolerance to small server

network clusters [45].

While RIP, OSPF, EGP and BGP are routing solutions to many different routing

problems; they do not address the needs of a high availability server cluster environment.

Their primary goal is to provide routing updates to other routers on the network to find

alternative routes to the same network [45]. The general design goal is based on

reactively rerouting when a specified timeout period has been reached. Therefore, if a

destination network does not respond to a route query, after some time quantum, it is

considered down and a new route is sought after. The DRS algorithm is proactive in that

each node of a server cluster is constantly monitored to maintain a communications link.

If that link does not work, a redundant route is sought after in a distributed manner [46,

47].

Routed and gated are routing daemons that implement some subset of RIP, OSPF,

EGP, and BGP. Given the algorithms that they are based on, however, none of these

approaches provides a proactive fault detection schema to protect distributed applications

from network failures. Hence, system down time is potentially greater.

For many years the telecommunications industry has been interested in fault

12

tolerance for their networks of systems. Telecommunications protocols are inherently

different from routing protocols in that they focus predominantly on hardware solutions.

The most widely used solutions are SONET and DXC [28, 48]. Others include double-

loop, forward hop, and fiber. Survivable network architectures for traffic restoration are

generally divided into two categories; ring-based dedicated restoration and mesh

restoration [47]. Rings with redundant capacity and automatic protection switching are

capable of healing by themselves and hence, are called Self-Healing Rings (SHR) [49].

Mesh restoration relies on digital cross-connect systems to reroute traffic around a point

of failure [50].

A conventional DXC self-healing network using logical channel protection

requires substantial network hardware because for n hosts [29] there are two physical

connections among each pair of hosts, or n*(n-1) total connections. This is a large

amount of spare capacity for network components. Originally, self-healing meshes used a

centralized database to track failures and reconfigure in case of a failure for the entire

mesh. This centralization was a bottleneck and was itself prone to failure. Hence, a

distributed approach is now used [51]. With a distributed approach, each host determines

rerouting patterns and fault detection [52, 53].

A variety of hardware solutions are used by the telecommunications industry to

route phone calls. These include SONET, DXC, FDDI, and SHR. Each of these is highly

fault tolerant due to the numerous paths that exist between every source and destination

host. Fault tolerant routing is provided via hardware mirroring rendering this approach

very expensive. Such solutions are not commonly implemented for use with computer

13

networks using IP protocols. The DRS system works with IP networks unlike some

telecommunication approaches using specialized hardware.

Network Survivability Analyses (NSA) [54] are developed to quantitatively

evaluate different network topologies. NSA numbers increase with redundancy and

decrease with series components. More redundancy with less hardware becomes the

design objective instead of the use of redundancy to correct a reliability or survivability

deficiency. The DRS system uses redundant hardware to provide alternative routes to

network nodes. We provide a NSA type evaluation of the DRS providing several

probability evaluation techniques for the DRS. With NSA analysis we quantify the DRS

improvements to a compute server cluster system with different network topologies.

2.2 DRS Algorithm

The Dynamic Routing System (DRS) improves fault tolerance via proactive

failure recognition and the use of a completely redundant network. In Figure 1, we

illustrate a dual network setup for two computers. Each computer has two network

interface cards connected to two separate networks. It is the task of the routing daemons

to monitor the connections between host A and host B. If a failure occurs, the daemons

set up routes to route around the fault before network applications are aware that a

problem occurred.

The DRS runs on every host in the server array. Each DRS daemon is configured

to monitor every server host on each network and executes a two-phase processing

strategy. In the first phase, the communications links between the local host and all other

14

hosts that it is configured to monitor are checked. These checks are accomplished using

the Internet Control Message Protocol (ICMP) echo request [55]. Host A sends an ICMP

echo request to host B via the first network. If the echo is returned, the DRS can assume

that the hub, wiring, network interface card, device driver, network protocol stack, host

kernel, and the DRS daemon are all operational. The DRS then tests all known hosts and

all known networks in the above example. The complete DRS network stack is

illustrated in Figure 2. Similarly, the second network from host A to host B is checked.

Canonical
Name
“A”

Canonical
Name
“B”

Network Interface #2

Network Interface #1

Network #2 - 193.1.2

Network #1 - 193.1.1

IP 193.1.1.1

IP 193.1.2.1

IP 193.1.1.2

IP 193.1.2.2

Hub

Hub

Figure 1. Dual Network Setup Details

Each daemon keeps track of which hosts to monitor and the state that they are in

(i.e., “up”, “down”). If a failure occurs, the DRS daemon must determine a new route of

communication between hosts A and B. The next section describes different failure

scenarios and how the DRS attempts to establish a new route. In Figure 3, we overview

15

the execution flow of the DRS algorithm.

Hub

W iring
Interface card

Driver
Network Stack

Host Kernel

DRS Deam on

A B

Figure 2. DRS Network Stack

A detailed description of each step in the DRS execution is as follows.

Step 1. System initialization. All DRS system variables are initialized, i.e., read

in configuration variables, setup network communication modules, etc.

Step 2. Initial sleep period. Each DRS is dormant at startup. The dormant

initial condition prevents false negative results of a ping at startup. Periodically, a system

could be powered down during routine maintenance. When the servers are restarted, not

all may start at the same time or boot at the same speed. By having the DRS daemon

sleep for a predetermined amount of time at startup, false failures caused by start-up time

differences are not reported.

Step 3. Monitor incoming requests or discovery messages. The DRS is a

routing daemon. Thus, part of its job is to handle requests for information or to add new

information to its internal database of network hosts and configurations. A “request for

16

information” can be an administrator contacting the daemon and requesting a view of its

routing tables, or a remote server that is unable to contact another server and is asking all

other servers if they are able to communicate to the server in question. “Discovery”

messages are used for detection of fixed routes and new servers on the network. This is

covered in detail in step 6.

DRS Flowchart

Signal from OS

Discovery Sent

Startup

Sleep

Request Manager

Status

Discovery

Routing Reqest

Check Hosts

Proceed

Reroute Host

Ping Succeded

Ping Failed

All Hosts Checked

1

2
6

5

4

3

Figure 3. DRS Architecture

Step 4. Determine link status. Link status verification, the key to the DRS, is

the proactive monitoring of communication links between each server. This verification

enables the DRS to quickly find and fix network failures. The DRS starts with a list of

hosts to monitor. This list is known at start time, but may also be added to in the future

by a “Discovery” message. The DRS sends an ICMP echo request to the host in question.

If the echo is successful, the route is marked as “up”; if it is unsuccessful, several more

attempts are made. If none are successful, the route is marked as “down”. All

17

links are continuously monitored. Checks occur every X seconds where X is a

configurable setting. Note that X affects the speed an error is detected and effects the

amount of network bandwidth used.

Step 5. Fix identified communication errors. In this step, the DRS attempts to

fix known “down” routes. Each host has two network interfaces. Once one interface is

not responding, the second interface is sent an ICMP echo request to verify that it is

working. If that is successful, the DRS modifies its internal routing tables to move all

communication to say B network interface #1 to B network interface #2. Note that in step

4, the new route was checked. The second check guarantees that a failure did not occur

in-between steps. If the second interface did not respond to the ICMP request, a

broadcast is sent on all connected networks. This broadcast asks all other DRS daemons

to see if they can communicate with the host or network in question. The first DRS

daemon to respond is used as a router to the lost host. If no one responds, the host in

question has suffered at least two hardware failures and has become completely separated

from the network. If this has happened, the only thing left to do is to send and alarm

message to the system administrator notifying him/her of a catastrophic failure.

Step 6. Send “Discovery” messages. This stage runs as a separate thread of

execution in the daemon. The DRS sends a broadcast message on all of its network

interfaces stating its own server identification and its server’s network interfaces

addresses. This message is crucial for several reasons, the most significant being that if a

network failure did occur and was fixed, the DRS would otherwise not be updated of the

fixed status because “down” routes are not checked. By sending this message, the other

18

DRS daemons become aware that a “down” interface is now working again, and the

daemon corrects all rerouted communications of that host to the original routes.

The DRS loops through this six-step cycle monitoring communication links,

answering requests, and fixing problems as they occur.

2.3 DRS in the Presence of Network Failures

The DRS handles many different failure situations. We now briefly describe

several common failure situations and the solutions the DRS algorithm will compute.

Network failures can be categorized into three scenarios:

• Single network failure

• Multiple network failures

• Complete network separation failures

Initially, we focus on the action of the DRS in the presence of a single failure.

Upon startup (before the network error occurs), the DRS establishes communication links

to each host. Consider a failure to host B interface #1. Since every host on the network is

implementing the same algorithm, we only discuss the events as they happen for host A.

A B C D

Figure 4. Single Network Failure

Host A sends an ICMP echo request for each host and link in its routing table

19

(part of step 4). The ICMP echo request is not responded to by host B for network #1

because of the failure. Host A then looks for another route. Note that one does exist

because the second interface of host B is operational. Host A now identifies that this is a

potential route because it is listed as being in the “up” status. However, this status is not

guaranteed to be current so an additional check of the proposed alternative route is made

in the later phase of step number four. In this case, an ICMP echo request (or ping) is

sent to host B along the alternative route. If this succeeds, the routing table of host A is

updated to reflect the newly identified static route that circumvents the failure.

At this point, network communication is not impeded by the failure. However, it

is important to identify where the failure exists so it can be repaired. Examining the

routing tables of each host isolates the fault. Looking at the local routing at hosts A, C,

and D it becomes apparent that each host of these three hosts is able to communicate with

all other hosts directly on network #1. However, the routing tables of hosts A, C, and D

routing tables now contains an alternative route to host B. For diagnostic purposes, it is

reasonable to assume that the routing tables are current enough to isolate the problem.

For hosts A, C, and D, the only failure is the route to B for interface #1, while host

B has failure for every interface on the first network. This indicates that the error has

occurred with the host’s network interface, ethernet wire, or network hub port of host B.

At this point, host B is examined and the exact nature of the problem (i.e., interface card,

network cable, hub port, etc.) is determined and repaired.

A single failure is the most common. However, multiple failures do occur, and

the DRS is resilient to them. There are two types of multiple failures: multiple failures

20

that can be viewed as a single fault by the DRS and those failures that require additional

processing beyond single failure masking.

When multiple faults simultaneously occur at a single host (i.e., within the

interface card, network cable, hub port, etc., of a single host) they are treated by the DRS

algorithm as a single failure. That is, these failures are handled in the same fashion and

appear like the single failure example above. All network communication for the first

network is rerouted to the second network via each host’s second interface.

Multiple network failures, although unlikely, do occur and are not always as well

behaved. The likelihood of multiple simultaneous faults occurring on only either the

primary or the secondary network is smaller than the possibility of them spanning over

both networks. Thus, the DRS must be able to handle staggered network failures. Figure

5 shows an example of a staggered multiple network failure. A port on the network hub

one to host A has failed, and, at the same time, the network interface card for host C has

failed.

A B C D

Figure 5. Multiple Network Failure

The problem is that host A and host C cannot directly communicate to each other

even with multiple communication networks. Host A cannot communicate via network

21

#1 and host C cannot communicate via network #2.

For brevity, we only discuss the details of host A and its procedure in correcting

the network communication from two simultaneous failures. The same algorithm

executes simultaneously at each host.

In step 4, each host’s communication link that is in an “up” state is checked.

Every host that is on network #1 fails because the problem is with the hub. Host A is

then placed in the “down” state. Host C’s interface on network #2 also failed and is

placed in the “down” state. This reflects the new information that shows many

communication paths have failed. At this point, step 5 executes. Host B and host D have

direct routes (using interface 2) that appear to be usable. This corrects the

communication link failure on network #1 from host A to host B and from host A to host

D.

Notice that still there is no means of communicating from host A to host C. The

reason for this is that the interface card on network #2 for host C is identified as failed for

both interface one and interface two (this is our second failure).

Host A now attempts to find some means of communicating with host C on

interface #1. It broadcasts a routing request along both network #1 and network #2. The

first “CanYouRoute” broadcast is blocked by the failure on host A interface #1. The

second “CanYouRoute” broadcast is sent out as a routing request for host C on the

second network. The first host to respond to the plea for help is used as a router for

communication to host C. Assume host B is the first host to respond for communications

22

routing for host C interface #1. A static route-using host B is added to host A’s routing

table. This scenario is illustrated in Figure 6.

A B C D

Figure 6. Communication Route Diagram for Host A to Host C via Host B

Figure 7. Communication Route Diagram for Host A to Host C via Host D

Figure 8. Complete Network Separation

Since two routes must be known for each host, host A attempts to find a route for

host C interface #2. The DRS does not distinguish that the different interfaces are

connected to the same host in this instance. Again, a broadcast is issued on both

A B C D

23

networks. The first broadcast goes unacknowledged. Assume host D answers the second

request for help in routing to host C. (See Figure 7). Now all communication routes to

host C are restored using a remote host as routers between the hosts.

The final failure scenario is a complete network separation or node failure. A

complete node failure cannot be solved by any routing solution. The survivability

analysis and routing solution assume that the sender and receiver are working. A

complete network separation is a failure scenario where both network interfaces for a

single node fail, thus isolating the node from the system. The probability of these cases is

addressed in the probability model.

2.4 Detection of Network Repairs

The DRS has the ability to detect the reconnection or repair of a failed network

route. In the previous example, assume that the cause of failure for host A was that the

port on hub one was accidentally turned off. Furthermore, assume the problem was

detected, circumvented, and the DRS daemon sent an alarm.

The system administrators resolve the problem by turning the port back on. Once

this is done, they do not need to examine the routing tables of the hosts because the DRS

is self-correcting. That is, the DRS uses discovery messages to identify the correction

and return the routing tables to their original state (i.e., direct network routes instead of

static alternative routes).

The self-correcting recovery occurs because each host periodically broadcasts its

own discovery message on all of its network interfaces. When host A receives discovery

24

messages on interface #1 from hosts B, C, and D, it examines the routing table to

determine if any corrections or updates are needed. The DRS identifies that static

alternate routes exist for hosts B, C, and D. After receiving the discovery message, the

DRS removes the corresponding alternate route entry from the local kernels routing table.

This removal restores the original routing table state after a failure has been fixed. The

DRS routing table is then updated to reflect the newly repaired communication path.

Notice that host C interface #2 is still down. Host A has not received a status

discovery message from that link because the network link is still not functioning

correctly. With this approach, when the network failures are corrected, the DRS returns

to its original state without manual intervention.

A B C D

Figure 9. Restored Network Communication

2.5 DRS Performance Results

The DRS checks each “up” link it is attached to (Step 4). Therefore, on average,

the fastest failures in a communication link can be determined is the amount of time it

takes to check all links divided by two. When scaling the DRS, it is important to examine

the time needed to determine that a failure has occurred and the amount of bandwidth the

DRS will use to achieve that goal. A trade-off exists between how quickly a failure is

discovered and how much network overhead (bandwidth) is introduced.

25

2.6 DRS Model System

The DRS’s proactive monitoring of network links comes at a cost of network

bandwidth. To find errors before they effect network communication, the links must be

checked frequently. If the links are not checked frequently, the DRS is equivalent to a

reactive routing protocol. As the number of nodes increases, the bandwidth required to

support the frequent checks likewise increases. In Figure 10 and Figure 11, we present

the number of servers in the cluster that the DRS can support given a requirement for

error resolution in X time units. Additionally, the percentage of network bandwidth

useable by the DRS can be used to determine the speed at which errors are detected. As

shown in Figure 11, ninety hosts are supported in less than 1 second with only 10% of the

bandwidth usage.

Each ICMP echo request is 64 bytes in length. As the number of nodes increases

the number of checks required to maintain link connectivity status increases. Thus, for

each node there are 2(n-1) messages and a total of 2n(n-1) messages for the system. For a

given number of nodes and a frequency rate of checks the amount of bandwidth used can

be calculated. In Figure 10 and Figure 11, we demonstrated that relationship. The

production machines did not see any degradation in performance from the added network

usage.

As shown in Figure 10, as the number of hosts increases the rate of network

monitoring must decrease to maintain a constant network usage. The results presented in

Figure 10 and Figure 11 were obtained using the DRS model. A comparison of actual

performance predicted by the simulation is presented in Figure 12.

26

Response Time VS Number of Nodes for a 10mbs Network

0.0001

0.001

0.01

0.1

1

10

100

2 12 22 32 42 52 62 72 82 92 10
2

11
2

12
2

13
2

14
2

15
2

16
2

17
2

18
2

19
2

20
2

21
2

22
2

23
2

24
2

25
2

Number of Nodes

T
im

e

10%

15%

20%

25%

Figure 10. 10Mb Network Performance

Response Time VS Number of Nodes for a 100mbs Network

0.00001

0.0001

0.001

0.01

0.1

1

10

2 12 22 32 42 52 62 72 82 92 10
2

11
2

12
2

13
2

14
2

15
2

16
2

17
2

18
2

19
2

20
2

21
2

22
2

23
2

24
2

25
2

Number of Nodes

T
im

e

10%

15%

20%

25%

Figure 11. 100Mb Network Performance

Figure 10 shows that on a 10Mb network, 32 servers can coexist while still being

able to detect network failures in around one second. If there is a need for more servers,

27

either a higher network utilization factor is used or a higher bandwidth network is

required. In Figure 11, the DRS performance using a 100Mb-ethernet network is shown.

By using a 100Mb network, the performance of the DRS greatly improves. As

shown in Figure 11, 254 hosts can be monitored by the DRS with less than 10% network

usage, and failures are detected in less than 10 seconds. Ninety hosts are able to detect an

error in less than 1 second. The number 254 was chosen because it is the size of a class

“C” network.

2.7 DRS Network Measurements

We evaluated the performance of the DRS system and compared the expected

network to actual network usage. This was done to (a) find an acceptable level of

performance for the system that allowed for sub-second error detection and (b) find a

level of network usage that did not adversely affect the other applications performance.

In Figure 10 and Figure 11, we show that as the number of hosts increases, the

time between checks decreases to maintain a constant network usage. We tested this

hypothesis by transferring files across the network and calculating the percentage of total

bandwidth achieved.

We ran this experiment with no network traffic and ran the DRS system on 2, 8,

and 16 hosts. We recalculated the available bandwidth at each step. As the number of

hosts increased, we reduced the time to check links to maintain a constant network usage.

The results given in Figure 12 show that the simulation and actual results correspond.

Note that 10% usage is usable by a network of less than 16 hosts and provides a less than

28

one-second-error detection rate.

Max Bandwidth Achieved with File Transfer

0.55

0.47
0.46

0.45

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 2 8 16

Nodes

P
er

ce
n

ta
g

e
o

f
B

an
d

w
id

th

Figure 12. Bandwidth Usage

2.8 Hardware Failure Rates

The DRS was implemented and developed in a commercial system by MCI

Worldcom. The primary goal of DRS was to provide fault tolerance for network

hardware failures. The commercial system does not have any system administrators on

premises. In fact, the closest repair engineer is at least one day away. Because of the

mission critical nature of the system, downtime of one day is very expensive.

Over a 12-month period, hardware failures were tracked to determine the

usefulness of the DRS. Hardware failures were categorized into seven classes.

• System Boards (mother boards, CPU chips, etc.)

• Mass Storage (SCSI controllers, hard drives, tape drives)

• Network hardware (hubs, ethernet cards, ethernet wires, etc.)

29

• Terminal Servers

• Accessories (specialized hardware)

• Memory (RAM)

• Power Supplies

Hardware Failures Over a One Year Period

System Boards
25%

Power Supply
14%Memory

7%
Accessories

8%

Mass Storage
30%

Terminal Servers
3%

Network
13%

Figure 13. Percentage of Failures by Type

Examining 100 systems, we experienced 70 hardware failures over a 12-month

period. Of these failures, 13% were network related.

By using the DRS, network failure did not affect system performance, effectively

eliminating this class of failures. A 13% reduction of system down time justifies the

added cost of hardware and network bandwidth. It is reasonable to expect the same

amount of hardware failures in the future.

30

2.9 Dynamic Routing Survivability Probability Models

In the prior sections, we described the DRS algorithm, and examined its solution

to network failure scenarios. We now present two probability models to quantitatively

compare the DRS algorithm to single network approaches, and dual-network approaches.

The first model gives a success probability based upon the unconditional failure

probability for the system as a whole. The second model provides the probability of a

successful connection between any two nodes given a system with N nodes and f network

failures.

The following analysis will describe the probability of system failure based upon

the success and failure probabilities of each individual component. We assign p as the

probability that a component will function properly, and q as the probability that a

component will fail, with p+q=1. The formula can be extended trivially if the

components have distinct failure probabilities.

Figure 14. Case 1 - Both Backplanes

Case 1: Both backplanes fail (q2). In this case, the system fails and the probability

is q2.

Case 2: Exactly one backplane fails (2pq). In this case, the system fails if and

only if at least one of the two interfaces of the pairs connecting to the working backplane

31

fails. So the probability is 2*p*q* (1-p*p) =2pq(1- p2).

Case 3: Neither of the backplanes fails (p2).

Case 3.1: Both interfaces of the source node fail (q2). So the failure probability is

p2* q2= p2q2.

Figure 15. Case 2 - Hub and NIC Failure

Figure 16. Case 3.1, 3.3 - Both NIC

Figure 17. Case 3.2

Case 3.2: Exactly one interface of the source node fails (2pq). In this case, the

interface of the destination node at the same side of the working interface of the source

node must be down (q).

32

Case 3.2.1: The other interface of the destination node fails (q). So the failure

probability is p2*2pq*q*q= 2p3q3.

Case 3.2.2: The other interface of the destination node works (p). In this case, all

other N-2 bridges must be down (1- p2). Thus the failure probability is p2*2pq*q*p*(1-

p2) N-2= 2p4q2(1- p2) N-2.

Figure 18. Case 3.2.1

Figure 19. Case 3.2.2

So the total failure probability in Case 3.2 is 2p3q3+ 2p4q2(1- p2) N-2.

Case 3.3: Neither of the interfaces of the source node fails (p2). (See Figure 16).

In this case, both interfaces of the destination node must fail (q2). So the failure

probability is p2*p2*q2= p4q2.

Therefore, the total failure probability in Case 3 is p2q2+ 2p3q3+ 2p4q2(1- p2) N-2+

p4q2. So the total failure probability is q2+2pq(1- p2)+ p2q2+ 2p3q3+ p4q2+ 2p4q2(1- p2) N-

2. Therefore, the probability of success is:

33

P[Success]=1- [q2+2pq(1- p2)+ p2q2+ 2p3q3+ p4q2+ 2p4q2(1- p2) N-2].

Equation 1. DRS Unconditional Failure Probability

To compare results, we also provide equations for a dual network system and a

single network system. Using the same methods, the probability of success of a dual

network can be written:

P[Success]=1-[q2+2pq(1- p2)+ p2q2+ 2 p3q2+ p4q2].

Equation 2. Dual Network Unconditional Failure Probability

Likewise, the probability of success for a single network system can be written:

P[Success]=1-[q+pq+ p2q].

Equation 3. Single Network Unconditional Failure Probability

The dual and single networks are independent of N because they do not have the

re-routing algorithm, while the DRS equation will approach a specific probability as

N→∞.

34

In the prior section, we reported about “in the field” deployment and usage

statistics. Given the actual usage data, q = 0.13 and p = 0.87. Using Equation 1. DRS

Unconditional Failure Probability, we calculate the unconditional failure probability of a

given system. Given a server cluster of 20 and a probability of failure of 13% the DRS

system yields, an unconditional failure probability 37% greater than a single network

topology for 20 clustered server nodes.

Figure 20. Unconditional Failure Probability

If no prior data are available we can assign an equal probability of success and

failure to each node, i.e. p=q=0.5 and evaluate the probability of unconditional failure at

any moment for our system. When evaluating the system's probability of success with

Equation 1, the DRS for any given moment is 112% better than a single network topology

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5

N o d e s

P
[S

uc
ce

ss
]

P [S u c c e s s] w i t h D R S

P [S u c c e s s] w i t h 2 n e t w o r k s

P [S u c c e s s] w i t h 1 n e t w o r k

35

and 13% better than a dual-network topology. Figure 20 describes a comparison of the

DRS versus dual and single network topologies presented in Equation 1, Equation 2 and

Equation 3 for p = q = 0.5 and X nodes, respectively.

The unconditional failure probability gives us a total probability of success model

for the entire system. We now present a quantitative probability model to evaluate

systems in terms of a given number of network failures occurring at a given instance. In

this model, we determine the probability of success, independent of time, of a system

with N nodes and f failures. We assume that, in a system with N nodes, there are exactly

2N interface connections and two non-meshed back planes, each with equal probability of

failure, say q, for 0≤q≤1. Therefore, the probability of two failures in any system will be

q2, the probability of three failures will be q3, and the probability of f failures will be qf. It

follows that 0qf
lim f =∞→ . Consequently, the probability of multiple failures

decreases exponentially.

As the number of nodes in a system increases, the probability that a system using

the DRS maintains a successful connection between any two nodes at any given time will

approach 1 for a fixed number of failures, using the DRS. Since there are 2N+2 total

connections that the f failures can be distributed among, the total number of combinations

of f failures in the system is

 +
f

2N2 . We now count the number of failure combinations

that result in the failure of the communication between a specific pair of nodes.

Case 1: Both backplanes fail. In this case, the remaining f-2 failures appear in

36

the 2N components. The total number of such combinations is

− 2f
N2

.

Case 2: Exactly one backplane fails. The total number of combinations of f-

failure is

− 1f
N2

. To make the specific pair unable to communicate, at least one of the

two interfaces of the pairs connecting to the working backplane fails. Therefore, the

number of failures that will not result in the failure of communication between the given

specific pair of nodes is

−
−
1f
2N2

. The total number of such combinations is

−
−−

− 1f
2N2

1f
N2

.

There are two cases in which exactly one backplane fails, so the total number of

combinations is

−
−−

−⋅ 1f
2N2

1f
N22 .

Case 3: Neither of the backplanes fail.

Case 3.1: Both interfaces of the source node fail.

The total number of combinations is

−
−
2f
2N2

.

Case 3.2: Exactly one interface of the source node fails. In this case, the interface

of the destination node at the same side of the working interface of the source node must

be down.

37

Case 3.2.1: The other interface of the destination node fails. So the remaining f-3

failures appear in 2N-4 components. Thus the total number of combinations is

−
−
3f
4N2

.

Case 3.2.2: The other interface of the destination node works. In this case, all

other N-2 bridges must be down. Therefore, the remaining f-2 failures appear in the N-2

bridges, and each bridge must contain at least one failure. Among them (f-2) mod (N-

2)=f-N bridges contain two failures, and (N-2)-(f-N)=2N-f-2 bridges contain exactly one

failure. There are

−
−

Nf
2N

 choices of the bridges with both fail links. For each such

choice, there are
2fN22 −−

 configurations of the remaining single-failure bridges.

Therefore, the total number of combinations is
2fN22Nf

2N −−⋅

−
−

.

There are two cases in which exactly one interface of the source node fails so the

total of combinations in Case 3.2 is

 ⋅

−
−+

−
−⋅ −− 2fN22Nf

2N
3f
4N22 .

Case 3.3: Neither of the interfaces of the source node fails. In this case, both

interfaces of the destination node must fail. Therefore, the total number of failures is

−
−
2f
4N2

.

The total number of failures in Case 3 is:

−
−+

 ⋅

−
−+

−
−⋅+

−
− −−

2f
4N22Nf

2N
3f
4N222f

2N2 2fN2
.

38

The total number of failure combinations is

−
−

+

⋅

−
−

+

−
−

⋅

+

−
−

+

−
−

−

−

⋅+

−

=

−−

2

42
2

2

3

42
2

2

22

1

22

1

2
2

2

2
),(

22

f

N

Nf

N

f

N

f

N

f

N

f

N

f

N
fNF

fN

,

and the probability of success for N nodes and f failures can be written:

 +

−

 +

=

f
2N2

)f,N(Ff
2N2

]Success[P

Equation 4. Probablity of Sucess

Using Equation 4, it is readily apparent that the probability of success converges

to 1 as N gets large for fixed values of f. More specifically, for f=2 the P[S] surpasses

0.99 at 18 nodes. For f=3 the P[S] surpasses 0.99 at 32 nodes, and for f=4 the P[S]

surpasses 0.99 at 45 nodes. Given that
0qf

lim f =∞→ and that 1]S[PN
lim =∞→ , a

system implementing the DRS has a high probability of resilience to network failures.

2.10 DRS Simulation

To reinforce the validity of the probability models, we developed a computer

simulation of a networking system. We model N nodes with f failures implementing the

39

DRS. The graph in Figure 21 the convergence of the simulation outputs to the actual

equation values for 2 through 10 failures. The y-axis represents the mean absolute

difference between the simulation output and the equation value for all values f<N<65.

The x-axis represents the number of iterations in 10log scale. The simulation results

support the probability model of Equation 4 presented earlier.

0 . 0 0 0 0

0 . 0 0 1 0

0 . 0 0 2 0

0 . 0 0 3 0

0 . 0 0 4 0

0 . 0 0 5 0

0 . 0 0 6 0

0 . 0 0 7 0

0 . 0 0 8 0

0 . 0 0 9 0

1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

I t e r a t i o n s

A
ve

ra
ge

 D
ev

ia
ti

on

2 f a i l u r e s

3 f a i l u r e s

4 f a i l u r e s

5 f a i l u r e s

6 f a i l u r e s

7 f a i l u r e s

8 f a i l u r e s

Figure 21. Convergence of Simulation Results to Equation Results

2.11 DRS Model Results

Previously, we provided two probability models of the DRS algorithm. The first

was an unconditional failure probability of the entire system. We compared the DRS

system to a dual network topology and a single network topology. We showed that the

probability of success of the DRS system for any given moment is 112% better than a

40

single network topology and 13% better than a dual-network topology. We then provided

a conditional failure probability model to evaluate the system in terms of number of

network failures at a given instance. Those results were later validated via a computer

simulation.

We now provide a quantitative comparison of the DRS to other solutions. The

first type of solution is a simple one-network topology where all nodes are connected via

a shared hub. The second solution is to add a second network to the system to provide a

redundant communication path. A simple dual network solution will not work properly

as implemented by most operating systems today without routing software; we do not

address that issue. We assume that the network operates properly and use the second

network if available, which allows the system to reactively re-route a connection if a

network failure occurs. The third solution is to create a dual network topology and run

the DRS on all nodes. With the probability model provided above we can evaluate each

of the solutions in terms of probability of success, number of nodes, and f number of

failures.

Figure 22. Dual Meshed Network with DRS Algorithm

41

3 F a i l u r e s

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

3 1 3 2 3

N o d e s

P
[S

uc
ce

ss
]

P [S] w i t h 2 N e t w o r k s m e s h e d D R S

P [S] w i t h 2 N e t w o r k s D R S

P [S] w i t h 2 N e t w o r k s

P [S] w i t h 1 N e t w o r k

2 F a i lu r e s

0 .6 0

0 .6 5

0 .7 0

0 .7 5

0 .8 0

0 .8 5

0 .9 0

0 .9 5

1 .0 0

2 7 1 2 1 7 2 2 2 7 3 2

N o d e s

P
[S

uc
ce

ss
]

P [S] w i t h 2 N e t w o r k s a n d m e s h e d
D R S
P [S] w i t h 2 N e t w o r k a n d D R S

P [S] w i t h 2 N e t w o r k s

Figure 23. 2-3 Failure Comparison

In Figure 23 a comparison of four network topologies is shown for two and three

42

network failures. The first is a single network topology. The DRS for an eight-node

cluster with three simultaneous failures is 267% more reliable than a single network

topology 129% more reliable with only two network failures.

While re-routing without routing software does not work with most operating

systems, the DRS only nominally improves on simple dual network topologies when

comparing with a fixed number of failures. The reason is that DRS handling of opposite

network failure situations is only a small percentage of the total number of network

failure scenarios when the communication backplane is shared. Most switches use a fully

connected mesh to create more communication channels to avoid channel contention.

Therefore, the assumption that the communication link is one link is true for non-

switched hub topologies where the hub uses a shared media for all port-to-port

communications.

In Figure 23, we show an example of a fully connected mesh system. We provide

a comparison of the current results to connected mesh architecture for two and three

failures in Figure 24. Our existing models are a lower bound result for most topologies,

which in reality are much better. DRS’s ability to route around single channel failures in

a backplane mesh makes this possible. Therefore, we leave these models out of the

network probability model and use our results as a lower bound.

2.12 DRS Conclusions

The DRS algorithm was presented along with failure scenarios and solutions to

network failure that the DRS would discover. Additionally, a one-year study was

43

conducted to determine the failure rates of various system components to demonstrate the

benefits that a compute cluster would have by adding a redundant network. Two

probability models were provided to quantitatively compare different network topologies

and the benefit from the DRS approach. The first model gives an unconditional failure

probability of the entire system. We compared the DRS system to a dual network

topology and a single network topology. We showed that the DRS systems probability of

success for any given moment is 112% better than a single network topology and 54%

better than a dual-network topology. We also presented a second probability model to

evaluate the system in terms of number of failures. Using Equation 4. Probablity of

Sucess, we showed that the probability of success converges to 1 as N gets large for fixed

values of f. More specifically, for f=2 the P[S] surpasses 0.99 at 18 nodes. For f=3 the

P[S] surpasses 0.99 at 32 nodes, and for f=4 the P[S] surpasses 0.99 at 45 nodes. Given

that
0qf

lim f =∞→ and that
1]S[PN

lim =∞→ , a system implementing the DRS has

a high probability of resilience to network failure.

We also presented a network simulation of the system validating our probability

model. We compared the DRS to single network topologies and showed that for an eight-

node cluster with three simultaneous failures, the DRS is 267% more reliable than a

single network topology and 129% more reliable with only two network failures. We

also demonstrated that the DRS results are a lower bound result when compared to dual

network topologies for a fixed number of failures and would provide greater resilience to

network failures than other topologies.

44

The DRS algorithm is currently used by MCI Worldcom for enhanced voice

services and is deployed to twenty-seven locations/clusters, each containing eight to 12

servers. While the DRS uses network bandwidth to pro-actively monitor network

communication links, this added overhead has not effected systems overall performance.

We presented this effort to quantitatively analyze the DRS’s added benefits in

comparison to other topologies or solutions, in terms of fault tolerance added to

distributed- server clusters.

The DRS is a proactive routing protocol. It uses existing hardware and

networking protocols to provide a fault tolerant network system for distributed

applications and operating systems. The DRS, unlike routed and gated approaches, which

passively monitor network links, proactively monitors each host and its communication

links. The DRS also checks alternate routes before using them to achieve an additional

level of fault tolerance without the use of special hardware. This fault tolerance comes at

the price of some network bandwidth usage. We found this to be a reasonable trade off

given that tightly coupled server arrays tend to be smaller than client server networks.

The production implementation runs on a four-host system and created no

network problems. We have calculated that the same system can execute a 32 host server

cluster and still achieve sub-second response time to network failures. The DRS is

designed for the current trend of distributed computing systems. By using the DRS in a

tightly clustered server, system remote clients are unaffected during a network failure.

The future of this research will focus on the need for a more efficient means of checking a

large number of servers, i.e., lower than n*(n-1) messages. In addition, we will explore

45

the use of RIP II in conjunction with DRS to add support for hosts outside of the network.

46

CHAPTER III

FAST DUPLICATE DOCUMENT DETECTION

We present a new algorithm for duplicate document detection that uses collection

statistics. We compare our approach with the state-of-the-art approach using multiple

collections. These collections include a 30MB 18,577 web document collection

developed by Excite@Home and three NIST collections. The first NIST collection

consists of 100MB 18,232 LA-Times documents roughly similar in the number of

documents to the Excite@Home collection. The other two collections are both 2GB and

are the 247,491-web document collection and the TREC disks 4 and 5 - 528,023

document collection. We show that the approach called I-Match, scales in terms of the

number of documents and works well for documents of all sizes. We compared the

solution to the state of the art and found that in addition to improved accuracy of

detection, I-Match executed in roughly one-fifth the time.

Data portals are everywhere. The tremendous growth of the internet has spurred

the existence of data portals for nearly every topic. Some of these portals are of general

interest; some are highly domain specific. Independent of the focus, the vast majority of

the portals obtain data, loosely called documents, from multiple sources. Obtaining data

from multiple input sources typically results in duplication. The detection of duplicate

documents within a collection has recently become an area of great interest [56, 57] and

is the focus of our described effort.

Typically, inverted indexes are used to support efficient query processing in

47

information search and retrieval engines. Storing duplicate documents affects both the

accuracy and efficiency of the search engine. Retrieving duplicate documents in response

to a user’s query clearly lowers the number of valid responses provided to the user, hence

lowering the accuracy of the user’s response set. Furthermore, processing duplicates

necessitates additional computation without introducing any additional benefit. Hence,

the processing efficiency of the user’s query is likewise lowered.

A problem introduced by the indexing of duplicate documents is potentially

skewed collection statistics. Collection statistics are often used as part of the similarity

computation of a query to a document. Hence, the biasing of collection statistics may

affect the overall precision of the entire system. Simply put, not only is a given user’s

performance compromised by the existence of duplicates, but also the overall retrieval

accuracy of the engine is likewise jeopardized.

The definition of what constitutes a duplicate is unclear. For instance, a duplicate

can be defined as the exact syntactic terms, without formatting differences. Throughout

our efforts however, we adhere to the definition that duplicate document are two

documents with a high percentage of overlapping text as previously defined as a measure

of resemblance [57, 58]. The general notion is that if a document contains roughly the

same semantic content it is a duplicate whether or not it is a precise syntactic match.

When searching web documents, one might think that matching URL’s would, at least,

identify exact matches. However, many web sites use dynamic presentation wherein the

content changes depending on the region or other variables. In addition, data providers

often create several names for one site in an attempt to attract users with different

48

interests or perspectives. For instance, www.fox4.com, onsale.channel9.com, and

www.realtv.com all point to an advertisement for real TV.

While the previous examples are for web documents, the same holds true for other

collections where multiple document sources populate a single document collection. The

National Center for Complimentary and Alternative Medicine (NCCAM), part of the

National Institutes of Health [59], supports a search engine for medical data whose inputs

come from multiple medical data sources. Given the nature of the data, duplicates are

common. Since unique document identifiers are not possible across the different sources,

the detection of duplicate information is essential in producing non-redundant results.

A previously proposed solution is the Digital Syntactic Clustering (DSC)

algorithm and its Super Shingle (DSC-SS) variant [57]. While these algorithms are

commonly used, they have efficiency problems. One reported run took ten CPU days to

process a thirty million-document collection [57]. Additionally, DSC-SS and DSC are

known to perform poorly on small documents. Given that the average size of a document

on the web is around 4KB [60, 61], working with small documents is imperative.

The developed algorithm, called IIT-Match or I-Match for short filters documents

based on term collection statistics. Results show that I-Match is five to six times faster

than the DSC-SS algorithm. Furthermore, we show that I-Match does not ignore small

documents and places each document into at most one duplicate set. Hence, I-Match

increases accuracy and usability. Other approaches place potentially duplicate documents

in multiple clusters. Hence, it is harder for a user to detect the actual duplicates. Finally,

the sets of duplicates we detect are usually ‘tighter’ than DSC because we require an

49

"exact match" for the terms remaining after our filtration process. However, like other

approaches, we still identify non-exact duplicates.

3.1 Prior Work

We partition prior work into three categories: shingling techniques, similarity

measure calculations, and document images. Shingling techniques, such as COPS [62],

KOALA [58], and DSC [57], take a set of contiguous terms or shingles of documents and

compare the number of matching shingles. The comparison of document subsets allows

the algorithms to calculate a percentage of overlap between two documents. This type of

approach relies on hash values for each document subsection and filters those hash values

to reduce the number of comparisons the algorithm must perform. The filtration,

therefore, improves the runtime performance. Note that the simplest filter is strictly a

syntactic filter based on simple syntactic rules, and the trivial subset is the entire

collection. We illustrate later why such a naive approach is not generally acceptable. In

the shingling approaches, rather than comparing documents, subdocuments are compared,

and thus, each document may produce many potential duplicates. Returning many

potential matches requires vast user involvement to sort out potential duplicates, diluting

the potential usefulness of the approach.

To combat the inherent efficiency issues, several optimization techniques were

proposed to reduce the number of comparisons made. By either removing frequently

occurring shingles [58] or simply retaining only every 25th shingle [57], the computation

time is reduced. This reduction, however, does hinder the accuracy. Since no semantic

premise is used to reduce the volume of data, a random degree of “fuzziness” is

50

introduced to the matching process resulting in relatively non-similar documents being

identified as potential duplicates.

In terms of computational time complexity, these approaches are O(kd log(kd))

where k is the number of shingles per document and d is the number of documents. Even

with the performance-improving technique of removing shingles occurring in over 1000

documents and keeping only every 25th shingle, the implementation of the DSC algorithm

took 10 CPU days to process 30 million documents [57].

The DSC algorithm has a more efficient alternative, DSC-SS, which uses super

shingles. This algorithm takes several shingles and combines them into a super shingle

resulting in a document with a few super shingles rather than many shingles. Instead of

measuring resemblance as a ratio of matching shingles, resemblance is defined as

matching a single super shingle in two documents. This is much more efficient because

it no longer requires a full counting of all overlaps. The runtime for this approach is still

O(kd log(kd)) but k is significantly smaller, and the amount of work to count overlap is

eliminated, reducing the overall runtime. The authors, however, noted that DSC-SS does

“not work well for short documents” so no runtime results are reported [57].

Approaches that compute document-to-document similarity measures [63] are

similar to document clustering work [64] in that they use similarity computations to

group potentially duplicate documents. All pairs of documents are compared. A

document to document similarity comparison approach is thus computationally

prohibitive given the O(d2) runtime, where d is the number of documents. In reality,

these approaches use the document terms to search the collection. Therefore, for

51

document one, each term is used to search the collection, and a final weight is produced

for each documents with a matching term, the highest valued document is the most

similar. This approach of using the document as a query, thus clustering on those result

sets, is computationally infeasible for large collections or dynamic collections since each

document must be queried against the entire collection. Finally, approaches using

document images are addressed in [65, 66]. These approaches map the duplicate

detection problem into the image-processing domain rather than one in the document-

processing arena.

3.2 Algorithm

The motivation for I-Match is to provide a duplicate detection algorithm that can

scale to the size of the web and handle short documents typically seen on the web.

Furthermore, we seek to place each document in only one set of potential duplicates. The

degree of similarity supported should be sufficiently loose to identify non-exact matches

but tight enough to insure that those true duplicates are defined.

In Figure 24, we illustrate the relative restrictiveness of different algorithms.

DSC-SS is the loosest approach because it only requires one super shingle to match.

Shingling is tighter because a percentage overlap in the remaining shingles is required.

However, shingles and DSC-SS are very sensitive to adjustments in shingle size and

thresholds. We have drawn a dotted line to indicate that these may be adjusted in such a

way that shingling would be the less restrictive. Syntactic filters are the most restrictive

because they leave most of the terms in the document representation. Thus, documents

must be very close to an exact match to resemble. The I-Match approach strikes a

52

DSC-SS

Shingles

I-Match

Syntactic filtration

balance between parsing and the previously described existing techniques.

Figure 24. Restrictiveness of Techniques

I-Match does not rely on strict parsing but instead uses collection statistics to

identify which terms should be used as the basis for comparison. It was previously shown

that terms with high collection frequencies often do not add to the semantic content of the

document [67, 68]. The I-Match approach hinges on the premise that removal of very

infrequent terms or very common terms results in good document representations for

identifying duplicates.

We input a document, filter the terms based on collection statistics (and other

simple parsing techniques) and compute a single hash value for the document. All

documents resulting in the same hash value are duplicates. We use the SHA1 algorithm

[69] for the hash, using the ordered terms in the document as input and getting <docid,

hashvalue> tuples as output. The ordering of terms is critical to detect similar documents

that have reordered the paragraphs. The SHA1 hash algorithm is used because it is

53

designed to be very fast and is good for messages of any length. It is designed for text

processing and is known for its even distribution of hash values.

SHA1 produces a 20-byte or 160-bit hash value. By using a secure digest

algorithm, we reduce the probability of two different token streams creating the same

hash value to P (2-160). We insert each <docid, hashvalue> tuple into a tree requiring the

processing time on the order of (O(d log d)). Other efficient storage and retrieval data

structures such as a hash table could be used as alternatives. The identification of

duplicates is handled through the inserts into the tree. Any collisions of hash values

represent duplicates and the document identifiers are stored in that node of the tree. A

scan through the tree produces a list of all clusters of duplicates, where a node contains

more than one document.

The overall runtime of the I-Match approach is (O(d log d)) where d is the number

of documents in the collection. This is comparable to the DSC-SS algorithm, which

generates a single super shingle if the super shingle size is large enough to encompass the

whole document. Otherwise, it generates k super shingles while we only generate one,

(O(kd log kd)) time. Since k is a constant in the DSC-SS timing complexity, the two

algorithms are each theoretically equivalent. I-Match, however, is more efficient in

practice.

The real benefit of I-Match over DSC-SS however, is not the timing improvement

but that small sized documents are not ignored. With DSC-SS, it is quite likely that for

sufficiently small documents, no shingles are identified for duplicate detection. Hence,

those short documents are not considered, even though they may be duplicated. Given

54

the wide variety of domains that duplicate document detection may be used, e.g.,

document declassification, email traffic processing, etc., neglecting short documents is a

potentially serious issue.

3.3 I-Match Results

We implemented the DSC, DSC-SS and I-Match algorithms in the IIT Advanced

Information Retrieval Engine (AIRE) system [70]. To evaluate I-Match, we implemented

a variety of filtering techniques based on various thresholds.

Figure 25 graphically illustrates several I-Match thresholding techniques. In the

figure below, the shaded regions are discarded term regions. The next section describes,

in detail, the different thresholding techniques. The results are broken into the following

sections: experimental layout, syntactic one pass approaches, quality of duplicate sets

found, handling short documents, runtime performance and effects on precision recall.

Figure 25. Thresholds for Document Nidf Values

3.4 Experimental Layout

We experimented with two filtration techniques based on collection statistics I-

Match-Doc and I-Match-IDF. I-Match-Doc filters the unique terms of a given document

by idf value to reach a specified percentage of the original unique terms of the document.

55

The terms remaining after the filter are used to create the clusters hash value. For

instance, 75% of the document might be reached by removing the 25% of the terms with

the lowest idf values (most frequent terms). Another example retains 50% of the original

unique tokens of the document by removing 25% of the terms with the lowest idf and

25% of the terms with highest idf (least frequent). Thus, a percentage in terms of the

number of unique terms of the original document will always remain constant, except for

extremely small documents, i.e., a document containing less than four unique tokens

would be filtered if we wanted to keep less than 25% of the original document.

The I-Match-IDF filtration technique filters terms based on normalized IDF

values. The term IDF values are normalized across the collection so that they fall within

a 0 to 1 interval. For each document, an IDF cut-off is used, thus any term above or

below a certain idf value is removed from the terms to be used to create the clusters hash.

For each approach, we calculated the number of documents that were completely

filtered, i.e., were not evaluated due to the removal of all tokens. We calculated the

average distinct terms before and after filtration and the average number of terms in each

document pre and post filtration. We counted the number of duplicate clusters found

with each approach. We evaluated each duplicate set found and counted how many of

documents within the cluster, matched on the evaluation technique, and how many of

those did the title or URL match. Therefore, if a document was found to have a duplicate

and both documents had either an identical title or URL then it was counted as a

duplicate-title, otherwise it was counted just as a duplicate. We evaluated the number of

unique documents in our collection, so a document cluster was counted only once.

56

Lastly, we noted the time to evaluate the collection. We tracked the following for each

approach and each collection.

• Number of documents filtered by the approach

• Pre/Post average number of unique terms per document

• Pre/Post average number of terms per document (Document size)

• Number of document clusters found

• Number of duplicates found with same URL/Title

• Number of duplicate documents found with just the duplicate approach

• Processing time

We now describe the various thresholding values used. We ran experiments of

the I-Match-Doc approach with thresholds of 10, 20, 30, 40, 50, 60, 70, 80, and 90% of

the most common terms and the inverse of the least common terms, totaling 18

experiments. We ran the LOW and HIGH filters first, filtering the lowest X percentage,

and the highest X percentage based on idf value. Then we filtered the edges of the

document – the most frequent and least frequent terms, keeping the middle ones, 20%,

40%, 60% and 80%. Finally, we filtered the middle of the document, keeping only the

most frequent and least frequent terms, inner 20%, 40%, 60%, and 80%, 8 more

experiments.

The I-Match-IDF filters use cut-off thresholds to filter any word above and below

certain normalized idf values. For the DSC-SS variant algorithm experiments, we

collected document sizes both pre and post filtration and the timing results. Document

size information is used to see how sensitive these types of algorithms are to smaller

57

documents. The DSC-SS runs used super shingle sizes of 2, 4, 5, 10, 15, 20, 25, 50, 75

and 100 shingles where each single was 10 terms. The DSC experiments used thresholds

of 0.5, 0.6, 0.7, 0.8 and 0.9. Table 13, contains a detailed description of the I-Match

experiments.

We used four document collections, as shown in Table 1. Each collection was

chosen to test particular issues involved with duplicate detection. The first is an 18,577-

web document collection flagged as duplicates by Excite@Home. The Excite@Home

document collection was produced from ten million web documents gathered through

crawling the World Wide Web. These documents were then filtered by the

Excite@Home engineers to include only those documents thought to be “duplicate”. The

collection contains 18,577 documents, each of which is suspected of having a duplicate

web document within the collection. Many URLs are in the collection repeatedly because

of multiple spider inputs. This collection is approximately 30 megabytes in size. The

Excite@Home collection is highly duplicated. Thus, as better approaches are used, the

greater is the percentage of the collection found as duplicate.

The second is an 18,232 document Los Angles Times collection. A subset of the

entire LA Times collection provided by NIST, this subset was selected to roughly mirror

the Excite@Home collection in terms of the number of documents but to comprise of

significantly longer documents. The LA Times subset collection is used to compare the

various techniques by inserting known duplicate documents and analyzing the various

approaches, for finding those documents.

The third and fourth collections are likewise from NIST and are the TREC 2GB

58

web and ad-hoc collections. The NIST web collection is a subset of a backup of the web

from 1997 that was used in the TREC web track for TREC 7 and 8. This collection was

chosen as a representative of a larger standard web collection to show the scalability of

the I-Match algorithm. The NIST Web collection is used to test the run time performance

of DSC, DSC-SS and I-Match approaches.

The TREC disks 4-5 are chosen as a second document collection of 2-gigabytes to

see what effects duplication has on precision and recall. Since this collection has

standard query and judgment results, it is a good collection to see if duplication has an

effect on the end result sets. The NIST TREC collection is used to test the effects of

duplication on known relevance judgments.

Table 1. Experimental Collections

Collection Name CollectiOn Size Number of Documents
Excite@Home Web 30 MB 18,577
NIST LA Times 100 MB 18,232
NIST Web 2 GB 247,491
NIST TREC disks 4 & 5 2 GB 528,023

Unfortunately, there is no available absolute body of truth or a benchmark to

evaluate the success of these techniques. Thus, it is difficult to get any type of

quantitative comparison of the different algorithms and thresholding techniques. This is

not likely to change in the near future. As document collections grow, the likelihood of

judgments of duplicates being made is small; therefore, the best that can be hoped for is

to provide fast efficient techniques for duplication detection that can be passed on to

analysis for further evaluation if desired.

59

3.5 Syntactic Filtration

The most obvious way to identify duplicate documents is to directly hash the

entire contents of a document to a unique value. This type of approach finds exact

matches by comparing the calculated hash value with the other document hash values and

has a computational complexity of (O d log (d)) where d is the number of documents in

the collection. A simple hash of the entire document is not resilient to small document

changes, like an additional space added to a document, the addition or deletion of the

word "the", a stem change to a term, or the replication of a sentence or paragraph.

Because of these reasons, hash values are not commonly used for duplicate document

detection. However, they are, used to see if a particular document has changed.

We experimented with various filtration techniques to improve the resilience of

the direct hash approach to small document changes. If a simple filtration technique

based on strictly syntactic information is successful then fast duplicate and similar

document detection could be achieved. We had to evaluate this basic approach prior to

considering the use of more sophisticated, collection dependent, hence computationally

expensive, filtration techniques.

We experimented with five filtering techniques that removed all white spaces

from a document, and created a list of unique tokes to hash.

• sw - Stop Word Filtration

• tg5 - Terms less than 5 characters in length

60

• tl25 - Terms greater than 25 characters in length

• nosc - Terms with special characters

• stem - Stemming

All permutations of the filtration techniques were investigated. We used the 571-

stop-word list used by many participants of the Text Retrieval Conference and available

on the SMART information retrieval site [71]. For word length filters, we removed all

the words less than the average word length [72], five, in the length>5 (tg5) filter. To

filter very long words, we arbitrarily selected 25 as the cutoff for the length<25 (tl25)

filter. For stemming, we used the Porter stemming algorithm [73].

The effect of filtering tokens on the degree of duplicate document detection is

shown in Table 2. We used the Excite@Home collection because the collection is fully

duplicated. Therefore, the percentage of duplicates found is an evaluation metric of the

effectiveness of the filter. Also shown in the table is the percentage of terms retained

after each filtering technique. Generally speaking, as we show in Table 2, the higher the

filtration, the greater the degree of detection. While several of the filtration techniques do

find 88% of the collection, the duplicates they find are near or exact matches and a

maximum number of unique documents of 2038. In contrast, I-Match for this same

collection detects 96.2% duplication and a maximum number of unique documents of

568. Clearly the lower the maximum number of unique documents, the better is the

detection capability. The simple filtering techniques reduced the list of tokens used to

create the hash. By eliminating white spaces and only keeping unique tokens, many small

document changes are eliminated. Keeping only unique tokens eliminates movement of

paragraph errors, stemming removes errors caused by small token changes, and

61

stop word removal removes errors caused by adding or removing common irrelevant, in

terms of semantics, tokens. We found that removing tokens containing ‘special

characters’ (i.e. /, -, =, etc.) performed the best in terms of removing tokens from

documents.

Table 2. Syntactic Experiments

Percentage of Original

Lexicon
Percent Found as

Duplicates
Unique documents found in

collection
nothing 100.0% 62.2% 7017
sw 99.9% 62.2% 7017
tg5 93.2% 62.4% 6966
sw,tg5 93.2% 62.4% 6966
tl25 60.1% 82.4% 3253
sw,tl25 60.1% 82.4% 3253
tg5,tl25 53.4% 82.7% 3199
sw,tg5,tl25 53.4% 82.7% 3199
nosc 9.5% 87.4% 2214
nosc,sw 9.4% 87.4% 2197
nosc,tg5 7.0% 88.0% 2048
nosc,tg5,sw 6.9% 88.0% 2043
nosc,tl25 9.5% 87.4% 2214
nosc,tl25,sw 9.4% 87.4% 2197
nosc,tl25,tg5 7.0% 88.0% 2048
nosc,tl25,tg5,sw 6.9% 88.0% 2043
stem 80.4% 62.2% 7014
stem,sw 80.4% 62.2% 7014
stem,tg5 78.2% 62.4% 6963
stem,sw,tg5 78.2% 62.4% 6963
stem,tl25 41.2% 82.4% 3248
stem,sw,tl25 41.2% 82.4% 3248
stem,tg5,tl25 39.0% 82.7% 3192
stem,sw,tg5,tl25 39.0% 82.7% 3192
stem,nosc 6.9% 87.4% 2211
stem,nosc,sw 6.9% 87.4% 2194
stem,nosc,tg5 5.2% 88.0% 2045
stem,nosc,tg5,sw 5.2% 88.0% 2039
stem,nosc,tl25 6.9% 87.4% 2211
stem,nosc,tl25,sw 6.9% 87.4% 2194
stem,nosc,tl25,tg5 5.2% 88.0% 2045
stem,nosc,tl25,tg5,sw 5.2% 88.0% 2038

62

 These syntactic filtration techniques are very fast; however, the degree of

duplication they detect is limited. Such approaches detect only near or exact duplicates

and do not find documents with small differences, like an updated date string or different

URL. Therefore, simple filtration techniques such as these do not suffice, and efforts such

as DSC, DSC-SS, and I-Match merit further investigation.

3.6 Duplicate Sets

For the task of “remove all duplicates from this collection”, it is helpful to get a

list of duplicate document sets so that one from each set can be retained and the rest

removed. Imagine getting, instead, many different lists of duplicates, where one

document may be in many lists. This is essentially what DSC and DSC-SS return. The

DSC-SS algorithm creates a duplicate document set for each super shingle that exists in at

least two documents. Thus, each document (if it matches more than one super shingle)

may appear in multiple document lists. For example, given documents D1, D2, D3 and

D4 with super shingles as follows: D1 contains super shingle A. D2 contains super

shingle A and B. D3 and D4 contain super shingle B. The resulting sets of duplicates

include {D1, D2} (from super shingle A), {D2, D3, D4} (from super shingle B). Now all

of the clusters must be scanned to get a list of duplicates for D2. In contrast, I-Match

places each document in one and only one duplicate document set.

Consider two documents that match all text except in one small portion as shown

in Figure 26. Perhaps a name and an address for a regional contact are changed. It is

likely that DSC-SS would identify these two documents as duplicates because the small

section that differs may not be represented at all in the selected shingles or a super shingle

63

exists without a shingle from this section. I-Match will group these together as duplicates

only if all terms in the differing section were filtered. This is quite likely with the name

and address example because names are generally very infrequent across the collection,

the numbers are removed in parsing and state names are generally very common across

the collection. On the other hand, if any word in the differing section is kept, the two

documents are not matched.

Figure 26. Differing Documents

To find the best performing I-Match approach, we contrived a set of duplicates to

test the various approaches with a known test set of duplicate documents inserted into an

existing collection. We computed the average document length for the test collection.

We then chose ten documents from the collection, that were the average document length.

These documents were used to create a test duplicate document collection. Each

document is used to create 10 test duplicate documents. This is achieved by randomly

removing every ith word from the document. In other words for every ith word, pick a

random number from one to ten. If the number is higher than the random threshold (call

it alpha) then pick a number from 1 to 3. If the random number chosen is a one then

remove the word. If the number is a two then flip it with a word at position i+1. If it is a

three, add a word (randomly pick one from the term list). Lastly, these duplicate

64

documents are now inserted into the collection.

We then ran the I-Match thresholding techniques, DSC, and the DSC-SS with the

creation of a super shingle for every 2 and 4 shingles on the LA Times sub-collection,

looking for the new test duplicate documents. We found two I-Match filtration

techniques to be very effective I-Match (Doc-L-90 and IDF-L-10). Doc-L-90 takes only

terms with the highest IDF values, i.e., very infrequent terms, and only the 10% most

infrequent terms are used for each document. The second approach (IDF-L-10) uses only

the terms with normalized idf values of 0.1 or greater, thus very frequent terms in the

collection are removed. In the following tables, we present the data obtained in our

evaluation of the different approaches.

Table 3. Documents Found Ratio

Document DSC DSC-SS-2 DSC-SS-4 DOC-L-90 IDF-L-10
LA123190-0013 27.3% 0.0% 18.2% 36.4% 63.6%
LA123190-0022 54.5% 63.6% 18.2% 100.0% 100.0%
LA123190-0025 27.3% 0.0% 0.0% 90.9% 100.0%
LA123190-0037 18.2% 18.2% 0.0% 90.9% 100.0%
LA123190-0043 36.4% 0.0% 0.0% 90.9% 90.9%
LA123190-0053 18.2% 45.5% 45.5% 90.9% 100.0%
LA123190-0058 45.5% 18.2% 0.0% 90.9% 81.8%
LA123190-0073 54.5% 0.0% 0.0% 100.0% 100.0%
LA123190-0074 0.0% 0.0% 0.0% 90.9% 100.0%
LA123190-0080 27.3% 18.2% 0.0% 54.5% 63.6%
Average 30.9% 16.4% 8.2% 83.6% 90.0%

As shown, both I-Match approaches yield a significantly higher percentage of

detection than either DSC or either of the DSC super single approaches. Furthermore, as

expected, the super single approaches declined in the percentage detected as the super

65

single size increased. The DSC performance was better than both super single

approaches.

The most effective I-Match techniques are retaining the highest idf valued terms

from a document either as a percentage or as a normalized value. We produced 10

duplicate documents for 10 test documents, thus creating 11 known duplicate documents

for each cluster. In Table 3, we show the percentage of the total document duplication

found for each approach. Both I-Match approaches find a greater duplication percentage

for all test cases.

Table 4. Document Clusters Formed

Document DSC DSC-SS-2 DSC-SS-4 DOC-L-90 IDF-L-10
LA123190-0013 9 11 9 9 7
LA123190-0022 6 7 9 3 2
LA123190-0025 9 11 11 4 3
LA123190-0037 10 10 11 4 1
LA123190-0043 8 11 11 2 2
LA123190-0053 10 9 9 3 2
LA123190-0058 7 10 11 3 3
LA123190-0073 6 11 11 3 3
LA123190-0074 11 11 11 2 1
LA123190-0080 9 10 11 8 9
Average 8.5 10.1 10.4 4.1 3.3

In Table 4, we illustrate that the I-Match techniques yield a smaller number of

document clusters than any of the shingling techniques. That is, we know, by design, that

for each document the actual number of clusters to be formed should ideally be one since

besides the original document, the other ten copies are simply slight modifications of the

original. Therefore, a perfect similar document detection algorithm would generate one

66

cluster per document. As shown, the I-Match configurations result in an average number

of clusters per document of approximately 3 to 4. DSC and the super shingling variants

are significantly worse ranging from 8 to 10 clusters.

3.7 Short Documents

While DSC-SS is more efficient than DSC, it has known deficiencies with short

documents. To evaluate how often DSC-SS completely ignores a document, we ran the

algorithm against the Excite@Home duplicate document collection and the NIST LA

Times collection. As presented in Figure 27, for the Excite@Home document collection,

DSC-SS ignored over 6,500 documents for a super shingle size of two. As for the LA

Times collection, DSC-SS ignored over 1,200 documents. In comparison, DSC ignored

5052 and 636 documents, respectively. The high number of filtered documents for the

Excite@Home collection is caused by the filtration of common shingles produced by this

contrived collection where the 636 documents filtered from the LA Times collection is

probably a better representation of the algorithms performance. I-Match, in the worst

case, ignored only four documents.

In Figure 27, we illustrate the increase in the number of documents ignored as the

number of shingles used to create a single super shingle increases. The more shingles

used to make a super shingle, the more documents are ignored. We then ran the DSC-SS

algorithm against the 2GB NIST collection with super shingle sizes of 100, 75, 50, 25,

20, 15, 10, 5, 4 and 2 shingles. In Table 5, we once again show that the greater the super

shingle size the more documents ignored, thus validating our prior results using the LA

Times and Excite@Home collections. In Table 5, we also illustrate the percentage of the

67

collection filtered.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100

Number of Shingles in a Supershingle

D
o

cu
m

en
ts

 Ig
n

o
re

d

Excite Dups LATIMES

Figure 27. Super Shingle Size vs. Documents Dropped

Table 5. DSC-SS Short Document Filtration

Super Shingle Size Documents Ignored % Filtered
100 220073 88.92%
75 209928 84.82%
50 189071 76.40%
25 133614 53.99%
20 112703 45.54%
15 86288 34.87%
10 54212 21.90%
5 22257 8.99%
4 16805 6.79%
2 6528 2.64%

The I-Match algorithm uses various term filtration techniques based on collection

68

statistics to filter terms. We conducted 52 different filtration experiments. For most I-

Match runs, only about 150 documents were filtered or less than .06% of the collection.

Since our best filtration techniques take only a percentage of the document, only

documents with a couple unique terms are ignored. The only I-Match thresholding

technique to filter a substantial percentage of documents filters based on IDF values

retaining only a normalized IDF value of 0.9 or greater. This technique keeps less than

50% of the collection, similar to a DSC-SS of 50. In spite the degree of filtering, no I-

Match thresholding technique dropped any significant number of documents. That is, the

greatest number of documents dropped was 143 out of 247,491.

Table 6. Post Average Document Size

Super Shingle Size Post Avg Doc Size
100 9860
75 8123
50 6109
25 3833
20 3389
15 2963
10 2575
5 2272
4 2225
2 2140

As the super shingle size increases, the average size of a document that survives

the filtration process increases. In Table 6, we present the average number of tokens per

document retained after super shingling. The average token size is about six characters in

length. The sizes of the documents are presented in terms of the number of terms. Thus,

multiplying by six [72] estimates the average size of a document. This sub-collection of

69

the web has slightly higher document sizes than the 4K sizes reported in [60]. This

shows us that the DUP-SS algorithm performs poorly on web sized documents.

3.8 Runtime Performance

We divide the runtime performance experiments and results into two sections.

The first set of experiments compares the I-Match and the DSC-SS algorithms on the

Excite@Home test document collection. The second set of experiments compares the I-

Match, DSC-SS and DSC algorithms using the 2-gigabyte NIST web collection. All

experiments were run on a SUN ES-450; each process ran with about 200MB for all

algorithms.

I-Match was approximately five times faster than DSC-SS for the Excite@Home

collection. The pure Syntactic Filtration technique ran in less than 5 seconds, but as

discussed previously, only exact matches are found with this technique. Varying the

threshold for super shingle sizes does not significantly influence the runtime since the

same amount of work must occur. Our best performing I-Match techniques ran in 142

(Doc-L-90) and 134 (IDF-L-10) seconds.

The DSC and DSC-SS timings for the Excite@Home collection are comparable

since the third and fourth steps of the DSC algorithm are I/O bound in nature but are

relatively negligible for a small collection. The third and fourth steps in the DSC

approach become a greater percentage of the cost as the collection grows as seen in Table

8 for the 2GB NIST collection.

We compared the run time of I-Match to the DSC and DSC-SS algorithms

70

running against the NIST 2 gigabyte Web collection. As with the Excite@Home

experiments, the parsing/indexing system builds shingle data and relevance feedback data

structures when indexing a collection. Thus, preprocessing the text and creating shingle

and token data times are not contained in our timing results, just the specific clustering or

duplication algorithm.

Table 7. Duplicate Processing Time

Algorithm Mean Time Std Deviation Median Time
DSC 595.4 4.3 593.5
DSC-SS 587.6 18.5 587.1
I-Match 96.9 33.4 82.6
Syntactic 5 N/A N/A

As shown in Table 8, I-Match was approximately six times faster than DSC-SS

and almost 9 times faster than the DSC algorithm. The faster speed of the I-Match

algorithm suite is due to the processing of fewer tokens. The average distinct tokens per

document for the NIST 2 gigabyte collection is approximately 475, while the average

document size is over 2000 terms long. Since a sliding window creating shingles

produces about the same number of shingles as the size of the document, the added

amount of processing is proportional. This is true for all small window sizes proportional

to the total document size. If a large window size for super shingles is used, the DSC-SS

approach is just a hash approach and will not match on similar documents. This ratio of

distinct terms to document size is consistent to our TREC collection statistics.

The DSC algorithm has several additional steps, which are I/O bound in nature,

and contributes to its additional run time. Table 8 contains an average of timing

71

results for each of the given techniques. DSC had five experiments using a threshold of

50%, 60%, 70%, 80% and 90%. DSC-SS had ten experiments enumerated in Table 5. I-

Match results are from 52 experiments described above. Lastly, a syntactic filtration

comparison is given. Detailed experimental results are presented as an appendix and are

listed in Table 13 and Table 15 with the legend describing the experimentation present in

Table 14.

Table 8. Processing Time for 2GB NIST Web Collection

Algorithm Mean Time Std Deviation Median Time
DSC 31838.22 807.9 30862.5
DSC-SS 24514.7 1042.1 24475.5
I-Match 3815.8 975.8 3598.8
Syntactic 65 N/A N/A

3.9 Duplication Effecting Accuracy

We examined the effects of duplication on result sets. We used the I-Match

algorithm on the TREC disks 4-5, which were used for TREC 6-8. We used the NIST

relevance judgments to flag documents judged by NIST. If a duplicate was found and a

positive judgment was made for a given query, we checked to make sure that no false

judgments were made on its duplicates. A dozen inconsistencies were found for TREC 6.

Eight inconsistencies were found for TREC 7. Seventeen inconsistencies were detected

in TREC 8 and 65 inconsistencies were noted for the web track of TREC 8. Examining

these inconsistencies, we found documents that were identical were judged differently.

TREC topic 301, judged document FBIS3-58055 relevant and FBIS3-58055 not relevant;

they are the same document except for the document number. Another example

72

for topic 301 is that document FBIS3-41305 was judged relevant and document FBIS3-

41305 was not judged as relevant although these documents are identical except for the

title and the document number. Similar examples were found for TREC 7 and 8 and the

web track of TREC 8. While this does not diminish the usefulness of the TREC

judgments, it does show that duplicate document detection is important from both a

research point of view and an end user’s point of view.

3.10 Conclusions and Future Work

Algorithms for detecting similar documents are critical in applications where data

are obtained from multiple sources. The removal of similar documents is necessary not

only to reduce runtime but also to improve search accuracy.

We proposed a new similar document detection algorithm called I-Match, and

evaluated its performance using multiple data collections. The document collections used

varied in size, degree of expected document duplication, and document lengths. The data

collections were obtained from NIST and from Excite@Home.

I-Match relies on collection statistics to select the best terms to represent the

document. I-Match was developed to support web document collections. Thus, unlike

many of its predecessors, I-Match efficiently processes large collections and does not

neglect small documents. In comparison to the prior state-of-the-art, I-Match ran five

times faster than DSC-SS against the Excite@Home test collection and six times faster

against the NIST 2GB collection. Furthermore, unlike the efficient version of the prior

art, I-Match did not skip the processing of small documents.

73

In terms of human usability, no similar document detection approach is perfect.

The ultimate determination of how similar a document must be to be considered a

duplicate relies on human judgment. Therefore, any solution must be easy to use. To

support ease of use, all potential duplicates should be uniquely grouped together.

Shingling approaches, including the DSC and DSC-SS approaches, however, group

potential duplicate documents according to shingle matches. Therefore, any match in

even a single shingle results in a potential duplicate match indication. This results in the

scattering of potential duplicates across many groupings and many false positive potential

matches. I-Match, in contrast, treats a document in its entirety and maps all potential

duplicates into a single grouping. This reduces the processing demands on the user.

74

CHAPTER IV

DELAYED IDF UPDATES

Information Retrieval (IR) is directed towards finding relevant data in the form of

documents, in response to user requests (commonly referred to as queries).

Computerized or automatic information retrieval has been a topic of both commercial

development and research for many decades. To improve accuracy, many text search

systems automatically assign weights to terms [77]. The idea is to weigh infrequent terms

high and frequent terms low. Hence, a search for “Telecommunications stock” will

weigh the term “stock” substantially lower than “Telecommunications” because “stock”

occurs much more frequently and is essentially noise (especially in articles found in a

newswire). The inverse document frequency is a well-accepted, automatically assigned

weight that is computed as log(N/df) where N is the number of documents in the

collection and df is the number of documents that contain the term in question. If the

term appears in all N documents, it is clearly noise and is weighted as log(N/N) = 0.

Similarly, if the term appears in only one document, it is considered quite significant and

is weighted as the log(N). Notice that N changes with the addition of each new document

to the collection.

For an information retrieval system that uses constantly, changing data (i.e., a

system that indexes a user’s e-mail) the cost of updating the value of N with each new

document can be quite prohibitive. Most work on information retrieval systems focused

on static data; therefore, this has not been widely addressed. Viles and French [74]

showed that the inverse document frequencies did not have to be updated very

75

often to assure good accuracy, but this work was done on a very small document

collection. Experimentation on small document collections was shown to be non-

indicative for larger collections [75].

We tested the hypothesis that a sufficient amount of “training” data is sufficient to

assign the term weights and once the weights are assigned, they need not be updated

frequently [19, 20]. We tested a variety of different training set sizes (10 MB, 20 MB,

40MB, 80MB, and 160 MB) for a 320MB collection. We also tested different update

intervals for these training set sizes. We found that the size of the training set was not

nearly as important as the number of unique terms identified in a training set. (Clearly,

up to a point, this number of distinct terms increases with the size of the training set.)

We found that a training set size of 50% of the document collection did not

require any updating of the inverse document frequencies to maintain accuracy in

retrieval. For a training set size of 10% and 20%, accuracy degraded as compared to that

of 40%. Hence, for a collection similar to the one used, the “right” training set size is

around 20-40 percent of the document collection. Note that these estimates are based on

the assumption that the number of new terms appears at the same rate as observed in our

test collection. A safer means of computing training set size, might be to use the number

of distinct terms.

The decision of when to update the inverse document frequencies should be

driven by the user requirements. If the requirement is for the theoretically highest

achievable accuracy then the inverse document frequency should be updated constantly;

however, if there is some flexibility in this requirement, more infrequent updates will

76

certainly improve system performance by reducing processing overhead without

noticeably affecting accuracy. We try to answer an important efficiency question. What

is a reasonable update frequency for the inverse document frequency used in the vector

space model? We start with a training collection of 40, 80, and 160 MB, we observed no

significant change in the accuracy of our retrievals when the inverse document

frequencies were updated frequently or infrequently. Accuracy was affected when the

training size was only 10 or 20 MB. Since the order in which new documents appear

could affect accuracy, we tested two different orderings and the results were comparable

for each ordering.

4.1 Vector Space Model

To evaluate the relevance of each document, for each query-document pair, a

measure of relevance is computed. Accordingly, the documents within the collection are

then ranked based on this measure. A popular means of computing a similarity measure

is the vector space model. This model defines a vector that represents each document,

and a vector that represents the query [76]. Once the vectors are constructed, the distance

between the vectors, or the size of the angle between the vectors, is used to compute a

similarity coefficient.

There is one component in each vector for every distinct term that occurs in the

document collection. Consider a document collection with only two distinct terms, and

ß. All vectors contain only two components. The first component represents occurrences

of , and the second represents occurrences of ß. The simplest means of constructing a

vector is to place a one in the corresponding vector component if the term

77

appears, and a zero, if the term does not appear. Consider a document, D1, that contains

two occurrences of term and zero occurrences of term ß. The vector, <1,0>, represents

this document using a binary representation. This binary representation can be used to

produce a similarity coefficient, but it does not take into account the frequency of a term

within a document. By extending the representation to include a count of the number of

occurrences of the terms in each component, these frequencies can be considered. In the

example, the vector would now appear as <2,0>.

Early work in the field used manually assigned weights. Similarity coefficients

that employed automatically assigned weights were compared to manually assigned

weights [77, 78]. Repeatedly, it was shown that automatically assigned weights would

perform at least as well as manually assigned weights [77, 78].

Unfortunately, the above approach does not include the relative weight of the term

across the entire collection. The utility of including a collection-wide based weight was

studied in the 1970’s, and the conclusion was that relevance rankings, the ordering of

documents with respect to their relevance to the user query, improved if this weight was

included. Although relatively small document collections were used to conduct the

experiments, the authors still determined that “in so far as anything can be called a solid

result in information retrieval research, this is” [79].

To construct a vector that corresponds to each document, consider the following

definitions:

• n = number of distinct terms in the document collection

78

• tfij = number of occurrences of term tj in document DI

• dfj = number of documents which contain tj

• idfj = log
jdf

d where d is the total number of documents

The vector for each document is of size n and contains an entry for each distinct

term in the entire document collection. The components in the vector are filled with

weights that are computed for each term in the document collection. The terms in each

document are automatically assigned weights based on how frequently they occur in the

entire document collection and how often a term appears in a particular document. The

weight of a term in a document increases the more often the term appears in a document

and the less often it appears in all other documents.

The weights computed for each term in the document collection are non-zero only

if the term appears in the document. For a large document collection consisting of

numerous small documents, the document vectors are likely to contain mostly zeros. For

example, a document collection with 10,000 distinct terms results in a vector of size

10,000 for each document. A given document may have only 100 distinct terms. Hence,

9,900 components of the vector contain a zero.

The calculation of the weighting factor (w) for a term in a document is formally

defined as a combination of term frequency (tf), document frequency (df), and inverse

document frequency (idf). To compute the value of the jth entry in the vector

corresponding to document i, the following equation is used:

Dij = (tfij) (idfj)

79

Consider a document collection that contains a document, D1, with ten

occurrences of the term green and a document, D2 , with only five occurrences of the term

green. If green is the only term found in the query, document D1 is ranked higher than

D2.

The inverse document frequency can best be examined when term frequency is

not a factor. Returning to our earlier example, for the query containing the terms

“Telecommunications stock” it is assumed that stock occurs substantially more frequently

that the term “Telecommunications” . For a document collection in which document D1

contains one occurrence of “stock” and document D2 contains only one occurrence of the

term “Telecommunications”, document D2 will be ranked higher than D1, and

“Telecommunications” will have a higher inverse document frequency than “stock”.

When a document retrieval system is used to query a collection of documents with

t terms, the system computes a vector D of size t for each document. The vectors are

filled with term weights as described above. Similarly, a vector Q is constructed for the

terms found in the query.

A simple Similarity Coefficient (SC) between a query Q and an ith document Di is

defined as the Euclidean distance between the two vectors SC (Q, Di) = ∑
=

t

j
ijj dq

1

*

where qj is the jth term in the query and dij is the jth term in the ith document.

Consider a case insensitive query and document collection with a query Q and the

sample document D given below.

80

Q: “nikkei stock exchange or american stock exchange.”

D:

<DOC>
<DOCNO> AP881214-0028 </DOCNO>
<FILEID>AP-NR-12-14-88 0117EST</FILEID>
<FIRST>u i BC-Japan-Stocks 12-14 0027</FIRST>
<SECOND>BC-Japan-Stocks,0026</SECOND>
<HEAD>Stocks Up In Tokyo</HEAD>
<DATELINE>TOKYO (AP) </DATELINE>
<TEXT>
The Nikkei Stock Average closed at 29,754.73 points,
up 156.92 points, on the Tokyo Stock Exchange Wednesday.
</TEXT>
</DOC>

Table 9. Document Table

Component Term DF IDF TF Weight
1 american 6401 0.60 0 0.00
2 average 2265 1.08 1 1.08
3 closed 2208 1.08 1 1.08
4 exchange 2790 1.00 1 1.00
5 nikkei 234 2.07 1 2.07
6 points 1627 1.23 2 2.46
7 stock 2674 1.00 2 2.00
8 tokyo 725 1.58 1 1.58
9 up 12746 0.30 1 0.30

10 wednesda
y

6417 0.60 1 0.60

The Component, Term, Document Frequency, Inverse Document Frequency,

Term Frequency and Weight (tf * idf) values for the terms in the document are given in

Table 9. Note the term “american” does not appear in the document, but since it does

appear in the query, it is presented here for completeness.

81

The document vectors can now be constructed using the term weights given in

Table 9. Since ten terms appear in the document collection, a ten-dimensional document

vector is constructed. The alphabetical ordering given above is used to construct the

document vector. The weight for term i in vector j is computed as the (idfi)(tfij)

The document vectors are given below:

D = <0.00, 1.08, 1.08, 1.00, 2.07, 2.46, 2.00, 1.58, 0.30, 0.60>

Consider a query that requests all documents about “nikkei stock exchange or

american stock exchange.”

Q = <0.6, 0, 0, 2, 2.07, 0, 2, 0, 0, 0>

The SC(Q, D) would be computed as Q x D or SC(Q,D) = (2)(1.00) + (2.07)(2.07)

+ (2)(2.00) = 10.2849. First proposed in 1975, the vector space model is still a popular

means of computing a measure of similarity between a query and a document [80].

In 1988, several experiments tried to improve the basic combination of tf-idf

weights [81]. Many variations were studied, and the following weight function was

identified as a good performer, where the literals are defined previously

∑
=

+

+
=

t

j
kik

kik
ik

idftf

idftf
w

1

2)*)0.1((log(

*)0.1log(
.

Several different means of comparing the query vector with the document vector

were implemented. These are well documented, the most common of these is the cosine

82

measure where the cosine of the angle between the query and document vector is given:

The cosine coefficient is defined as:

∑ ∑

∑

= =

==
t

j

t

j
qjij

t

j ijqj

wd

dw
DQsim

1 1

22

1
1

)()(

),(

Note that the cosine measure “normalizes”’ the result by considering the length of

the document. With the inner product measure, a longer document may result in a higher

score simply because it is longer, and thus, has a higher chance of containing terms that

match the query not necessarily because it is relevant. The cosine measure levels the

playing field by dividing the computation by the length of the document. We note that

Singhal, et al, found that the field may have been leveled too much [82] as a study of

recent results showed that long, relevant documents were often excluded simply because

they are long.

4.2 IDF Experimentation

The vector space model can incorporate either automatic or manually assigned

term weights. As we discussed in the prior sections, automatically assigned term weights

were shown to perform well. Many weighting schemes were investigated, but the term

frequency inverse document frequency (tf-idf) scheme remains popular. The term

frequency (tf) is computed once for a given document and is relatively easy to add to an

inverted index.

83

The inverse document frequency is based on the total number of documents.

Hence, for a system with 1,000,000 distinct terms, the addition of a single document

requires a computation for each of the terms in the document to compute the new idf

based on the increase in the size of the document collection. For new documents that

have many distinct terms, this requires a substantial amount of resources.

Since the idf is simply an estimate of significance, it is reasonable to expect that it

does not need to be updated with every new document. This premise was tested by Viles

and French et al., for a small document collection, but it has not been tested on a more

realistically sized data set like the TIPSTER collection [74].

Viles and French demonstrated that the idf did not have to be updated frequently.

Since the updates of the idf could prohibit widespread deployment of a commercial

system (due to the reduced ability to add or delete documents), we investigated the

frequency by which one needed to update the idf.

Our hypothesis was that it is not necessary to update the idf for every new

document. We attempted to find the optimal update interval by using a training

collection of 50% of the document collection. Once this was developed, sequences of

text were added to the collection, and idfs were updated for different intervals of text.

Consider a collection with one document that contains terms apple, boy, and cat.

Assume that the idf’s for each of these terms are computed. A new document with apple,

boy, and dog requires an update to the idfs. However, it may not be necessary to update

the idf’s if they are not significantly changed by the new document. This would be fine

84

except a term such as dog would now effectively not be in the inverted index although its

document has been added to the system. A user who searches for dog would not find this

document although it was just added. Hence, even if it is not necessary to update idf’s

very often, the risk is that a unique term could appear between the updates of the idf’s and

that term could be extremely useful to obtain accurate results.

4.3 Results

We tested our hypothesis on a 320MB subset of the TREC collection. For our

initial results, a training set size of 160 MB (roughly half of the document collection) was

used. That is, files numbered 1-160 were used as our training set, and files numbered

161-320 were incrementally added to the collection. The idf’s were initially computed

using a training set. After training, idf’s were only updated every u MB, where u = 10,

20, 40, 80, and 160MB. (160MB is equivalent to no updates of idf except for the training

set.) The effect on average precision was measured every 10 MB to determine the impact

of not updating the idf.

Figure 28 illustrates the average precision-recall for various update frequencies.

The five different lines shown are not significantly different from each other. To test the

impact of the input order, we reversed the training set and the document collection. In

Figure 29, we present the results obtained when reversing the order. That is, files

numbered 161-320 were used as a training set, and files 1-160 were incrementally added

to the collection. Somewhat surprisingly, the order did not significantly affect average

precision-recall measurements. Hence, for a relatively large training set, we conclude that

85

the update of idf’s has a negligible effect on accuracy.

Table 10 below summarizes the average precision-recall for each update interval.

It can be seen that the average precision-recall does not vary by more than 0.3 percent.

Having noticed no significant degradation in accuracy due to delayed idf updating

but being aware that the order of appearance of new terms (order of document insertion

into the collection) could significantly affect the results (i.e., order). We investigated an

additional 160MB training set. For clarity of motivation, consider a case where a term

that was not seen in the training set appears between idf updates and occurs in a relevant

document. Hence, changing the order of the input files could result in such a term

appearing in the training set and subsequently being found in a relevant document.

15

15.5

16

16.5

17

17.5

18

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320

Number of Files

P
re

ci
si

o
n

 -
 R

ec
al

l

160

80

40

20

10

Figure 28. Precision - Recall for Different Update Frequencies (1-160)

To test the impact of the input order, we reversed the training set and the

86

document collection. In Figure 29, we present the results obtained when reversing the

order. That is, files numbered 161-320 were used as a training set, and files 1-160 were

incrementally added to the collection. Somewhat surprisingly, the order did not

significantly affect average precision-recall measurements. Hence, for a relatively large

training set, we conclude that the update of idf’s has a negligible effect on accuracy.

Table 10. Average Precision / Recall for Training Set (1-160)

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320

160 17.49 16.83 16.88 16.41 16.21 17.32 16.37 16.33 15.81 15.38 15.28 15.36 15.55 15.3 15.57 15.61 16.14

80 17.49 16.83 16.88 16.41 16.21 17.32 16.37 16.33 16.11 15.69 15.58 15.67 15.85 15.57 15.88 15.75 16.32

40 17.49 16.83 16.88 16.41 16.24 17.32 16.37 16.33 16.11 15.69 15.58 15.67 15.85 15.57 15.88 15.75 16.32

20 17.49 16.83 16.71 16.41 16.24 17.32 16.39 16.33 16.11 15.69 15.58 15.67 15.85 15.57 15.89 15.75 16.32

10 17.49 16.74 16.62 16.22 16.04 16.94 16.02 16.03 15.81 15.38 15.28 15.36 15.55 15.3 15.57 15.61 16.14

Table 11. Average Precision / Recall for Training Set (161-320)

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320

160 20.71 20.34 20.04 19.55 18.72 18.31 17.99 17.67 17.56 17.69 17.69 17.32 17.27 17.04 16.59 16.47 16.30

80 20.71 20.34 20.04 19.55 18.72 18.31 17.99 17.67 17.44 17.59 17.6 17.24 17.15 16.96 16.53 16.42 16.30

40 20.71 20.34 20.04 19.55 18.8 18.38 18.07 17.76 17.44 17.59 17.6 17.24 17.14 16.95 16.48 16.36 16.30

20 20.71 20.34 20.06 19.59 18.8 18.38 17.95 17.62 17.44 17.59 17.58 17.23 17.14 16.95 16.52 16.40 16.30

10 20.71 20.37 20.06 19.62 18.8 18.27 17.95 17.63 17.44 17.56 17.58 17.21 17.14 16.98 16.52 16.41 16.30

(Note the reader should not compare the curves across Figure 28 and Figure 29

since the documents used in the training sets differ. Instead, what should be noticed is

that in both sets of results the frequency of the update intervals of the idf’s does not

significantly affect the average precision-recall as the precision-recall numbers of the

different update frequencies are roughly equivalent.)

Having concluded that given a sufficiently large training set, the order of

87

document insertion had little significance, we investigated the effects of the size of the

training set. The training set size for the results presented in Figure 28 and Figure 29

encompassed half of the document collection. We hypothesized that the reason for our

failure to detect any effect on average precision-recall due to idf update frequency was

that this training set was relatively large. To measure the effect of training set size on

performance, we tested training collections of t = 80, 40, 20, and 10 MB.

16

17

18

19

20

21

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320

Number of Files

P
re

ci
si

o
n

-R
ec

al
l 160

80

40

20

10

Figure 29. Precision - Recall for Different Update Frequencies (161-320)

In Figure 30, we present our results for these smaller training sets. In this study,

we used the first x files, x = 80, 40, 20, and 10 as our training set. A significant

difference in the average precision-recall measurements occurs when the training set

drops below 20MB. At roughly 7% of our document collection size, the training set is

small enough to illustrate the impact of longer idf update intervals. One reason for this

88

effect is that there are far fewer distinct terms in a training set of size 10MB than one of

160MB. In Table 13, we indicate the number of distinct terms for different training set

sizes. For a training size of 10MB, only 34,953 distinct terms had been observed. Our

training set sizes of 160MB had nearly tripled the number of distinct terms, thereby

dramatically, increasing the chance that a query term will appear in the training set.

Table 12. Training Sets and Number of Unique Terms

Training Set Size Number of Unique Terms Elements
160 140078
80 97408
40 69651
20 48730
10 34953

Precision Recall for Different IDF Training Sets

13.8

14.8

15.8

16.8

17.8

18.8

19.8

20.8

160 180 200 220 240 260 280 300 320

Number of Files

P
re

ci
si

o
n

-R
ec

al
l 160

80

40

20

10

Figure 30. Precision - Recall for Different Training Sets

In summary, as demonstrated by our experimentation, given a sufficiently large

(rich in the number of unique terms) training collection, the idf’s need not be

89

updated frequently to support high average precision-recall measures. Thus, information

retrieval systems can reduce processing overhead by initially collecting a sufficiently rich

set of terms, and computing their idf’s prior to future document insertion, and then, only

infrequently updating the collection idf’s. It remains an open question as to how to

determine what is a sufficient set of terms to constitute as the basis for the collection

idf’s.

4.5 IDF Update Conclusions

We investigated the effect of infrequent updates to the inverse document

frequency. Most research systems simply update the inverse document frequencies with

the addition of each new document. Avoiding the need to update idf’s saves

computational resources by reducing computational overhead.

In our investigation, given a sufficiently rich collection of terms used in a training

set to derive the idfs, we found that the update frequency did not significantly affect

performance. This matches a prior result in the literature, but that work was done using a

very small document collection. Even with our collection, which was substantially larger,

we did not notice significant impact caused by infrequent idf updates. Since this result is

somewhat counterintuitive, we investigated the impact of different training set sizes and

found that for a very small training set (only 10MB) failure to update the idf’s did

adversely impact average precision-recall. Hence, a small training set is insufficient to

compute the idf’s. Given an appropriate training set, in a real system, frequent updates to

the idf are unnecessary.

90

We found that a training set size of 50% of the document collection does not

require any idf updates. For a training set size of 10% and 20% accuracy started to

degrade as compared to 40%. Note that these estimates are based on the assumption that

the number of new terms appears at the same rate as observed in our test collection.

The decision of when to update the idf’s should be driven by user requirements. If

the requirement is for the highest achievable accuracy, the idf’s should be updated

constantly; however, if there is some flexibility in this requirement, updates that are more

infrequent yield statistically equivalent results.

It is critical that this assertion be tested against a large collection. Initial results in

this area used a very small collection and did not report any significant impact on average

precision-recall due to training set size. Using a 320 MB collection, we observed some

degradation in average precision-recall due to infrequent idf updates when the number of

unique terms used in the training set did not accurately represent the document

collection. This result was not uncovered by prior work because the test collection was

too small. To protect against any other incomplete results, we need to expand our work

to the TReC (10 GB) web collection. We now have a process in place to implement these

various algorithms so it should be possible to scale up and measure our results for an even

larger collection.

We have reproduced the somewhat counterintuitive result that updates to idf’s do

not significantly impact effectiveness. Additionally, efforts are required that study means

to determine the number of unique terms that are required to accurately represent the

entire document collection. This term set is likely to be based on the size of the total

91

document collection and the rate of introduction of new terms per document.

Additionally, it is also likely to be the case that a training set should include different

sample sizes based on domains.

92

CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

Computer Science is providing algorithms, theoretical models and powerful

computational machines all for one common goal; to improve the quality of our everyday

lives. While this is an altruistic goal for all scientists, in reality, funding from

governmental agencies and businesses has guided the goals of research. Regardless of the

motivation, our world has just started to see the improvements that science has to offer.

Today’s growth in productivity and efficiency can be directly correlated with the

computer age. This thesis provides algorithms and approaches to solve some of the

growing problems that computer systems are encountering as they try to tackle larger and

larger problems.

In addition to computer scientists, other professionals are providing fundamental

research and improvements in their respective fields: doctors, physicists, sociologists, etc.

The common thread for this accelerated development of new ideas and technologies has

been our ability to improve the methods for sharing information. Without the ability to

share and store information, our capacity to piggyback on the work of others is greatly

hindered. It is this essential ability that has stressed the importance of information

storage and retrieval. The growth of information being stored and shared is exponential

and without new approaches for the scalability of information storage and retrieval

systems; computer science and other disciplines’ future development will be held back.

The importance of information systems to not only computer scientists but for all

93

disciplines is apparent. What is not known is the future direction these systems will

proceed to solve current and future growth patterns. This thesis made several generalized

assumptions about the future of information systems. These assumptions were made to

provide a framework based on current trends in which new algorithms can be presented.

1. Data/Information is growing at a faster rate than compute power.
2. Parallelism of systems is the most promising solution to the growing needs of

retrieval systems.
3. Data/Information are coming from many sources.
4. Any algorithm that helps efficiency or effectiveness is beneficial.

Given the above assumptions about future information systems, new retrieval

systems will be parallel/distributed in nature. Data will be stored on a number of systems,

indexing of that data will be done with multiple machines and CPUs. Retrieval of

information will be distributed to multiple machines and CPUs. New large-scale

information systems will be closely coupled creating a large server array controlled by a

single entity. These distributed and parallel information systems will solve complex

information needs via many computers. Algorithms that allow these new systems to

scale, improve efficiency and effectiveness are of fundamental importance and are

imperative for future systems.

Given the above motivation and framework, this thesis presented computer

algorithms for the design of reliable information server clusters. As information systems

grow in size the need for reliability, parallelization and speed grows. A novel algorithm

called DRS (Dynamic Routing System) was presented. The DRS algorithm sustains

continuous availability of clusters of information or compute servers even during network

failures. Additionally a new duplicate data detection algorithm called I-Match was

94

presented that is several times faster than the state of the art and more precise. By

detecting duplicate data, redundant work is eliminated from indexing and retrieval

processing. Additionally higher retrieval accuracy is provided by reducing the amount of

redundant information returned to users. Finally, automatic term weighting utilities are

examined; results are presented showing that as dynamic collections grow, automatic

term weights do not need to be recalculated and still maintain system effectiveness. In

the next sections, we examine the contributions of the various algorithms and examine

future research efforts.

5.1 Reliability, Efficiency and Effectiveness

This thesis examined three issues for the scalability of future information systems.

The first is a time sensitive proactive routing algorithm for distributed systems; the

second is a duplicate data detection algorithm; the third is empirical evidence that

automatic term weight calculations can be delayed without degrading accuracy but

reducing maintenance overhead.

As client needs grow, server systems have become more complicated and require

additional compute needs. While many techniques were applied to improve the

performance of a single machine, these improvements are insufficient to keep up with the

current growth of information. To combat the additional demands for computational

resources, server systems are distributed among multiple computers to handle the

additional computational requirements. As information systems get larger, they too are

distributed to provide the additional processing needs. This distributed approach of

dividing the problem into either multiple workers for the same problem or multiple

95

workers working on different client problems all depend on network communication.

Since a network connecting the servers is the backbone of the computational server, it

must be reliable. We provided data showing network failures constitute 13% of all

hardware failures in a one-year study of over a hundred servers. Therefore, any fault

tolerant server cluster must address network reliability in a manner that is aware of the

time critical issues of server clusters. Our study of hardware failures validates the need

for reliable network communication.

As part of the described effort, a proactive network routing protocol that reroutes

network communication around failures was presented. This protocol and topology

provides a fault tolerant network communications system for server clusters in the

presence of failures. The algorithm is time sensitive in which failures are detected and

addressed before they affect applications. This type of system provides the reliability that

new Information Retrieval (IR) systems need as they become distributed. The

contribution of this type of dynamic routing is its application time sensitivity where

proactive network monitoring is applied as opposed to the traditional reactive routing

approach when dealing with server clusters.

Our algorithm creates a fully connected graph from the existing server cluster in

which each server may route network traffic. By doing so, failures to any single point in

the graph can be circumvented and allow the cluster to continue working despite network

failures. While any single point of failure can be dealt with, the algorithm also allows for

multiple network failures, although not all multiple failures are recoverable.

Additionally, the proactive monitoring of communication links enables time sensitivity of

96

applications to be addressed.

Since our algorithm is proactive, additional network traffic is incurred. We show

that the additional overhead incurred by our approach does not adversely affect network

performance and does greatly improve the network reliability. We examined the overall

improvement to availability of this type of approach in comparison to other topologies.

Our detailed analysis is provided via several probability models that allow the various

topologies to be compared in terms of number of network failures and overall reliability.

Our probability models show a 267% improvement to network availability over

traditional topologies for a distributed server cluster. Additionally, we showed

improvements on all levels from single to multiple failures. By providing fundamental

reliability to the communication channels between distributed servers, issues of

effectiveness and efficiency can be addressed.

We examined issues related to multiple information sources. As information

retrieval systems collect data from multiple sources, the likelihood of multiple copies of

the same data, or near duplicate documents being added to the system, increases. We

hypothesize that if the duplicate information is detected and eliminated in a fast efficient

manner, the system accuracy and performance is enhanced. We presented a duplicate

document algorithm called I-Match based on collection statistics of terms in a given

collection. Additionally, we showed that this algorithm preformed five to nine times

faster than comparable algorithms. Lastly, we showed that the I-Match algorithm is more

effective for finding duplicate documents than shingling approaches.

The I-Match algorithm selectively chooses what terms represent a document by

97

using term collection statistics. Once the document’s representative subset of terms is

selected, a hash is created of those terms. By reducing the number of representative terms

based on collection statistics fuzzy matches can be determined. With a single value

representing each document, every document in a collection can be scanned and evaluated

in O(log d) time where d is the number of documents in the collection. Additionally, this

algorithm is founded in information retrieval techniques unlike the prior approaches of

shingling. Shingling approaches take a set of terms and create a hash value, such that the

first term t1 to the nth term tn are used to create a hash value. Then the second term t2 to

the (n+1) st term tn+1 are used to create the next hash value and so on. N-1 shingles

represent the document. The shingles are used to determine the percentage of overlap

between documents. Shingling approaches have a complexity of O(n2) (where n is the

number of terms in the collection) to examine the entire collection and thus must apply

random filtration techniques to perform in reasonable amounts of time. Since each

document can occur in multiple clusters based on a shingle, analysis of the collection in

terms of fuzzy duplicates is difficult. We provided experimental results showing I-Match

clustering near duplicate documents is better and faster than the other state of the art

shingling algorithms.

There are many efficiency issues for information retrieval systems. Most of the

prior efforts focus on data representation to improve the efficiency of the system. We

hypothesize that batched updates of collection statistics improves the overall efficiency of

dynamic IR systems by delaying work until necessary. While collection statistics are

used to improve precision and recall for information systems, very little work has gone

98

into efficient update approaches to maintain their currency.

One common type of collection statistics used is Inverse Document Frequency

(IDF). We hypothesize that the recalculation of idf values for each new document added

is not necessary. We present empirical data that show the recalculation of IDF values

after an initial training set does not improve the overall precision and recall of the

information retrieval system. By reducing the time to recalculate IDF values, the overall

performance of the system can be improved. Unnecessary additional work, in a dynamic

environment, adversely affects the performance. By finding a good training set of

documents, those IDF values may be used by the system for an extended period without

having to recompute IDF values for each additional document added to the system.

These fundamental issues for reliability and efficiency for information retrieval systems

were addressed in this thesis.

5.2 Future Direction

The future directions of this research are divided into the categories enumerated

above, the time sensitive dynamic routing approaches, duplicate data detection and

collection statistics update frequencies heuristics. The DRS is a time sensitive proactive

routing protocol, unlike routed and gated approaches, which passively monitor network

links, DRS proactively monitors each host and its communication links. The DRS checks

alternate routes before using them to achieve an additional level of fault tolerance without

the use of special hardware. Since this fault tolerance comes at the price of network

bandwidth usage, future research for this system will optimize network bandwidth usage

either via intelligent multicast status checks or other more efficient means of checking a

99

large number of servers, i.e., lower than n*(n-1) messages. In addition, we will explore

the use of RIP II and gated in conjunction with DRS to add support for hosts outside of

the network.

We presented a new algorithm called I-Match for the task of identifying duplicate

documents for web documents and other types of text documents. I-Match uses

collection statistics to select the best terms to represent the document. For future work,

further analysis and testing of our duplicate detection scheme against a collection with

known duplicate document sets (relevance judgments of duplicates) is desirable. We do

not know of such a test collection but plan to continue testing against such collections as

available. In addition, currently we select terms-only, statistical or noun phrases have

been shown to be important in information retrieval and could make a better document

representation than the simple term-based analysis. Finally, experimentation on larger

document collections, such as the 10GB and 100GB collections of web documents from

TReC are planned.

We investigated the effect of infrequent updates to the inverse document

frequency retrieval strategies. Most research systems simply update the inverse document

frequencies with the addition of each new document. Avoiding the need to update idf’s

saves enormous computational resources and significantly reduces resources needed to

deploy a relational search engine or dynamic collection search engine. We demonstrated

the somewhat counterintuitive result that updates to idf’s do not significantly impact

effectiveness on moderately sized document collections. Efforts are required that study

means to determine the number of unique terms that are required to accurately represent

100

the entire document collection. This term set is likely to be based on the size of the total

document collection and the rate of introduction of new terms per document. It is also

likely to be the case that a training set should include different sample sizes based on

domains. The TReC collection contains several different sources, and we are interested

in evaluating the effect of different training sets of different sources.

101

APPENDIX

102

Table 13. I-Match WT2G Experiments (page 1 of 2)

Experiment

Post
Doc
Num Filtered

Pre Avg
Dist Terms

Post Avg
Dist Terms

Pre Doc
Size

Post Doc
Size

Dup
Hash

Dup
URL

Dup
Total

Dup
clusters

Max
Cluster Time

Baseline 247491 0 471 471 2085 2085 60 0 60 46 5 62

Doc-h-f1 247348 143 471 471 2085 2085 53535 0 53535 22019 782 6869

Doc-h-f2 247348 143 471 471 2085 2085 54398 0 54398 22243 782 6086

Doc-h-f3 247348 143 471 471 2085 2085 55578 0 55578 22484 782 5707

Doc-h-f4 247348 143 471 471 2085 2085 56756 0 56756 22710 782 5376

Doc-h-f5 247348 143 471 471 2085 2085 58235 0 58235 22975 782 5287

Doc-h-f6 247348 143 471 471 2085 2085 60905 0 60905 23520 782 3701

Doc-h-f7 247348 143 471 471 2085 2085 65183 0 65183 23926 782 3415

Doc-h-f8 247348 143 471 471 2085 2085 75169 0 75169 24286 1805 3259

Doc-h-f9 247348 143 471 471 2085 2085 108157 0 108157 22957 4288 3104

Doc-l-f1 247348 143 471 471 2085 2085 52280 0 52280 21747 782 4311

Doc-l-f2 247348 143 471 471 2085 2085 52331 0 52331 21753 782 4100

Doc-l-f3 247348 143 471 471 2085 2085 52389 0 52389 21776 782 3810

Doc-l-f4 247348 143 471 471 2085 2085 52498 0 52498 21831 782 3710

Doc-l-f5 247348 143 471 471 2085 2085 52712 0 52712 21928 782 3568

Doc-l-f6 247348 143 471 471 2085 2085 53196 0 53196 22067 782 5439

Doc-l-f7 247348 143 471 471 2085 2085 54079 0 54079 22306 782 4668

Doc-l-f8 247348 143 471 471 2085 2085 55788 0 55788 22801 782 3317

Doc-l-f9 247348 143 471 471 2085 2085 60053 0 60053 24268 1200 3174

IDF-h-f1 244348 3143 471 476 2085 2107 126710 0 126710 31065 782 2473

IDF-h-f2 247265 226 471 472 2085 2086 60858 0 60858 23636 782 3012

IDF-h-f3 247317 174 471 471 2085 2085 56616 0 56616 22914 782 3551

IDF-h-f4 247339 152 471 471 2085 2085 54864 0 54864 22576 782 3924

IDF-h-f5 247341 150 471 471 2085 2085 54130 0 54130 22358 782 4081

IDF-h-f6 247343 148 471 471 2085 2085 53466 0 53466 22012 782 4115

IDF-h-f7 247344 147 471 471 2085 2085 53107 0 53107 21925 782 4266

IDF-h-f8 247345 146 471 471 2085 2085 52816 0 52816 21900 782 4383

IDF-h-f9 247345 146 471 471 2085 2085 52574 0 52574 21829 782 4472

103

Table 13. I-Match WT2G Experiments (page 2 of 2)

Experiment

Post
Doc
Num Filtered

Pre Avg
Dist Terms

Post Avg
Dist Terms

Pre Doc
Size

Post Doc
Size

Dup
Hash

Dup
URL

Dup
Total

Dup
clusters

Max
Cluster Time

IDF-l-f1 247318 173 471 471 2085 2086 52391 0 52391 21813 782 4399

IDF-l-f2 246870 621 471 472 2085 2088 52732 0 52732 22022 782 3773

IDF-l-f3 245724 1767 471 474 2085 2097 53372 0 53372 22437 423 3133

IDF-l-f4 244098 3393 471 475 2085 2101 55271 0 55271 22994 238 2897

IDF-l-f5 240678 6813 471 479 2085 2122 58963 0 58963 24275 238 2645

IDF-l-f6 227196 20295 471 492 2085 2171 57403 0 57403 24995 130 2696

IDF-l-f7 203845 43646 471 519 2085 2285 50840 0 50840 24132 30 2535

IDF-l-f8 165898 81593 471 568 2085 2497 35423 0 35423 20139 10 2430

IDF-l-f9 114434 133057 471 616 2085 2724 13242 0 13242 11696 2 2608

DocR-O-f1f9 247348 143 471 471 2085 2085 57316 0 57316 23226 782 4050

DocR-O-f2f8 247348 143 471 471 2085 2085 54248 0 54248 22293 782 3576

DocR-O-f3f7 247348 143 471 471 2085 2085 53201 0 53201 22046 782 3869

DocR-O-f4f6 247348 143 471 471 2085 2085 52556 0 52556 21849 782 4211

DocR-I-f1f9 247200 291 471 472 2085 2086 53726 0 53726 22087 782 5267

DocR-I-f2f8 247200 291 471 472 2085 2086 54743 0 54743 22294 782 4043

DocR-I-f3f7 246907 584 471 472 2085 2087 55840 0 55840 22525 782 3517

DocR-I-f4f6 245740 1751 471 474 2085 2090 57865 0 57865 22963 798 3250

IDFR-O-f1f9 244743 2748 471 476 2085 2106 88641 0 88641 25354 676 2622

IDFR-O-f2f8 247291 200 471 472 2085 2086 57349 0 57349 22981 782 2991

IDFR-O-f3f7 247334 157 471 471 2085 2085 54415 0 54415 22472 782 3577

IDFR-O-f4f6 247346 145 471 471 2085 2085 53030 0 53030 22173 782 4088

IDFR-I-f1f9 247293 198 471 472 2085 2086 52703 0 52703 21905 782 4112

IDFR-I-f2f8 246759 732 471 473 2085 2088 53395 0 53395 22245 782 3419

IDFR-I-f3f7 245457 2034 471 475 2085 2099 55295 0 55295 22997 423 2921

IDFR-I-f4f6 241515 5976 471 479 2085 2117 62341 0 62341 24360 238 2615

104

Table 14. I-Match Experiment Legend

I-Match Experiment Description
Baseline Syntactic one-pass hash approach, stemming and

removable of special character terms.

Doc (% Doc approach) Takes the X percent of the document based on idf values
of the terms.
l = Highest on the left side of tree. So the terms with the X
highest idf values are used.
h = Lowest on the left side of tree. So the terms with the X
lowest idf values are used.

IDF (IDF approach) Filters terms that don’t meet the normalized idf value
threshold are removed.
l = Terms with idf value is greater than the filter value, the
term are kept.
h = Terms with idf value is lower than the filter value, the
term are kept.

DocR (%Doc Range
approach)

Takes the X percent of the document based on idf values
of the terms. The range takes either the middle X percent
or the outer X percent based on the l or h value.
I = The inner X percent of terms based on idf values are
kept.
O = The outer X percent of terms based on idf values are
kept.

IDFR (IDF range approach) Filters terms based on normalized idf values. Thus if the
term is in the range of idf values it is kept for the final
hash.
I = Keeps terms with idf values between the two values
O = Keeps terms with idf values greater and less than the
2 filter values.

105

Table 15. WT2G DSC-SS Experiments

Post
Num
Docs Filtered

Pre Dist
Shingles

Post Dist
Shingles

Pre Doc
Size

Post Doc
Size

Dup
Clusters Time

DSC-SS-2 239886 7605 470 484 2079 2140 41001 23465
DSC-SS-4 229609 17882 470 503 2079 2225 35638 23441
DSC-SS-5 224157 23334 470 513 2079 2272 33771 26064
DSC-SS-10 192202 55289 470 578 2079 2575 27224 24984
DSC-SS-15 160126 87365 470 659 2079 2963 22667 23609
DSC-SS-20 133711 113780 470 746 2079 3389 19183 24318
DSC-SS-25 112800 134691 470 833 2079 3833 16249 23669
DSC-SS-50 57343 190148 470 1255 2079 6109 7546 25366
DSC-SS-75 36486 211005 470 1626 2079 8123 4948 24147
DSC-SS-100 26341 221150 470 1926 2079 9860 3673 26084

106

BIBLIOGRAPHY

[1] Morrison P., Morrison P., "The Sum of Human Knowledge?", Scientific America,
Vol. 279, No. 1, http://www.sciam.com/1998/0798issue/0798wonders.html,
July 1998.

[2] Lu Z., McKinley K., "Partial Replica Selection Based on Relevance for Information
Retrieval", Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR Forum, pp. 97-104,
August 1999.

[3] Ribeiro-Neto B., Ziviani N., Moura E., Neuber M., "Efficient Distributed Algorithms
to Build Inverted Files", Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
Forum, pp. 105-112, August 1999.

[4] French J., Powell A., Callan J., Viles C., Emmitt T., Prey K., Mou Y., "Comparing the
Performance of Database Selection Algorithms", Proceedings of the
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR Forum, pp. 238-245, August 1999.

[5] Baumgarten C., "A Probabilistic Solution to the Selection and Fusion Problem in
Distributed Information Retrieval", Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR Forum, pp. 246-253, August 1999.

[6] Xu J., Croft B., "Cluster-based Language Models For Distributed Retrieval",
Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR Forum, pp. 254-261, August
1999.

[7] Kretser O., Moffat A., "Efficient Document Presentation with a Locality-Based
Similarity Heuristic", Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR Forum, pp. 113-
120, August 1999.

[8] Nau D., Ball M., Baras J., Chowdhury A., Lin E., Meyer J., Rajamani R., Splain J.,
Trichur V., "Generating and Evaluating Designs and Plans for Microwave
Modules." AI in Engineering Design and Manufacturing, 2000. To appear.

[9] Chowdhury A., Nicklas L., Setia S., White L., "Supporting Dynamic Space-sharing on
Clusters of Non-dedicated Workstations", ACM 17th Int. Conference on
Distributed Computing Systems, 1997.

107

[10] Setia S., Chowdhury A., Nicklas L., White E., "Supporting Dynamic
Reconfiguration of Parallel Applications on Clusters of Non-dedicated
Workstations", Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing, March 1997.

[11] Chowdhury A., "Dynamic Reconfiguration: Checkpointing Code Generation", IEEE
5th International Symposium on Assessment of Software Tools and
Technologies (SAST97), 1997.

[12] Chowdhury A., Luse P., Frieder O., Wan P., "Network Survivability Simulation of
the Commercially Deployed Dynamic Routing System Protocol", IEEE
Workshop on Fault-Tolerant Parallel and Distributed Systems, May 2000.

[13] Chowdhury A., Burger E., Grossman D., Frieder O., "DRS: A Fault Tolerant
Network Routing Protocol over IP", IEEE-IC3N Sixth International Conference
On Computer Communications and Networks, 1997.

[14] Goharian N., Chowdhury A., Grossman D., Ghazawi T., "Efficiency Enhancements
for Information Retrieval using a Sparse Matrix Approach" Parallel and
Distributed Processing Techniques and Applications, June 2000.

[15] Holmes D., McCabe C., Chowdhury A., Alford K., Grossman D., Frieder O.,
"Improved Manual Query Processing and Using Stemming Equivalence Classes
as a Basis for Relevance Feedback", NIST Text Retrieval Conference,
November 1999.

[16] Holmes D., McCabe C., Grossman D., Chowdhury A., Frieder O., "Use of Query
Concepts and Information Extraction to Improve Information Retrieval
Effectiveness", NIST Text Retrieval Conference, November 1998.

[17] Grossman D., Lundquist C., Reichart J., Holmes D., Frieder O., Chowdhury A.,
"Overview of the Fifth Text REtrieval Conference", NIST Text Retrieval
Conference, December 1996.

[18] Chowdhury A., McCabe C., "Performance Improvements to Vector Space
Information Retrieval Systems with POS", TR-98-48, Institute of Systems
Engineering UMD, June 1998.

[19] Frieder O., Grossman D., Chowdhury A., Frieder G., "Phrase Processing with the
Relational Model and IDF Update Effects on Precision/Recall", IBM Technical
Report 05.500, April 1997, (IBM Confidential until May 2002)

[20] Frieder O., Grossman D., Chowdhury A., Frieder G., "Efficiency Considerations in
Very Large Information Retrieval Servers," Journal of Digital Information,
December 1999.

108

[21] Anderson T., Culler D., Patterson D., "A Case for NOW (Networks of
Workstations)." IEEE Micro 15(1):54-64, February 1995.

[22] Casas J., Konuru R., Otto S., Prouty R., Walpole J.. "Adaptive Load Migration
Systems for PVM". In Proceedings of Supercomputing 94, Pages 390-399,
Washington D.C., November 1994.

[23] Message Passing Interface Forum. "MPI: A Message-Passing Interface Standard",
International Journal of Supercomputer Applications and High Performance
Computing, 8(3/4), 1994. Special issue on MPI. Also available electronically,
the url is ftp://www.netlib.org/mpi/mpi-report.ps.

[24] Reschke C., Sterling T., Ridge D., Savarese D., Becker D., Merkey P., ‘‘A Design
Study of Alternative Network Topologies for the Beowulf Parallel
Workstation,’’, Proceedings of the Fifth IEEE Symposium on High Performance
Distributed Computing, 1996

[25] Hamilton, Kougiouris, "The Spring Nucleus: A Microkernel for Objects", Sun
Technical Reports, TR-93-14 (April 1993)

[26] Dees W., Smith R., "Performance of Interconnection Rip-Up and Reroute
Strategies," Proceedings 18th Design Automation Conference, June 1981, pp.
382-390.

[27] Bahk S., Zarki M., "Dynamic Multi-Path Routing and How it Compares with Other
Dynamic Routing Algorithms for High Speed Wide Area Networks", Proc.
SIGCOMM ‘92, pp. 53-64, 1992.

[28] Ash G. R., Dynamic Routing in Telecommunications Networks, McGraw Hill, New
York, NY, 1998.

[29] Krishnan K. R. Doverspike R. D. Pack C. D. "Improved survivability with multilayer
dynamic routing," IEEE Communications Magazine, pp. 62--68, July 1995.

[30] Hurley B. R. Seidl C. J. R. Sewell W. F. "A Survey of Dynamic Routing Methods
for Circuit-Switched Traffic". IEEE Communications Magazine, 25(9),
September 1991.

[31] Hedrick C. Request For Comment 1058, "Routing Information Protocol",
06/01/1988, http://ds.internic.net/ds/dspg2intdoc.html

[32] Malkin, "RIP Version 2 Carrying Additional Information", RFC-1388, 01/06/1993,
http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

109

[33] Dees W., Smith R., "Performance of Interconnection Rip-Up and Reroute
Strategies," Proceedings 18th Design Automation Conference, pp. 382-390, June
1981.

[34] Moy J., Request For Comment 1583, "OSPF Version 2", 03/23/1994,
http://ds.internic.net/ds/dspg2intdoc.html

[35] Internet Architecture Board, "Applicability Statement for OSPF", RFC-1370,
10/23/1992, http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[36] Moy J., "Experience with the OSPF Protocol:, RFC-1246, 8/8/1991,
http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[37] Baker, Coltun, "OSPF Version 2 Management Information Base", RFC-1253,
08/30/1991, http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[38] Mills, "Exterior Gateway Protocol EGP", RFC-904, 10/01/1982,
http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[39] Lougheed, Rekhter, "Border Gateway Protocol (BGP)", RFC-1105, 06/01/1989,
http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[40] Lougheed, Rekhter, "A Border Gateway Protocol (BGP)", RFC-1163, 06/20/1990,
http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[41] Varadhan, "BGP OSPF Interaction", RFC-1503, 01/14/1993,
http://ds.internic.net/ds/dspg2intdoc.html

[42] Honig, Katz, Mathis, Rekhter, Yu, "Application of the Border Gateway Protocol in
the Internet", RFC-1164, 06/20/1990, http://info.internet.isi.edu/in-
notes/rfc/files, July 17, 1998

[43] Rekhter, "BGP Protocol Analysis", RFC-1265, 10/28/1991,
http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[44] Lougheed, Rekhter, "A Border Gateway Protocol 3 (BGP-3)", RFC-1267,
10/25/1991, http://info.internet.isi.edu/in-notes/rfc/files, July 17, 1998

[45] Low S., Varaiya P., "Stability of a class of dynamic routing protocols (IGRP)". In
IEEE Proceedings of the INFOCOM, volume 2, pages 610--616, March 1993.

[46] Chowdhury A., Frieder O., Burger E., Grossman D., Makki K., “Dynamic Routing
System (DRS): Fault tolerance in network routing”, Computer Networks and
Isdn Systems (31) 1-2 (1999) pp. 87-97.

110

[47] Key P. B., Cope G. A.. "Distributed dynamic routing schemes". IEEE
Communications Magazine, vol. 28:54-64, October 1990.

[48] Hurley B. R., Seidl C. J. R., Sewell W. F.. "A Survey of Dynamic Routing Methods
for Circuit-Switched Traffic". IEEE Communications Magazine, 25(9),
September 1991.

[49] Peha, Tobagi, "Analyzing the Fault Tolerance of Double-Loop Networks",
IEEE/ACM Transactions on Networking, Vol. 2, No. 4, August 1994.

[50] Wu, "A Passive Protected Self-Healing Mesh Network Architecture and
Applications", IEEE/ACM Transactions on Networking, Vol. 2, No. 1, February
1994.

[51] Kelly F.P., "Bounds on the Performance of Dynamic Routing Schemes for Highly
Connected Networks". Mathematics of Operations Research, 19:1--20, 1994.

[52] Bahk S., Zarki M. E.. "Dynamic Multi-Path Routing and how it Compares with other
Dynamic Routing Algorithms for High Speed Wide Area Networks". In
Proceedings of ACM Sigcomm, August 1992.

[53] Gibbens R. J., Kelly F. P., "Dynamic Routing in Fully Connected Networks", IMA
Journal of Math. Control & Information. 1990, 7, 77-111.

[54] Talbott R., “Network Survivability Analysis”, Fiber and Integrated Optics, Volume
8, pp. 13-43, 1988.

[55] Postel J., "Internet Control Message Protocol (ICMP)", RFC 792, 1981

[56] Shivakumar N., Garca-Molina H., "Finding near-replicas of documents on the web",
In Proceedings of Workshop on Web Databases (WebDB'98), March 1998.

[57] Broder A., Glassman S., Manasse M., Zweig G., "Syntactic Clustering of the Web",
Sixth International World Wide Web Conference, April, 1997.

[58] Heintze N., "Scalable Document Fingerprinting", Proceedings of the Second
USENIX Workshop on Electronic Commerce, 1996.

[59] NCCAM, http://nccam.nih.gov/, The National Institutes of Health (NIH), National
Center for Complementary and Alternative Medicine (NCCAM), April 12, 2000.

[60] Giles L., Lawrence S., "Accessibility and Distribution of Information on the Web".
Nature vol 400, 1999.

111

[61] Lawrence S., Giles L., "Searching the World Wide Web", Science, Volume 280,
Number 5360, p. 98, 1998.

[62] Brin S., Davis J., Garcia-Molina H., "Copy Detection Mechanisms for Digital
Documents", Proceeding of SIGMOD ’95, 1995.

[63] Buckley C., Cardie C., Mardis S., Mitra M., Pierce D., Wagstaff K., Walz J., "The
Smart/Empire TIPSTER IR System", TIPSTER Phase III Proceedings, Morgan
Kaufmann, San Francisco, CA, 2000.

[64] Salton G., Yang C.S., Wong A.. "A Vector-Space Model for Information Retrieval",
Comm. of the ACM, 18, 1975.

[65] Kjell B., Woods A, Frieder O., "Discrimination of Authorship Using Visualization",
Information Processing and Management, Pergamon Press, 30(1), pp. 141-150,
January 1994.

[66] Scotti R. Lilly C., George Washington University Declassification Productivity
Research Center, http://dprc.seas.gwu.edu, July 31, 1999.

[67] Grossman D., Holmes D., Frieder O., "A DBMS Approach to IR in TREC-4", Text
REtrieval Conference (TREC-4), November 1995.

[68] Smeaton A., Kelledy F., Quinn G., "Ad Hoc Retrieval Using Thresholds, WSTs for
French Monolingual Retrieval, Document-at-a-Glance for High Precision and
Triphone Windows for Spoken Documents", Proceedings of the Sixth Text
Retrieval Conference (TREC-6), 1997, p.461.

[69] NIST, SECURE HASH STANDARD, U.S. DEPARTMENT OF
COMMERCE/National Institute of Standards and Technology, FIPS PUB 180-1,
1995 April 17.

[70] Chowdhury A., Holmes D., McCabe C., Grossman D., Frieder O., "Improved Query
Precision using a Unified Fusion Model", NIST Text Retrieval Conference,
November 2000.

[71] SMART FTP site: "ftp://ftp.cs.cornell.edu/pub/smart/", January 19, 2000.

[72] Baeza-Yates R., Ribeiro-Neto B., Modern Information Retrieval, Addison Wesley,
Reading, MA 1999.

[73] Porter M., "An Algorithm for Suffix Stripping," Program, 14(3):130-137, 1980.

112

[74] Viles C., French J., "On the Update of Term Weights in Dynamic Information
Retrieval Systems", Conference on Information and Knowledge Management
(CIKM95), Baltimore MD, Nov 29 - Dec 2, 1995.

[75] Blair D., Maron M., "An Evaluation of Retrieval Effectiveness for a Full-Text
Document- Retrieval System", Communications of the ACM, 28(3):289-299.

[76] Salton G., Wong A., Yang C.S., "A Vector Space Model for Automatic Indexing",
Communications of the ACM, pp. 613-620.

[77] Salton G., "A Comparison Between Manual and Automatic Indexing Methods",
Journal of American Documentation, 1969, 20(1):61-71.

[78] Salton G., "Automatic Text Analysis", Science, 1970, 168(3929):335-342.

[79] Robertson S., Spark Jones K., "Relevance weighting of search terms". Journal of the
American Society for Information Science, 27:129--146, 1976.

[80] Salton G., Automatic Text Processing: The Transformation, Analysis and Retrieval
of Information by Computer, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1989.

[81] Salton G., Buckley C., "Term Weighting Approaches in Automatic Text Retrieval",
Information Processing and Management 24(5), pages 513--523, 1988.

[82] Singhal A., Buckley C., Mitra M., “Pivoted Document Length Normalization,”
Proceedings of the Nineteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR Forum, August 18-
22, 1996.

