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ABSTRACT 

 

 

This thesis presents computer algorithms for the design of reliable information 

server clusters.  As information systems grow in size the need for reliability, 

parallelization and speed grow.  Provided within are algorithms that address reliability 

and efficiency.  A novel algorithm called DRS (Dynamic Routing System) is presented.  

The DRS algorithm sustains continuous availability of clusters of information or compute 

servers even during network failures.  We continue with a new duplicate data detection 

algorithm that is several times faster than the state of the art and more precise.  By 

detecting duplicate data, redundant work is eliminated from indexing and retrieval 

processing.  Additionally higher retrieval accuracy is provided by reducing the amount of 

redundant information returned to users.  Finally, automatic term weighting utilities are 

examined; results are presented showing that as dynamic collections grow, automatic 

term weights do not need to be recalculated and still maintain system effectiveness. 
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CHAPTER I 

INTRODUCTION - RELIABLE INFORMATION SYSTEMS 

 

With the ever-increasing amount of information, one of the greatest challenges of 

the twenty-first century is the organization and retrieval of that information.  Currently, 

the WWW (World Wide Web) has 1-2 billion publicly accessible pages of information 

[60]∗.  Two to five billion pages are estimated to be available via private networks and 

hidden content that is dynamically generated from databases.  Available information has 

grown at exponential rates for the last few years [60] and no slow down appears to 

coming soon [1].  This growth of information and the access to it provides ample 

incentive to develop new algorithms and approaches to organize and retrieve that 

information.   

As greater amounts of information are being stored, indexed and retrieved via a 

single system, scalability issues are becoming greater and greater problems.  Single CPU 

solutions are not able to keep up with the exponential information growth even with 

growing CPU power.  Parallelization of storage and indexing are current research 

problems [2, 3] along with distributed retrieval algorithms providing the parallelism for 

this growing workload [4, 5, 6, 7].  In the words of Grace Hopper: 

                                                 

∗ Corresponding to references in the Bibliography 
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In pioneer days, they used oxen for heavy pulling, and when one ox 
couldn’t budge a log they didn’t try to grow a larger ox. We shouldn’t be 
trying for bigger computers, but for more systems of computers. 
In this thesis, a generalized software architecture for a reliable information system 

is presented.  This thesis addresses essential issues of that architecture namely, network 

fault tolerance for a distributed information system, efficiency of the system in terms of 

duplicate data and lastly speed improvements by delaying automatic term weight 

calculations in a dynamic system.   

In the next section, we present a generalized distributed information retrieval 

architecture, which our new algorithms will support.  In Chapter II, we present a 

distributed fault tolerant routing solution for distributed information server clusters that 

guarantees server-to-server communication in the event of a network failure.  In Chapter 

III, we then present a duplicate information detection system that uses collection statistics 

to efficiently determine when duplicate information is inserted into the system.  In 

Chapter IV, automatic term weighting strategies are examined and experimental results 

show that reduced term weight updates can be applied to dynamic systems without loss of 

overall effectiveness to the system.   

1.1 Generalized Information Retrieval Architecture 

In this section, we present a generalized information retrieval architecture.  For 

this architecture, we will make several assumptions: 

1. Data/Information are growing at a faster rate than compute power. 
2. Parallelism of systems is the most promising solution to the growing needs of 

retrieval systems. 
3. Data/Information are coming from many sources. 
4. Any algorithm that helps efficiency or effectiveness is beneficial. 
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Given the above assumptions, new retrieval systems will be parallel / distributed 

in nature.  Data will be stored on a number of systems, indexing of that data will be done 

with multiple machines and CPUs.  Retrieval of information will be distributed to 

multiple machines and CPUs.  New large-scale information systems will be closely 

coupled creating a large server array controlled by a single entity.  These distributed and 

parallel information systems will solve complex information needs via many computers.  

In the next section, we present our contributions in the context of such a distributed large-

scale system. 

1.2 Thesis Reliability and Effectiveness Issues Addressed 

This thesis is comprised of three parts.  The first part presents a proactive routing 

algorithm for distributed systems, the second presents a duplicate data detection 

algorithm and the third part presents empirical evidence that shows automatic term 

weight calculations can be delayed in order to reduce maintenance overhead and still 

provide effective rankings for large dynamic retrieval systems.  

As client needs grow, server systems have become more complicated and require 

additional compute needs.  While many techniques were applied to improve the 

performance of a single machine, these improvements are insufficient to keep up with the 

growth.  To combat the additional demands for computational resources, server systems 

are distributed among multiple computers to handle the additional computational 

requirements [8, 9, 10, 11].  As information systems get larger, they too are distributed to 

provide the additional processing needs.  This distributed approach of dividing the 

problem into either multiple workers for the same problem or multiple workers working 
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on different client problems all depend on network communication.  Since a network 

connecting the servers is the backbone of the computational server, it must be reliable.  

We provide data that show that network failures constitute 13% of all hardware failures 

and are a problem for large systems, thus validating the need for reliable network 

communication in the presence of network failure.  As part of the described effort a 

proactive network routing protocol that reroutes network communication around failures 

is presented.  This protocol and topology provides a fault tolerant network 

communications system for server clusters in the presence of failures.  This type of 

system provides the reliability that new Information Retrieval (IR) systems need as they 

become distributed [46, 12, 13].  We present a quantitative probability model showing the 

advantages of our dynamic routing approach for tightly coupled server clusters.  We also 

describe the advantages in performance in using a proactive approach as opposed to a 

reactive routing approach when dealing with server clusters.  We show that additional 

overhead incurred by our approach does not adversely affect network performance and 

does greatly improve the reliability by 267% over traditional topologies of a distributed 

server cluster.  We validate our hypothesis of network reliability improving the reliability 

of distributed server clusters with two probability models.   

As information retrieval systems collect data, the likelihood of multiple copies of 

the same data, or near duplicate documents being added to the system, increases [59].  

We hypothesize that if the duplicate information is detected and eliminated in a fast 

efficient manner, the system accuracy and performance is enhanced.  We present a 

duplicate document algorithm based on collection statistics of terms in a given collection.  

This algorithm selectively chooses what terms represent a document by using term 
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collection statistics.  Once the document’s subset of terms is selected, a hash is created of 

those terms.  With a single value representing each document, a collection can be scanned 

in O(log d) time where d is the number of documents in the collection.  We show that this 

algorithm performs five to nine times faster than comparable algorithms.  We also show 

that the use of this system clusters near duplicate documents better than the other state of 

the art algorithms.  Lastly, we show that by ignoring the detection and removal of 

duplicates, results are effected, by misjudgments of relevant documents.  Furthermore, the 

same document is presented to the user multiple times forcing end users to filter the same 

information when looking for new information.   

There are many efficiency issues for information retrieval systems.  Most of the 

prior work focuses on efficient data representation to improve the efficiency of the system 

[14].  We hypothesize that the efficient update of collection statistics improves the overall 

efficiency of dynamic IR systems by delaying work until necessary.  Very little work was 

applied to the efficiency issues of collection statistics.  While collection statistics are used 

to improve precision and recall for information systems, very little work has gone into 

efficient update approaches to maintain their currency [15, 16, 17, 18, 19, 74, 77].   

One type of common collection statistics used is Inverse Document Frequency 

(IDF).  We hypothesize that the recalculation of idf values for each new document added 

is not necessary [20].  We present empirical data that show that the recalculation of IDF 

values, after an initial training set is used, does not improve the overall precision and 

recall of the information retrieval system.  By reducing the time to recalculate IDF values, 

the overall performance of the system can be improved.  Unnecessary additional work, in 

a dynamic environment, adversely affects the performance.  By finding a good training set 
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of documents, those IDF values may be used by the system for an extended period 

without having to recompute IDF values for each additional document added to the 

system.  These fundamental issues for reliability and efficiency for information retrieval 

systems are addressed in this thesis.   
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CHAPTER II

DISTRIBUTED SYSTEM NETWORK FAULT TOLERANCE  

 

The ever-increasing demands on server applications are resulting in many new 

server services being implemented using a distributed server cluster architecture where 

many servers act together providing end user services.  Twenty-seven such server clusters 

were evaluated each containing four to eight servers for a one-year period; thirteen 

percent of the hardware failures were network related.  To provide end-user services, the 

server clusters must guarantee server-to-server communication in the presence of these 

network failures.  In this thesis, a novel proactive routing algorithm called the Dynamic 

Routing System (DRS) is presented.  The DRS continuously searches for failures via 

frequent ICMP echo requests. This approach differs from its predecessors in that it is 

proactive instead of reactive.  That is, we continuously search for failures before they 

affect server-to-server communication.  When a failure is detected, an alternative route is 

identified and used.   

With growing compute needs, traditional supercomputers are becoming scarce 

and distributed compute server clusters are becoming the solution of choice.  These 

smaller computers are coupled by networks to achieve the same objective at a 

substantially lower cost.  The Berkley NOW (Network Of Workstations) project was one 

of the first projects pushing this solution [21].  PVM (Parallel Virtual Machine) [22] and 

MPI (Message Passing Interface) [23] libraries provide messaging and synchronization 

constructs that are needed for distributed parallel computing with NOW solutions.  

Projects like Beowulf [24] for Linux are continuing the distributed / parallel 



 

 

8

 

approach. Research operating systems, like Spring from Sun [25], focus on distributed 

computing via the network.  All of these approaches have one thing in common, the use 

of a network as a communication media.  While the network is very important, relatively 

little attention has been focused on providing fault tolerance and redundancy for the 

network of workstations.  Additionally, little work has addressed the issues involved in 

providing time constraints on detecting and resolving network errors for higher-level 

applications. 

As part of this dissertation, we developed a network routing algorithm to provide 

fault-tolerance to networks of servers by proactively monitoring network communication 

links between servers.  This is different from reactive routing techniques [26, 27, 28, 29] 

that wait for a failure to occur and then react by finding an alternative route.  The 

proactive algorithm constantly looks for errors via continuous ICMP echo requests.  

When a failure is identified, a new route bypassing the failed portion of the network is 

selected.  This new route is often found in the time for a TCP retransmit, so server 

applications are unaware that a network failure has occurred. 

The Dynamic Routing System (DRS) is built on top of existing hardware and a 

variety of operating systems (Solaris, SunOS and LynxOS), making its use and 

deployment economical.  This algorithm improves reliability via two network interface 

cards per server to provide an alternate method of physical communications in the case of 

hardware failure.  The DRS works by frequent link checks between all pairs of nodes to 

determine if the link between pairs of computers is valid.  This algorithm uses redundant 

network links between two nodes to provide multiple communication channels.  When 



 

 

9

 

one link fails, the second direct link is checked and used if possible.  However, if no link 

exists, a broadcast is sent to identify whether or not some other node is able to act as a 

router to create a new path between the sender and the proposed recipient.  The algorithm 

discovers the failure before application performance is affected.  The essential goal of our 

algorithm is to hide network failures from distributed applications. 

Based on deployed commercial implementations, we developed an analytical 

model of the DRS to evaluate its potential use for large networks.  Using this model, we 

computed, for various network sizes, the fault identification times given a percentage of 

network usage.  For a typical 10Mb ethernet, a sixteen-host network has sub-second fault 

identification when using 10 percent of the total theoretical packet throughput of an 

ethernet network.  Sixteen hosts may seem small given that large corporations often have 

tens of thousands of workstations all on various LANs.  However, the application domain 

of this solution is distributed server applications running on a separate network.  A 

characteristic of Distributed Server Applications (DSA) is a tightly coupled server host 

array where clients exist apart from the server network, and the server array appears as a 

single server handling distributed data and requests.  A word processor running off a file 

server is not a DSA. 

A Network Survivability Analysis (NSA) of the DRS algorithm shows that the 

DRS algorithm provides a more resilient solution to network failures than a single 

network, and a simple dual network solution [30].  Results from the probability model, 

showing the probability of success of the system as a whole and in terms of the number of 

network failures are presented.  In addition, results from a simulation validating the 
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probability model are presented.   

2.1 Prior Work 

There is an abundance of literature on routing algorithms and protocols. We 

partitioned the prior art into routing algorithms, routing daemons, hardware solutions, and 

network survivability analysis.  We will review each category separately. 

One of the most common routing solutions today is the Routing Information 

Protocol (RIP) [31, 32].  Its popularity stems from the fact that RIP is included in most 

versions of UNIX.  RIP is a dynamic routing protocol that automatically creates and 

maintains network routes.   Although popular, RIP has many shortcomings.  One of the 

major problems of RIP is its reactive nature.  When a link has not been heard from for a 

predetermined amount of time it is considered down and an alternative route is sought.  

This down time can be in the minutes or longer range, thus disrupting server-to-server 

communication.  Another problem with RIP1 is its inability to work with subnets.  RIP2 

now can work with subnets but most implementations are still RIP1 [33]. 

Open Shortest Path First (OSPF) [34, 35, 36, 37] is a routing protocol for IP 

networks based on the DARPA Internet Protocol (IP) network layer.  The basic routing 

algorithm is called the Shortest Path First Algorithm.  OSPF is an Interior Gateway 

Protocol and is intended to be used within an IP network under common administration, 

such as a campus, corporate, or regional network.  The OSPF approach is a passive 

approach.  Therefore, an OSPF routing daemon does not know that a problem has 

occurred until a time-out value has been reached before a new route is sought out.  OSPF 
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is not designed or intended for server cluster routing.  

The External Gateway Protocol (EGP) [38, 39, 40, 41, 42, 43, 44], sometimes 

referred to as Border Gateway Protocol (BGP), are network to network routing protocols 

as opposed to host to host routing protocols.  These protocols are used in constructing 

Wide Area Networks, however they do not provide fault tolerance to small server 

network clusters [45]. 

While RIP, OSPF, EGP and BGP are routing solutions to many different routing 

problems; they do not address the needs of a high availability server cluster environment.  

Their primary goal is to provide routing updates to other routers on the network to find 

alternative routes to the same network [45].  The general design goal is based on 

reactively rerouting when a specified timeout period has been reached.  Therefore, if a 

destination network does not respond to a route query, after some time quantum, it is 

considered down and a new route is sought after.  The DRS algorithm is proactive in that 

each node of a server cluster is constantly monitored to maintain a communications link.  

If that link does not work, a redundant route is sought after in a distributed manner [46, 

47].   

Routed and gated are routing daemons that implement some subset of RIP, OSPF, 

EGP, and BGP.  Given the algorithms that they are based on, however, none of these 

approaches provides a proactive fault detection schema to protect distributed applications 

from network failures.  Hence, system down time is potentially greater. 

For many years the telecommunications industry has been interested in fault 
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tolerance for their networks of systems.  Telecommunications protocols are inherently 

different from routing protocols in that they focus predominantly on hardware solutions.  

The most widely used solutions are SONET and DXC [28, 48].  Others include double-

loop, forward hop, and fiber.  Survivable network architectures for traffic restoration are 

generally divided into two categories; ring-based dedicated restoration and mesh 

restoration [47].  Rings with redundant capacity and automatic protection switching are 

capable of healing by themselves and hence, are called Self-Healing Rings (SHR) [49].  

Mesh restoration relies on digital cross-connect systems to reroute traffic around a point 

of failure [50].  

A conventional DXC self-healing network using logical channel protection 

requires substantial network hardware because for n hosts [29] there are two physical 

connections among each pair of hosts, or n*(n-1) total connections.  This is a large 

amount of spare capacity for network components.  Originally, self-healing meshes used a 

centralized database to track failures and reconfigure in case of a failure for the entire 

mesh.  This centralization was a bottleneck and was itself prone to failure.  Hence, a 

distributed approach is now used [51].  With a distributed approach, each host determines 

rerouting patterns and fault detection [52, 53]. 

A variety of hardware solutions are used by the telecommunications industry to 

route phone calls.  These include SONET, DXC, FDDI, and SHR.  Each of these is highly 

fault tolerant due to the numerous paths that exist between every source and destination 

host.  Fault tolerant routing is provided via hardware mirroring rendering this approach 

very expensive.  Such solutions are not commonly implemented for use with computer 
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networks using IP protocols.  The DRS system works with IP networks unlike some 

telecommunication approaches using specialized hardware. 

Network Survivability Analyses (NSA) [54] are developed to quantitatively 

evaluate different network topologies.  NSA numbers increase with redundancy and 

decrease with series components.  More redundancy with less hardware becomes the 

design objective instead of the use of redundancy to correct a reliability or survivability 

deficiency.  The DRS system uses redundant hardware to provide alternative routes to 

network nodes.  We provide a NSA type evaluation of the DRS providing several 

probability evaluation techniques for the DRS.  With NSA analysis we quantify the DRS 

improvements to a compute server cluster system with different network topologies. 

2.2 DRS Algorithm 

The Dynamic Routing System (DRS) improves fault tolerance via proactive 

failure recognition and the use of a completely redundant network.  In Figure 1, we 

illustrate a dual network setup for two computers.  Each computer has two network 

interface cards connected to two separate networks.  It is the task of the routing daemons 

to monitor the connections between host A and host B.  If a failure occurs, the daemons 

set up routes to route around the fault before network applications are aware that a 

problem occurred.   

The DRS runs on every host in the server array.  Each DRS daemon is configured 

to monitor every server host on each network and executes a two-phase processing 

strategy.  In the first phase, the communications links between the local host and all other 
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hosts that it is configured to monitor are checked.  These checks are accomplished using 

the Internet Control Message Protocol (ICMP) echo request [55].  Host A sends an ICMP 

echo request to host B via the first network.  If the echo is returned, the DRS can assume 

that the hub, wiring, network interface card, device driver, network protocol stack, host 

kernel, and the DRS daemon are all operational.  The DRS then tests all known hosts and 

all known networks in the above example.  The complete DRS network stack is 

illustrated in Figure 2.  Similarly, the second network from host A to host B is checked. 

Canonical
Name
“A”

Canonical
Name
“B”

Network Interface #2

Network Interface #1

Network #2 - 193.1.2

Network #1 - 193.1.1

IP 193.1.1.1

IP 193.1.2.1

IP 193.1.1.2

IP 193.1.2.2

Hub

Hub
 

Figure 1. Dual Network Setup Details 

Each daemon keeps track of which hosts to monitor and the state that they are in 

(i.e., “up”, “down”).  If a failure occurs, the DRS daemon must determine a new route of 

communication between hosts A and B.  The next section describes different failure 

scenarios and how the DRS attempts to establish a new route.  In Figure 3, we overview 
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the execution flow of the DRS algorithm. 

 

Hub

W iring
Interface card

Driver
Network Stack

Host Kernel

DRS Deam on

A B

 

Figure 2. DRS Network Stack 

A detailed description of each step in the DRS execution is as follows. 

Step 1.  System initialization.  All DRS system variables are initialized, i.e., read 

in configuration variables, setup network communication modules, etc. 

Step 2.  Initial sleep period.  Each DRS is dormant at startup.  The dormant 

initial condition prevents false negative results of a ping at startup.  Periodically, a system 

could be powered down during routine maintenance.   When the servers are restarted, not 

all may start at the same time or boot at the same speed.  By having the DRS daemon 

sleep for a predetermined amount of time at startup, false failures caused by start-up time 

differences are not reported. 

Step 3.  Monitor incoming requests or discovery messages.  The DRS is a 

routing daemon.  Thus, part of its job is to handle requests for information or to add new 

information to its internal database of network hosts and configurations.  A “request for 
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information” can be an administrator contacting the daemon and requesting a view of its 

routing tables, or a remote server that is unable to contact another server and is asking all 

other servers if they are able to communicate to the server in question.  “Discovery” 

messages are used for detection of fixed routes and new servers on the network.  This is 

covered in detail in step 6. 

DRS Flowchart

Signal from OS

Discovery Sent

Startup

Sleep

Request Manager

Status

Discovery

Routing Reqest

Check Hosts

Proceed

Reroute Host

Ping Succeded

Ping Failed

All Hosts Checked

1

2
6

5

4

3

 

Figure 3. DRS Architecture 

Step 4.  Determine link status.  Link status verification, the key to the DRS, is 

the proactive monitoring of communication links between each server.  This verification 

enables the DRS to quickly find and fix network failures.  The DRS starts with a list of 

hosts to monitor.  This list is known at start time, but may also be added to in the future 

by a “Discovery” message.  The DRS sends an ICMP echo request to the host in question.  

If the echo is successful, the route is marked as “up”; if it is unsuccessful, several more 

attempts are made.  If none are successful, the route is marked as “down”.  All 
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links are continuously monitored.  Checks occur every X seconds where X is a 

configurable setting.  Note that X affects the speed an error is detected and effects the 

amount of network bandwidth used.   

Step 5.  Fix identified communication errors.  In this step, the DRS attempts to 

fix known “down” routes.  Each host has two network interfaces.  Once one interface is 

not responding, the second interface is sent an ICMP echo request to verify that it is 

working.  If that is successful, the DRS modifies its internal routing tables to move all 

communication to say B network interface #1 to B network interface #2.  Note that in step 

4, the new route was checked.  The second check guarantees that a failure did not occur 

in-between steps.  If the second interface did not respond to the ICMP request, a 

broadcast is sent on all connected networks.  This broadcast asks all other DRS daemons 

to see if they can communicate with the host or network in question.  The first DRS 

daemon to respond is used as a router to the lost host.  If no one responds, the host in 

question has suffered at least two hardware failures and has become completely separated 

from the network.  If this has happened, the only thing left to do is to send and alarm 

message to the system administrator notifying him/her of a catastrophic failure. 

Step 6.  Send “Discovery” messages.  This stage runs as a separate thread of 

execution in the daemon.  The DRS sends a broadcast message on all of its network 

interfaces stating its own server identification and its server’s network interfaces 

addresses.  This message is crucial for several reasons, the most significant being that if a 

network failure did occur and was fixed, the DRS would otherwise not be updated of the 

fixed status because “down” routes are not checked.  By sending this message, the other 
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DRS daemons become aware that a “down” interface is now working again, and the 

daemon corrects all rerouted communications of that host to the original routes. 

The DRS loops through this six-step cycle monitoring communication links, 

answering requests, and fixing problems as they occur. 

2.3 DRS in the Presence of Network Failures 

The DRS handles many different failure situations.  We now briefly describe 

several common failure situations and the solutions the DRS algorithm will compute.  

Network failures can be categorized into three scenarios:  

• Single network failure 

• Multiple network failures 

• Complete network separation failures 

Initially, we focus on the action of the DRS in the presence of a single failure.  

Upon startup (before the network error occurs), the DRS establishes communication links 

to each host.  Consider a failure to host B interface #1.  Since every host on the network is 

implementing the same algorithm, we only discuss the events as they happen for host A. 

A B C D

 

Figure 4. Single Network Failure 

Host A sends an ICMP echo request for each host and link in its routing table 
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(part of step 4).  The ICMP echo request is not responded to by host B for network #1 

because of the failure.  Host A then looks for another route.  Note that one does exist 

because the second interface of host B is operational.  Host A now identifies that this is a 

potential route because it is listed as being in the “up” status.  However, this status is not 

guaranteed to be current so an additional check of the proposed alternative route is made 

in the later phase of step number four.  In this case, an ICMP echo request (or ping) is 

sent to host B along the alternative route.  If this succeeds, the routing table of host A is 

updated to reflect the newly identified static route that circumvents the failure. 

At this point, network communication is not impeded by the failure.  However, it 

is important to identify where the failure exists so it can be repaired. Examining the 

routing tables of each host isolates the fault.  Looking at the local routing at hosts A, C, 

and D it becomes apparent that each host of these three hosts is able to communicate with 

all other hosts directly on network #1.  However, the routing tables of hosts A, C, and D 

routing tables now contains an alternative route to host B.  For diagnostic purposes, it is 

reasonable to assume that the routing tables are current enough to isolate the problem. 

For hosts A, C, and D, the only failure is the route to B for interface #1, while host 

B has failure for every interface on the first network.  This indicates that the error has 

occurred with the host’s network interface, ethernet wire, or network hub port of host B.  

At this point, host B is examined and the exact nature of the problem (i.e., interface card, 

network cable, hub port, etc.) is determined and repaired. 

A single failure is the most common.  However, multiple failures do occur, and 

the DRS is resilient to them.  There are two types of multiple failures: multiple failures 



 

 

20

 

that can be viewed as a single fault by the DRS and those failures that require additional 

processing beyond single failure masking. 

When multiple faults simultaneously occur at a single host (i.e., within the 

interface card, network cable, hub port, etc., of a single host) they are treated by the DRS 

algorithm as a single failure.  That is, these failures are handled in the same fashion and 

appear like the single failure example above.  All network communication for the first 

network is rerouted to the second network via each host’s second interface. 

Multiple network failures, although unlikely, do occur and are not always as well 

behaved.  The likelihood of multiple simultaneous faults occurring on only either the 

primary or the secondary network is smaller than the possibility of them spanning over 

both networks.  Thus, the DRS must be able to handle staggered network failures.  Figure 

5 shows an example of a staggered multiple network failure.  A port on the network hub 

one to host A has failed, and, at the same time, the network interface card for host C has 

failed. 

A B C D

 

Figure 5. Multiple Network Failure 

 

The problem is that host A and host C cannot directly communicate to each other 

even with multiple communication networks.  Host A cannot communicate via network 
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#1 and host C cannot communicate via network #2. 

For brevity, we only discuss the details of host A and its procedure in correcting 

the network communication from two simultaneous failures.  The same algorithm 

executes simultaneously at each host. 

In step 4, each host’s communication link that is in an “up” state is checked. 

Every host that is on network #1 fails because the problem is with the hub.  Host A is 

then placed in the “down” state. Host C’s interface on network #2 also failed and is 

placed in the “down” state.  This reflects the new information that shows many 

communication paths have failed. At this point, step 5 executes.  Host B and host D have 

direct routes (using interface 2) that appear to be usable.  This corrects the 

communication link failure on network #1 from host A to host B and from host A to host 

D.  

Notice that still there is no means of communicating from host A to host C.  The 

reason for this is that the interface card on network #2 for host C is identified as failed for 

both interface one and interface two (this is our second failure). 

Host A now attempts to find some means of communicating with host C on 

interface #1.  It broadcasts a routing request along both network #1 and network #2.  The 

first “CanYouRoute” broadcast is blocked by the failure on host A interface #1.  The 

second “CanYouRoute” broadcast is sent out as a routing request for host C on the 

second network.  The first host to respond to the plea for help is used as a router for 

communication to host C.  Assume host B is the first host to respond for communications 
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routing for host C interface #1.  A static route-using host B is added to host A’s routing 

table.  This scenario is illustrated in Figure 6. 

A B C D

 

Figure 6. Communication Route Diagram for Host A to Host C via Host B 

Figure 7. Communication Route Diagram for Host A to Host C via Host D 

 

 

Figure 8. Complete Network Separation 

 

Since two routes must be known for each host, host A attempts to find a route for 

host C interface #2.  The DRS does not distinguish that the different interfaces are 

connected to the same host in this instance.  Again, a broadcast is issued on both 

A B C D
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networks.  The first broadcast goes unacknowledged.  Assume host D answers the second 

request for help in routing to host C.  (See Figure 7).  Now all communication routes to 

host C are restored using a remote host as routers between the hosts. 

The final failure scenario is a complete network separation or node failure.  A 

complete node failure cannot be solved by any routing solution.  The survivability 

analysis and routing solution assume that the sender and receiver are working.  A 

complete network separation is a failure scenario where both network interfaces for a 

single node fail, thus isolating the node from the system.  The probability of these cases is 

addressed in the probability model.  

2.4 Detection of Network Repairs 

The DRS has the ability to detect the reconnection or repair of a failed network 

route.  In the previous example, assume that the cause of failure for host A was that the 

port on hub one was accidentally turned off.  Furthermore, assume the problem was 

detected, circumvented, and the DRS daemon sent an alarm. 

The system administrators resolve the problem by turning the port back on.  Once 

this is done, they do not need to examine the routing tables of the hosts because the DRS 

is self-correcting.  That is, the DRS uses discovery messages to identify the correction 

and return the routing tables to their original state (i.e., direct network routes instead of 

static alternative routes). 

The self-correcting recovery occurs because each host periodically broadcasts its 

own discovery message on all of its network interfaces.  When host A receives discovery 
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messages on interface #1 from hosts B, C, and D, it examines the routing table to 

determine if any corrections or updates are needed.  The DRS identifies that static 

alternate routes exist for hosts B, C, and D.  After receiving the discovery message, the 

DRS removes the corresponding alternate route entry from the local kernels routing table. 

This removal restores the original routing table state after a failure has been fixed.  The 

DRS routing table is then updated to reflect the newly repaired communication path. 

Notice that host C interface #2 is still down.  Host A has not received a status 

discovery message from that link because the network link is still not functioning 

correctly.  With this approach, when the network failures are corrected, the DRS returns 

to its original state without manual intervention. 

A B C D

 

Figure 9. Restored Network Communication 

2.5 DRS Performance Results 

The DRS checks each “up” link it is attached to (Step 4).  Therefore, on average, 

the fastest failures in a communication link can be determined is the amount of time it 

takes to check all links divided by two.  When scaling the DRS, it is important to examine 

the time needed to determine that a failure has occurred and the amount of bandwidth the 

DRS will use to achieve that goal.  A trade-off exists between how quickly a failure is 

discovered and how much network overhead (bandwidth) is introduced. 
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2.6 DRS Model System 

The DRS’s proactive monitoring of network links comes at a cost of network 

bandwidth.  To find errors before they effect network communication, the links must be 

checked frequently.  If the links are not checked frequently, the DRS is equivalent to a 

reactive routing protocol.   As the number of nodes increases, the bandwidth required to 

support the frequent checks likewise increases.  In Figure 10 and Figure 11, we present 

the number of servers in the cluster that the DRS can support given a requirement for 

error resolution in X time units.  Additionally, the percentage of network bandwidth 

useable by the DRS can be used to determine the speed at which errors are detected. As 

shown in Figure 11, ninety hosts are supported in less than 1 second with only 10% of the 

bandwidth usage. 

Each ICMP echo request is 64 bytes in length.  As the number of nodes increases 

the number of checks required to maintain link connectivity status increases.  Thus, for 

each node there are 2(n-1) messages and a total of 2n(n-1) messages for the system.  For a 

given number of nodes and a frequency rate of checks the amount of bandwidth used can 

be calculated. In Figure 10 and Figure 11, we demonstrated that relationship.  The 

production machines did not see any degradation in performance from the added network 

usage. 

As shown in Figure 10, as the number of hosts increases the rate of network 

monitoring must decrease to maintain a constant network usage.  The results presented in 

Figure 10 and Figure 11 were obtained using the DRS model.  A comparison of actual 

performance predicted by the simulation is presented in Figure 12. 
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Response Time VS Number of Nodes for a 10mbs Network
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Figure 10. 10Mb Network Performance 
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Figure 11. 100Mb Network Performance 
 

Figure 10 shows that on a 10Mb network, 32 servers can coexist while still being 

able to detect network failures in around one second.  If there is a need for more servers, 
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either a higher network utilization factor is used or a higher bandwidth network is 

required.  In Figure 11, the DRS performance using a 100Mb-ethernet network is shown. 

By using a 100Mb network, the performance of the DRS greatly improves.  As 

shown in Figure 11, 254 hosts can be monitored by the DRS with less than 10% network 

usage, and failures are detected in less than 10 seconds.  Ninety hosts are able to detect an 

error in less than 1 second.  The number 254 was chosen because it is the size of a class 

“C” network. 

2.7 DRS Network Measurements 

We evaluated the performance of the DRS system and compared the expected 

network to actual network usage. This was done to (a) find an acceptable level of 

performance for the system that allowed for sub-second error detection and (b) find a 

level of network usage that did not adversely affect the other applications performance. 

In Figure 10 and Figure 11, we show that as the number of hosts increases, the 

time between checks decreases to maintain a constant network usage.  We tested this 

hypothesis by transferring files across the network and calculating the percentage of total 

bandwidth achieved.   

We ran this experiment with no network traffic and ran the DRS system on 2, 8, 

and 16 hosts.  We recalculated the available bandwidth at each step.  As the number of 

hosts increased, we reduced the time to check links to maintain a constant network usage.  

The results given in Figure 12 show that the simulation and actual results correspond.  

Note that 10% usage is usable by a network of less than 16 hosts and provides a less than 
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one-second-error detection rate. 

Max Bandwidth Achieved with File Transfer
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Figure 12. Bandwidth Usage 

2.8 Hardware Failure Rates 

The DRS was implemented and developed in a commercial system by MCI 

Worldcom.  The primary goal of DRS was to provide fault tolerance for network 

hardware failures.  The commercial system does not have any system administrators on 

premises.  In fact, the closest repair engineer is at least one day away.  Because of the 

mission critical nature of the system, downtime of one day is very expensive. 

Over a 12-month period, hardware failures were tracked to determine the 

usefulness of the DRS.  Hardware failures were categorized into seven classes. 

• System Boards (mother boards, CPU chips, etc.) 

• Mass Storage (SCSI controllers, hard drives, tape drives) 

• Network hardware (hubs, ethernet cards, ethernet wires, etc.) 
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• Terminal Servers 

• Accessories (specialized hardware) 

• Memory (RAM) 

• Power Supplies 

 

Hardware Failures Over a One Year Period
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Figure 13. Percentage of Failures by Type 

Examining 100 systems, we experienced 70 hardware failures over a 12-month 

period.  Of these failures, 13% were network related. 

By using the DRS, network failure did not affect system performance, effectively 

eliminating this class of failures.  A 13% reduction of system down time justifies the 

added cost of hardware and network bandwidth.  It is reasonable to expect the same 

amount of hardware failures in the future. 
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2.9 Dynamic Routing Survivability Probability Models 

In the prior sections, we described the DRS algorithm, and examined its solution 

to network failure scenarios.  We now present two probability models to quantitatively 

compare the DRS algorithm to single network approaches, and dual-network approaches.  

The first model gives a success probability based upon the unconditional failure 

probability for the system as a whole.  The second model provides the probability of a 

successful connection between any two nodes given a system with N nodes and f network 

failures. 

The following analysis will describe the probability of system failure based upon 

the success and failure probabilities of each individual component.  We assign p as the 

probability that a component will function properly, and q as the probability that a 

component will fail, with p+q=1.  The formula can be extended trivially if the 

components have distinct failure probabilities.   

 

Figure 14. Case 1 - Both Backplanes 

Case 1: Both backplanes fail (q2).  In this case, the system fails and the probability 

is q2. 

Case 2: Exactly one backplane fails (2pq).  In this case, the system fails if and 

only if at least one of the two interfaces of the pairs connecting to the working backplane 
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fails. So the probability is 2*p*q* (1-p*p) =2pq(1- p2). 

Case 3: Neither of the backplanes fails (p2). 

Case 3.1: Both interfaces of the source node fail (q2).  So the failure probability is 

p2* q2= p2q2. 

 

Figure 15. Case 2 - Hub and NIC Failure  

 

Figure 16. Case 3.1, 3.3 - Both NIC 

 

 

Figure 17. Case 3.2 

Case 3.2: Exactly one interface of the source node fails (2pq).  In this case, the 

interface of the destination node at the same side of the working interface of the source 

node must be down (q).  
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Case 3.2.1: The other interface of the destination node fails (q).  So the failure 

probability is p2*2pq*q*q= 2p3q3. 

Case 3.2.2: The other interface of the destination node works (p).  In this case, all 

other N-2 bridges must be down (1- p2). Thus the failure probability is p2*2pq*q*p*(1- 

p2) N-2= 2p4q2(1- p2) N-2. 

 

Figure 18. Case 3.2.1 

 

Figure 19. Case 3.2.2 

So the total failure probability in Case 3.2 is 2p3q3+ 2p4q2(1- p2) N-2. 

Case 3.3: Neither of the interfaces of the source node fails (p2).  (See Figure 16).  

In this case, both interfaces of the destination node must fail (q2). So the failure 

probability is p2*p2*q2= p4q2. 

Therefore, the total failure probability in Case 3 is p2q2+ 2p3q3+ 2p4q2(1- p2) N-2+ 

p4q2.  So the total failure probability is q2+2pq(1- p2)+ p2q2+ 2p3q3+ p4q2+ 2p4q2(1- p2) N-

2.  Therefore, the probability of success is: 
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P[Success]=1- [q2+2pq(1- p2)+ p2q2+ 2p3q3+ p4q2+ 2p4q2(1- p2) N-2]. 

Equation 1. DRS Unconditional Failure Probability 

To compare results, we also provide equations for a dual network system and a 

single network system.  Using the same methods, the probability of success of a dual 

network can be written: 

 

P[Success]=1-[q2+2pq(1- p2)+ p2q2+ 2 p3q2+ p4q2]. 

Equation 2. Dual Network Unconditional Failure Probability 

Likewise, the probability of success for a single network system can be written: 

 

P[Success]=1-[q+pq+ p2q]. 

Equation 3. Single Network Unconditional Failure Probability 

 

The dual and single networks are independent of N because they do not have the 

re-routing algorithm, while the DRS equation will approach a specific probability as 

N→∞.  
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In the prior section, we reported about “in the field” deployment and usage 

statistics.  Given the actual usage data, q = 0.13 and p = 0.87.  Using Equation 1. DRS 

Unconditional Failure Probability, we calculate the unconditional failure probability of a 

given system.  Given a server cluster of 20 and a probability of failure of 13% the DRS 

system yields, an unconditional failure probability 37% greater than a single network 

topology for 20 clustered server nodes.   

  

Figure 20. Unconditional Failure Probability 

If no prior data are available we can assign an equal probability of success and 

failure to each node, i.e. p=q=0.5 and evaluate the probability of unconditional failure at 

any moment for our system.  When evaluating the system's probability of success with 

Equation 1, the DRS for any given moment is 112% better than a single network topology 
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and 13% better than a dual-network topology.  Figure 20 describes a comparison of the 

DRS versus dual and single network topologies presented in Equation 1, Equation 2 and 

Equation 3 for p = q = 0.5 and X nodes, respectively.   

The unconditional failure probability gives us a total probability of success model 

for the entire system.  We now present a quantitative probability model to evaluate 

systems in terms of a given number of network failures occurring at a given instance.  In 

this model, we determine the probability of success, independent of time, of a system 

with N nodes and f failures. We assume that, in a system with N nodes, there are exactly 

2N interface connections and two non-meshed back planes, each with equal probability of 

failure, say q, for 0≤q≤1.  Therefore, the probability of two failures in any system will be 

q2, the probability of three failures will be q3, and the probability of f failures will be qf.  It 

follows that 0qf
lim f =∞→ .  Consequently, the probability of multiple failures 

decreases exponentially.   

As the number of nodes in a system increases, the probability that a system using 

the DRS maintains a successful connection between any two nodes at any given time will 

approach 1 for a fixed number of failures, using the DRS. Since there are 2N+2 total 

connections that the f failures can be distributed among, the total number of combinations 

of f failures in the system is 


 +
f

2N2 .  We now count the number of failure combinations 

that result in the failure of the communication between a specific pair of nodes.  

Case 1:  Both backplanes fail.  In this case, the remaining f-2 failures appear in 
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the 2N components. The total number of such combinations is 







− 2f
N2

.  

Case 2: Exactly one backplane fails.  The total number of combinations of f-

failure is 






− 1f
N2

. To make the specific pair unable to communicate, at least one of the 

two interfaces of the pairs connecting to the working backplane fails.  Therefore, the 

number of failures that will not result in the failure of communication between the given 

specific pair of nodes is 






−
−
1f
2N2

. The total number of such combinations is 








−
−−







− 1f
2N2

1f
N2

.  

There are two cases in which exactly one backplane fails, so the total number of 

combinations is 









−
−−




−⋅ 1f
2N2

1f
N22 .  

Case 3: Neither of the backplanes fail. 

Case 3.1: Both interfaces of the source node fail. 

The total number of combinations is 






−
−
2f
2N2

. 

Case 3.2: Exactly one interface of the source node fails.  In this case, the interface 

of the destination node at the same side of the working interface of the source node must 

be down.  
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Case 3.2.1: The other interface of the destination node fails.  So the remaining f-3 

failures appear in 2N-4 components.  Thus the total number of combinations is 



−
−
3f
4N2

.  

Case 3.2.2: The other interface of the destination node works.  In this case, all 

other N-2 bridges must be down. Therefore, the remaining f-2 failures appear in the N-2 

bridges, and each bridge must contain at least one failure. Among them (f-2) mod (N-

2)=f-N bridges contain two failures, and (N-2)-(f-N)=2N-f-2 bridges contain exactly one 

failure. There are 



−
−

Nf
2N

 choices of the bridges with both fail links.  For each such 

choice, there are 
2fN22 −−

 configurations of the remaining single-failure bridges. 

Therefore, the total number of combinations is 
2fN22Nf

2N −−⋅



−
−

. 

There are two cases in which exactly one interface of the source node fails so the 

total of combinations in Case 3.2 is 



 ⋅




−
−+




−
−⋅ −− 2fN22Nf

2N
3f
4N22 . 

Case 3.3: Neither of the interfaces of the source node fails. In this case, both 

interfaces of the destination node must fail.  Therefore, the total number of failures is 





−
−
2f
4N2

. 

The total number of failures in Case 3 is: 





−
−+






 ⋅




−
−+




−
−⋅+




−
− −−

2f
4N22Nf

2N
3f
4N222f

2N2 2fN2
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The total number of failure combinations is 
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and the probability of success for N nodes and f failures can be written:  




 +

−


 +

=

f
2N2

)f,N(Ff
2N2

]Success[P
 

Equation 4. Probablity of Sucess 

 

Using Equation 4, it is readily apparent that the probability of success converges 

to 1 as N gets large for fixed values of f.  More specifically, for f=2 the P[S] surpasses 

0.99 at 18 nodes.  For f=3 the P[S] surpasses 0.99 at 32 nodes, and for f=4 the P[S] 

surpasses 0.99 at 45 nodes.  Given that 
0qf

lim f =∞→ and that 1]S[PN
lim =∞→ , a 

system implementing the DRS has a high probability of resilience to network failures. 

2.10 DRS Simulation 

To reinforce the validity of the probability models, we developed a computer 

simulation of a networking system.  We model N nodes with f failures implementing the 
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DRS. The graph in Figure 21 the convergence of the simulation outputs to the actual 

equation values for 2 through 10 failures.  The y-axis represents the mean absolute 

difference between the simulation output and the equation value for all values f<N<65.  

The x-axis represents the number of iterations in 10log  scale. The simulation results 

support the probability model of Equation 4 presented earlier. 
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Figure 21. Convergence of Simulation Results to Equation Results 

2.11 DRS Model Results 

Previously, we provided two probability models of the DRS algorithm.  The first 

was an unconditional failure probability of the entire system.  We compared the DRS 

system to a dual network topology and a single network topology.  We showed that the 

probability of success of the DRS system for any given moment is 112% better than a 
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single network topology and 13% better than a dual-network topology.  We then provided 

a conditional failure probability model to evaluate the system in terms of number of 

network failures at a given instance.  Those results were later validated via a computer 

simulation.   

We now provide a quantitative comparison of the DRS to other solutions.  The 

first type of solution is a simple one-network topology where all nodes are connected via 

a shared hub.  The second solution is to add a second network to the system to provide a 

redundant communication path.  A simple dual network solution will not work properly 

as implemented by most operating systems today without routing software; we do not 

address that issue.  We assume that the network operates properly and use the second 

network if available, which allows the system to reactively re-route a connection if a 

network failure occurs.  The third solution is to create a dual network topology and run 

the DRS on all nodes.  With the probability model provided above we can evaluate each 

of the solutions in terms of probability of success, number of nodes, and f number of 

failures.   

 

Figure 22. Dual Meshed Network with DRS Algorithm 
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Figure 23. 2-3 Failure Comparison 

In Figure 23 a comparison of four network topologies is shown for two and three 
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network failures.  The first is a single network topology.  The DRS for an eight-node 

cluster with three simultaneous failures is 267% more reliable than a single network 

topology 129% more reliable with only two network failures. 

While re-routing without routing software does not work with most operating 

systems, the DRS only nominally improves on simple dual network topologies when 

comparing with a fixed number of failures.  The reason is that DRS handling of opposite 

network failure situations is only a small percentage of the total number of network 

failure scenarios when the communication backplane is shared.  Most switches use a fully 

connected mesh to create more communication channels to avoid channel contention.  

Therefore, the assumption that the communication link is one link is true for non-

switched hub topologies where the hub uses a shared media for all port-to-port 

communications.   

In Figure 23, we show an example of a fully connected mesh system.  We provide 

a comparison of the current results to connected mesh architecture for two and three 

failures in Figure 24.  Our existing models are a lower bound result for most topologies, 

which in reality are much better.  DRS’s ability to route around single channel failures in 

a backplane mesh makes this possible.  Therefore, we leave these models out of the 

network probability model and use our results as a lower bound. 

2.12 DRS Conclusions 

The DRS algorithm was presented along with failure scenarios and solutions to 

network failure that the DRS would discover.  Additionally, a one-year study was 
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conducted to determine the failure rates of various system components to demonstrate the 

benefits that a compute cluster would have by adding a redundant network.  Two 

probability models were provided to quantitatively compare different network topologies 

and the benefit from the DRS approach.  The first model gives an unconditional failure 

probability of the entire system.  We compared the DRS system to a dual network 

topology and a single network topology.  We showed that the DRS systems probability of 

success for any given moment is 112% better than a single network topology and 54% 

better than a dual-network topology.  We also presented a second probability model to 

evaluate the system in terms of number of failures.  Using Equation 4. Probablity of 

Sucess, we showed that the probability of success converges to 1 as N gets large for fixed 

values of f.  More specifically, for f=2 the P[S] surpasses 0.99 at 18 nodes.  For f=3 the 

P[S] surpasses 0.99 at 32 nodes, and for f=4 the P[S] surpasses 0.99 at 45 nodes.  Given 

that 
0qf

lim f =∞→ and that 
1]S[PN

lim =∞→ , a system implementing the DRS has 

a high probability of resilience to network failure.   

We also presented a network simulation of the system validating our probability 

model.  We compared the DRS to single network topologies and showed that for an eight-

node cluster with three simultaneous failures, the DRS is 267% more reliable than a 

single network topology and 129% more reliable with only two network failures.  We 

also demonstrated that the DRS results are a lower bound result when compared to dual 

network topologies for a fixed number of failures and would provide greater resilience to 

network failures than other topologies. 
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The DRS algorithm is currently used by MCI Worldcom for enhanced voice 

services and is deployed to twenty-seven locations/clusters, each containing eight to 12 

servers.  While the DRS uses network bandwidth to pro-actively monitor network 

communication links, this added overhead has not effected systems overall performance.  

We presented this effort to quantitatively analyze the DRS’s added benefits in 

comparison to other topologies or solutions, in terms of fault tolerance added to 

distributed- server clusters. 

The DRS is a proactive routing protocol.  It uses existing hardware and 

networking protocols to provide a fault tolerant network system for distributed 

applications and operating systems.  The DRS, unlike routed and gated approaches, which 

passively monitor network links, proactively monitors each host and its communication 

links.  The DRS also checks alternate routes before using them to achieve an additional 

level of fault tolerance without the use of special hardware.  This fault tolerance comes at 

the price of some network bandwidth usage.  We found this to be a reasonable trade off 

given that tightly coupled server arrays tend to be smaller than client server networks.   

The production implementation runs on a four-host system and created no 

network problems.  We have calculated that the same system can execute a 32 host server 

cluster and still achieve sub-second response time to network failures.  The DRS is 

designed for the current trend of distributed computing systems.  By using the DRS in a 

tightly clustered server, system remote clients are unaffected during a network failure.  

The future of this research will focus on the need for a more efficient means of checking a 

large number of servers, i.e., lower than n*(n-1) messages.  In addition, we will explore 
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the use of RIP II in conjunction with DRS to add support for hosts outside of the network.
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CHAPTER III 

FAST DUPLICATE DOCUMENT DETECTION 

 

We present a new algorithm for duplicate document detection that uses collection 

statistics.  We compare our approach with the state-of-the-art approach using multiple 

collections.  These collections include a 30MB 18,577 web document collection 

developed by Excite@Home and three NIST collections.  The first NIST collection 

consists of 100MB 18,232 LA-Times documents roughly similar in the number of 

documents to the Excite@Home collection.  The other two collections are both 2GB and 

are the 247,491-web document collection and the TREC disks 4 and 5 - 528,023 

document collection.  We show that the approach called I-Match, scales in terms of the 

number of documents and works well for documents of all sizes.  We compared the 

solution to the state of the art and found that in addition to improved accuracy of 

detection, I-Match executed in roughly one-fifth the time.   

Data portals are everywhere.  The tremendous growth of the internet has spurred 

the existence of data portals for nearly every topic.  Some of these portals are of general 

interest; some are highly domain specific.  Independent of the focus, the vast majority of 

the portals obtain data, loosely called documents, from multiple sources. Obtaining data 

from multiple input sources typically results in duplication.  The detection of duplicate 

documents within a collection has recently become an area of great interest [56, 57] and 

is the focus of our described effort.   

Typically, inverted indexes are used to support efficient query processing in 
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information search and retrieval engines.  Storing duplicate documents affects both the 

accuracy and efficiency of the search engine.  Retrieving duplicate documents in response 

to a user’s query clearly lowers the number of valid responses provided to the user, hence 

lowering the accuracy of the user’s response set.  Furthermore, processing duplicates 

necessitates additional computation without introducing any additional benefit.  Hence, 

the processing efficiency of the user’s query is likewise lowered.  

A problem introduced by the indexing of duplicate documents is potentially 

skewed collection statistics.  Collection statistics are often used as part of the similarity 

computation of a query to a document.  Hence, the biasing of collection statistics may 

affect the overall precision of the entire system.  Simply put, not only is a given user’s 

performance compromised by the existence of duplicates, but also the overall retrieval 

accuracy of the engine is likewise jeopardized. 

The definition of what constitutes a duplicate is unclear.  For instance, a duplicate 

can be defined as the exact syntactic terms, without formatting differences.  Throughout 

our efforts however, we adhere to the definition that duplicate document are two 

documents with a high percentage of overlapping text as previously defined as a measure 

of resemblance [57, 58].  The general notion is that if a document contains roughly the 

same semantic content it is a duplicate whether or not it is a precise syntactic match.  

When searching web documents, one might think that matching URL’s would, at least, 

identify exact matches.  However, many web sites use dynamic presentation wherein the 

content changes depending on the region or other variables.  In addition, data providers 

often create several names for one site in an attempt to attract users with different 
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interests or perspectives.  For instance, www.fox4.com, onsale.channel9.com, and 

www.realtv.com all point to an advertisement for real TV.   

While the previous examples are for web documents, the same holds true for other 

collections where multiple document sources populate a single document collection.  The 

National Center for Complimentary and Alternative Medicine (NCCAM), part of the 

National Institutes of Health [59], supports a search engine for medical data whose inputs 

come from multiple medical data sources.  Given the nature of the data, duplicates are 

common.  Since unique document identifiers are not possible across the different sources, 

the detection of duplicate information is essential in producing non-redundant results. 

A previously proposed solution is the Digital Syntactic Clustering (DSC) 

algorithm and its Super Shingle (DSC-SS) variant [57].  While these algorithms are 

commonly used, they have efficiency problems.  One reported run took ten CPU days to 

process a thirty million-document collection [57].  Additionally, DSC-SS and DSC are 

known to perform poorly on small documents.  Given that the average size of a document 

on the web is around 4KB [60, 61], working with small documents is imperative. 

The developed algorithm, called IIT-Match or I-Match for short filters documents 

based on term collection statistics.  Results show that I-Match is five to six times faster 

than the DSC-SS algorithm.  Furthermore, we show that I-Match does not ignore small 

documents and places each document into at most one duplicate set. Hence, I-Match 

increases accuracy and usability.  Other approaches place potentially duplicate documents 

in multiple clusters.  Hence, it is harder for a user to detect the actual duplicates.  Finally, 

the sets of duplicates we detect are usually ‘tighter’ than DSC because we require an 
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"exact match" for the terms remaining after our filtration process.  However, like other 

approaches, we still identify non-exact duplicates.  

3.1 Prior Work 

We partition prior work into three categories: shingling techniques, similarity 

measure calculations, and document images.  Shingling techniques, such as COPS [62], 

KOALA [58], and DSC [57], take a set of contiguous terms or shingles of documents and 

compare the number of matching shingles. The comparison of document subsets allows 

the algorithms to calculate a percentage of overlap between two documents.  This type of 

approach relies on hash values for each document subsection and filters those hash values 

to reduce the number of comparisons the algorithm must perform.  The filtration, 

therefore, improves the runtime performance.  Note that the simplest filter is strictly a 

syntactic filter based on simple syntactic rules, and the trivial subset is the entire 

collection.  We illustrate later why such a naive approach is not generally acceptable.  In 

the shingling approaches, rather than comparing documents, subdocuments are compared, 

and thus, each document may produce many potential duplicates.  Returning many 

potential matches requires vast user involvement to sort out potential duplicates, diluting 

the potential usefulness of the approach.   

To combat the inherent efficiency issues, several optimization techniques were 

proposed to reduce the number of comparisons made. By either removing frequently 

occurring shingles [58] or simply retaining only every 25th shingle [57], the computation 

time is reduced.  This reduction, however, does hinder the accuracy.  Since no semantic 

premise is used to reduce the volume of data, a random degree of “fuzziness” is 
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introduced to the matching process resulting in relatively non-similar documents being 

identified as potential duplicates.   

In terms of computational time complexity, these approaches are O(kd log(kd)) 

where k is the number of shingles per document and d is the number of documents.  Even 

with the performance-improving technique of removing shingles occurring in over 1000 

documents and keeping only every 25th shingle, the implementation of the DSC algorithm 

took 10 CPU days to process 30 million documents [57]. 

The DSC algorithm has a more efficient alternative, DSC-SS, which uses super 

shingles.  This algorithm takes several shingles and combines them into a super shingle 

resulting in a document with a few super shingles rather than many shingles.  Instead of 

measuring resemblance as a ratio of matching shingles, resemblance is defined as 

matching a single super shingle in two documents.  This is much more efficient because 

it no longer requires a full counting of all overlaps.  The runtime for this approach is still 

O(kd log(kd)) but k is significantly smaller, and the amount of work to count overlap is 

eliminated, reducing the overall runtime.  The authors, however, noted that DSC-SS does 

“not work well for short documents” so no runtime results are reported [57]. 

Approaches that compute document-to-document similarity measures [63] are 

similar to document clustering work [64] in that they use similarity computations to 

group potentially duplicate documents.  All pairs of documents are compared.  A 

document to document similarity comparison approach is thus computationally 

prohibitive given the O(d2) runtime, where d is the number of documents.  In reality, 

these approaches use the document terms to search the collection.  Therefore, for 
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document one, each term is used to search the collection, and a final weight is produced 

for each documents with a matching term, the highest valued document is the most 

similar.  This approach of using the document as a query, thus clustering on those result 

sets, is computationally infeasible for large collections or dynamic collections since each 

document must be queried against the entire collection.  Finally, approaches using 

document images are addressed in [65, 66].  These approaches map the duplicate 

detection problem into the image-processing domain rather than one in the document-

processing arena.  

3.2 Algorithm 

The motivation for I-Match is to provide a duplicate detection algorithm that can 

scale to the size of the web and handle short documents typically seen on the web.  

Furthermore, we seek to place each document in only one set of potential duplicates.  The 

degree of similarity supported should be sufficiently loose to identify non-exact matches 

but tight enough to insure that those true duplicates are defined.   

In Figure 24, we illustrate the relative restrictiveness of different algorithms.  

DSC-SS is the loosest approach because it only requires one super shingle to match.  

Shingling is tighter because a percentage overlap in the remaining shingles is required.  

However, shingles and DSC-SS are very sensitive to adjustments in shingle size and 

thresholds.  We have drawn a dotted line to indicate that these may be adjusted in such a 

way that shingling would be the less restrictive.  Syntactic filters are the most restrictive 

because they leave most of the terms in the document representation. Thus, documents 

must be very close to an exact match to resemble.  The I-Match approach strikes a 
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DSC-SS 

Shingles 

I-Match 

Syntactic filtration 

balance between parsing and the previously described existing techniques.  

Figure 24. Restrictiveness of Techniques 

 

I-Match does not rely on strict parsing but instead uses collection statistics to 

identify which terms should be used as the basis for comparison.  It was previously shown 

that terms with high collection frequencies often do not add to the semantic content of the 

document [67, 68].  The I-Match approach hinges on the premise that removal of very 

infrequent terms or very common terms results in good document representations for 

identifying duplicates. 

We input a document, filter the terms based on collection statistics (and other 

simple parsing techniques) and compute a single hash value for the document.  All 

documents resulting in the same hash value are duplicates.  We use the SHA1 algorithm 

[69] for the hash, using the ordered terms in the document as input and getting <docid, 

hashvalue> tuples as output.  The ordering of terms is critical to detect similar documents 

that have reordered the paragraphs.  The SHA1 hash algorithm is used because it is 
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designed to be very fast and is good for messages of any length.  It is designed for text 

processing and is known for its even distribution of hash values.   

SHA1 produces a 20-byte or 160-bit hash value.  By using a secure digest 

algorithm, we reduce the probability of two different token streams creating the same 

hash value to P (2-160).  We insert each  <docid, hashvalue> tuple into a tree requiring the 

processing time on the order of (O(d log d)).  Other efficient storage and retrieval data 

structures such as a hash table could be used as alternatives.  The identification of 

duplicates is handled through the inserts into the tree.  Any collisions of hash values 

represent duplicates and the document identifiers are stored in that node of the tree.  A 

scan through the tree produces a list of all clusters of duplicates, where a node contains 

more than one document.   

The overall runtime of the I-Match approach is (O(d log d)) where d is the number 

of documents in the collection.  This is comparable to the DSC-SS algorithm, which 

generates a single super shingle if the super shingle size is large enough to encompass the 

whole document.  Otherwise, it generates k super shingles while we only generate one, 

(O(kd log kd)) time.  Since k is a constant in the DSC-SS timing complexity, the two 

algorithms are each theoretically equivalent.  I-Match, however, is more efficient in 

practice.    

The real benefit of I-Match over DSC-SS however, is not the timing improvement 

but that small sized documents are not ignored.  With DSC-SS, it is quite likely that for 

sufficiently small documents, no shingles are identified for duplicate detection.  Hence, 

those short documents are not considered, even though they may be duplicated.  Given 
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the wide variety of domains that duplicate document detection may be used, e.g., 

document declassification, email traffic processing, etc., neglecting short documents is a 

potentially serious issue. 

3.3 I-Match Results 

We implemented the DSC, DSC-SS and I-Match algorithms in the IIT Advanced 

Information Retrieval Engine (AIRE) system [70].  To evaluate I-Match, we implemented 

a variety of filtering techniques based on various thresholds.   

Figure 25 graphically illustrates several I-Match thresholding techniques.  In the 

figure below, the shaded regions are discarded term regions.  The next section describes, 

in detail, the different thresholding techniques.  The results are broken into the following 

sections: experimental layout, syntactic one pass approaches, quality of duplicate sets 

found, handling short documents, runtime performance and effects on precision recall.  

Figure 25. Thresholds for Document Nidf Values 

3.4 Experimental Layout  

We experimented with two filtration techniques based on collection statistics I-

Match-Doc and I-Match-IDF.  I-Match-Doc filters the unique terms of a given document 

by idf value to reach a specified percentage of the original unique terms of the document.  
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The terms remaining after the filter are used to create the clusters hash value.  For 

instance, 75% of the document might be reached by removing the 25% of the terms with 

the lowest idf values (most frequent terms).  Another example retains 50% of the original 

unique tokens of the document by removing 25% of the terms with the lowest idf and 

25% of the terms with highest idf (least frequent).  Thus, a percentage in terms of the 

number of unique terms of the original document will always remain constant, except for 

extremely small documents, i.e., a document containing less than four unique tokens 

would be filtered if we wanted to keep less than 25% of the original document.   

The I-Match-IDF filtration technique filters terms based on normalized IDF 

values.  The term IDF values are normalized across the collection so that they fall within 

a 0 to 1 interval.  For each document, an IDF cut-off is used, thus any term above or 

below a certain idf value is removed from the terms to be used to create the clusters hash.   

For each approach, we calculated the number of documents that were completely 

filtered, i.e., were not evaluated due to the removal of all tokens.  We calculated the 

average distinct terms before and after filtration and the average number of terms in each 

document pre and post filtration.  We counted the number of duplicate clusters found 

with each approach.  We evaluated each duplicate set found and counted how many of 

documents within the cluster, matched on the evaluation technique, and how many of 

those did the title or URL match.  Therefore, if a document was found to have a duplicate 

and both documents had either an identical title or URL then it was counted as a 

duplicate-title, otherwise it was counted just as a duplicate.  We evaluated the number of 

unique documents in our collection, so a document cluster was counted only once.  
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Lastly, we noted the time to evaluate the collection.  We tracked the following for each 

approach and each collection. 

• Number of documents filtered by the approach 

• Pre/Post average number of unique terms per document 

• Pre/Post average number of terms per document (Document size) 

• Number of document clusters found 

• Number of duplicates found with same URL/Title 

• Number of duplicate documents found with just the duplicate approach 

• Processing time 

We now describe the various thresholding values used.  We ran experiments of 

the I-Match-Doc approach with thresholds of 10, 20, 30, 40, 50, 60, 70, 80, and 90% of 

the most common terms and the inverse of the least common terms, totaling 18 

experiments.  We ran the LOW and HIGH filters first, filtering the lowest X percentage, 

and the highest X percentage based on idf value.  Then we filtered the edges of the 

document – the most frequent and least frequent terms, keeping the middle ones, 20%, 

40%, 60% and 80%.  Finally, we filtered the middle of the document, keeping only the 

most frequent and least frequent terms, inner 20%, 40%, 60%, and 80%, 8 more 

experiments.   

The I-Match-IDF filters use cut-off thresholds to filter any word above and below 

certain normalized idf values. For the DSC-SS variant algorithm experiments, we 

collected document sizes both pre and post filtration and the timing results.  Document 

size information is used to see how sensitive these types of algorithms are to smaller 
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documents.  The DSC-SS runs used super shingle sizes of 2, 4, 5, 10, 15, 20, 25, 50, 75 

and 100 shingles where each single was 10 terms.  The DSC experiments used thresholds 

of 0.5, 0.6, 0.7, 0.8 and 0.9.  Table 13, contains a detailed description of the I-Match 

experiments. 

We used four document collections, as shown in Table 1.  Each collection was 

chosen to test particular issues involved with duplicate detection.  The first is an 18,577-

web document collection flagged as duplicates by Excite@Home.  The Excite@Home 

document collection was produced from ten million web documents gathered through 

crawling the World Wide Web.  These documents were then filtered by the 

Excite@Home engineers to include only those documents thought to be “duplicate”.  The 

collection contains 18,577 documents, each of which is suspected of having a duplicate 

web document within the collection.  Many URLs are in the collection repeatedly because 

of multiple spider inputs.  This collection is approximately 30 megabytes in size.  The 

Excite@Home collection is highly duplicated. Thus, as better approaches are used, the 

greater is the percentage of the collection found as duplicate.   

The second is an 18,232 document Los Angles Times collection.  A subset of the 

entire LA Times collection provided by NIST, this subset was selected to roughly mirror 

the Excite@Home collection in terms of the number of documents but to comprise of 

significantly longer documents.  The LA Times subset collection is used to compare the 

various techniques by inserting known duplicate documents and analyzing the various 

approaches, for finding those documents.   

The third and fourth collections are likewise from NIST and are the TREC 2GB 
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web and ad-hoc collections.  The NIST web collection is a subset of a backup of the web 

from 1997 that was used in the TREC web track for TREC 7 and 8.  This collection was 

chosen as a representative of a larger standard web collection to show the scalability of 

the I-Match algorithm.  The NIST Web collection is used to test the run time performance 

of DSC, DSC-SS and I-Match approaches.   

The TREC disks 4-5 are chosen as a second document collection of 2-gigabytes to 

see what effects duplication has on precision and recall.  Since this collection has 

standard query and judgment results, it is a good collection to see if duplication has an 

effect on the end result sets.  The NIST TREC collection is used to test the effects of 

duplication on known relevance judgments. 

Table 1. Experimental Collections 

Collection Name CollectiOn Size Number of Documents 
Excite@Home Web 30 MB 18,577 
NIST LA Times 100 MB 18,232 
NIST Web  2 GB 247,491 
NIST TREC disks 4 & 5 2 GB 528,023 

 

Unfortunately, there is no available absolute body of truth or a benchmark to 

evaluate the success of these techniques.  Thus, it is difficult to get any type of 

quantitative comparison of the different algorithms and thresholding techniques.  This is 

not likely to change in the near future.  As document collections grow, the likelihood of 

judgments of duplicates being made is small; therefore, the best that can be hoped for is 

to provide fast efficient techniques for duplication detection that can be passed on to 

analysis for further evaluation if desired.   
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3.5 Syntactic Filtration 

The most obvious way to identify duplicate documents is to directly hash the 

entire contents of a document to a unique value.  This type of approach finds exact 

matches by comparing the calculated hash value with the other document hash values and 

has a computational complexity of (O d log (d)) where d is the number of documents in 

the collection.  A simple hash of the entire document is not resilient to small document 

changes, like an additional space added to a document, the addition or deletion of the 

word "the", a stem change to a term, or the replication of a sentence or paragraph.  

Because of these reasons, hash values are not commonly used for duplicate document 

detection.  However, they are, used to see if a particular document has changed.   

We experimented with various filtration techniques to improve the resilience of 

the direct hash approach to small document changes.  If a simple filtration technique 

based on strictly syntactic information is successful then fast duplicate and similar 

document detection could be achieved.  We had to evaluate this basic approach prior to 

considering the use of more sophisticated, collection dependent, hence computationally 

expensive, filtration techniques. 

We experimented with five filtering techniques that removed all white spaces 

from a document, and created a list of unique tokes to hash.   

• sw - Stop Word Filtration 

• tg5 - Terms less than 5 characters in length 
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• tl25 - Terms greater than 25 characters in length 

• nosc - Terms with special characters 

• stem - Stemming 

All permutations of the filtration techniques were investigated.  We used the 571-

stop-word list used by many participants of the Text Retrieval Conference and available 

on the SMART information retrieval site [71].  For word length filters, we removed all 

the words less than the average word length [72], five, in the length>5 (tg5) filter.  To 

filter very long words, we arbitrarily selected 25 as the cutoff for the length<25 (tl25) 

filter.  For stemming, we used the Porter stemming algorithm [73].   

The effect of filtering tokens on the degree of duplicate document detection is 

shown in Table 2.  We used the Excite@Home collection because the collection is fully 

duplicated.  Therefore, the percentage of duplicates found is an evaluation metric of the 

effectiveness of the filter.  Also shown in the table is the percentage of terms retained 

after each filtering technique.  Generally speaking, as we show in Table 2, the higher the 

filtration, the greater the degree of detection.  While several of the filtration techniques do 

find 88% of the collection, the duplicates they find are near or exact matches and a 

maximum number of unique documents of 2038.  In contrast, I-Match for this same 

collection detects 96.2% duplication and a maximum number of unique documents of 

568.  Clearly the lower the maximum number of unique documents, the better is the 

detection capability.  The simple filtering techniques reduced the list of tokens used to 

create the hash.  By eliminating white spaces and only keeping unique tokens, many small 

document changes are eliminated.  Keeping only unique tokens eliminates movement of 

paragraph errors, stemming removes errors caused by small token changes, and 
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stop word removal removes errors caused by adding or removing common irrelevant, in 

terms of semantics, tokens.  We found that removing tokens containing ‘special 

characters’ (i.e. /, -,  =, etc.) performed the best in terms of removing tokens from 

documents.   

Table 2. Syntactic Experiments 

 
Percentage of Original 

Lexicon 
Percent Found as 

Duplicates 
Unique documents found in 

collection 
nothing 100.0% 62.2% 7017 
sw 99.9% 62.2% 7017 
tg5 93.2% 62.4% 6966 
sw,tg5 93.2% 62.4% 6966 
tl25 60.1% 82.4% 3253 
sw,tl25 60.1% 82.4% 3253 
tg5,tl25 53.4% 82.7% 3199 
sw,tg5,tl25 53.4% 82.7% 3199 
nosc 9.5% 87.4% 2214 
nosc,sw 9.4% 87.4% 2197 
nosc,tg5 7.0% 88.0% 2048 
nosc,tg5,sw 6.9% 88.0% 2043 
nosc,tl25 9.5% 87.4% 2214 
nosc,tl25,sw 9.4% 87.4% 2197 
nosc,tl25,tg5 7.0% 88.0% 2048 
nosc,tl25,tg5,sw 6.9% 88.0% 2043 
stem 80.4% 62.2% 7014 
stem,sw 80.4% 62.2% 7014 
stem,tg5 78.2% 62.4% 6963 
stem,sw,tg5 78.2% 62.4% 6963 
stem,tl25 41.2% 82.4% 3248 
stem,sw,tl25 41.2% 82.4% 3248 
stem,tg5,tl25 39.0% 82.7% 3192 
stem,sw,tg5,tl25 39.0% 82.7% 3192 
stem,nosc 6.9% 87.4% 2211 
stem,nosc,sw 6.9% 87.4% 2194 
stem,nosc,tg5 5.2% 88.0% 2045 
stem,nosc,tg5,sw 5.2% 88.0% 2039 
stem,nosc,tl25 6.9% 87.4% 2211 
stem,nosc,tl25,sw 6.9% 87.4% 2194 
stem,nosc,tl25,tg5 5.2% 88.0% 2045 
stem,nosc,tl25,tg5,sw 5.2% 88.0% 2038 
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  These syntactic filtration techniques are very fast; however, the degree of 

duplication they detect is limited.  Such approaches detect only near or exact duplicates 

and do not find documents with small differences, like an updated date string or different 

URL. Therefore, simple filtration techniques such as these do not suffice, and efforts such 

as DSC, DSC-SS, and I-Match merit further investigation. 

3.6 Duplicate Sets 

For the task of “remove all duplicates from this collection”, it is helpful to get a 

list of duplicate document sets so that one from each set can be retained and the rest 

removed.  Imagine getting, instead, many different lists of duplicates, where one 

document may be in many lists.  This is essentially what DSC and DSC-SS return.  The 

DSC-SS algorithm creates a duplicate document set for each super shingle that exists in at 

least two documents.  Thus, each document (if it matches more than one super shingle) 

may appear in multiple document lists. For example, given documents D1, D2, D3 and 

D4 with super shingles as follows: D1 contains super shingle A. D2 contains super 

shingle A and B. D3 and D4 contain super shingle B.  The resulting sets of duplicates 

include {D1, D2} (from super shingle A), {D2, D3, D4} (from super shingle B).  Now all 

of the clusters must be scanned to get a list of duplicates for D2.  In contrast, I-Match 

places each document in one and only one duplicate document set.     

Consider two documents that match all text except in one small portion as shown 

in Figure 26.  Perhaps a name and an address for a regional contact are changed.  It is 

likely that DSC-SS would identify these two documents as duplicates because the small 

section that differs may not be represented at all in the selected shingles or a super shingle 
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exists without a shingle from this section.  I-Match will group these together as duplicates 

only if all terms in the differing section were filtered.  This is quite likely with the name 

and address example because names are generally very infrequent across the collection, 

the numbers are removed in parsing and state names are generally very common across 

the collection.  On the other hand, if any word in the differing section is kept, the two 

documents are not matched.   

Figure 26. Differing Documents 

To find the best performing I-Match approach, we contrived a set of duplicates to 

test the various approaches with a known test set of duplicate documents inserted into an 

existing collection.  We computed the average document length for the test collection.  

We then chose ten documents from the collection, that were the average document length.  

These documents were used to create a test duplicate document collection.  Each 

document is used to create 10 test duplicate documents.  This is achieved by randomly 

removing every ith word from the document.  In other words for every ith word, pick a 

random number from one to ten.  If the number is higher than the random threshold (call 

it alpha) then pick a number from 1 to 3.  If the random number chosen is a one then 

remove the word.  If the number is a two then flip it with a word at position i+1.  If it is a 

three, add a word (randomly pick one from the term list).  Lastly, these duplicate 
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documents are now inserted into the collection. 

We then ran the I-Match thresholding techniques, DSC, and the DSC-SS with the 

creation of a super shingle for every 2 and 4 shingles on the LA Times sub-collection, 

looking for the new test duplicate documents.  We found two I-Match filtration 

techniques to be very effective I-Match (Doc-L-90 and IDF-L-10).  Doc-L-90 takes only 

terms with the highest IDF values, i.e., very infrequent terms, and only the 10% most 

infrequent terms are used for each document. The second approach (IDF-L-10) uses only 

the terms with normalized idf values of 0.1 or greater, thus very frequent terms in the 

collection are removed.  In the following tables, we present the data obtained in our 

evaluation of the different approaches.  

Table 3. Documents Found Ratio 

Document DSC DSC-SS-2 DSC-SS-4 DOC-L-90 IDF-L-10 
LA123190-0013 27.3% 0.0% 18.2% 36.4% 63.6% 
LA123190-0022 54.5% 63.6% 18.2% 100.0% 100.0% 
LA123190-0025 27.3% 0.0% 0.0% 90.9% 100.0% 
LA123190-0037 18.2% 18.2% 0.0% 90.9% 100.0% 
LA123190-0043 36.4% 0.0% 0.0% 90.9% 90.9% 
LA123190-0053 18.2% 45.5% 45.5% 90.9% 100.0% 
LA123190-0058 45.5% 18.2% 0.0% 90.9% 81.8% 
LA123190-0073 54.5% 0.0% 0.0% 100.0% 100.0% 
LA123190-0074 0.0% 0.0% 0.0% 90.9% 100.0% 
LA123190-0080 27.3% 18.2% 0.0% 54.5% 63.6% 
Average 30.9% 16.4% 8.2% 83.6% 90.0% 

 

As shown, both I-Match approaches yield a significantly higher percentage of 

detection than either DSC or either of the DSC super single approaches.  Furthermore, as 

expected, the super single approaches declined in the percentage detected as the super 
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single size increased.  The DSC performance was better than both super single 

approaches. 

The most effective I-Match techniques are retaining the highest idf valued terms 

from a document either as a percentage or as a normalized value.  We produced 10 

duplicate documents for 10 test documents, thus creating 11 known duplicate documents 

for each cluster.  In Table 3, we show the percentage of the total document duplication 

found for each approach.  Both I-Match approaches find a greater duplication percentage 

for all test cases.   

Table 4. Document Clusters Formed 

Document DSC DSC-SS-2 DSC-SS-4 DOC-L-90 IDF-L-10 
LA123190-0013 9 11 9 9 7 
LA123190-0022 6 7 9 3 2 
LA123190-0025 9 11 11 4 3 
LA123190-0037 10 10 11 4 1 
LA123190-0043 8 11 11 2 2 
LA123190-0053 10 9 9 3 2 
LA123190-0058 7 10 11 3 3 
LA123190-0073 6 11 11 3 3 
LA123190-0074 11 11 11 2 1 
LA123190-0080 9 10 11 8 9 
Average 8.5 10.1 10.4 4.1 3.3 

 

In Table 4, we illustrate that the I-Match techniques yield a smaller number of 

document clusters than any of the shingling techniques.  That is, we know, by design, that 

for each document the actual number of clusters to be formed should ideally be one since 

besides the original document, the other ten copies are simply slight modifications of the 

original.  Therefore, a perfect similar document detection algorithm would generate one 
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cluster per document.  As shown, the I-Match configurations result in an average number 

of clusters per document of approximately 3 to 4.  DSC and the super shingling variants 

are significantly worse ranging from 8 to 10 clusters. 

3.7 Short Documents 

While DSC-SS is more efficient than DSC, it has known deficiencies with short 

documents. To evaluate how often DSC-SS completely ignores a document, we ran the 

algorithm against the Excite@Home duplicate document collection and the NIST LA 

Times collection.  As presented in Figure 27, for the Excite@Home document collection, 

DSC-SS ignored over 6,500 documents for a super shingle size of two.  As for the LA 

Times collection, DSC-SS ignored over 1,200 documents.  In comparison, DSC ignored 

5052 and 636 documents, respectively.  The high number of filtered documents for the 

Excite@Home collection is caused by the filtration of common shingles produced by this 

contrived collection where the 636 documents filtered from the LA Times collection is 

probably a better representation of the algorithms performance. I-Match, in the worst 

case, ignored only four documents.  

In Figure 27, we illustrate the increase in the number of documents ignored as the 

number of shingles used to create a single super shingle increases. The more shingles 

used to make a super shingle, the more documents are ignored.  We then ran the DSC-SS 

algorithm against the 2GB NIST collection with super shingle sizes of 100, 75, 50, 25, 

20, 15, 10, 5, 4 and 2 shingles.  In Table 5, we once again show that the greater the super 

shingle size the more documents ignored, thus validating our prior results using the LA 

Times and Excite@Home collections.  In Table 5, we also illustrate the percentage of the 



 

 

67

 

collection filtered.   
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Figure 27. Super Shingle Size vs. Documents Dropped 

Table 5. DSC-SS Short Document Filtration 

Super Shingle Size Documents Ignored % Filtered 
100 220073 88.92% 
75 209928 84.82% 
50 189071 76.40% 
25 133614 53.99% 
20 112703 45.54% 
15 86288 34.87% 
10 54212 21.90% 
5 22257 8.99% 
4 16805 6.79% 
2 6528 2.64% 

 

The I-Match algorithm uses various term filtration techniques based on collection 
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statistics to filter terms.  We conducted 52 different filtration experiments.  For most I-

Match runs, only about 150 documents were filtered or less than .06% of the collection.  

Since our best filtration techniques take only a percentage of the document, only 

documents with a couple unique terms are ignored.  The only I-Match thresholding 

technique to filter a substantial percentage of documents filters based on IDF values 

retaining only a normalized IDF value of 0.9 or greater.  This technique keeps less than 

50% of the collection, similar to a DSC-SS of 50.  In spite the degree of filtering, no I-

Match thresholding technique dropped any significant number of documents.  That is, the 

greatest number of documents dropped was 143 out of 247,491. 

Table 6. Post Average Document Size 

Super Shingle Size Post Avg Doc Size 
100 9860 
75 8123 
50 6109 
25 3833 
20 3389 
15 2963 
10 2575 
5 2272 
4 2225 
2 2140 

 

As the super shingle size increases, the average size of a document that survives 

the filtration process increases.  In Table 6, we present the average number of tokens per 

document retained after super shingling.  The average token size is about six characters in 

length.  The sizes of the documents are presented in terms of the number of terms.  Thus, 

multiplying by six [72] estimates the average size of a document.  This sub-collection of 
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the web has slightly higher document sizes than the 4K sizes reported in [60].  This 

shows us that the DUP-SS algorithm performs poorly on web sized documents.  

3.8 Runtime Performance 

We divide the runtime performance experiments and results into two sections.  

The first set of experiments compares the I-Match and the DSC-SS algorithms on the 

Excite@Home test document collection.  The second set of experiments compares the I-

Match, DSC-SS and DSC algorithms using the 2-gigabyte NIST web collection.  All 

experiments were run on a SUN ES-450; each process ran with about 200MB for all 

algorithms.   

I-Match was approximately five times faster than DSC-SS for the Excite@Home 

collection.  The pure Syntactic Filtration technique ran in less than 5 seconds, but as 

discussed previously, only exact matches are found with this technique.  Varying the 

threshold for super shingle sizes does not significantly influence the runtime since the 

same amount of work must occur.  Our best performing I-Match techniques ran in 142 

(Doc-L-90) and 134 (IDF-L-10) seconds. 

The DSC and DSC-SS timings for the Excite@Home collection are comparable 

since the third and fourth steps of the DSC algorithm are I/O bound in nature but are 

relatively negligible for a small collection.  The third and fourth steps in the DSC 

approach become a greater percentage of the cost as the collection grows as seen in Table 

8 for the 2GB NIST collection.   

We compared the run time of I-Match to the DSC and DSC-SS algorithms 
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running against the NIST 2 gigabyte Web collection.  As with the Excite@Home 

experiments, the parsing/indexing system builds shingle data and relevance feedback data 

structures when indexing a collection.  Thus, preprocessing the text and creating shingle 

and token data times are not contained in our timing results, just the specific clustering or 

duplication algorithm.   

Table 7. Duplicate Processing Time 

Algorithm Mean Time Std Deviation Median Time 
DSC 595.4 4.3 593.5 
DSC-SS 587.6 18.5 587.1 
I-Match 96.9 33.4 82.6 
Syntactic 5 N/A N/A 

 

As shown in Table 8, I-Match was approximately six times faster than DSC-SS 

and almost 9 times faster than the DSC algorithm.  The faster speed of the I-Match 

algorithm suite is due to the processing of fewer tokens.  The average distinct tokens per 

document for the NIST 2 gigabyte collection is approximately 475, while the average 

document size is over 2000 terms long.  Since a sliding window creating shingles 

produces about the same number of shingles as the size of the document, the added 

amount of processing is proportional.  This is true for all small window sizes proportional 

to the total document size.  If a large window size for super shingles is used, the DSC-SS 

approach is just a hash approach and will not match on similar documents.  This ratio of 

distinct terms to document size is consistent to our TREC collection statistics.   

The DSC algorithm has several additional steps, which are I/O bound in nature, 

and contributes to its additional run time.  Table 8 contains an average of timing 
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results for each of the given techniques.  DSC had five experiments using a threshold of 

50%, 60%, 70%, 80% and 90%.  DSC-SS had ten experiments enumerated in Table 5.  I-

Match results are from 52 experiments described above.  Lastly, a syntactic filtration 

comparison is given.  Detailed experimental results are presented as an appendix and are 

listed in Table 13 and Table 15 with the legend describing the experimentation present in 

Table 14. 

Table 8. Processing Time for 2GB NIST Web Collection 

Algorithm Mean Time Std Deviation Median Time 
DSC 31838.22 807.9 30862.5 
DSC-SS 24514.7 1042.1 24475.5 
I-Match 3815.8 975.8 3598.8 
Syntactic 65 N/A N/A 
 

3.9 Duplication Effecting Accuracy 

We examined the effects of duplication on result sets.  We used the I-Match 

algorithm on the TREC disks 4-5, which were used for TREC 6-8.  We used the NIST 

relevance judgments to flag documents judged by NIST.  If a duplicate was found and a 

positive judgment was made for a given query, we checked to make sure that no false 

judgments were made on its duplicates.  A dozen inconsistencies were found for TREC 6.  

Eight inconsistencies were found for TREC 7.  Seventeen inconsistencies were detected 

in TREC 8 and 65 inconsistencies were noted for the web track of TREC 8.  Examining 

these inconsistencies, we found documents that were identical were judged differently. 

TREC topic 301, judged document FBIS3-58055 relevant and FBIS3-58055 not relevant; 

they are the same document except for the document number.  Another example 
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for topic 301 is that document FBIS3-41305 was judged relevant and document FBIS3-

41305 was not judged as relevant although these documents are identical except for the 

title and the document number.  Similar examples were found for TREC 7 and 8 and the 

web track of TREC 8.  While this does not diminish the usefulness of the TREC 

judgments, it does show that duplicate document detection is important from both a 

research point of view and an end user’s point of view. 

3.10 Conclusions and Future Work 

Algorithms for detecting similar documents are critical in applications where data 

are obtained from multiple sources.  The removal of similar documents is necessary not 

only to reduce runtime but also to improve search accuracy.  

We proposed a new similar document detection algorithm called I-Match, and 

evaluated its performance using multiple data collections.  The document collections used 

varied in size, degree of expected document duplication, and document lengths.  The data 

collections were obtained from NIST and from Excite@Home.   

I-Match relies on collection statistics to select the best terms to represent the 

document. I-Match was developed to support web document collections.  Thus, unlike 

many of its predecessors, I-Match efficiently processes large collections and does not 

neglect small documents.  In comparison to the prior state-of-the-art, I-Match ran five 

times faster than DSC-SS against the Excite@Home test collection and six times faster 

against the NIST 2GB collection.  Furthermore, unlike the efficient version of the prior 

art, I-Match did not skip the processing of small documents. 
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In terms of human usability, no similar document detection approach is perfect.  

The ultimate determination of how similar a document must be to be considered a 

duplicate relies on human judgment.  Therefore, any solution must be easy to use.  To 

support ease of use, all potential duplicates should be uniquely grouped together.  

Shingling approaches, including the DSC and DSC-SS approaches, however, group 

potential duplicate documents according to shingle matches.  Therefore, any match in 

even a single shingle results in a potential duplicate match indication.  This results in the 

scattering of potential duplicates across many groupings and many false positive potential 

matches.  I-Match, in contrast, treats a document in its entirety and maps all potential 

duplicates into a single grouping.  This reduces the processing demands on the user. 
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CHAPTER IV 

DELAYED IDF UPDATES 

 

Information Retrieval (IR) is directed towards finding relevant data in the form of 

documents, in response to user requests (commonly referred to as queries).  

Computerized or automatic information retrieval has been a topic of both commercial 

development and research for many decades.  To improve accuracy, many text search 

systems automatically assign weights to terms [77].  The idea is to weigh infrequent terms 

high and frequent terms low.  Hence, a search for “Telecommunications stock” will 

weigh the term “stock” substantially lower than “Telecommunications” because “stock” 

occurs much more frequently and is essentially noise (especially in articles found in a 

newswire).  The inverse document frequency is a well-accepted, automatically assigned 

weight that is computed as log(N/df)  where N is the number of documents in the 

collection and df is the number of documents that contain the term in question.  If the 

term appears in all N documents, it is clearly noise and is weighted as log(N/N) = 0.  

Similarly, if the term appears in only one document, it is considered quite significant and 

is weighted as the log(N).  Notice that N changes with the addition of each new document 

to the collection. 

For an information retrieval system that uses constantly, changing data (i.e., a 

system that indexes a user’s e-mail) the cost of updating the value of N with each new 

document can be quite prohibitive.  Most work on information retrieval systems focused 

on static data; therefore, this has not been widely addressed.  Viles and French [74] 

showed that the inverse document frequencies did not have to be updated very 
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often to assure good accuracy, but this work was done on a very small document 

collection.  Experimentation on small document collections was shown to be non-

indicative for larger collections [75]. 

We tested the hypothesis that a sufficient amount of “training” data is sufficient to 

assign the term weights and once the weights are assigned, they need not be updated 

frequently [19, 20].  We tested a variety of different training set sizes (10 MB, 20 MB, 

40MB, 80MB, and 160 MB) for a 320MB collection.  We also tested different update 

intervals for these training set sizes.  We found that the size of the training set was not 

nearly as important as the number of unique terms identified in a training set.  (Clearly, 

up to a point, this number of distinct terms increases with the size of the training set.)   

We found that a training set size of 50% of the document collection did not 

require any updating of the inverse document frequencies to maintain accuracy in 

retrieval.  For a training set size of 10% and 20%, accuracy degraded as compared to that 

of 40%.  Hence, for a collection similar to the one used, the “right” training set size is 

around 20-40 percent of the document collection.  Note that these estimates are based on 

the assumption that the number of new terms appears at the same rate as observed in our 

test collection.  A safer means of computing training set size, might be to use the number 

of distinct terms.   

The decision of when to update the inverse document frequencies should be 

driven by the user requirements.  If the requirement is for the theoretically highest 

achievable accuracy then the inverse document frequency should be updated constantly; 

however, if there is some flexibility in this requirement, more infrequent updates will 
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certainly improve system performance by reducing processing overhead without 

noticeably affecting accuracy.  We try to answer an important efficiency question.  What 

is a reasonable update frequency for the inverse document frequency used in the vector 

space model?  We start with a training collection of 40, 80, and 160 MB, we observed no 

significant change in the accuracy of our retrievals when the inverse document 

frequencies were updated frequently or infrequently.  Accuracy was affected when the 

training size was only 10 or 20 MB.  Since the order in which new documents appear 

could affect accuracy, we tested two different orderings and the results were comparable 

for each ordering.  

4.1 Vector Space Model  

To evaluate the relevance of each document, for each query-document pair, a 

measure of relevance is computed.  Accordingly, the documents within the collection are 

then ranked based on this measure.  A popular means of computing a similarity measure 

is the vector space model.  This model defines a vector that represents each document, 

and a vector that represents the query [76]. Once the vectors are constructed, the distance 

between the vectors, or the size of the angle between the vectors, is used to compute a 

similarity coefficient. 

There is one component in each vector for every distinct term that occurs in the 

document collection.  Consider a document collection with only two distinct terms,  and 

ß. All vectors contain only two components.  The first component represents occurrences 

of , and the second represents occurrences of ß.  The simplest means of constructing a 

vector is to place a one in the corresponding vector component if the term 
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appears, and a zero, if the term does not appear.  Consider a document, D1, that contains 

two occurrences of term  and zero occurrences of term ß. The vector, <1,0>, represents 

this document using a binary representation.  This binary representation can be used to 

produce a similarity coefficient, but it does not take into account the frequency of a term 

within a document.  By extending the representation to include a count of the number of 

occurrences of the terms in each component, these frequencies can be considered.  In the 

example, the vector would now appear as <2,0>. 

Early work in the field used manually assigned weights.  Similarity coefficients 

that employed automatically assigned weights were compared to manually assigned 

weights [77, 78]. Repeatedly, it was shown that automatically assigned weights would 

perform at least as well as manually assigned weights [77, 78]. 

Unfortunately, the above approach does not include the relative weight of the term 

across the entire collection.  The utility of including a collection-wide based weight was 

studied in the 1970’s, and the conclusion was that relevance rankings, the ordering of 

documents with respect to their relevance to the user query, improved if this weight was 

included. Although relatively small document collections were used to conduct the 

experiments, the authors still determined that “in so far as anything can be called a solid 

result in information retrieval research, this is” [79].  

To construct a vector that corresponds to each document, consider the following 

definitions: 

• n = number of distinct terms in the document collection 
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• tfij = number of occurrences of term tj in document DI 

• dfj = number of documents which contain tj 

• idfj = log
jdf

d  where d is the total number of documents 

The vector for each document is of size n and contains an entry for each distinct 

term in the entire document collection. The components in the vector are filled with 

weights that are computed for each term in the document collection. The terms in each 

document are automatically assigned weights based on how frequently they occur in the 

entire document collection and how often a term appears in a particular document.  The 

weight of a term in a document increases the more often the term appears in a document 

and the less often it appears in all other documents. 

The weights computed for each term in the document collection are non-zero only 

if the term appears in the document.  For a large document collection consisting of 

numerous small documents, the document vectors are likely to contain mostly zeros. For 

example, a document collection with 10,000 distinct terms results in a vector of size 

10,000 for each document.  A given document may have only 100 distinct terms. Hence, 

9,900 components of the vector contain a zero. 

The calculation of the weighting factor (w) for a term in a document is formally 

defined as a combination of term frequency (tf), document frequency (df), and inverse 

document frequency (idf). To compute the value of the jth entry in the vector 

corresponding to document i, the following equation is used: 

Dij = (tfij) (idfj) 
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Consider a document collection that contains a document, D1, with ten 

occurrences of the term green and a document, D2 , with only five occurrences of the term 

green.  If green is the only term found in the query, document D1 is ranked higher than 

D2. 

The inverse document frequency can best be examined when term frequency is 

not a factor.  Returning to our earlier example, for the query containing the terms 

“Telecommunications stock” it is assumed that stock occurs substantially more frequently 

that the term “Telecommunications” .  For a document collection in which document D1 

contains one occurrence of “stock” and document D2 contains only one occurrence of the 

term “Telecommunications”,  document D2 will be ranked higher than D1, and 

“Telecommunications”  will have a higher inverse document frequency than “stock”. 

When a document retrieval system is used to query a collection of documents with 

t terms, the system computes a vector D of size t for each document. The vectors are 

filled with term weights as described above. Similarly, a vector Q is constructed for the 

terms found in the query. 

A simple Similarity Coefficient (SC) between a query Q and an ith document Di is 

defined as the Euclidean distance between the two vectors SC ( Q, Di ) = ∑
=

t

j
ijj dq

1

*  

where qj is the jth term in the query and dij is the jth term in the ith document. 

Consider a case insensitive query and document collection with a query Q and the 

sample document D given below.  
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Q: “nikkei stock exchange or american stock exchange.”  

D: 

<DOC> 
<DOCNO> AP881214-0028 </DOCNO> 
<FILEID>AP-NR-12-14-88 0117EST</FILEID> 
<FIRST>u i BC-Japan-Stocks     12-14 0027</FIRST> 
<SECOND>BC-Japan-Stocks,0026</SECOND> 
<HEAD>Stocks Up In Tokyo</HEAD> 
<DATELINE>TOKYO (AP) </DATELINE> 
<TEXT> 
The Nikkei Stock Average closed at 29,754.73 points, 
up 156.92 points, on the Tokyo Stock Exchange Wednesday. 
</TEXT> 
</DOC> 
 
 

Table 9. Document Table 

Component Term DF IDF TF Weight 
1 american 6401 0.60 0 0.00 
2 average    2265  1.08 1 1.08 
3 closed    2208 1.08 1 1.08 
4 exchange    2790 1.00 1 1.00 
5 nikkei    234  2.07 1 2.07 
6 points    1627   1.23 2 2.46 
7 stock    2674 1.00 2 2.00 
8 tokyo    725 1.58 1 1.58 
9 up    12746  0.30 1 0.30 

10 wednesda
y    

6417   0.60 1 0.60 

 

The Component, Term, Document Frequency, Inverse Document Frequency, 

Term Frequency and Weight (tf * idf) values for the terms in the document are given in 

Table 9.  Note the term “american” does not appear in the document, but since it does 

appear in the query, it is presented here for completeness.  
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The document vectors can now be constructed using the term weights given in 

Table 9. Since ten terms appear in the document collection, a ten-dimensional document 

vector is constructed. The alphabetical ordering given above is used to construct the 

document vector.  The weight for term i in vector j is computed as the (idfi )(tfij) 

The document vectors are given below: 

D = <0.00, 1.08, 1.08, 1.00, 2.07, 2.46, 2.00, 1.58, 0.30, 0.60>  

Consider a query that requests all documents about “nikkei stock exchange or 

american stock exchange.”  

Q = <0.6, 0, 0, 2, 2.07, 0, 2, 0, 0, 0>  

The SC(Q, D) would be computed as Q x D or SC(Q,D) = (2)(1.00) + (2.07)(2.07) 

+ (2)(2.00) =  10.2849.  First proposed in 1975, the vector space model is still a popular 

means of computing a measure of similarity between a query and a document [80]. 

In 1988, several experiments tried to improve the basic combination of tf-idf 

weights [81]. Many variations were studied, and the following weight function was 

identified as a good performer, where the literals are defined previously 
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Several different means of comparing the query vector with the document vector 

were implemented.  These are well documented, the most common of these is the cosine 
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measure where the cosine of the angle between the query and document vector is given: 

The cosine coefficient is defined as: 
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Note that the cosine measure “normalizes”’ the result by considering the length of 

the document. With the inner product measure, a longer document may result in a higher 

score simply because it is longer, and thus, has a higher chance of containing terms that 

match the query not necessarily because it is relevant.  The cosine measure levels the 

playing field by dividing the computation by the length of the document.  We note that 

Singhal, et al, found that the field may have been leveled too much [82] as a study of 

recent results showed that long, relevant documents were often excluded simply because 

they are long.   

4.2 IDF Experimentation 

The vector space model can incorporate either automatic or manually assigned 

term weights.  As we discussed in the prior sections, automatically assigned term weights 

were shown to perform well.  Many weighting schemes were investigated, but the term 

frequency inverse document frequency (tf-idf) scheme remains popular.  The term 

frequency (tf) is computed once for a given document and is relatively easy to add to an 

inverted index. 
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The inverse document frequency is based on the total number of documents.  

Hence, for a system with 1,000,000 distinct terms, the addition of a single document 

requires a computation for each of the terms in the document to compute the new idf 

based on the increase in the size of the document collection.  For new documents that 

have many distinct terms, this requires a substantial amount of resources. 

Since the idf is simply an estimate of significance, it is reasonable to expect that it 

does not need to be updated with every new document. This premise was tested by Viles 

and French et al., for a small document collection, but it has not been tested on a more 

realistically sized data set like the TIPSTER collection [74].  

Viles and French demonstrated that the idf did not have to be updated frequently.  

Since the updates of the idf could prohibit widespread deployment of a commercial 

system (due to the reduced ability to add or delete documents), we investigated the 

frequency by which one needed to update the idf.   

Our hypothesis was that it is not necessary to update the idf for every new 

document.   We attempted to find the optimal update interval by using a training 

collection of 50% of the document collection.  Once this was developed, sequences of 

text were added to the collection, and idfs were updated for different intervals of text. 

Consider a collection with one document that contains terms apple, boy, and cat.  

Assume that the idf’s for each of these terms are computed.  A new document with apple, 

boy, and dog requires an update to the idfs.  However, it may not be necessary to update 

the idf’s if they are not significantly changed by the new document.  This would be fine 
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except a term such as dog would now effectively not be in the inverted index although its 

document has been added to the system.  A user who searches for dog would not find this 

document although it was just added.  Hence, even if it is not necessary to update idf’s 

very often, the risk is that a unique term could appear between the updates of the idf’s and 

that term could be extremely useful to obtain accurate results.  

4.3 Results 

We tested our hypothesis on a 320MB subset of the TREC collection.  For our 

initial results, a training set size of 160 MB (roughly half of the document collection) was 

used.  That is, files numbered 1-160 were used as our training set, and files numbered 

161-320 were incrementally added to the collection. The idf’s were initially computed 

using a training set.  After training, idf’s were only updated every u MB, where u = 10, 

20, 40, 80, and 160MB. (160MB is equivalent to no updates of idf except for the training 

set.) The effect on average precision was measured every 10 MB to determine the impact 

of not updating the idf. 

Figure 28 illustrates the average precision-recall for various update frequencies. 

The five different lines shown are not significantly different from each other.  To test the 

impact of the input order, we reversed the training set and the document collection.  In 

Figure 29, we present the results obtained when reversing the order.  That is, files 

numbered 161-320 were used as a training set, and files 1-160 were incrementally added 

to the collection.  Somewhat surprisingly, the order did not significantly affect average 

precision-recall measurements.  Hence, for a relatively large training set, we conclude that 
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the update of idf’s has a negligible effect on accuracy. 

Table 10 below summarizes the average precision-recall for each update interval.  

It can be seen that the average precision-recall does not vary by more than 0.3 percent.  

Having noticed no significant degradation in accuracy due to delayed idf updating 

but being aware that the order of appearance of new terms (order of document insertion 

into the collection) could significantly affect the results (i.e., order). We investigated an 

additional 160MB training set.  For clarity of motivation, consider a case where a term 

that was not seen in the training set appears between idf updates and occurs in a relevant 

document. Hence, changing the order of the input files could result in such a term 

appearing in the training set and subsequently being found in a relevant document.    
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Figure 28. Precision - Recall for Different Update Frequencies (1-160) 

To test the impact of the input order, we reversed the training set and the 
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document collection.  In Figure 29, we present the results obtained when reversing the 

order.  That is, files numbered 161-320 were used as a training set, and files 1-160 were 

incrementally added to the collection.  Somewhat surprisingly, the order did not 

significantly affect average precision-recall measurements.  Hence, for a relatively large 

training set, we conclude that the update of idf’s has a negligible effect on accuracy. 

Table 10. Average Precision / Recall for Training Set (1-160) 

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 

160 17.49 16.83 16.88 16.41 16.21 17.32 16.37 16.33 15.81 15.38 15.28 15.36 15.55 15.3 15.57 15.61 16.14 

80 17.49 16.83 16.88 16.41 16.21 17.32 16.37 16.33 16.11 15.69 15.58 15.67 15.85 15.57 15.88 15.75 16.32 

40 17.49 16.83 16.88 16.41 16.24 17.32 16.37 16.33 16.11 15.69 15.58 15.67 15.85 15.57 15.88 15.75 16.32 

20 17.49 16.83 16.71 16.41 16.24 17.32 16.39 16.33 16.11 15.69 15.58 15.67 15.85 15.57 15.89 15.75 16.32 

10 17.49 16.74 16.62 16.22 16.04 16.94 16.02 16.03 15.81 15.38 15.28 15.36 15.55 15.3 15.57 15.61 16.14 

Table 11. Average Precision / Recall for Training Set (161-320) 

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 

160 20.71 20.34 20.04 19.55 18.72 18.31 17.99 17.67 17.56 17.69 17.69 17.32 17.27 17.04 16.59 16.47 16.30 

80 20.71 20.34 20.04 19.55 18.72 18.31 17.99 17.67 17.44 17.59 17.6 17.24 17.15 16.96 16.53 16.42 16.30 

40 20.71 20.34 20.04 19.55 18.8 18.38 18.07 17.76 17.44 17.59 17.6 17.24 17.14 16.95 16.48 16.36 16.30 

20 20.71 20.34 20.06 19.59 18.8 18.38 17.95 17.62 17.44 17.59 17.58 17.23 17.14 16.95 16.52 16.40 16.30 

10 20.71 20.37 20.06 19.62 18.8 18.27 17.95 17.63 17.44 17.56 17.58 17.21 17.14 16.98 16.52 16.41 16.30 

 

(Note the reader should not compare the curves across Figure 28 and Figure 29 

since the documents used in the training sets differ.  Instead, what should be noticed is 

that in both sets of results the frequency of the update intervals of the idf’s does not 

significantly affect the average precision-recall as the precision-recall numbers of the 

different update frequencies are roughly equivalent.) 

Having concluded that given a sufficiently large training set, the order of 
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document insertion had little significance, we investigated the effects of the size of the 

training set.  The training set size for the results presented in Figure 28 and Figure 29 

encompassed half of the document collection. We hypothesized that the reason for our 

failure to detect any effect on average precision-recall due to idf update frequency was 

that this training set was relatively large.   To measure the effect of training set size on 

performance, we tested training collections of t = 80, 40, 20, and 10 MB.  
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Figure 29. Precision - Recall for Different Update Frequencies (161-320) 

In Figure 30, we present our results for these smaller training sets.  In this study, 

we used the first x files, x = 80, 40, 20, and 10 as our training set.  A significant 

difference in the average precision-recall measurements occurs when the training set 

drops below 20MB. At roughly 7% of our document collection size, the training set is 

small enough to illustrate the impact of longer idf update intervals.  One reason for this 
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effect is that there are far fewer distinct terms in a training set of size 10MB than one of 

160MB.  In Table 13, we indicate the number of distinct terms for different training set 

sizes.   For a training size of 10MB, only 34,953 distinct terms had been observed.  Our 

training set sizes of 160MB had nearly tripled the number of distinct terms, thereby 

dramatically, increasing the chance that a query term will appear in the training set.     

Table 12. Training Sets and Number of Unique Terms 

Training Set Size Number of Unique Terms Elements 
160 140078 
80 97408 
40 69651 
20 48730 
10 34953 

 

Precision Recall for Different IDF Training Sets
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Figure 30. Precision - Recall for Different Training Sets 

In summary, as demonstrated by our experimentation, given a sufficiently large 

(rich in the number of unique terms) training collection, the idf’s need not be 
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updated frequently to support high average precision-recall measures.  Thus, information 

retrieval systems can reduce processing overhead by initially collecting a sufficiently rich 

set of terms, and computing their idf’s prior to future document insertion, and then, only 

infrequently updating the collection idf’s.  It remains an open question as to how to 

determine what is a sufficient set of terms to constitute as the basis for the collection 

idf’s. 

4.5 IDF Update Conclusions 

We investigated the effect of infrequent updates to the inverse document 

frequency.   Most research systems simply update the inverse document frequencies with 

the addition of each new document.  Avoiding the need to update idf’s saves 

computational resources by reducing computational overhead.  

In our investigation, given a sufficiently rich collection of terms used in a training 

set to derive the idfs, we found that the update frequency did not significantly affect 

performance.  This matches a prior result in the literature, but that work was done using a 

very small document collection.  Even with our collection, which was substantially larger, 

we did not notice significant impact caused by infrequent idf updates.  Since this result is 

somewhat counterintuitive, we investigated the impact of different training set sizes and 

found that for a very small training set (only 10MB) failure to update the idf’s did 

adversely impact average precision-recall.  Hence, a small training set is insufficient to 

compute the idf’s.  Given an appropriate training set, in a real system, frequent updates to 

the idf are unnecessary. 
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We found that a training set size of 50% of the document collection does not 

require any idf updates.  For a training set size of 10% and 20% accuracy started to 

degrade as compared to 40%.  Note that these estimates are based on the assumption that 

the number of new terms appears at the same rate as observed in our test collection.     

The decision of when to update the idf’s should be driven by user requirements.  If 

the requirement is for the highest achievable accuracy, the idf’s should be updated 

constantly; however, if there is some flexibility in this requirement, updates that are more 

infrequent yield statistically equivalent results.     

It is critical that this assertion be tested against a large collection.  Initial results in 

this area used a very small collection and did not report any significant impact on average 

precision-recall due to training set size.  Using a 320 MB collection, we observed some 

degradation in average precision-recall due to infrequent idf updates when the number of 

unique terms used in the training set did not accurately represent the document 

collection.  This result was not uncovered by prior work because the test collection was 

too small.  To protect against any other incomplete results, we need to expand our work 

to the TReC (10 GB) web collection.  We now have a process in place to implement these 

various algorithms so it should be possible to scale up and measure our results for an even 

larger collection. 

We have reproduced the somewhat counterintuitive result that updates to idf’s do 

not significantly impact effectiveness.  Additionally, efforts are required that study means 

to determine the number of unique terms that are required to accurately represent the 

entire document collection.  This term set is likely to be based on the size of the total 
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document collection and the rate of introduction of new terms per document.  

Additionally, it is also likely to be the case that a training set should include different 

sample sizes based on domains.   
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Computer Science is providing algorithms, theoretical models and powerful 

computational machines all for one common goal; to improve the quality of our everyday 

lives.  While this is an altruistic goal for all scientists, in reality, funding from 

governmental agencies and businesses has guided the goals of research.  Regardless of the 

motivation, our world has just started to see the improvements that science has to offer.  

Today’s growth in productivity and efficiency can be directly correlated with the 

computer age.  This thesis provides algorithms and approaches to solve some of the 

growing problems that computer systems are encountering as they try to tackle larger and 

larger problems. 

In addition to computer scientists, other professionals are providing fundamental 

research and improvements in their respective fields: doctors, physicists, sociologists, etc.  

The common thread for this accelerated development of new ideas and technologies has 

been our ability to improve the methods for sharing information.  Without the ability to 

share and store information, our capacity to piggyback on the work of others is greatly 

hindered.  It is this essential ability that has stressed the importance of information 

storage and retrieval.  The growth of information being stored and shared is exponential 

and without new approaches for the scalability of information storage and retrieval 

systems; computer science and other disciplines’ future development will be held back. 

The importance of information systems to not only computer scientists but for all 
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disciplines is apparent.  What is not known is the future direction these systems will 

proceed to solve current and future growth patterns.  This thesis made several generalized 

assumptions about the future of information systems.  These assumptions were made to 

provide a framework based on current trends in which new algorithms can be presented.  

1. Data/Information is growing at a faster rate than compute power. 
2. Parallelism of systems is the most promising solution to the growing needs of 

retrieval systems. 
3. Data/Information are coming from many sources. 
4. Any algorithm that helps efficiency or effectiveness is beneficial. 

Given the above assumptions about future information systems, new retrieval 

systems will be parallel/distributed in nature.  Data will be stored on a number of systems, 

indexing of that data will be done with multiple machines and CPUs.  Retrieval of 

information will be distributed to multiple machines and CPUs.  New large-scale 

information systems will be closely coupled creating a large server array controlled by a 

single entity.  These distributed and parallel information systems will solve complex 

information needs via many computers.  Algorithms that allow these new systems to 

scale, improve efficiency and effectiveness are of fundamental importance and are 

imperative for future systems. 

Given the above motivation and framework, this thesis presented computer 

algorithms for the design of reliable information server clusters.  As information systems 

grow in size the need for reliability, parallelization and speed grows.  A novel algorithm 

called DRS (Dynamic Routing System) was presented.  The DRS algorithm sustains 

continuous availability of clusters of information or compute servers even during network 

failures.  Additionally a new duplicate data detection algorithm called I-Match was 
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presented that is several times faster than the state of the art and more precise.  By 

detecting duplicate data, redundant work is eliminated from indexing and retrieval 

processing.  Additionally higher retrieval accuracy is provided by reducing the amount of 

redundant information returned to users.  Finally, automatic term weighting utilities are 

examined; results are presented showing that as dynamic collections grow, automatic 

term weights do not need to be recalculated and still maintain system effectiveness.  In 

the next sections, we examine the contributions of the various algorithms and examine 

future research efforts. 

5.1 Reliability, Efficiency and Effectiveness 

This thesis examined three issues for the scalability of future information systems.  

The first is a time sensitive proactive routing algorithm for distributed systems; the 

second is a duplicate data detection algorithm; the third is empirical evidence that 

automatic term weight calculations can be delayed without degrading accuracy but 

reducing maintenance overhead.  

As client needs grow, server systems have become more complicated and require 

additional compute needs.  While many techniques were applied to improve the 

performance of a single machine, these improvements are insufficient to keep up with the 

current growth of information.  To combat the additional demands for computational 

resources, server systems are distributed among multiple computers to handle the 

additional computational requirements.  As information systems get larger, they too are 

distributed to provide the additional processing needs.  This distributed approach of 

dividing the problem into either multiple workers for the same problem or multiple 
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workers working on different client problems all depend on network communication.  

Since a network connecting the servers is the backbone of the computational server, it 

must be reliable.  We provided data showing network failures constitute 13% of all 

hardware failures in a one-year study of over a hundred servers.  Therefore, any fault 

tolerant server cluster must address network reliability in a manner that is aware of the 

time critical issues of server clusters.  Our study of hardware failures validates the need 

for reliable network communication.   

As part of the described effort, a proactive network routing protocol that reroutes 

network communication around failures was presented.  This protocol and topology 

provides a fault tolerant network communications system for server clusters in the 

presence of failures.  The algorithm is time sensitive in which failures are detected and 

addressed before they affect applications.  This type of system provides the reliability that 

new Information Retrieval (IR) systems need as they become distributed.  The 

contribution of this type of dynamic routing is its application time sensitivity where 

proactive network monitoring is applied as opposed to the traditional reactive routing 

approach when dealing with server clusters.   

Our algorithm creates a fully connected graph from the existing server cluster in 

which each server may route network traffic. By doing so, failures to any single point in 

the graph can be circumvented and allow the cluster to continue working despite network 

failures.  While any single point of failure can be dealt with, the algorithm also allows for 

multiple network failures, although not all multiple failures are recoverable.  

Additionally, the proactive monitoring of communication links enables time sensitivity of 
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applications to be addressed. 

Since our algorithm is proactive, additional network traffic is incurred.  We show 

that the additional overhead incurred by our approach does not adversely affect network 

performance and does greatly improve the network reliability.  We examined the overall 

improvement to availability of this type of approach in comparison to other topologies.  

Our detailed analysis is provided via several probability models that allow the various 

topologies to be compared in terms of number of network failures and overall reliability.  

Our probability models show a 267% improvement to network availability over 

traditional topologies for a distributed server cluster.  Additionally, we showed 

improvements on all levels from single to multiple failures.  By providing fundamental 

reliability to the communication channels between distributed servers, issues of 

effectiveness and efficiency can be addressed. 

We examined issues related to multiple information sources.  As information 

retrieval systems collect data from multiple sources, the likelihood of multiple copies of 

the same data, or near duplicate documents being added to the system, increases.  We 

hypothesize that if the duplicate information is detected and eliminated in a fast efficient 

manner, the system accuracy and performance is enhanced.  We presented a duplicate 

document algorithm called I-Match based on collection statistics of terms in a given 

collection.  Additionally, we showed that this algorithm preformed five to nine times 

faster than comparable algorithms.  Lastly, we showed that the I-Match algorithm is more 

effective for finding duplicate documents than shingling approaches. 

The I-Match algorithm selectively chooses what terms represent a document by 
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using term collection statistics.  Once the document’s representative subset of terms is 

selected, a hash is created of those terms.  By reducing the number of representative terms 

based on collection statistics fuzzy matches can be determined.  With a single value 

representing each document, every document in a collection can be scanned and evaluated 

in O(log d) time where d is the number of documents in the collection.  Additionally, this 

algorithm is founded in information retrieval techniques unlike the prior approaches of 

shingling.  Shingling approaches take a set of terms and create a hash value, such that the 

first term t1 to the nth term tn are used to create a hash value.  Then the second term t2 to 

the (n+1) st term tn+1 are used to create the next hash value and so on.  N-1 shingles 

represent the document.  The shingles are used to determine the percentage of overlap 

between documents.  Shingling approaches have a complexity of O(n2) (where n is the 

number of terms in the collection) to examine the entire collection and thus must apply 

random filtration techniques to perform in reasonable amounts of time.  Since each 

document can occur in multiple clusters based on a shingle, analysis of the collection in 

terms of fuzzy duplicates is difficult.  We provided experimental results showing I-Match 

clustering near duplicate documents is better and faster than the other state of the art 

shingling algorithms.   

There are many efficiency issues for information retrieval systems.  Most of the 

prior efforts focus on data representation to improve the efficiency of the system.  We 

hypothesize that batched updates of collection statistics improves the overall efficiency of 

dynamic IR systems by delaying work until necessary.  While collection statistics are 

used to improve precision and recall for information systems, very little work has gone 
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into efficient update approaches to maintain their currency.   

One common type of collection statistics used is Inverse Document Frequency 

(IDF).  We hypothesize that the recalculation of idf values for each new document added 

is not necessary.  We present empirical data that show the recalculation of IDF values 

after an initial training set does not improve the overall precision and recall of the 

information retrieval system.  By reducing the time to recalculate IDF values, the overall 

performance of the system can be improved.  Unnecessary additional work, in a dynamic 

environment, adversely affects the performance.  By finding a good training set of 

documents, those IDF values may be used by the system for an extended period without 

having to recompute IDF values for each additional document added to the system.  

These fundamental issues for reliability and efficiency for information retrieval systems 

were addressed in this thesis.   

5.2 Future Direction 

The future directions of this research are divided into the categories enumerated 

above, the time sensitive dynamic routing approaches, duplicate data detection and 

collection statistics update frequencies heuristics.  The DRS is a time sensitive proactive 

routing protocol, unlike routed and gated approaches, which passively monitor network 

links, DRS proactively monitors each host and its communication links.  The DRS checks 

alternate routes before using them to achieve an additional level of fault tolerance without 

the use of special hardware.  Since this fault tolerance comes at the price of network 

bandwidth usage, future research for this system will optimize network bandwidth usage 

either via intelligent multicast status checks or other more efficient means of checking a 
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large number of servers, i.e., lower than n*(n-1) messages.  In addition, we will explore 

the use of RIP II and gated in conjunction with DRS to add support for hosts outside of 

the network. 

We presented a new algorithm called I-Match for the task of identifying duplicate 

documents for web documents and other types of text documents.  I-Match uses 

collection statistics to select the best terms to represent the document.  For future work, 

further analysis and testing of our duplicate detection scheme against a collection with 

known duplicate document sets (relevance judgments of duplicates) is desirable.  We do 

not know of such a test collection but plan to continue testing against such collections as 

available.  In addition, currently we select terms-only, statistical or noun phrases have 

been shown to be important in information retrieval and could make a better document 

representation than the simple term-based analysis.  Finally, experimentation on larger 

document collections, such as the 10GB and 100GB collections of web documents from 

TReC are planned. 

We investigated the effect of infrequent updates to the inverse document 

frequency retrieval strategies.  Most research systems simply update the inverse document 

frequencies with the addition of each new document.  Avoiding the need to update idf’s 

saves enormous computational resources and significantly reduces resources needed to 

deploy a relational search engine or dynamic collection search engine.  We demonstrated 

the somewhat counterintuitive result that updates to idf’s do not significantly impact 

effectiveness on moderately sized document collections.  Efforts are required that study 

means to determine the number of unique terms that are required to accurately represent 
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the entire document collection.  This term set is likely to be based on the size of the total 

document collection and the rate of introduction of new terms per document.  It is also 

likely to be the case that a training set should include different sample sizes based on 

domains.  The TReC collection contains several different sources, and we are interested 

in evaluating the effect of different training sets of different sources.  
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Table 13. I-Match WT2G Experiments (page 1 of 2) 

Experiment 

Post 
Doc 
Num Filtered 

Pre Avg 
Dist Terms 

Post Avg 
Dist Terms 

Pre Doc 
Size 

Post Doc 
Size 

Dup 
Hash 

Dup 
URL 

Dup 
Total 

Dup 
clusters 

Max 
Cluster Time 

Baseline 247491 0 471 471 2085 2085 60 0 60 46 5 62 

Doc-h-f1 247348 143 471 471 2085 2085 53535 0 53535 22019 782 6869 

Doc-h-f2 247348 143 471 471 2085 2085 54398 0 54398 22243 782 6086 

Doc-h-f3 247348 143 471 471 2085 2085 55578 0 55578 22484 782 5707 

Doc-h-f4 247348 143 471 471 2085 2085 56756 0 56756 22710 782 5376 

Doc-h-f5 247348 143 471 471 2085 2085 58235 0 58235 22975 782 5287 

Doc-h-f6 247348 143 471 471 2085 2085 60905 0 60905 23520 782 3701 

Doc-h-f7 247348 143 471 471 2085 2085 65183 0 65183 23926 782 3415 

Doc-h-f8 247348 143 471 471 2085 2085 75169 0 75169 24286 1805 3259 

Doc-h-f9 247348 143 471 471 2085 2085 108157 0 108157 22957 4288 3104 

Doc-l-f1 247348 143 471 471 2085 2085 52280 0 52280 21747 782 4311 

Doc-l-f2 247348 143 471 471 2085 2085 52331 0 52331 21753 782 4100 

Doc-l-f3 247348 143 471 471 2085 2085 52389 0 52389 21776 782 3810 

Doc-l-f4 247348 143 471 471 2085 2085 52498 0 52498 21831 782 3710 

Doc-l-f5 247348 143 471 471 2085 2085 52712 0 52712 21928 782 3568 

Doc-l-f6 247348 143 471 471 2085 2085 53196 0 53196 22067 782 5439 

Doc-l-f7 247348 143 471 471 2085 2085 54079 0 54079 22306 782 4668 

Doc-l-f8 247348 143 471 471 2085 2085 55788 0 55788 22801 782 3317 

Doc-l-f9 247348 143 471 471 2085 2085 60053 0 60053 24268 1200 3174 

IDF-h-f1 244348 3143 471 476 2085 2107 126710 0 126710 31065 782 2473 

IDF-h-f2 247265 226 471 472 2085 2086 60858 0 60858 23636 782 3012 

IDF-h-f3 247317 174 471 471 2085 2085 56616 0 56616 22914 782 3551 

IDF-h-f4 247339 152 471 471 2085 2085 54864 0 54864 22576 782 3924 

IDF-h-f5 247341 150 471 471 2085 2085 54130 0 54130 22358 782 4081 

IDF-h-f6 247343 148 471 471 2085 2085 53466 0 53466 22012 782 4115 

IDF-h-f7 247344 147 471 471 2085 2085 53107 0 53107 21925 782 4266 

IDF-h-f8 247345 146 471 471 2085 2085 52816 0 52816 21900 782 4383 

IDF-h-f9 247345 146 471 471 2085 2085 52574 0 52574 21829 782 4472 
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Table 13. I-Match WT2G Experiments (page 2 of 2) 

Experiment 

Post 
Doc 
Num Filtered 

Pre Avg 
Dist Terms 

Post Avg 
Dist Terms 

Pre Doc 
Size 

Post Doc 
Size 

Dup 
Hash 

Dup 
URL 

Dup 
Total 

Dup 
clusters 

Max 
Cluster Time 

IDF-l-f1 247318 173 471 471 2085 2086 52391 0 52391 21813 782 4399 

IDF-l-f2 246870 621 471 472 2085 2088 52732 0 52732 22022 782 3773 

IDF-l-f3 245724 1767 471 474 2085 2097 53372 0 53372 22437 423 3133 

IDF-l-f4 244098 3393 471 475 2085 2101 55271 0 55271 22994 238 2897 

IDF-l-f5 240678 6813 471 479 2085 2122 58963 0 58963 24275 238 2645 

IDF-l-f6 227196 20295 471 492 2085 2171 57403 0 57403 24995 130 2696 

IDF-l-f7 203845 43646 471 519 2085 2285 50840 0 50840 24132 30 2535 

IDF-l-f8 165898 81593 471 568 2085 2497 35423 0 35423 20139 10 2430 

IDF-l-f9 114434 133057 471 616 2085 2724 13242 0 13242 11696 2 2608 

DocR-O-f1f9 247348 143 471 471 2085 2085 57316 0 57316 23226 782 4050 

DocR-O-f2f8 247348 143 471 471 2085 2085 54248 0 54248 22293 782 3576 

DocR-O-f3f7 247348 143 471 471 2085 2085 53201 0 53201 22046 782 3869 

DocR-O-f4f6 247348 143 471 471 2085 2085 52556 0 52556 21849 782 4211 

DocR-I-f1f9 247200 291 471 472 2085 2086 53726 0 53726 22087 782 5267 

DocR-I-f2f8 247200 291 471 472 2085 2086 54743 0 54743 22294 782 4043 

DocR-I-f3f7 246907 584 471 472 2085 2087 55840 0 55840 22525 782 3517 

DocR-I-f4f6 245740 1751 471 474 2085 2090 57865 0 57865 22963 798 3250 

IDFR-O-f1f9 244743 2748 471 476 2085 2106 88641 0 88641 25354 676 2622 

IDFR-O-f2f8 247291 200 471 472 2085 2086 57349 0 57349 22981 782 2991 

IDFR-O-f3f7 247334 157 471 471 2085 2085 54415 0 54415 22472 782 3577 

IDFR-O-f4f6 247346 145 471 471 2085 2085 53030 0 53030 22173 782 4088 

IDFR-I-f1f9 247293 198 471 472 2085 2086 52703 0 52703 21905 782 4112 

IDFR-I-f2f8 246759 732 471 473 2085 2088 53395 0 53395 22245 782 3419 

IDFR-I-f3f7 245457 2034 471 475 2085 2099 55295 0 55295 22997 423 2921 

IDFR-I-f4f6 241515 5976 471 479 2085 2117 62341 0 62341 24360 238 2615 
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Table 14. I-Match Experiment Legend 

I-Match Experiment Description 
Baseline Syntactic one-pass hash approach, stemming and 

removable of special character terms. 
 

Doc (% Doc approach) Takes the X percent of the document based on idf values 
of the terms. 
l = Highest on the left side of tree. So the terms with the X 
highest idf values are used. 
h = Lowest on the left side of tree. So the terms with the X 
lowest idf values are used. 
 

IDF (IDF approach) Filters terms that don’t meet the normalized idf value 
threshold are removed. 
l = Terms with idf value is greater than the filter value, the 
term are kept. 
h = Terms with idf value is lower than the filter value, the 
term are kept. 
 

DocR (%Doc Range 
approach) 

Takes the X percent of the document based on idf values 
of the terms. The range takes either the middle X percent 
or the outer X percent based on the l or h value. 
I = The inner X percent of terms based on idf values are 
kept. 
O = The outer X percent of terms based on idf values are 
kept. 
 

IDFR (IDF range approach) Filters terms based on normalized idf values. Thus if the 
term is in the range of idf values it is kept for the final 
hash. 
I = Keeps terms with idf values between the two values 
O = Keeps terms with idf values greater and less than the 
2 filter values. 
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Table 15. WT2G DSC-SS Experiments 

 

Post 
Num 
Docs Filtered 

Pre Dist 
Shingles 

Post Dist 
Shingles 

Pre Doc 
Size 

Post Doc 
Size 

Dup 
Clusters Time 

DSC-SS-2 239886 7605 470 484 2079 2140 41001 23465 
DSC-SS-4 229609 17882 470 503 2079 2225 35638 23441 
DSC-SS-5 224157 23334 470 513 2079 2272 33771 26064 
DSC-SS-10 192202 55289 470 578 2079 2575 27224 24984 
DSC-SS-15 160126 87365 470 659 2079 2963 22667 23609 
DSC-SS-20 133711 113780 470 746 2079 3389 19183 24318 
DSC-SS-25 112800 134691 470 833 2079 3833 16249 23669 
DSC-SS-50 57343 190148 470 1255 2079 6109 7546 25366 
DSC-SS-75 36486 211005 470 1626 2079 8123 4948 24147 
DSC-SS-100 26341 221150 470 1926 2079 9860 3673 26084 
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