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1. INTRODUCTION

Given a set of points in the rectilinear plane, a Steiner minimum tree is
the shortest network interconnecting all the points. Those points in the set
are called regular points and vertices other than regular points in the
network are called Steiner points. Clearly the network will be a tree on the
regular points and Steiner points.

The Steiner tree problem can also be considered in weighted graphs, in
the Euclidean plane, and in any metric space. Computing a Steiner
minimum tree in the rectilinear plane is NP-hard [9], as it is in graphs and
the Euclidean plane [8, 7].

A tree interconnecting a regular point set is called a Steiner tree if every
leaf is a regular point. However, a regular point in a Steiner tree may not
be a leaf. A Steiner tree is full if every regular point is a leaf. When a
regular point is not a leaf, the tree can be decomposed into several small
trees. In this way, every Steiner tree can be decomposed into smaller trees
where in each tree every regular point is a leaf. These smaller trees are
called full components of the tree. The size of a full component is the
number of regular points in the full component.

A k-size Steiner tree is a Steiner tree with all full components of size at
most k. A k-size Steiner minimum tree is the shortest one among all
k-size Steiner trees. The 2-size Steiner minimum tree is also called the
minimum spanning tree. The k-Steiner ratio in a metric space E is defined

by

= g 25D
Pk pek Lig(P)

where L (P) is the length of a Steiner minimum tree for P and L,(P) is
the length of the k-size Steiner minimum tree for P. The 2-Steiner ratio is
simply called the Steiner ratio. In the rectilinear plane, p, = 2/3[12]. The
Steiner ratios in graphs [10, 13] and in the Euclidean plane [5] have also
been determined.

The k-Steiner ratio is important because of Steiner tree approximation
algorithms. It was a long-standing open problem [3] whether there exists a
polynomial-time approximation for a Steiner minimum tree in each metric
space with performance ratio smaller than the inverse of the Steiner ratio.
(The performance ratio of an approximation algorithm is the smallest
upper bound for the ratio of lengths between the approximate solution and
a Steiner minimum tree for the same set of points.) Zelikovsky [14] made
the first breakthrough. He found a polynomial-time approximation for a
Steiner minimum tree with performance ratio (p,* + p;%)/2. By extend-
ing Zelikovsky's idea, Berman and Ramaiyer [1] gave a polynomial-time
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approximation for a Steiner minimum tree with performance ratio
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and Du, Zhang, and Feng [6] showed a generalization of Zelikovsky’s
approximation with performance ratio

(k=2)p;' + pit
k—1

Recently, Zelikovsky [15] gave a new polynomial-time approximation for a
Steiner minimum tree with performance ratio

pi (1= 1np, +1Inpy).

Clearly, establishing a lower bound for the k-Steiner ratio is an important
part for determining the performance ratio of these approximation algo-
rithms. A better lower bound will give a better performance ratio for their
approximations.

In graphs, the exact value of the k-Steiner ratio has been determined [4].
In the rectilinear plane, Berman and Ramaiyer [1] proved that p, = 4/5
and for k > 4, p, = 2k — 2)/(2k — 1). (See [2] for an excellent survey.)
They also conjectured that for k > 4, p, = 2k — 1)/(2k). In this paper
we prove this conjecture.

THEOREM 1.  In the rectilinear plane,

2k -1
T fork = 4.

Our proof is based on a classical result of Hwang [12] about full
rectilinear SMTs. Basically, we show how to break a full rectilinear SMT
into a kST without increasing the length by more than a factor of the
inverse of the k-Steiner ratio. There are two cases, k£ odd and k even.
Although the general ideas are similar, the even and odd cases differ in
details, and the even case is more complicated and involves more interest-
ing techniques.

2. PRELIMINARIES

We begin with a result by Hwang [12] which says we can assume in the
SMT that the full components on more than four regular points are in one
of the two forms shown in Fig. 1. We label the regular points B; for
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B,
B A
ol ot
B,

FIG. 1. Forms of a full component.

0 <i <m and the Steiner points A4; for 1 <i <m. Let A, = By, x;
[A;B]for0 <i <m,and y, = [4,_;A] for 1 <i < m, where [4B] is consid-
ered as the rectilinear distance between A and B. Although x; is the
length of the vertical segment A,B;, we will also use x; to refer to the
segment itself. Similarly, y, refers to the length of a horlzontal segment
and the segment itself. The line along the Steiner points A,, A,,... is
called the spine of the component.

We will use several basic transformations. Doubling at B;, or doubling

, means duplicating the segment x; and splitting the component at A4;to
create two full components joined at B,. Their total length is the Iength of
the original component plus x;. See Fig. 2.

A horizontal doubling of y; is done as shown in Fig. 6 or Fig. 12 below.
There are several cases, depending on the lengths of the vertical segments.
In all cases the component is split into two or three components whose
total length is increased only by y;. For a full component in the form of
Fig. 1(b), y,,_, is doubled as shown in Fig. 3.

Another simple transformation is shown in Fig. 3. If there is an x; on
the same side of the spine as x,, with x; <x, for j + 1 </ < m, then we
can slide the spin down from A; to A4,, and split the component into two
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FIG.2. Doubling x;.

full components joined at B;. Note that this does not change the length,
unless B, is the first regular point in a nonstandard component, in which
case the length decreases by x;. We can similarly slide the spine at the left
end of a component.

LemmA 1. Upper bound:
2k -1
2k

Pr =

Consider k + 1 points in a full Steiner tree, as in Fig. 5, where all
segments are of length 1. For these points the SMT is of length 2k — 1. It
seems apparent that the length of a kKSMT on these k£ + 1 points must be
at least 2k. If so, this shows (2k — 1) /(2k) is an upper bound on p,.

To justify this, we first use a theorem of Hanan [11] that states in the
rectilinear plane, for any set of regular points {(x, y,),...,(x,, y,)}, there
is @ SMT where the Steiner points are all of the form (x;, y,) for some i
and j. So all segments will be of integral length. The kSMT of these points
must split into at least two components, say they are of size ky, k,, ..., k.
Now each regular point in each component has degree exactly 1, so we
count one segment of length 1 for each of the k;, + k, - +k, =k +p >
k + 2 points. Then in the whole kSMT, points B, for 1 <i < k — 2 must

B m-1 B m-3 ®B m-1
B
- eB, _T——_.Bm
o—
B m-2 B m-2

FIG. 3. Doubling y,,_, in the alternate form of a full component.
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FIG. 4. Sliding the spine.

be connected to some point to their right, and these points are all at least
distance 3 away; so we must count at least one more segment of length 1
for these points, for an additional length of k — 2. So the total length of
the kKSMT is at least 2k%.

Now we begin the lower bound proof. It is a proof by induction. When
the number of regular points, | P|, is at most &, the SMT and the kSMT are
the same, so Ly(P)/L,(P)=1> (2k — 1)/(2k) and the lower bound
holds. If |P| > k and the SMT on P is not a full SMT, then we can split
the SMT into two trees at a regular point of degree more than 1. By the
induction hypothesis, the lower bound holds on each of the smaller sets of
regular points. The length of the SMT is the sum of the lengths of the two
smaller SMTs, and the length of the kSMT is at most the sum of the
lengths of the kSMTs on the two smaller point sets. By a simple calculation
it can be seen that the lower bound holds on all of P.

IBz By,
oo B

I O XX
Bl B3 Bk-l

FIG.5. The upper bound for p,.
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So we can assume that T is a full Steiner tree on regular points P, and
we need only prove the lower bound in this situation. We will show that
from T we can construct 2k — 1 k-restricted Steiner trees (kSTs) whose
total length is at most 2k times the length of 7. From this the lower bound
will follow. We consider k£ odd first, then k even.

3. THE LOWER BOUND FOR k£ ODD

THEOREM 2. If Tis a full SMT on P and k > 4 is odd, then
Ly(P) 2k -1
>
Ls(P) = 2k

From T we must construct 2k — 1 kSTs whose length is at most 2k
times the length of 7. In the first phase we will construct k trees, T}, by
doubling the horizontal segments y;, for j =i (mod k) and i = 1,2,..., k;
this construction will be similar to that given by Berman and Ramaiyer
except in some situations we will also need to double a vertical segment. In
the second phase we will construct k — 1 additional trees, T;* for i =
1,2,...,k — 1, by doubling vertical segments selected (mod k — 1), but
skipping over those segments already doubled in the first phase.

To construct 7;' we perform the transformation shown in Fig. 6, which
doubles the segment y;, when j =i (mod k). Unless we have Case 1 occur
at j — k and at j (or at the right-hand end of the first component when
i =j = k), then the components constructed in this way will have at most
k regular points. This is easy to check. Consider the situation where we
have a component, &,, with Case 1 at each end and so with k + 1 regular
points. See Fig. 7.

If there is a B, in &, on the same side of the spine as B; with x; < x;,
then we can slide the spine up between the rightmost such B, and B, and
split the component at B, into two components each of size less than k. So
we can assume that x; <x;_,, X;_4, ..., X;_ 541

Similarly, if there is a B, in &, on the same side as B;_,_; (which is on
the same side as B;) with x; <x;_,_,, then we can slide the spin up
between the leftmost such B, and B;_,_, and split the component at B,
into two components each of size less than k. So we can assume that
Xjho1 <X Xj_gyeey Xj_ppr

Now consider the transformation shown in Fig. 8. Note that by our
assumption, x; <x;_,, so this transformation is possible. The horizontal
segment y; is still doubled. Now the component &, has k regular points,
but the next component to the right, %,, has gained one new regular point.

If the &, ends on the right in Case 2 of Fig. 6, then it has only k regular
points; so assume it ends in Cases 1 or 3. Then B, ,_, and B, are in ,.
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Case 1! zj_1 < Tj41

Case 2: z;_1 > zj,1 and z;_9 < ;5

™

®B,

Case & z;_1 > zj4) and z;_3 > z;

B,

[T

FIG. 6. Doubling y;.

ik
Co ¢,

FIG. 7. A componentwith k£ + 1 regular points.
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j+k
B k-2

FIG. 8. Alternate doubling of y;.

If there is a B, in &, on the same side of the spine as B;_; with
I=j+1j+3...,j+k—2and with x, <x;, then we can slide the
spine down between B;_; and the leftmost such B, and split component
%, into two components, each of size at most k. So we can assume that
Xjg <XjppXjpze o Xjppoo

Similarly, we can assume that x;,, <X; 1, Xj 13- Xj1p_2-

Finally, consider the transformation shown in Fig. 9. Here we had to
double the vertical segment x;_,. In this situation, we mark both x;_, and
x; so that they will not be doubled in the next phase, where we double
vertical segments. This splits &, into two components, one of size k and
one of size 2, and it leaves &, unchanged. We show the marked segments
in bold.

When x;_, and x; are marked, we know

Xjn Xj o1 <Xj_ o1 Xj gy X gy
and
Xjo X <Xju1 Xjigoe o Xy
As a Consequence X;_,, X;_4,..., X;_;,, Cannot also be marked, since a

marked segment must be less than the (k — 1) /2 vertical segments on the

®
B jk-1

‘r ?B, 9B, o

®B, o Bii e
CO Cl C2

FIG. 9. Doubling and marking vertical segments.
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same side of the spine, either to its left or right, but these segments are
greater than both x; and x;_,_,. Similarly, x;, 1, x;,3,..., X;,,_, cannot
be marked. In fact, since marked segments come in pairs, none of the
segments from x;_, ., to x;,,_, can be marked besides x;_; and x;. So
between any two marked segments there are at least k — 2 unmarked
vertical segments.

Now we begin the second phase. First we renumber the vertical seg-
ments, skipping any marked segments from the first phase. Using this new
numbering, we construct 7;> by doubling at vertical segments x; when
j=i(modk — 1 fori=12,....,k—1

If a component constructed in this way has no marked segments, then it
has at most & regular points.

If a component constructed in this way has a single pair of marked
segments, then the component has k£ + 2 regular points. Since k is odd,
the end vertical segments of the component are both on the same side.
Consider the marked segment on the same side as the end segments. The
marked segment must be less than the (k — 1) /2 vertical segments on its
side of the spine, either to the left or right; but this must include one of
the end segments. This follows because there are (k + 1)/2 segments on
this side of the spine and at least one on each side of the marked segment;
so at most (k — 1) /2 are to its left or right on the same side. Therefore,
we can split the component at the marked segment into two components,
each with at most k regular points, by sliding part of the spine. This is
shown in Fig. 10(a).

Finally, it is possible that a component in 7 has two pairs of marked
segments and so k + 4 regular points. If this happens, one pair must be
the second and third vertical segments of the component and the other
pair the second to last and third to last vertical segments. By the condi-
tions on marked segments, we know that the first segment must be larger

FIG. 10. Splitting components after phase two.
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than the third and the last segment larger than the third to last, so we can
split the component at each end into two components of size 3 and one
component in the middle of size k. See Fig. 10(b).

Throughout this construction we have assumed that 7 is of the form
shown in Fig. 1(a). If instead T is of the form shown in Fig. 1(b), then we
first transform T by sliding down 4, B,, until 4,, and A4,,_, coincide. The
transformed T is now of form Fig. 1(a) and we can obtain the k-restricted
Steiner trees as we have done above. The length of these trees does not
increase when we slide A4,, B,, back to its correct place.

We have constructed from T, 2k — 1 kSTs, k in the first phase and
k — 1 in the second phase. Together these kSTs use each segment of T at
most 2k times, once in each kST and once when the segment is doubled,
which happens at most once in all the kSTs. Therefore, one of the kSTs,
T', must have length at most (2k)/(2k — 1) times the length of T. Since
L,(P) < length(T") we get

Ly(P) length(T) 2k -1
Ls(P) = length(T') = 2k

4. THE LOWER BOUND FOR k EVEN

From T we will construct 2k — 1 kSts whose length is at most 2k times
the length of 7. In the first phase we will construct the trees T} for each
i=1,2,...,k, by doubling the vertical segments x; in decreasing order of
j for j =i (mod k); in some situations we will actually double horizontal
segments and mark them either red or blue. In the second phase we will
construct the trees 7, for each i = 1,2,..., k — 1, by doubling horizontal
segments selected (mod k — 1), but skipping over those segments marked
in the first phase; in some situations we will actually double vertical
segments undoubled in the first phase. We will use the following algorithm
to construct T}. Let m; be the minimum of x;, x; 5, ..., X .

ALGORITHM

(1) mark each x; with j =i (mod k);
(2) for each marked x; in decreasing order of j do
3 unmark x;;

(@) if j+k <m,ormax{x;,x; ,}=min{x; ,, x; 4., X0

(5) double x; as in Fig. 11;

(6) slide the spine in the component to split it and shorten it
by m;;

@ else
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FIG.11. Doubling x;.

(8 unmark x;_, and double it;
()] if xi >x_ 4,
(10) color y;, , blue;
(11 double y;,, as shown in Fig. 12;
12) slide the spine in the right component to shorten it by
mj,
(13) else
(14) color y; red;
(15) if x; >x;_,,
(16) double y; as shown in Fig. 6 Case 2;
an else
(18) double y; as shown in Fig. 6 Case 3;
(19 slide the spine in the left component to shorten it by
Mk

end-algorithm.

Bk B,

i,

j-1
Bjy1

j+k

FIG. 12. Doubling y;,, and coloring it blue.
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We have the following several remarks on the algorithm, which are easy
to verify:

Remark 1. All components constructed by the algorithm have at most
k regular points.

Remark 2. 1f y, is colored red, then x;_; > x;,,; which ensures that it
cannot be colored in T} ,. If Y1 is colored with blue, then x; <x;,,

which ensures that it cannot be colored red in T} ,. Therefore, each
horizontal segment can be colored at most once.

Remark 3. Segment x; is saved whenever y; is red or y, , is blue.
Segment m; is saved except when y;, ., is blue or y; is red.

Remark 4. If y, ., is blue or y; is red, then neither of y,_, ., ory; ;.
could be blue and neither of y,_, or y;,, could be red. Furthermore, since
by step 4 of the algorithm, x; and x;,, must be shorter than the vertical
segments on the same side of the spine between them, none of
Yisar Vi Yisk—1 could be blue and none of y,. o, ¥ a0 s Yjisi—o
could be red. Therefore, for two colored segments with the same color and
the same parity or with different color and different parity, there are at
least k£ horizontal segments between them.

Now we start the second phase. First we temporarily renumber the
horizontal segments, skipping any colored segments from the first phase.
Using this new numbering, we construct 7,2 by doubling the segments Y;
when j =i (modk — 1) for i = 1,2,...,k — 1, as shown in Fig. 6. For the
rest of the proof, we will again use the original numbering of the regular
points.

If the components constructed in this way have no colored segments,
they have at most k& regular points. Components could also contain one
colored segment and at most k + 1 regular points or two colored segments
and at most £ + 2 regular points.

It is impossible for a component to have three colored segments. If it
did, it would cover k£ + 3 horizontal segments and the end segments would
not be colored, so the colored segments could be separated by at most
k — 1 other horizontal segments. Of the three colored segments, either
two would be the same color and same parity or two would be of different
color and different parity; but this is not possible by Remark 4.

Suppose now that a component contains exactly one colored segment.
The only case in which such a component would have more than k regular
points is when Case 1 of Fig. 6 occurs at both ends when doubling y; and
Yi+k- In this case, we can assume that x; ., <X;, , Xj g1 Xjip_2
otherwise we can slide the spine and split the component. If x;,,_; >
MIN{X; ;410 X g3+ -5 Xju k-3, We can double y;., as in Fig. 13, which
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&

B.
Bj:2 o’ Bj.ok

1 N o D R
ull

i
! .Bj " Bi k-3 Bjaka Bk Bj,2k-1

Cy C,

FIG. 13. Doubling y; ., in another way and sliding the spine in C,.

shifts one regular point to component C, on the right, and then slide the
spine in C, to split C, into two trees. Therefore, we can further assume
that x; 1 <X kp0 Xjgkraeoo Xjpok—s

By step 4 of the algorithm, if y; is colored red or y,, is colored blue,
then x; and x;,, must be smaller than all vertical segments between them
and on the same side of the spine. But given the two inequalities from the
preceding paragraph, we can conclude that the only possible colored
segments in C, are y;,, colored blue or y; ,_, colored red.

S0 yj;, -3 is not red; if in addition y;  ,,_, is not blue, then by Remark
3, we know m; ,_, was saved in phase one, and we can split C; by
doubling the shorter of x; ,_; and x;,,_5, which is equal to m; .

On the other hand, if y;.,._, is blue, then by Remark 4, y;,,_; is not
red and y;, ,, is not blue, so m,,,_, was saved in phase one. Also, when
Vitok—o 15 blU€, x; 5, 3 <X;ji1p_q @and so m; ,_; =x;,_;. Hence, we
can double x;,,_, and split C; into components of size 2 and k.

So in all cases in which a phase two component has one colored
horizontal segment, it can be split into components of at most k regular
points.

Next we consider the case where a component contains exactly two
colored segments. To have more than k regular points we must have one
of four configuration from Fig. 6: Case 1, 2, or 3 on the left and Case 1 on
the right, or Case 1 on the left and Case 3 on the right.

Here we can assume x;, ;. 1, Min{x;_;, %, 4} <Xjo5 X050 X1
otherwise, we could slide the spine to split the component somewhere in
the middle into components of size less than k. From this inequality and
the constraints imposed by step 4 of the algorithm, we know that y; ., is
the only possible blue segment of that parity and y;, , is the only possible
red segment of that parity, and of course only one of these two is possible.

By Remark 4, we know the two colored segments in this component
must be of the same color and different parity or of different color and the
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same parity. In either case, we must have either y;,, blue or y;, red. So
we know x;,, was saved in the first phase. If the left end of our
component has Case 1 from Fig. 6, we can now double x;_ , to split off one
regular point. If the right side was Case 3, the remaining component has
only k regular points and we are done. So we can assume the remaining
component begins at regular point B;;, ends on the right at B;, ., in
Case 1, and has k£ + 1 regular points.

As we did for components with just one colored segment, we can assume
Xivk <Xjprsar Xjrkrar - Xj1or—o; Otherwise, we could use an alternate
horizontal doubling of y,. ., similar to that shown in Fig. 13 to shift one
regular point to the component on the right and slide the spine of that
component to split it.

With this inequality, we know that y;,, is the only possible red segment
of that parity in this component and that there is no blue segment of the
other parity. Hence, in fact, y,,, must be colored red. Also, from this
inequality, m;.,_, is the smaller of x,,,_, and x;,,. Since y; , is red,
Yi+k—2 is not red and y;,,._, is not blue, so m;,,_, has been saved in
phase one. We can then double the smaller of x;,,_, and x;, ,, which will
split the component into two components of size at most £ and 4. An
example is shown in Fig. 14.

Hence a phase two component with two colored segments can always be
split into components with at most & regular points.

Finally, we note that each x; and m; saved in phase one is used at most
once in phase two. The vertical segment x; will be doubled in phase two
only when it is in a component begun by doubling y;_;. The segment m;
will be doubled in phase two only in one of these three cases:

1. When the component begun by doubling y;_, ., contains exactly
one colored segment, either y;_, ., blue or y; red, and y;,,_, is blue.

B. Biik+2
] B. J
j+2
By ®
B.
3-1
B Bj+k+1
J+1 Biik-1

FIG. 14. Doubling x;,, and x;,, when a component has two colored segments.
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2. When the component begun by doubling y;_, . ; contains exactly
one colored segment, either y;_, ., blue or y;,, red, and y; ., is not
blue.

3. When the component begun by doubling y;_, ., contains exactly
two colored segments, y;, , red and either y;_,,, red or y;,_, ., blue.

We can see that the first two cases are mutually exclusive using Remark
4; we would have to have y;_,,, blue, so y; ., would be red, but then
Yi+k—-1 could not be blue. The first and third cases are mutually exclusive
again by using Remark 4, and the second and third are clearly mutually
exclusive.

We conclude the proof for k even exactly as we did in the last paragraph
of Section 3 for £ odd.

5. DISCUSSION

Although the k-Steiner ratio in rectilinear plane and in graphs has been
determined for every k > 2, the k-Steiner ratio in the Euclidean plane for
k > 3 is still open. Du, Zhang, and Feng [6] conjectured that the 3-Steiner
ratio in the Euclidean plane is p,(E?) = (1 + V3W2 /(1 + V2 + V3). If
this is proved, we would obtain the best known performance ratio of
(2/ V3 + p3*(E?))/2 for a polynomial-time approximation of the Eu-
clidean SMT. However, it seems that studying the k-Steiner ratio in the
Euclidean plane requires entirely different methods.
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