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We considered the load-balanced multiplication of a large
sparse matrix with a large sequence of vectors on parallel comput-
ers. We propose a method that combines fast load-balancing with
efficient message-passing techniques to alleviate computational
and inter-node communications challenges. The performance of
the proposed method was evaluated on benchmark as well as on
synthetically generated matrices and compared with the current
work. It is shown that, by using our approach, a tangible im-
provement over prior work can be obtained, particularly for very
sparse and skewed matrices. Moreover, it is also shown that I/O
overhead for this problem can be efficiently amortized through
1/0 latency hiding and overall load-balancing. © 1997 Academic Press

Key Words: sparse matrix-vector multiplication; load balanc-
ing; parallel computations; greedy allocation; optimized message
passing.

1. INTRODUCTION

Large classes of applications in areas including engineer-
ing, military, and medicine heavily rely on matrix tools to
represent, store, and process data. In many cases, matrices ac-
commodate data that include a large number of elements that
are either null or non-relevant. Such matrices, in which the
relevant elements are only a fraction of the total elements, are
called sparse matrices. Sparse matrices are generally stored in
compressed formats that considerably save storage space and
avoid unnecessary computations with zero elements.

We consider a typical calculation kernel for many time-
consuming computing problems: Y; = A * X,, where A is a
sparse matrix and X, is a large sequence of dense vectors.
The matrix elements are available centrally in the compressed
format. The goal is to minimize the overall matrix-vector
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multiplication time, under the constraint of producing each
vector result as soon as possible. In this work, static allocation
is selected over dynamic techniques due to the large number
of vectors to be multiplied with the balanced work load. Thus,
matrix data are allocated once and the cost of the operation is
amortized over the repeated matrix-vector multiplication.

As a general solution, a load-balancing static allocation of
rows is centrally generated based on their contents of non-zero
elements. A greedy allocation to sparse matrix computations
is adopted to distribute the matrix rows so that each processor
ends up with roughly the same number of nonzero elements.
Provisions for skewed distributions are augmented in the basic
algorithm, and both communications and I/O are overlapped
with computations to minimize the overall execution time.

There exists a number of sparse matrix compression formats
that are suitable for different classes of sparse patterns. We
have chosen the Scalar ITPACK format [7, 16] that efficiently
compresses general sparse pattern matrices and provides easy
algorithmic access to matrix elements.

Standard test matrices [6, 7] were used in our experiments.
They are available through the Internet to any researcher,
thus making our results easy to reevaluate and compare.
Additionally, we used a synthetically generated matrix to
illustrate that a refinement to our approach enables us to
handle special cases, with extremely sparse and very skewed
distributions.

The remainder of this paper is structured as follows. In Sec-
tion 2, we survey the prior work. In Section 3, we describe the
computational model, emphasizing the underlying challenges,
and define the allocation problem. Section 4 is dedicated to
presenting our load-balancing and communications minimiz-
ing approaches. In Section 5, we provide a brief description of
the parallel platform and of the experimental data. In Section
6, we present our experimental results, organized as two sub-
sections. In Subsection 6.1, we provide comparisons between
the non-load-balanced and the load-balanced cases. In Subsec-
tion 6.2, we study the impact of I/O on the overall scalability
of typical sparse matrix computations such as the compression
and the multiplication. We end the paper with our conclusions.
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2. PRIOR WORK AND MOTIVATIONS

Prior efforts have predominantly focused on solving dense
matrix problems in parallel environments [2—5, 10]. When
sparse matrices are used, computations are more difficult to
balance. Because of their irregular structure, it is necessary to
have good insight into the distribution of non-zero elements.

Load balancing is a key issue in sparse matrix computations
- given the diversity of sparse matrix non-zero distributions
encountered in real-life problems. However, most of the
authors focus on minimizing communications costs, neglecting
load-balancing. One aspect favoring such an approach is the
fact that sparse matrices yield a smaller amount of work, as
compared to the dense case. As parallel computations aim at
solving very large data set problems, the amount of work and
the associated imbalance may become considerable even in the
sparse matrix cases in parallel environments, thus turning the
load-balancing phase into a necessity.

Ogielski and Aielo [15] presented two load-balancing ap-
proaches for matrix multiplication on processor arrays. In the
first approach, each matrix row is randomly and independently
assigned a processor row, and each matrix column is randomly
and independently assigned a processor column. In the second
approach, row and column permutations are generated after
the matrix is partitioned into equally sized [M/m] x [Nin]
blocks (where M x N is the size of the matrix and m x n is
the size of the processor array). The construction of row and
column mappings is based on probabilistic algorithms. In our
case, a permutation of rows (or columns) is generated based
on actual knowledge of the non-zero matrix elements distribu-
tion in each row.

A different allocation strategy is elected by Rothberg and
Schreiber [17] also for a 2-D block mapping. Their goal is
to solve the Choleski factorization. Thus, row and column
blocks are distributed according to a greedy allocation onto
processor rows and columns, respectively. Considering our
model, described in the next section, a 2-D allocation increases
the allocation problem complexity and complicates the result
update phase, with no foreseen benefits. In particular, 2-D
allocations were shown to cause increased communications
and I/O overhead.

Other related work includes the use of a greedy allocation
to balance the processing of human genome data [19]. This
work, however, greatly differs from ours due to the different
application requirements.

An iterative load-balancing algorithm is introduced by
Aliaga and Hernandez [1] in a paper that considers also a
sparse matrix—vector multiplication problem. Their algorithm
generates swaps of matrix rows among processors to gradually
smooth minima and maxima of load. This algorithm, hence-
forth referenced as Aliaga, comprises three steps:

Sorting: rows are sorted according to the number of non-
zero elements they contain;

Initial allocation: rows are mapped onto processors;

Adjustment: an iterative swapping process between proces-
sors with the smallest and the largest buckets is carried out.
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The data swapping process continues as long as the operation
brings both of the buckets toward the average bucket size.

The time complexity of this allocation procedure depends on
the actual distribution of data onto processors. A general case
would be when the iterative phase stops after each processor
bucket was involved in the swapping process only once. In
this case, the algorithm complexity is O(N%/P), where N is the
number of rows in the matrix and P is the total number of
processing elements in the multiprocessor system.

It will be shown that, unlike the current approach [1], the
load-balancing algorithm we used:

(1) has a deterministic performance, as its time complexity
is independent of data distribution;

(2) has a better complexity in most cases;

(3) embodies provisions that work well even on very
skewed data distributions.

3. THE COMPUTATIONAL MODEL AND
PROBLEM DEFINITION

We considered the multiplication model in which:

the size of the sequence of X, vectors is very large and not
a priori known;

the resulting Y, vectors are generated and transmitted on an
individual basis.

This model is a direct representation of the real-time
response simulation of a linear system stimulated by a large
sequence of N-dimensional inputs. Two considerations can
be inferred from the model definition: (a) the sparse matrix
A remains unchanged for a considerable amount of time;
(b) as each vector is broadcast on an individual basis, a
large communications overhead must be expected. Considering
these aspects, the model emphasizes the typical challenges
of sparse matrix problems, namely the necessity of close-
to-optimal allocation heuristics and of efficient interprocessor
communication strategies.

Given the proposed type of problem and the considered
computing model, we focused our efforts in two directions:
(a) finding an efficient allocation of rows that would ensure an
even distribution of non-zero elements onto processing nodes
in a minimum of time; and (b) designing the appropriate
message-passing strategy to minimize the idle times of pro-
cessing elements.

We adapt a load-balancing algorithm based on a greedy
allocation for general sparse pattern matrices. This load-
balancing algorithm is solving the following optimization
problem: given a general sparse matrix, allocate rows so that
the function

M
F:mfax Z(nZ,j) (1)

j=1
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is minimized, where i =1, 2, ..., P; ij sifijris oo by frep-
resents indices of rows allocated to processor i; and nzj i
the number of non-zero elements in these rows. By solving
this problem, we are actually minimizing the largest bucket
size that yields the highest computing time. An optimal solu-
tion to this optimization problem is obtained when the largest
processor bucket size is equal to the average bucket size. The
allocation problem we considered has some similarities with

the bin packing problem [9, 11, 12] and can be defined in bin-
* packing terms as follows: given a finite number P of bins
and a finite number N of objects with uni-dimensional vari-
able sizes, allocate objects to bins so that the largest bin size
is minimized.

Matrices were stored in a compact format to efficiently
use the memory space and to avoid unnecessary computations
involving zero elements. The Scalar ITPACK format [7, 16]
was chosen to generate the matrix compressed representation
because it offers a good compact ratio for general sparse
pattern matrices and allows ease of handling elements in
algorithmic constructions. Also, it is worth noting that the
Scalar ITPACK scheme was used to build the Harwell-Boeing
collection of benchmark sparse matrices. We illustrate the
Scalar ITPACK format through an example in Fig. 1. We define
the sparsity coefficient as the ratio
nz+z’
where nz and z represent the number of non-zero and zero
elements, respectively, in a matrix.

Sp =

(2)

4. THE ALLOCATION AND
COMPUTATIONAL APPROACH
4.1. Load-Balancing Allocation Algorithm

In the work by Aliaga and Hernandez [l], the initial
assumption is that information about the number of non-zero
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FIG. 1. Example illustrating scalar ITPACK format.

elements in each row is available. To simplify the presentation,
we also make this assumption. As the allocation process is
mainly sequential, it is run on only one processing node. This
allocation is meant to be kept active as long as the matrix
elements remain unchanged. We call this allocation procedure
the greedy alocation-based [oad-balancing algorithm (GALA).
The general allocation-multiplication algorithm is described in
Fig. 2 and the Gala procedure is presented in Fig. 3. The Gala
allocation scheme has time complexity independent of data
distribution. This complexity is Q(N - P) because a search for
the lowest bucket size out of P processor-buckets is performed
for each of the N rows, This algorithm compares favorably (in

ALGORITHM: allocation and multiplication

Perform on major node:

Perform in parallel:
-For each incoming vector X;:
- major node reads X;;
- major node broadcasts X;;

memory and the received vector;

- major node writes Y; to the output port.

-Sort. Sort rows in decreasing order according to the number of non-zero values.
-Allocate according to GALA. Allocate the next row to the node with the smallest bucket-size.
-Send rows to nodes. Send rows to nodes according to the allocation obtained after running GALA.

- each node performs the multiplication between parts of the matrix A, resident in its own

- major node gathers and assembles result vectors Y;;

FIG. 2. The general (allocation and multiplication) algorithm.
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Procedure 1: GALA
INPUT:

OUTPUT:

Processors;

ALGORITHM:
for (i=0, P-1) /* initialization */

rows_allocated[i]=1;
alloc[i][0]=row_index[i];
endfor
for (i=P, N-1)
size=bucket_size[0];
greedy_proc=0;

if (bucket_size[j] < size)
size=bucket_size[j];
greedy_proc=j;
endif
endfor

k=rows_allocated[greedy_proc];

endfor

row_index[N] - row indices sorted in decreasing order w.r.t. the number of non-zero elements;
row_size[N] - contains row sizes (ordered in the same way);

alloc[P,N] - a P x N array that contains the index of rows allocated to each node, where P is the number of

rows_allocated[P] - stores the number of rows allocated to each processor;

bucket_size[P] - stores the size of each processor bucket.

bucket_size[i]=row_size[i]; /* initialize the bucket of each processor with one row */

for (j=1, P-1) /* find the "greediest” processor */

bucket_size[greedy_proc]+=row_size[i]; /* adjust the "greediest” processor bucket size */

alloc[greedy_proc][ k]=row_index[i]; /* add row index in the list of row indexes */
rows_allocated[greedy_proc]++; /* adjust pointer to array alloc[ ] */

FIG. 3. Greedy allocation-based load-balancing algorithm (GALA).

time complexity) with the one introduced by Aliaga and
Hernandez [1] in the general case, when each processor bucket
is involved in the swapping process at least once.

The multiplication is reviewed in Fig. 2 for completing the
discussion.

4.2. Algorithm Enhancement for Highly Skewed Data

Our initial experiments proved that the allocation procedure
must be augmented with the capability of handling both very
skewed and highly sparse matrices. Under these conditions,
it is necessary to split the rows that have significantly larger
numbers of non-zero elements into several parts (segments)
and allocate them to different processors. These segments
participate as any row in the allocation process. They are
turned to the compact format as separate rows and allocated
according to the same procedure used for complete rows. The
benefit is a finer granularity of the allocation problem, thus

ensuring better load-balancing results. The price to be paid
is not significant: two indices (index of the row from which
the segment originated and index of the segment) must be
maintained and an extra summation operation for updating
the result must be executed. Because of this overhead, the
method is recommended only for pathological cases (extreme
skewness and sparsity). Therefore, it is critical to select the
right threshold to avoid unnecessary overhead associated with
over-splitting. In our experiments, the threshold used for the
splitting decision is the average bucket size. Whenever the
number of non-zero values in a row exceeds this threshold,
that particular row is split into one or more parts, as needed.
This threshold is selected to produce an optimal balance
between obtained performance and incurred overhead, where
splitting is performed only if the performance benefit from
it exceeds the overhead associated with it. Experimental
results, demonstrating the need for the splitting mechanism,
are presented in Section 6.
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4.3. Communications Optimization

Several options are available for scheduling the multiplica-
tion of the sparse matrix by the arriving stream of vectors in
real-time. This includes the vector broadcast and results gath-
ering. The broadcast operation can be quite expensive. Hy-
percube and mesh topologies yield broadcast complexities of
O(log P) and O/ P) for each vector, respectively. On the
other hand, a software pipelining enables a communications
complexity of O(1 + P/Q) per each vector, where P is the
number of processing elements and @ is the number of vec-
tors. If Q@ > P, O(1 + P/Q) — O(l). Another advantage of
the vector software pipelining is the distribution of the result
update. By vector software pipelining, the update phase pre-
sented in the general algorithm (Fig. 2) is now distributed and
turned into a scalable operation.

5. EXPERIMENTAL TESTBED

5.1. Parallel Platform

We used an Intel Paragon supercomputer for our experi-
ments. This scalable MIMD machine has 64 processing el-
ements, 56 of which are work nodes. The communications
bandwidth supported by the underlying mesh-type topology is
up to 160 Mbytes/s. Each of the 64 nodes is based on Intel
i860 processors. Large files can be stored into a set of two
redundant arrays of inexpensive disks (Raid 3), controlled by
two [/O nodes.

5.2. Experimental Data

In our experiments, we used both randomly generated data
and selected matrices from the Harwell-Boeing sparse matrix
collection [6, 7]. Benchmark matrices offer the advantage
of using common data sets, thus making it possible to
compare our work with other researchers’ achievements.
The use of synthetically generated matrices points out some
characteristics of the algorithm, such as the enhancement
presented in Section 4.2.

5.1.1. Synthetically Generated Data. 'We evaluated our ap-
proach using randomly generated matrices with non-zero cle-
ments distributed over rows according to the Zipf distribution.
Consider the discrete probability density function

1

C :
S5 d L oL = (-2 e N 3)
i elsewhere,
where
= : 8 €0, 1 4
= ﬁv e [0; 1. “4)
1—6

i=1

This discrete distribution is called the Zipf distribution and its
characteristics strongly depend on the coefficient 6. When 6
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FIG. 4. Zipf distribution for different values of the parameter 6.

is close to 0, the data distribution is very skewed. As 6
approaches 1, however, the distribution becomes more uniform
(Fig. 4). The Zipf matrices were generated as follows:

(1) associate each row index with a unique number in the
sedquence = {1-<- - N|-

(2) split the interval on the real axis [0; 1) into N sub-
intervals with length proportional to p(i) defined in expressions
(3) and (4);

(3) using a pseudo-random number generator, uniformly
generate nz numbers within the interval [0; 1) and count the
number of “hits” within each sub-interval;

(4) randomly generate column indices and non-zero values
for each row, according to the counter values obtained at
Step 3.

We generated a Zipf-distributed matrix (¢ = 0.1). The matrix
has order 3500 and sparsity 0.004. The order, sparsity, and
structure of this matrix are thus chosen to clearly illustrate the
benefits of row splitting in some particular cases.

5.1.2. Benchmark Matrices. We selected three matrices
from the Harwell-Boeing sparse matrix collection [6, 7] for
our experiments. Our selection criteria were large matrices,
different sparsity coefficients, and different sparsity patterns.
In Fig. 5, we show the sparse pattern and the non-zero values
distribution over rows for matrices ORANI678 (Figs. 5a and
5b), PSMIGRI1 (Figs. 5c and 5d), and BCSSTK28 (Figs. 5e
and 5f). Transposed matrices are represented. The selection
criteria enumerated above are clearly illustrated through these
graphical representations of the matrices.

An overview summarizing statistical data regarding the
synthetic and the selected benchmark matrices is presented
in Table I. These data include the average number of non-zero
elements per row, the standard deviation, and the coefficient of
variation (C.0.V., the ratio between the standard deviation and
the average), along with the total number of non-zero elements
and the matrix sparsity.
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ORANI 678
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TABLE I
Statistical Data on Sparse Matrices

Statistical data

Name Type Order Nonzero's Sparsity Average Std. dev. COV.
ORANI 678 Unsymmetric 2529 90158 0.014 35.650 87.962 2.4674
PSMIGR 1 Unsymmetric mostly block-diagonal 3140 543162 0.055 172.981 235.575 1.362
BCSSTK28 Symmetric 4410 219024 0.011 49.665 9.682 0.195
zipfO.1 (synthetic) Unsymmetric skewed 3500 49000 0.004 14.0 94.594 AT

6. EXPERIMENTAL RESULTS

6.1. Amortization of Load-Balancing Cost

The experiments discussed in this section are aimed at
demonstrating the need for load-balancing and quantifying
the benefit from it. Besides Aliaga, we compare the GALA
algorithm with two well-known and fast allocation schemes
that generate the allocation of rows onto processing nodes
without an insight into the non-zero elements distribution.
These two allocation schemes are:

The Block allocation: Each processor pe {0, 1, ..., P —
1} will receiverows p - [N/P],p - IN/P] +1,...,(p+1)- [N/
P| — 1 [18]. We associate this allocation with the unbalanced
case, because no attempt is made to even the load.

The Cyclic allocation: Each row i is allocated to processor (i
mod P), where i = {0, ..., N— 1} [18]. We call this allocation
a naive attempl to load-balancing, because it is not based on
the data distribution, but on the assumption that the distribution
of the non-zero elements maintains a continuous pattern.

We compare the Gala algorithm to the other available
allocations from several points of view. This includes the
speedup of multiplication and the overall (allocation and

multiplication) results. We also investigate when and how
allocation cost is amortized. Additionally, we compare the
allocation costs of both Gala and Aliaga allocations that lead
to both optimal or close-to-optimal load-balancing.

Execution times include both communication and work, and
are measured at the master node site. All speedup calculations
are based on a same best uni-processor execution time, for a
fair comparison of the approaches.

Gala employs a relatively more sophisticated algorithm for
allocation as compared to the more simplistic approaches,
such as the Cyclic and Block. Thus, for a smaller number
of vector multiplications, the straightforward methods could
have an advantage. However, for practical problems, where
the number of multiplications is large, the overhead of Gala is
amortized and the overall performance gains due to the better
allocation exceed by far those of simplistic allocations. The
amortization results are presented in Table II. As expected, the
Block allocation is amortized very quickly, given its sensitivity
to the data permutation. Results in Table IT suggest the ability
of the Cyclic allocation (a naive load-balancing approach)
to produce close to optimal allocations in almost constant
distributions (as in the case of matrix BCSSTK 28). However,
in more skewed distributions, the Cyclic allocation is unable
to generate a good load-balanced allocation. Therefore, amor-

TABLE II
The Number of Multiplying Vectors Necessary to Amortize? the GALA Allocation

Multiplying vectors

PSMIGR 1 BCSSTK 28 ORANI 678 zipf0.1
Nodes Cyclic Block Cyclic Block Cyclic Block Cyclic Block

5 13 3 1724 34 182 51 228 11
10 16 5 1682 25 188 7 166 11
15 14 3 1305 29 178 7 148 11
20 25 ) 1391 34 177 7 140 12
285 34 7 1432 43 221 10 145 12
30 34 8 724 42 232 12 127 12
35 35 1 814 23 173 11 136 14
40 38 9 931 53 179 13 127 14

“Amortization results refer to the number of multiplying vectors that make the sum of allocation and multiplication times equal for two different

allocation approaches.
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FIG. 6. Allocation timings with GALA and Aliaga allocations for benchmark and synthetically generated matrices.

tization of load-balancing occurs much earlier for the PSMIGR
1, ORANI 678, and zipf0.1 matrices.

A good way to evaluate the degree of skewness of a sparse
matrix is to look at the coefficient of variation (C.0.V.) of
the distribution (Table I). A large C.O.V. requires a less naive
but more time-consuming load-balancing procedure for good
overall performance. Additionally, we find that the standard
deviation gives quantitative rather than qualitative information
regarding the likelihood of the load-balancing amortization
speed. It is difficult to evaluate, based on the C.O.V., when a
given matrix distribution will trigger the splitting enhancement
described in Section 4.2. The difficulty consists of the fact
that several distributions may yield the same C.O.V. However,
we empirically found that conditions prone to applying the
splitting enhancement occur for a number of processors larger
than 24/N/C.O.V.

We compare the allocation performance of the Gala algo-
rithm with the one achieved with the algorithm introduced by
Aliaga and Hernandez [1] from two points of view: load-
balancing results and time required to allocate the data onto

nodes in a balanced way. Both Gala and Aliaga [1] allocation
procedures are sequential algorithms. In Fig. 6, we plot alloca-
tion time results versus the number of processors. These results
include the sorting and allocation (according to both Gala and
Aliaga schemes). Results show that the Gala algorithm works
significantly faster than Aliaga for small number of processors
and they tend to have a similar performance for large number
of processors. Also, large differences in allocation speeds in
favor of Gala are reported for skewed distributions and large
data sets. The unpredictability of the Aliaga allocation is ob-
vious for small number of processors (P < 5). For a larger
number of processors, the allocation time coincides with an
exponential pattern.

Load-balancing results obtained with these two allocation
procedures are very similar for all practical purposes. They
are tabulated in Table III. The following notations were used:

LBS, largest bucket size;
ABS, average bucket size, equal to;
ABS, absolute difference between LBS and ABS.
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TABLE 111
Load Balancing Performance
5 10 15 20 25 30 35 40
Nodes  GALA ALIA GALA ALIA GALA ALIA GALA  ALIA GALA ALIA  GALA ALIA GALA ALIA GALA  ALIA
B LBS 43806 43805 21904 21904 14603 14602 10960 10952 8771 8761 7302 7302 6260 6258 5488 5477
C
S
S ABS 43805 43805 21902 21902 14602 14602 10951 10951 8761 8761 7301 7301 6258 6258 5475 5475
&
K
2 ARS 0 2 2 1 0 9 1 10 0 1 1 2 0 13 2
8
P LBS 108634 108633 54318 54317 36214 36211 27160 27159 21730 21728 18109 18107 15522 15519 13583 13580
S
M
I ABS 108632 108632 54316 54316 36211 36211 27158 = 27158 - 21726 21726' 18105 18105 15519 15519 13579 13579
G
R
B i ) 1 2 1 3 0 ?) 1 4 2 4 2 3 0 4 1
O LBS 18032 18032 9016 9016 6011 6011 4508 4508 3607 3607 3006 3006 2576 2576 2254, 2054
R
A
N ABS 18032 18032 9016 9016 6011 6011 4508 4508 3607 3607 3006 3006 2576 2576 2254 2254
I
6
TEEARS a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8

Table 111 shows that for the three used benchmark matrices,
both Gala and Aliaga produce allocations in which the average
bucket size, ABS, is nearly equal to the largest bucket
size, LBS. Thus, load imbalances from these allocations are
negligible and processors end up with nearly the same amount
of work.

In the case of matrix zipf0.1, the benefit of row splitting is
clearly illustrated. If the matrix is extremely sparse and highly
skewed (which is the case with this matrix), even good load
balancing algorithms are unable to produce good results unless
this simple heuristic solution is applied (Fig. 7).

We allocated data with the Gala and Aliaga (the load-
balanced case), and Cyclic and Block algorithms (the non-
load-balanced case), and we performed the multiplication of
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FIG. 7. Load balancing results for the Zipf-distributed matrix.

the four matrices presented above with a sequence of 1000
vectors. A comparison of the total execution time speedup is
presented in Fig. 8 for the three benchmark matrices and for
the synthetically generated data set. The benchmark matrix
curves point out the similar behavior of Gala and Aliaga,
due to the fact that they both generate close to optimal or
optimal load-balancing. The Cyclic allocation yields good
speedup in case of matrix BCSSTK 28, due to the almost
continuous matrix distribution (see Table I and Figs. 5e
and 5f). However, its performance deteriorates for skewed
matrix distributions (matrices PSMIGR 1 and ORANI 678).
A special case is represented by the synthetic matrix zipf0.1,
generated according to the Zipf distribution (parameter ¢
= 0.1). It is designed to clearly show the benefit of row
splitting in some cases with both high sparsity and extreme
skewness. Thus, results of the Gala algorithm, provided with
the splitting enhancement, are not penalized by this type of
matrix distribution as the other allocation approaches are.
Therefore, this yields significantly higher speedup.

Large differences in speedup were measured for different
data sets. Given the selected message passing strategy, we
present an evaluation for total execution time (that includes
both work and communication time costs). A simplified
evaluation of T, is the following:

sp e N?
Tioal = Tcom(N, P, Q) + Twork e (5)

where T, and T, represent time spent only on communica-
tion and work, respectively. T, depends on the total number
of processors P, the vector size N, and the number of vectors
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FIG. 8. Comparison of sparse matrix-vector multiplication speedup.

Q. T, depends on the number of non-zero elements allo-
cated to the node with the largest bucket-size and

Tiotat = max{7Teom, Twork} + const (6)

is the number of incoming vectors. On a balanced allocation
of significant matrix elements, each processor receives sp NY
P non-zero values. Due to the use of asynchronous message
passing in software vector pipelining, T, depends only in-
significantly on the number of processor P and a better eval-
uation for (5) is that saturation of global timings is expected
to occur when:

speN 2
Twork (_“'1‘)_”9 Q) < Teom(N, Q) (7)
Thus, the best expectation for global results with the increase
of the number of processors is T

The obtained total timing results are explained through
formulae (6) and (7), and the order and sparsity of the four
matrices (Table I) that we used for testing purposes. Compared

to the general formulation of the total execution time expressed

in Eq. (5), formulae (6) and (7) reflect the communications
cost minimizing approach embedded into the implementation.
Best global timings scalability is obtained in the case of
matrix PSMIGR 1, because the matrix is quite dense and,
therefore, provides a large amount of work. Briefly, if the
data set generates a large enough amount of computation, the
unscalable communication requirements can be successfully
hidden behind the scalable computation by using the proper
message passing strategy. In Fig. 8, results for matrix PSMIGR
1 show highest achieved scalability. This is because the
matrix is relatively more dense than the others which helps
amortize communication due to the increased computation.
Host—-node and node—node communications bandwidth of up
to 160 MBytes/s is considered significantly large.

Such communications bandwidth combined with the soft-
ware pipelining of vectors enables good speedup and scalabil-
1ty.

For matrix BCSSTK 28 and for 400 vectors (Fig. 9), the
Cyclic allocation yields best overall (allocation and multipli-
cation) speedup. This is due to the fact that the distribution of
the matrix is almost constant and the amount of computation
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FIG. 9. Speedup for bottom line results (allocation and multiplication with 400 vectors).

is still relatively small to amortize the allocation. For the rest
of the matrices, Gala yields best overall performance due to
the fast and almost perfect load-balancing. However, for 1000
multiplied vectors (Fig. 10), Gala yields the best performance.
Even for matrix BCSSTK 28 (with an even distribution), Gala
performs better than the Cyclic allocation for large number of
processors (see also Table II). Briefly, Gala and Aliaga yield
the best overall performance for a larger number of multiplied
vectors due to the good load-balancing they produce. Also,
the better allocation cost of Gala is obvious in these measure-
ments.

6.2. Effect of the Multiplication Size on Scalability and
Amortization of /O

One important issue in high-performance computing, which
is often neglected, is I/O. In this study, we pay careful atten-
tion to the application of I/O requirements. We evaluated the
I/O cost and its amortization for the case when the matrices
are originally resident on disk rather than at the major node
memory. We consider that matrices are stored, in the uncom-
pressed format, on the parallel file system, and vectors were
already broadcast to processing nodes. Each node has to read
parts of the matrix, compress them, and multiply matrix el-

‘

ements with the resident vectors. The compression phase is
considered necessary to avoid the subsequent processing of
non-relevant elements and to provide an efficient representa-
tion of the compressed matrix. Once again, the chosen com-
pression format was the Scalar ITPACK [7, 16] because of
its compression performance and algorithmic suitability of its
sparse matrix representation. To minimize the I/O cost, we
combined several specific techniques:

The use of parallel I/0. The Intel Paragon PFS sup-
ports 6 PFS file access modes: M_UNIX, M_LOG, M_SYNC,
M_RECORD, M_GLOBAL, and M_ASYNC [20]. We se-
lected the M_ASYNC file access mode based on our previous
experiments [14] as it is the most suitable for our approach
and provides the fastest access to data. M_RECORD, which is
another efficient parallel file access mode, is more restrictive
due to its synchronization requirements.

The use of asynchronous I/0 read. We use asyn-
chronous I/O read to conveniently overlap 1/O and compu-
tation. Thus, the unscalable I/O operation is performed as a
background process and can be completely hidden behind the
scalable computations at the extent allowed by the computa-
tions complexity.
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FIG. 10. Speedup for bottom line results (allocation and multiplication with 1000 vectors).

— The use of dynamic allocation rather than static allo-
cation. Thus, after a new /O session is started in the back-
ground, the processing node asks for new work from the master
node. The message passing with the master node is also per-
formed through asynchronous communications while work and
I/0 take place, thus avoiding the extra cost of this operation.
This dynamic allocation smoothes the uneven behavior of the
I/O nodes or the computational imbalances. On the contrary,
a static allocation, in which nodes match their identification
numbers against row indices, based on a given permutation
method (like the previously described Block), is not capable
of any load-balancing performance.

Computation with high degree of inherent concurrency
scales well, compared to I/O operations. To study the effect
of the size of the problem on the overall performance of
computation and I/O, we have increased the complexity of the
computation part. Thus, we have combined the compression

of a sparse matrix with the multiplication of this matrix (in
the compressed format) with a variable number of vectors. In
Fig. 11, which is based on the PSMIGR | benchmark matrix,
we summarize the interrelation among overall scalability, I/O,
and amortization of I/O with increased computations. As
we expected, the overall results scale well as long as the
scalable computation part surpasses the I/O part. Each of the
curves in Fig. 11 has a scalable segment and a saturated
one. Note that the amortization is achieved at a reasonable
size of the multiplication problem (125 vectors) for P = 10
processing nodes and 2 I/O nodes. This is the direct outcome
from the combination of techniques used to increase the
performance of the I/O itself, such as asynchronous read and
dynamic allocation. The conclusion to be drawn from these
results is that, if the I/O operation can be overlapped (by
using asynchronous calls) with scalable computation, there
exist some problem sizes for which the overall computations
become scalable.
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7. CONCLUSIONS

We developed a greedy algorithm for sparse matrix-vector
load-balancing. This algorithm was shown to work well on
highly skewed and extremely sparse matrices. Allowing row-
splitting when a specific threshold is reached, namely the
average number of elements per processors, was shown to
provide substantial benefits. Our approach compares favorably
to current ones through experiments on a 56-compute-nodes
Intel Paragon parallel processor.

Our experiments, both on randomly generated and on bench-
mark matrices, prove that load balancing ensures good scala-
bility due to its ability to reduce overhead and increase effi-
ciency. We designed our implementation so that it simulates
the real-time response of a system to individually-applied vec-
tors, which has a large communications overhead. We showed
that, by using an optimized implementation, communications
can be successfully hidden through software pipelining. The
end-to-end results, in which allocation and multiplication are
combined, show that good speedup is obtained for large size
problems and that load-balancing pays off in the long run. This
is especially true for variably distributed data sets. If statistical
data are available on the matrix, we showed that the skewness
degree of a matrix can be correctly measured by computing
the coefficient of variation, which helps to evaluate the most
efficient computational tools for that matrix distribution.

We also analyzed the impact of the multiplication size on
1/0 cost amortization and overall scalability. We found that,
even for reasonably low multiplication sizes, the overall results
scale well when /O is carefully handled.
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