
Journal of the American Society
for Information Science

J A S I S
VOLUME 48 NUMBER 10 OCTOBER 1997

CONTENTS

In This Issue
Bert R. Boyce

IN MEMORIAM

Jean Tague-Sutcliffe, 1931-1996
Mike Nelson

RESEARCH

Design and Implementation of Automatic Indexing for Information
Retrieval with Arabic Documents
Ismaii Hmeidi, Ghassan Kanaan, and Martha Evens

Information Using Likeness Measures
Martin FrickP

Types and Levels of Collaboration in Interdisciplinary Research in the
Sciences
Jian Qin, F. W. Lancaster, and Bryce Allen

Measuring the Impact of Information on Development:
A LISREL-Based Study of Small Businesses in Shanghai
Liwen Qiu Vaughan and Jean Tague-Sutcliffe

Clustering and Classification of Large Document Bases in a Parailel
Environment
Anthony S. Ruocco and Ophir Frieder

BRIEF COMMUNICATIONS

Fractional Counting of Multiauihored Publications: Consequences for
the Impact of Authors
G. Van Hooydonk

8 6 5

8 6 6

8 6 7

8 8 2

8 9 3

917

9 3 2

9 4 4

(Continued on next page)

Cover: Cosmos and chaos-is there any hope of real order? Clustering. classification. indexing!-Adrienne Weiss,

Designer. Inset illustration: Andrzej Dudtinski

Clustering and Classification of Large Document Bases
in a Parallel Environment

Anthony S. Ruocco
Department of Electrical Engineering and Computer Science, United States Military Academy
West Point, NY 10996. E-mail: ruoccoQeecsl.eecs.usma.edu

Ophir Frieder’
Department of Computer Science, Florida Institute of Technology
Melbourne, FL 32901. E-mail: ophir@cs.gmu.edu

Development of cluster-based search systems has been
hampered by prohibitive times involved in clustering
large document sets. Once completed, maintaining clus-
ter organizations is difficult in dynamic file environ-
ments. We propose the use of parallel computing sys-
tems to overcome the computationally intense cluster-
ing process. Two operations are examined. The first is
clustering a document set and the second is classifying
the document set. A subset of the TIPSTER corpus, spe-
cifically, articles from the Wall Street Journal, is used.
Document set classification was performed without the
large storage requirement (potentially as high as 522M)
for ancillary data matrices. In all cases, the time perfor-
mance of the parallel system was an improvement over
sequential system times, and produced the same clus-
tering and classification scheme. Some results show
near linear speed up in higher threshold clustering appli-
cations.

Introduction

The growth of electronically available information is
staggering. Magazines and newspapers are available in
electronic mediums. Formal correspondence, once deliv-
ered as a physical entity (hard copy), can now be sent
electronically from one computer directly to another. E-
mail has taken on a significant role as a means of corre-
spondence. A paper trail in today’s environment may, in
actuality, be a series of electronic correspondence. With
the growth of electronic text-based information increas-

*Ophir Frieder is currently on leave from the Department of Com-
puter Science. George Mason University, Fairfax. VA.

Received April 3, 1996; revised December 4. 1996: accepted December
4. 1996.

0 1997 John Wiley & Sons, Inc.

ing, information retrieval systems must be prepared to
process large amounts of data. As systems become inun-
dated with more and more information, it may not be
possible for people to fully understand what they have
collected. The ability to produce information that catego-
rizes the data, that is, the ability to produce metadata, is
in many cases as important as identifying specific pieces
of data within a document set.

The ever-increasing size, coupled with the increasing
requirements to classify, group, and process the document
sets, all within nonprohibitive execution times, motivates
the use of parallel processing computers. Parallel informa-
tion retrieval focuses on this particular domain (Pogue,
1988; Rasmussen, 1991; Reddaway, 1991). Query pro-
cessing assumes an organized data set as input. We, how-
ever, rely on parallel computing to organize the data by
performing two cluster preprocessing operations. The first
operation is clustering the document set, The second oper-
ation is clussifiing the document set. Each operation will
be discussed in depth along with a presentation of results
attained using a subset of the TIPSTER corpus, specifi-
cally, articles of the Wall Street Journal from 1987, 1988,
and 1989. For each parallel operation, the resulting docu-
ment organization is the same as that created by its respec-
tive sequential processes.

Previous work in parallel environments focused on the
SIMD model (Olsen, 1995; Pogue, 1988, Rasmussen &
Wilet, 1989; Reddaway, 1991; Willet, 1988). We per-
formed our studies based on the MIMD model. Specifi-
cally, our work was done on an Intel Paragon. This archi-
tecture is a 2-D mesh of nodes. Each of the 352 GP nodes
consists of two Intel i/86OXP processors and 32M of
memory. Effects of message passing and file sharing un-
der the MIMD model are also discussed.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 48(10):932-943, 1997 c c c 0002~8231/97/100932-12

Parallel Clustering

Clustering is a means of placing significant amounts
of data into a comprehensible number of categories (An-
derberg, 1973). Clustering methods are chosen based on
their general acceptability within an application area
(Dahlhaus, 1992; Jain & Dubes, 1988; Rasmussen & Wil-
let, 1989; Willet, 19X8). In the area of information re-
trieval, clustering schemes based on the vector-space
mode! are the acceptable norm.

Vector Formation

The document vector, comprised of T unique terms, is
the only representation of a document used in the cluster-
ing process. Consider a document set consisting of three
terms A, B, I-. Document 0, has a vector representation
of (a, 8, y), with cr the weight of occurrences of A, fl
the weight of occurrences of B, and y the weight of
occurrences of r. It is possible to create a binary vector,
in which case (Y, p, y would take on values of 1 or 0.
However, approaches using weighing schemes have
shown such marked performance increases that their use
is preferred (Kwok, 1990). Within the scope of this arti-
cle, term weights were based strictly on the appearances
of words within a document.

A cluster vector has the same format as a document
vector. Tnat is. a series of term weights. The net result
is that the cluster vector represents the mathematical aver-
age of all the documents that comprise that cluster.

Ciusrer Formation

The single-pass method is one of many methods for
forming clusters within the field of information retrieval
(Salton, 1989). It is a rather simple approach for cluster-
ing. Basically, a document is compared to all existing
clusters in turn. If a threshold for a measure of similarity
is exceeded, the document is added to that cluster. If a
document cannot be placed in a cluster, it forms a new
cluster against which subsequent documents will be com-
pared as well. Because clusters are examined in the order
they were formed, the early clusters tend to be larger than
clusters formed later in the process. Also, the clusters
formed are based on the order in which documents are
accessed. Thus, the composition of any given cluster, and
even the number of clusters themselves, is order depen-
dent.

For a comparison to be made for the single-pass
method in a parallel environment, it is critical to maintain
both the order in which documents are accessed and to
ensure the documents are compared and placed in clusters
in the same order as in a sequential environment. These
constraints are addressed in detail in later sections.

Before the clustering process begins, there must be a
decision on when two documents are considered similar.

This is done through a measure of similarity. If a predeter-
mined threshold is exceeded, then the document’and clus-
ter are considered similar. The document gets placed in
the cluster, and the cluster vector is adjusted as needed.
While there are many measures of similarity associated
with clustering, there is no single best method (Salton,
1989). However, one of the more popular, and the one
we used, is the Cosine Coefficient, shown below:

COSINE(Cj, Y) = *

c,,(= Weight of the ith term of cluster Cj

yi = Weight of the ith term of document Y (1)

Initially, there are no clusters. The first document, D,
by default, becomes the first cluster, Cr. The second docu-
ment, Dz. is compared using the cosine coefficient. If the
threshold is exceeded, i.e., COSINE (C,, D2) 2 (‘, D2 is
placed in cluster C,, otherwise it forms a new cluster,
C,. The next document is compared to C, and CZ, where
it either is placed in one of the two clusters or forms its
own. This process continues for each document.

Parallel processing provides an opportunity to compare
a document to more than one cluster at a time. If C, and
C, are on separate processors, the incoming document can
be compared to C, and CZ simultaneously. It is possible to
compare each incoming document to as many as P clus-
ters, where P is the number of processors in the system.
P is finite in practice, so it is necessary to apportion the
clusters among processors. This is done in a round-robin
fashion. Thus, the number of clusters assigned to any
given processor can be at most one greater than the num-
ber of clusters assigned to any other processor.

A two-phased message scheme ensures documents are
properly accessed and placed. During phase one, the proc-
essors are primarily concerned with comparing a docu-
ment to their clusters. Once it finds a cluster that exceeds
the threshold, it signals the other processors. Once leaving
phase one, a processor cannot be signaled with the same
type message. A second message is needed. This second
message serves two functions. First, it is an arbitrator. It
takes a value of a potential cluster from each processor
and determines which processor found the lowest num-
bered cluster. The designated processor modifies or cre-
ates a cluster vector accordingly. The second major func-
tion of the phase two message is to serve as a synchroniz-
ing point to ensure a decision is made on each document
before the next document is processed.

Vector Implementaation

A document vector must account for each of the T
terms in the document set. A document vector is a series
of tuples. The first element of the tuple represents the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-October 1997 9 3 3

weight of a unique term, and the second element of the
tuple represents the administrative number of that unique
term. To facilitate subsequent operations, the first tuple
in the document vector has a special meaning. The first
element of this tuple represents the total number of words
appearing in the document. The second element of the
tuple represents the total number of unique terms within
the document vector.

The cluster vector also needs to account for each of the
T unique terms. It uses the same format as the document
vectors. The first element of the tuple represents the
weight of a term within the cluster, and the second ele-
ment of the tupfe is the administrative number of that
unique term. The first tuple of the cluster vector. like the
first tuple of the document vector, provides information
on the~total number of words within the cluster and the
total number of unique terms within the cluster. To mini-
mize overhead, the clusters were physically implemented
as linked lists. Each element of the linked list is a record
representing the two element tuple.

The physical implementation of the document vectors
is more complex. The primary concern was that each
processor must access the same files at the same time.
This lead to significant problems with file 110. It is known
that file 1/0 can be a system bottleneck and that perfor-
mance for I 10 is highly system dependent (de Rosario &
Choudhary, 1994). There are several other concerns with
file 110, such as system load, over which the user has
very little control.

The Intel Paragon offers several methods for file ac-
cess. These are categorized based on the level of synchro-
nization inherent in each mode. A detailed description of
the performance characteristics of each mode is provided
by Nastea and colleagues (1996). The M-UNIX mode,
which provides each processor with a unique file identifier
for shared files, along with a block size of 64K, was
selected.

The individual document vectors were packed into a
single file such that no document was split across file
blocks. The first tuple of each document indicates how
many tuples were in that vector, that is. the number of
unique words. Each document vector begins at some off-
set from the beginning of its block. This offset is simply
the sum of the header tuples of the previous documents.
Block reading is done asynchronously. While the last
vector of a block is processed, the next block is read.

The above details and considerations are not unique
to this application. In fact, they are implementation
rather than application oriented. However, in the context
under which the research was performed, such details
are imponant. Many times, when issues dealing with
processing data are examined, the time to read that data
into the system is considered problematic. That is, it is
so system and load dependent that its description detracts
from the processes in question. However, the computing
environment was based on strictly enforced run-time

limits. The time to read data into the system subtracts
from the available time the processors can perform the
clustering process. Therefore, the time to have data enter
the system is not problematic, but integrally embedded
into the overall process. Isolating reading from cluster-
ing was not possible.

Results

The experiments were run under several parameters.
These parameters are:
(a) I), the number of documents in the document set: (b)
0, the order in which the document vectors are accessed;
(c) 0, the threshold value for the Cosine Coefficient: and
(d) f, the number of processors in the system.
A permutation is defined using the notation [0, f), i'. P I .

There are two orders represented. The first is a random
ordering (R) of the document set. The second ordering
is based on the number of unique words (UA) per vector.
In other words, the documents were arranged in ascending
order such that the first document accessed had the least
number of unique words, and the last document accessed
had the most unique words. Three thresholds, 0.2, 0.5,
and 0.8. were selected for the Cosine Coefficient. These
were selected to give a range of clusters formed under
the process. In general, the higher the coefficient thresh-
old, the larger the numbers of clusters formed, and those
clusters will be tighter. Some document sets were too
large to be executed on one or two processors within
allocated system time constraints. For most combinations.
increasing the number of processors stopped when it was
evident that performance, based on speed up, was not
improving. Times listed in all tables, and depicted on all
graphs, are in seconds and include message-passing and
file-reading time.

Cluster Data. Table 1 provides some statistics of the
clusters formed under the process. Because the resulting
clustering scheme produced by the parallel single-pass
algorithm is the same as that created by a sequential ver-
sion of the algorithm, detailed analysis of the composition
of the clusters was not performed. The general pattern is
similar regardless of document set size and order. As the
coefficient increases, the numbers of clusters increases.
The single-pass method "tends to result" in uneven sized
clusters. The standard deviation of the average number
of documents per clusters highlights this tendency. As
seen by the table, the tendency for uneven clusters appears
to be related to the document order as well as the threshold
value of the coefficient. When examining the UA data,
the clusters tend to be larger, but the standard deviation
of those clusters indicates they are more evenly sized.

Run Data. Table 2 depicts the times and speed up
attained when executing the program on the 5000 and
10.000 document vector. random set. The number of proc-

934 JOURNAL OF THE AMERICAN SOClEPl FOR INFORMATION SCIENCE--October 1997

TABLE I . Cluster data.

 COO, R. ('. XI 15000. UA, r ' . XI

Clusters 63 1 35H 4884 62 1 3545 4888
Largest 2215 288 21 1601 273 21
Avg Size 7.92 1.40 1.02 8.05 1.41 1 .O?
SD 90.73 5.46 0.4 1 76.15 5.19 0.41

IlOOOO, R. 0. xl [1000. UA. ('. XI

Clusters 930 642 1 9674 933 6397 9672
Largest 4744 566 40 2775 543 40
Avg Size 10.75 1.56 1.03 10.72 1.56 1.03
SD 159.07 8.36 0.64 115.62 7.99 0.69

essors varied based on the coefficient. For a coefficient
of 0.2 the maximum processors used was 8, but 16 were
used for the higher coefficients, with 32 processors used
on the 10,000 document set. The first striking feature of
the table is the increase in time to perform clustering as
the coefficient increases. he previous section showed
how the increase in coefficient significantly changed the
number of clusters. Table 2 shows the significant efforts
that must be expended to produce those additional clus-
ters.

There are several aspects that must be explored when
reviewing performance. Chief among them is the effects
of message passing. This application uses a great deal of
message passing, as it must ensure consistency of clusters
with the sequential version. There is a base number of
messages that must be sent, that is, the number of docu-
ments, D. So whether the application is run at 0.2, 0.5,
or 0.8, there must be a minimum of D messages. These
are the phase-two messages described previously. The
formation of a new cluster generates a phase-one mes-

sage. So at higher coefficients, there is actually a larger
number of messages being sent. While message passing
is a factor, it cannot arbitrarily be considered the dominant
factor in performance. Instead, what needs to be consid-
ered is the amount of time the processors are working
between messages. At the lower coefficients, there are
fewer clusters to check. As these few clusters get distrib-
uted among processors, there is in effect less work being
done and a greater proportional amount of time spent in
message passing. Therefore, the ability to scale to more
processors is limited. As the numbers of clusters in-
creases, each processor becomes responsible for a greater
number of clusters. Each processor is doing more work
in checking clusters, so that the amount of time between
messages is increased. The effect of doing more work -
between messages is indicated by the better speed-up per-
formance. Figure 1 graphically depicts the times and
speed up attained.

As part of the overall experiment, the document set
was specifically ordered based on the number of unique

TABLE 2. Times and speed up for (a) [5000. R, Cq, P] (b) [10000. R. '. P I ,

0.2 0.5 0.8

P Time Speed up Time Speed up Time Speed up

a
I 2411.7 1 15552.8 1 24008.5 I
2 1823.7 1.32 8766 1.77 1221 1.4 1.97
4 1635.2 1.47 4826 3.22 6215.5 3.86
8 1396.6 1.73 2566.1 6.06 3185.3 7.54
12 1841.5 8.45 2157.9 11.13
16 1494.1 10.41 1687.8 14.22

b
1 6882.1 I 53548.7 1
2 5449.0 1.26 30578.4 1.75 48287.9 2
4 5288.8 1.30 18323.4 2.92 24469.3 3.95
8 5274.4 1.30 10454.4 5.12 12550.4 7.69
16 5875.8 9.1 1 6389.8 15.11
32 3631.9 14.74 3696.4 26.13

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE--October 1997 935

Linesr

FIG. I . Time (a) and speed up (b) for the R sets.

words in each vector. This set was based on the number
of unique words in ascending order, or UA. The pattern
of the data in Table 3 and Table 2 appears to be the same.
That is performance in terms of speed up improves as
the coefficient increases. The explanation of this directly
follows from the discussion above. The relatively few
clusters at the lower coefficient is a limiting factor. That
is, the amount of work done by the processors between
messages is small and scales poorly. As the number of
clusters increase, the work load stays at a level that pro-
motes scalability. Eventually, though, this time between
messages diminishes and the message passing becomes
the limiting factor. This is noted at the higher coefficients.

What is more interesting is a comparison between the
sets themselves. Again, as there was no intention of de-
termining "better" clusters, the comparison is based
strictly on run-time performance. [Cluster quality studies
appear in the literature (Anderberg, 1973; Jain & Dubes,
1988; Li, 1990; Salton, 1989).] To show a comparison

TABLE 3. Times and soeed UD for 15000. UA. C. PI.

between this ordering and the random ordering. the time
of execution graphs are superimposed in Figures 2a, b,
and c. In almost all instances, the UA run had better
times. This is especially noticed at a coefficient of 0.2
(Fig. 2).

By examining the cluster data table (Table I) , it is
clear that the UA clusters themselves are better balanced.
That is, there is, in general, a smaller standard deviation
among numbers of document vectors per cluster in the
UA set. The smaller standard deviation implies that each
cluster is closer to the same size, and this means that the
processors are doing the same amount of work to maintain
the clusters. In the situation of the R set, the clusters vary
greatly in size. Thus, those processors assigned larger
clusters are responsible for a greater share of work. The
net effect is the UA set promotes a more work-load bal-
anced environment than the R set. When there are few
clusters, this imbalance is more evident; hence, the larger
difference in execution times at the 0.2 threshold. While

P Time Speed up Time Speed up Time Speed up

936 JOURNAL OF THE AMERICAN S O C I W FOR INFORMATION SCIENCE--October 1997

FIG. 2. Time comparison for R. UA at (a) 0.2 (b) 0.5 (c) 0.8.

this was an interesting note, the order effects on cluster level of similarity among the documents. The ability to
formation is not Further examined. represent the data themselves supports the role of the

dendrogram as a form of metadata. To illustrate the use

Parallel Classification

The goal of classification is to provide some insight
into the organization of the data themselves. Unlike clus-
tering, which typically supports a larger system, the clas-
sification scheme is the end goal of the process. Classifi-
cation is an agglomerative process. That is, the leaves
contain the most specific information, and each interior
node provides more and more general information until
all information is consolidated into one group.

The basis of classification is to reflect some measure
of resemblance among the items being classified. The
resemblance can be based on how similar items are, that
is using a similarity measure, or the resemblance can be
based on how different the items are, hence, a dissimilar-
ity measure. As Romesburg states, the option of using
similarity measures over dissimilarity measures is "a mat-
ter of direction" (Romesburg, 1984). In other words,
items with a high similarity measure are more similar
than items with a low value for the similarity measure.
Conversely, items with a low value of dissimilarity are
more similar than items with a high value for a dissimilar-
ity measure.

In the area of information retrieval, a classification
scheme resulting in a dendrogram can be useful to the
analyst. It offers a view of the data that indicates the

of a d&drogram as metadata, an example is provided.
This example consists of a five-document set. The resem-
blance of each document to every other document in the
set is known. Using these measures, it is possible to deter-
mine a classification scheme, and subsequent dendrogram
for this set. The details of the measures used and how
the dendrogram is computed is detailed in subsequent
sections. Figure 4 portrays a dissimilarity matrix, which
is a square matrix, and resulting dendrogram for the docu-
ment set.

To read the dendrogram, the documents, identified by
an administrative number, appear across the top. A verti-
cal line from the document represents the dissimilarity of
the document to the document immediately to the right.
For example, the level of dissimilarity between document
1 and 2 i s . 1 and the level of dissimilarity between docu-
ment 4 and 3 is .2. The lower the value, the less dissimilar
its measure (and by convention, the more similar the
documents). The unending vertical line from document
3 reflects the fact that document 3 is the last document
in the set. The order of the documents and the resulting
dissimilarity are obtained as a result of the algorithm
being employed.

The chart is now entered from the left side. A hori-
zontal line indicates the level of dissimilarity among the
documents. By entering the figure at the various levels,

JOURNAL OF THE AMERICAN SOClEPl FOR INFORMATION SCIENCE--October 1997 937

1 2 3 4 5 Classification Process
1 - .1 .9 .6 .4
2 .1 - .7 .5 .3
3 .9 .7 - .2 .6
4 .6 .5 .2 - .4
5 .4 .3 .6 .4 -

a. Dissimilarity Matrix

b. Dendrograrn

FIG. 3. (a) Sample dissimilarity matrix and (b) dendrograrn.

it is evident that the most similar documents are {1,2]
followed by { 4.3) . The consolidated group { 1.2) can
the be grouped with document 5 to form group { 1,2,5) .
At the 0.3 level there are two groups, { 1.2.5) and 14.3) .
The entire document set gets consolidated at the 0.4 level.

There are numerous classification methods, but the
four most common are the unweighted pair-group method
using arithmetic averages (UPGMA), the single link
method (SLINK), the complete link method (CLINK),
and the Wards minimum variance method. There is no
categorical best method (Anderberg, 1973; Jain & Dubes,
1988; Romesburg, 1984; Spath, 1982; Willet, 1988).

With little definitive theory on selecting one method
over another, the choice for SLINK is application based
(Willet, 1988). A document set may not have any related
documents, yet the classification methods will still pro-
duce a classification scheme. Wards method, with its reli-
ance on sums of squares, imposes an a priori restriction
into the document set. This a priori restriction is that there
is an inherent norm to the data set that the sums of squares
are measuring against. The complete link and UPGMA
produce dendrograms which imply a relationship among
documents that can be misleading. The SLINK algorithm,
on the other hand, exhibits a characteristic known as
chaining. As new clusters form, they bring in the dissimi-
lar documents and form a distinct pattern. Figure 4 depicts
the chaining property exhibited by the SLINK approach.
Part (a) shows how six elements, consisting of two attri-
butes. are dispersed in a two-dimensional plot; the den-
drograms have had numbers removed For clarity. In part
(b) , the single link method shows how first item 1 and
2 are combined, then 3, then 4, then 5, and finally 6. The
chaining effect is seen in the dendrogram. Parts (c) and
(d) were produced by the complete link and UPGMA

FIG. 4. Example of chaining.

938 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE--October 1997

methods, respectively. They imply closer relationships
among the documents than is truly present.

Many classification methods rely on a dissimilarity
matrix. It is a square, symmetric matrix. Each element of
the matrix [r , c] represents the dissimilarity between item
rand item c. In the case of document classification, each
[r , C] element is the dissimilarity between document r
and document c . Element [r , r] has no meaning.

In most references on classification, the dissimilarity
matrix already exists and is readily available. However,
this belies several important factors concerning the dis-
similarity matrix. First, the matrix itself can be large.
Basically. the number of elements in a dissimilarity ma-
trix is D', where D is the number of documents.

Producing the matrix can also be a drain on resources.
The matrix represents the dissimilarity of each document
to every other document. This implies a process on the
scale of D2, where D is again the number of documents.
If these values are real numbers, and the underlying sys-
tem uses 6 bytes per real number, the matrix for a 5000
document set would require approximately 143 M of
space. The 10,000 document set matrix would require
approximately 522 M of space.

Single-Link Implemenration

The single-link method is often referred to as the near-
est neighbor classification method. Its reliance on select-
ing the closest neighbor makes it suitable for implementa-
tion with minimum spanning tree methods (Dahlhaus,
1992; Olson, 1995; Rohlf, 1982; Sibson, 1973). There
are three dominant minimum span tree algorithms in the
literature; these are by Solin, Kruskal, and Prim (Kumar,
Grama, Gupta, & Karypis, 1994; Quinn, 1994). The
choice of one over the other typically relies on the number
of edges present in the graph. If the dissimilarity matrix
is likened to the proximity matrix of graph algorithms,
then it is evident the graph is completely connected. That
is, every vertex (document) is connected to every other
vertex (document). In the case of dense proximity matri-
ces, Prim's algorithm is generally preferred as it is easier
to implement (Aho, Hopcraft, & Ullman, 1983). The
algorithm is iterative in nature. It begins with an empty
tree then adds vertices, always picking the nearest vertex,
until all vertices are included in the tree. Prim's algorithm
utilizes two matrices, a dissimilarity matrix, and a dis-
tance matrix.

The distance matrix is used to identify the nearest
neighbor at any given iteration. The ith element of the
distance matrix logically represent the ith document in
the set. That is, element 1 represents document 1, element
2 represent document 2, etc. The value in the element
represents the distance to the nearest neighbor of ith ele-
ment. At each iteration, the element with the smallest
value gets added to the tree. An illustrative description of

FIG. 5. Sample graph and free.

the algorithm utilizing the dissimilarity matrix of Figure 4
is provided.

Initially, all values in the distance matrix are large.
The process begins with document 1. The dissimilarity
between document 1 and every other document is deter-
mined. If the resulting dissimilarity from document 1 to
document 2 is less than the value in the 2nd element of
the distance matrix, the value in the distance matrix is
replaced with the smaller value. This continues for each
dissimilarity from document 1. At this point the distance
matrix would contain d [l] = -, d[2] = .l, d[3] = .9,
d[4] = .6, d[5] = .4 (note d [l] has no meaning as that
document is already in the tree). Having the smallest
value, document 2 is added to the tree.

Document 2 is now compared to all other documents.
It does not get compared to document I. When document
2 is compared to document 3, its dissimilarity is less than
the value in the distance matrix for d[3] ; therefore, the
value of .9 is replaced with .7. Document 2 is compared
to the other documents with the distance matrix becoming
d [l] = -, d[2] = -, d[3] = .7, d[4] = .5, d[5] = .3.
Document 5 is selected because it has the lowest value
in the distance matrix. Document 5 is compared to the
remaining documents with the distance matrix becoming
d[3] = .6 and d[4] = .4. Document 4 is selected and is
compared to document 3, which changes the distance
matrix so that d[3] = .2. Document 3 is the last document
of the set; hence, it is added to the tree. The resulting
tree is shown in Figure 5.

It is clear the algorithm does not need the dissimilarity
matrix in its entirety. In fact, the algorithm never accesses
more than one element of the dissimilarity matrix at any
given time. Once that element is used, it is never used
again. The algorithm merely needs to keep track of the
element with the best, for example, smallest value, and
that is done through the distance matrix. Therefore, there
is no need to have the dissimilarity matrix. Instead, it is

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE--October 1997 939

necessary to have the ability to compute the elements as
needed. As explained in previous sections, if the dissimi-
larity matrix is not used elsewhere, its absence results in
substantial resource savings.

Nearest neighbor algorithms, in general, do not reflect
the order in which nodes are added. Sibson (1973)
showed how algorithms can be modified to retain the
order. Basically, with Prim's algorithm a secondary ma-
trix is kept to track the order that the documents are
selected. Sibson further showed that a dendrogram can
be readily constiucted from such an order matrix (Rohlt,
1982; Sibson, 1973). The order matrix is typically re-
ferred to as a pointer representation of a dendrogram. The
pointer representation of the example is

order 1 2 5 4 3
distance I .3 .4 .2 NA

Document 1 was the first document added, and its nearest
neighbor is document 2 at a dissimilarity of . l , document
2's nearest neighbor is document 5 at a dissimilarity of
.3, etc. The research undertaken provides the pointer rep-
resentation as the final product. This is in keeping with
the current literature on parallel classifications (Dahlhaus,
1992; Olson, 1995). The dendrogram of a large document
set is very cumbersome, its actual presentation is left for
continued research in the areas of information visualiza-
tion (AIPASG, 1995; Kaufman, 1994; Risch, May,
Thomas, & Dowson. 1996).

Resiilts

As in the clustering case, the algorithm was run on a
5000 document sets and a 10000 document set. Document
vectors are packed together into a single large file. This
file is read by the various nodes and the individual docu-
ments are broken out within the program. This breakout
is based on a document's offset from the start of a block.
Each node was given responsibility for a certain number
of documents in the algorithm. The number of documents

per node is basically DIP, with D the number of docu-
ments and P the number nodes.

As previously stated, there is no need to keep large
amounts of data during the execution of the algorithm.
For this reason, the block size was increased from a block
size of 64K to a block size of 128K. Larger block sizes
of 256K and 5 12K were also used.

Riin Data. We ran our results on a production system.
The system time queues prohibited runs that exceeded 12
h of execution time. These time constraints did not allow
runs on the 10.000 document set to be completed for a
configuration of under four nodes. Results are only pro-
vided for 4, 8, and 16 node systems. Speed up for these
systems are adjusted to account for the 10.000 document
system beginning at four nodes. The optimum speed up
becomes based on a factor of P14. For example, the linear
speed up of a system going from four to eight nodes
would be for the eight node system time to be 4 the time
of the four node system. Therefore, the "linear" time for
speed up at eight nodes would be 2. At 16 nodes, the
"linear" speed up would be 4. Results are shown in Table
4, as well as Figure 6.

Speed up drops considerably as processors are added.
There are several reasons for this. First, is the effect of
message passing. Each node must know which document
is selected as the next vertex. This requires the transmis-
sion of a message. As the number of nodes increases, the
overhead of message passing increases. As the number
of nodes increases, the number of documents each node
is responsible for decreases. This means there is less work
being done between messages. These are typical side ef-
fects of parallelism in an MIMD architecture.

Another factor to consider is documents that become
inactive. When a document is added to the tree, it is no
longer compared to any other document. Not only does
the number of documents per node decrease as a factor
of nodes, but the number of active documents decreases as
the algorithm progresses. So the amount of work between
messages is also decreasing as a natural process of the
algorithm's execution.

TABLE 4. Times and speed up for (a) 5000 documents and (b) 10,000 documents.

P Time Speed up Time Speed up Ti me Speed up

a 1 I 1
1 20883.14 20398.36 20181.06
2 11541.20 1.81 10794.73 1.89 10628.15 1.90
4 6795.09 3.07 5925.83 3.44 6135.10 3.29
8 4295.68 4.86 3523.24 5.79 407 1.97 4.96

b 1 I 1
4 233 10.74 2209 1.93 21226.19
8 15062.78 1.55 (2) 13370.43 1.65 (2) 12375.06 1.72 (2)
16 11030.62 2.11 (4) 8883.09 2.49 (4) 9415.6 2.25 (4)

940 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE--October 1997

a 5000 Documents b

a 10000 Documents b

FIG. 6. Time (a) and speed up (b) for 5000 and 10,000 document sets. Block sizes of 12SK. 256K. and 512K are superimposed.

As anticipated, the 512K block size provided irnprove-
rnents over the 128K block size. But performance de-
creased with respect to the 256K block as processors were
added. The decreased performance is not intuitive. An
explanation is presented in the next section.

The Overlap Factor, an Indicator of EfJecrs of File I /
0. In this algorithm the document vectors are packed
into a single file. If the program is reading blocks of size
128K. then the data file, and corresponding offset file,
must be based on 128K blocks. If the program is reading
blocks of size 512K, the data file and corresponding offset
file are based on 512K. etc. Regardless of the block size
used, the individual document vectors do not change in
size nor in number. The vectors are in the same order
within the data file whether the file is built in 128, 256,
or 512K blocks. The fact that the data does not change
leads to the belief that larger blocks should be better. That
is, intuitively, a given set of data built in 128K blocks,

should be read faster in 256K blocks, and faster still in
5 12K blocks.

However, as the block boundaries are shifted, the data
contained within those blocks changes. For example, a
document vector may be in block 21 when based on 128K
blocks, block 1 l using 256K blocks and block 6 using
512K blocks. When the algorithm is run, it apportions
documents among the processors. Note that it is the docu-
ment vectors that get apportioned and not the data blocks.
Therefore, it is possible that a data block may be shared
by two processors. Fortunately, it is possible to analyti-
cally and a priorily determine exactly which block con-
tains which document vectors. Based on the number of
processors, it is possible to determine how many blocks
are shared by the processors. The number of blocks being
used by each processor can be summed together to give
the total number of blocks being read by the program.
The Overlap Factor, which is a measure of this overlap
of blocks across processors, has an optimal value of P,

TABLE 5. Overlap factor, OF, for (a) 5000 and (3) 10.000 document sets.

JOURNAL OF M E AMERICAN SOCI€lY FOR INFORMATION SCIENCE--October 1997 941

FIG. 7. Overlap factor (a) 5000 and (b) 10,MX) document set.

the number of processors. The Overlap Factor has been
computed for the 5000 and 10,000 document sets for each
block size as shown in Table 5.

The overlap factor is an indicator of the effects of I /
0 which is imbedded in an algorithm's execution. With
this in mind, in Figure 7 (a) we show the significant
impact due to 110 at eight nodes. With an optimum value
of P, it appears the least effected by I /O will be the 256K
block. This is supported by the speed up curves for 5000
documents (see Fig. 6).

As seen in Figure 6, the speed up curves for the 10,000
document set also begin flattening out at eight nodes. As
explained before, this is because the systems with more
nodes are actually reading in more data. The overlap fac-
tor curves of Figure 7 (b) indicate a significant impact of
I /O from 8 to 16 nodes. It must be reiterated that the
overlap factor is just an indicator of the effects of imbed-
ded I iO in an algorithm. As the data block is read in, the
algorithm separates data from the block. This is typically a
faster operation than block reading. The total requirement

In some circumstances, the clustering process was re-
duced from approximately 6 b for 5000 documents in a
sequential system to under 30 min in a multiprocessor
environment. Similar results were attained with the
10,000 document set, with clustering time reduced from
over I3 h to approximately I h.

Document classification has relied on having ancillary
matrices of data readily available. As seen, these ancillary
matrices may themselves, require significant computing
resources and large amounts of storage. We detailed a
process which removes the requirement for these ancillary
matrices by utilizing the power of multiple processing
systems to compute them as needed. Even with this addi-
tional computational burden, the classification of the 5000
document set was reduced from almost 6 h to approxi-
mately 1 h on an eight node system.

The results of our experiments show a step forward in
meeting the requirements to classify, group and process
large document sets within nonprohibitive execution
times. This has been demonstrated on a currently com-

(e.g., block reading and data dispersion) is the determin- mercially available, multiprocessor computer; the Intel
ing factor in performance. In the case of the 10,000 docu- Paragon, operating in a production environment.
ment set, the lower overlap factor of the 128K block size
affects but does not fully compensate for the amount of
data the 256K can disperse between block reads, hence Acknowledgments
the 256K block size has the best overall performance.

This work was supported in part by a grant from the

Conclusion
DoD Major Shared-Resource Center operated by the
Aeronautical Systems Division, at Wright-Patterson Air
Force Base and the National Science Foundation under

Large document bases are becoming more common contract # IRI-9357785,
place. The prohibitive execution time of traditional pro-
cesses operating on large document sets has been a major
concern in cluster-based information retrieval approaches
(Salton, 1989). We focused on the single-pass clustering
algorithm and the single-link classification algorithm,
each a popular approach to clustering and classification,
respectively. We used parallel computing to show that
these operations, once considered computationally pro-
hibitive- and, hence, infeasible, are indeed capable of
meeting the needs of the community in dealing with large,
dynamic document bases.

REFERENCES

Aho. A. V.. Hopcraft, 1. E.. & Ullmm. J. D. (1983). Data structures
andalgorithms. Reading. MA: Addison-Wesley Publishing Company.

AIPASG. (1995). PlOOO strategic plan for infomratiun visua[i:arion.
version 1.6. Washington. DC: IC Advanced Infomation Processing
and Analysis Steering Group.

Anderberg. M. R. (1973). Cluster analysis for applications. New York:
Academic Press.

Cutting. D. R., Karger, D. R., & Pedersen, I. 0. (1993). Constant inter-

942 JOURNAL OF THE AMERICAN SOClElY FOR INFORMATION SCIENCE--October 1997

ection-time scattcrlgather browsing of very large document collec-
tions. ACM SlCIR '93. 116-134.

Dahlhaus, E. (1992). Fast parallel algorithm for the single link heuristics
of hierarchical clustering. Proceedings of rhe Fourth IEEE Symposircm
on Parallel and Disrribnred Processing, (pp. 184- 187).

del Rosuio. J. M.. & Choudhary, A. N. (1994). High-perfomance I1
0 for massively parallel computers. JEEE Compurer. 59-68.

Jain. A. K.. & Dubes. R. C. (1988). Algor i rhm for clustering dara.
Englewood Cliffs. NJ: Prentice Hall.

Kaufman. A. E. (1994). Guest editor's introduction: Visualization.
Compiirer, 27, 18- 19.

Kumar. V.. Grama. A,. Gupta, A,. & Karypis. G. (1994). lnrrodrrcrion
ro parallrl comp~rting, design and analysis of algorithms. Redwood
City, CA: BenjaminlCummings Publishing Company Inc.

Kwok. K. (1990). Experiments with a component theory of probabilistic
information retrieval based on single terms as document cornpo&ents.
ACM Transactions on Ofice Information Systems. 363-367.

Li. X. (1990). Parallel algorithms for hierarchical clustering and cluster
validation. IEEE Transactions on Partern Analysis and Machine Inrel-
ligence. 12. 1088- 1092.

Nnstea. S., El-Ghazawi. T.. Frieder, 0. (1996). A statistically-based
multi-algorithmic approach for load balancing sparse matrix applica-
tions. Proceedings of the IEEE S.vmposium of Frontiers of Massively
Paruliei Complrrarion. Annapolis, MD (pp. 180- 187).

Olson, C. (1995). Parallel algorithms for hierarchical clustering. Paral-
lel Compuring, 21. 1331-1325.

Pogue. C. A,. Rasmussen. E. M., & Willet, P. (1988). Searching and
clustering of databases using the ICL distributed array processor.
Parallel Compuring 8. 399-407.

Quinn. M. I. (1994). Parallel computing the09 a t d pracrice. New
York: McGraw-Hill. Inc.

Rasmussen, E. (1991). Introduction: Parallel processing and informa-
tion retrieval. Informarion Processing & Managetnenc. 27. 255-263.

Rarmussen. E., & Willet, P. (1989). Efficiency of hierarchic agglomera-
tive clustering using the ICL distributed m y processor. Juurnal of
Documentation. 45. 1-24.

Reddaway. S. F. (1991). High speed text retrieval from large databases
on a massively parallel processor. Inform!ion Processins & Manage-
mmr. 27. 311-316.

Risch, J., May. R.. Thomas. J.. & Dowson, S. (1996). Interactive infor-
mation visualization for exploratory intelligence data analysis. 1996
lEEE Virtual Reality Annual I~tternational Svmposium (VfUIS '96).

Rohlf. F. J. (1982). Single link clustering algorithms. In P. R. Krish-
naiah, J. N. Kanal. Eds. Classificarion, pattern recognition, and reduc-
tion of d imensional i~. (pp. 267-284). (Handbook of Statistics. Vol.
2) . Amsterdam: North Holland.

Romesburg. H. C. (1981). Cluster analysis for rerearchers. Belmont,
CA: Lifetime Learning Publications.

Salton, G. (1989). Au~omaric rr.rrprocessing: The rransfor~nation, anal-
vsis. and retrieval of information by compurrr. Reading. MA: Addi-
son-Wesley Publishing Company.

Sibson. R. (1973). SLINK: An optimally efficient algorithm for the
single-link cluster method. The Compurer Jotrrnal. 16, 30-34.

Spath, H. (1982). Cluster analysis algorirl~ms. New York: John Wiley
and Sons.

Willet, P. (1988). Recent trends in hierarchic document clustering: A
critical review. Jnfonnarion Processing and Management. 24. 577-
597.

JOURNAL OF THE AMERICAN SOCI€lY FOR INFORMATION SCIENCE--October 1997 943

