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Abstract- We study run-time issues, such as site allocation 
and query scheduling policies, in executing read-only queries in 
a hierarchical, distributed memory, multicomputer system. The 
particular architecture considered here is based on the hypercube 
interconnection. The data are stored in a base cube, which is 
controlled by a control cube and host node hierarchy. Input query 
trees are transformed into operation sequence trees, and the oper- 
ation sequences become the units of scheduling. These sequences 
are scheduled dynamically at run-time. Algorithms for dynamic 
site allocation are provided. Several query scheduling policies 
that support interquery concurrency are also studied. Average 
query completion times and initiation delays are obtained for the 
various policies using simulations. 

Index Terms-Database systems, multicomputer systems, par- 
allel database systems, query processing, scheduling, relational 
joins 

I. INTRODUCTION 

ATABASE processing applications can benefit from the D use of parallel processing techniques such as data parallel 
algorithms and intra- and interquery concurrency. The use 
of data parallel algorithms improves the execution times of 
individual database operations. Query response times can be 
reduced by supporting intra- and interquery concurrency or 
parallelism. A variety of special purpose database machines 
have been proposed to exploit the various levels of parallelism 
available in database applications. A survey of such machines 
is available in 1371. However, the growth in the number 
and variety of general purpose multiprocessor/multicomputer 
systems provides a justification to study the use of such 
systems for database processing. Various issues that need to 
be addressed in using multicomputer systems for database 
processing include the use of data parallel algorithms and par- 
allel query execution strategies, data distribution/declustering 
techniques, query coordination and result collection, single- 
input, multiple-data (SIMD) versus multiple-input, multiple- 
data (MIMD) mode of operation, e.g., concurrency control, 
and logging and recovery. 

Several parallel database system issues have been addressed 
by earlier database machine projects, such as DIRECT [ 1 I], 
GRACE 1241, RDBM 111, BUBBA 181, and GAMMA [12]. 
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DIRECT is a shared memory multiprocessor database machine 
in which the data from disks are staged into shared memory 
modules and the processors access the memory modules via 
a crossbar network. GRACE is also a multiprocessor database 
machine with a shared architecture. Data from disks are staged 
into several memory modules via a ring interconnection and 
reach the processors via a second ring interconnection. RDBM 
employs functionally specialized processors. Data are stored 
in a common disk subsystem, and the functionally specialized 
processors receive data from this subsystem. The processors 
communicate via shared memory. GAMMA and BUBBA are 
classified as shared-nothing multicomputers 1381 where the 
system consists of several independent computers, each having 
its own memory, disks, and software. Thus, there is no sharing 
of either memory or disks and processors communicate via 
messages. 

A .  Database Processing on Hypercubes 

Recently, several researchers have been studying the use 
of hypercube-based architectures for database applications 

[40]. An initial study of data redistribution and the nested- 
loop join algorithm in a hypercube system is reported in [2]. 
A comparison of the nested-loop, global-sort, and global- 
hash-based join algorithms is provided in 131. Algorithms 
for theta-join computation are presented in 1131. [15l. Index 
and hash-based join algorithms were studied in 1311, [32], 
and the implementation of a variety of join algorithms on 
a JPL Mark 111 hypercube is reported by Upchurch et al. 
in [40]. An implementation of semijoin algorithms on a 16- 
processor hypercube is discussed in 1331. Implementation of 
join algorithms on an experimental 16-node hypercube and 
comparisons based on the Wisconsin benchmark are described 
in [9]. Information retrieval algorithms for a library database 
are discussed in [SI. DeWitt er al. report the implementation 
of GAMMA Version 2.0 on an Intel iPSCI2 containing 32 
nodes [ 121. Frieder et al. [ 171 experimentally evaluated the 
effects of data volume and distribution on the performance 
of a hypercube database engine. Other relevant work includes 
that of Pfaltz et al. 1361, where a formal notation is derived 
for expressing database operators in a parallel environment and 
Topkar et al. [ 391, where several duplicate removal algorithms 
are presented and evaluated. Lakshmi and Yu 1251 evaluate 
the overall effectiveness of parallel joins in the presence of 
data skew is presented. An approach to database processing 
based on logical E-R schema graphs is explored in [4], where 
lower bounds are derived for the squashed embedding of 

[21-[51, 191, 1121, [131, [151, [171, 1291, 1313-[333, [ W ,  [39l, 
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E-R schemas in hypercubes. Several studies have also been 
conducted on file systems and input-output (1-0) architecture 
for hypercube computers [lo], [191, 1211, 1421. 

B .  Site Allocation and Query Scheduling 

Most of the work cited above is related to the study of 
individual relational database operations. However, in a par- 
allel database system, it is also neccesary to devise strategies 
for the parallel execution of the various operations in a query 
and concurrent execution of several queries. We present the 
architecture of a run-time system that incorporates site allo- 
cation and query scheduling algorithms to support inter- and 
intraquery parallelism in a highly parallel, distributed memory 
multicomputer system. The run-time system architecture is 
based on simple, dynamic schemes that can operate effectively 
in the presence of frequent changes in the events and state 
of the computer system. For example, the site allocation and 
query scheduling strategies use only current system informa- 
tion rather than employing a priori optimization. This decision 
is based on the realization that it is difficult to accurately 
predict the times of future events in a highly parallel system. 
The effect of this strategy on different query scheduling 
policies is studied using simulated data sets and queries in a 
hypercube multicomputer system. The general site allocation 
and query scheduling methods described here are applicable to 
a wide range of distributed memory multicomputer systems. 
However, the system model and cost functions used here 
assume a hypercube multicomputer system. 

Martin, Lam, and Russell [28] examined the site allocation 
problem. They defined queries by trees where nodes in the 
query tree represented base and intermediate relations. Using 
any of four suggested heuristic algorithms (branch and bound, 
greedy, simulated annealing, and local search), they identified 
the best allocation of the tree nodes onto the execution sites 
of the multiprocessor system. Liu and Chang [27] focused 
on the selection of a copy of a relation from within a set of 
replicated copies in a distributed environment. By enumerating 
all possible strategies, their algorithm selected the best copy 
in terms of communication and processing costs. Finally, Yu 
et al. [43] developed a heuristic approach to select the copy of 
choice within a replicated distributed database environment 
without the enumeration of all possible choices. Heuristic 
algorithms that approximate optimal solutions for a problem 
related to the mapping problem [6] are found in [6], [7], [16], 
1261. 

Prior query scheduling schemes are limited and mainly deal 
with intraquery parallelism. Ganguly et al. [18] augment an 
annotated join tree to handle query execution in a parallel en- 
vironment. Ioannidis and Cha Kang [23], to reduce scheduling 
complexity, schedule query fragments instead of individual 
join operators. Finally, Pramanik and Vineyard [34] optimize 
join queries in distributed environments by translating join 
graphs into semijoin graphs and focusing on the various 
components that comprise the execution of the query. 

The remainder of this paper is organized as follows. Basic 
definitions and background material are provided in Section 
11. Section 111 discusses various issues in site allocation and 

Fig. 1 .  A 4-D hypercube. 

the different cases that need to be considered for dynamic 
site allocation. Issues in query scheduling are discussed in 
Section IV. Four query scheduling policies are examined 
and simulation results are presented. Section V provides a 
conclusion. 

11. BACKGROUND 

A. System Architecture 

The issues discussed herein are generally applicable to 
any distributed memory multicomputer system. Our results, 
however, are based on a hypercube multicomputer system. The 
architecture model and other details of the hypercube system 
are described here. 

A hypercube system employs an n-dimensional Boolean 
cube interconnection scheme. The n-dimensional Boolean 
cube or Boolean n-cube, Qn,  is defined as a cross-product of 
the graph K2 and the (n- 1)-dimensional Boolean cube Q n - l r  
with Q1 = Ka. The graph Qn contains p = 2" nodes, each of 
which is uniquely identified by an n-bit label or node address. 
Each node is connected (or adjacent) to n neighbors, such that 
the addresses of the node and each neighbor differ in a single 
bit. For example, in a 4-D cube, Q4, node 0000 is adjacent 
to nodes 0001, 0010, 0100, and 1OOO. Fig. 1 shows a 4-D 
cube containing 16 nodes. Commercially available hypercube 
systems include Intel's iPSC/i860 and NCUBE's NCUBE/10 
[201. 

The multicomputer system is assumed to have a hierarchical 
architecture, consisting of a base cube, Qb, a control cube, 
Q c ,  and a host node, H ,  as shown in Fig. 2. Each node in this 
system is a complete computer system containing a central 
processing unit (CPU), memory, an intelligent disk controller, 
and communications processors (with buffers) associated with 
each communication link. The disk controller has direct mem- 
ory access (DMA) capability to directly store data either in 
local memory or in one of the communication buffers. Within 
the base and control cubes, data transfer and communication 
among nodes can be achieved by using packet-switching or 
cut-through routing techniques. The internode communication 
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Fig. 2. Hierarchical cube multicomputer system. 

time, t,,,,, consists of a fixed startup overhead plus an 
incremental data transfer time per byte, i.e., t,,,, = a: + /3z, 
where a: is the startup overhead, B is the incremental transfer 
time per byte, and z is the message size in bytes. Typical 
values for a: and p are in the ranges 0.2-0.5 ms and 0.4-2.6 
ps, respectively. 

B. Initial Data Distribution 

The database is stored in the base cube, Q b ,  containing 
p = 2b nodes. Nodes in the base cube are logically partitioned 
into uniformly sized subcubes called initial storage subcubes 
(ISS’s), of dimension (L < b. Thus, there are 2’-” ISS’s in 
the base cube. Database relations are declustered (i.e., data in 
one relation are distributed over several nodes) across all the 
nodes of an ISS. The appropriate ISS size is selected based on 
parameters such as the 1-0, CPU, and primary and secondary 
memory capabilites of each node, the size of relations in the 
database, and the number of relations in the database. The 
communication links at each node are divided into intra- and 
inter-ISS links. Relations are transferred in their declustered 
form across ISS’s using the inter-ISS links. 

All the nodes in an ISS are connected to a single output 
collection node (OCN) via a bus. All OCN’s are in turn 
interconnected in the form of a hypercube, called the control 
cube, Qc. The OCN’s send commands and collect output to 
and from the ISS nodes. Finally, all OCN’s are connected 
via a separate bus to the host node, H .  The buses between 
the different levels are used for transfer of commands and 
results, not for executing the database operations. Thus, these 
buses allow for the overlapping of output collection with result 
computation. 

In general, it is possible to employ ISS’s of nonuniform 
sizes. In this case, data transfer algorithms need to be devised 
for transferring data between subcubes of unequal size. A 
similar situation also arises in a system with uniform ISS sizes 

if relations are allowed to be declustered across a subset of the 
nodes of the ISS. (In a hypercube system, the subset should 
form a subcube.) The problems of ISS size selection, initial 
data placement, and data transfer between subcubes of unequal 
size are not discussed here. Henceforth, each base relation is 
assumed to be contained entirely within a single ISS, with 
the tuples evenly distributed among the ISS nodes. This form 
of data distribution is referred to as partial declustering with 
uniform degree of declustering; i.e., each relation is spread 
across some, but not all, the nodes in the system (partial 
declustering), and every relation is distributed across the same 
number of nodes (uniform degree). 

C. Parallel Algorithms 
Let Qa denote an ISS. As mentioned above, there are Zb-” 

ISS’s (or Qa’s) in Q b .  Since relations are declustered across 
the nodes of an ISS, one can employ data parallel algorithms 
within each ISS for the various database operations such as 
select, project, join, and scalar aggregation. Implementations 
of some of these operations in a hypercube system are de- 
scribed in 121, [3], 1151. Join algorithms that employ a cycling 
(or global nested-loop) algorithm and use either nested-loop or 
sort-merge algorithms locally, at each node, are introduced in 
121. Several other hypercube join algorithms have since been 
suggested in the literature, including schemes that employ 
broadcast communication, semijoins, indices, and hashing 
[31], [33], 1401. Global algorithms, based on global-sort 
(Hyperquicksort [41]) and global-hash schemes are presented 
in [3]. In the cycling schemes, the tuples of the smaller (outer) 
relation ( R l )  are sent to all processors containing tuples of the 
larger (inner) relation (R2) by forming a ring of processors 
within the ISS and sending the data of the smaller relation 
around the ring. In contrast, the global algorithms partition the 
tuples of both R1 and R2 across the set of processors, based on 
the join attribute values, using recursive halving schemes. The 
performance of the cycling and global algorithms is compared 
in 131, [15]. In general, the global algorithms were found 
to outperform the cycling algorithms. A review of various 
implementations of the join operation is provided in 1301. 

111. DYNAMIC SITE ALLOCATION 

Query execution is initiated by the arrival of a compiled 
and optimized query at the host node, H .  The output from 
the optimization step is a query tree containing parallel data- 
base operations at the nodes of the tree. This query tree 
is transformed into an operation sequence tree (OS-tree) as 
described below. The host node directs the necessary disk 1-0 
commands to the relevant OCN’s, which queue disk requests 
and broadcast them on a first-come-first-served basis to the ISS 
nodes. The disk 1-0 requests are accompanied by the qualifiers 
required for any selections that need to be performed on the 
base relations. Further operations in the query are scheduled 
at the nearest idle ISS. If k represents the number of inter-ISS 
links to be traversed from a given ISS to any other ISS, then 
the nearest ISS is the one for which k is a minimum. An idle 
ISS is one in which none of the node CPU’s is executing a 
parallel database operation. 
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Fig. 3. The site-based model of a multicomputer system 

A .  The System Model 

For the purpose of site allocation and query scheduling, 
a hierarchical multicomputer system is modeled as a set of 
independent ‘‘sites’’ where each site has processing and I- 
O capabilities. Fig. 3 illustrates this site-based model of the 
system. The sites are connected together by a point-to-point 
ring interconnection, and each site is also connected directly 
to the central host, H ,  which makes the run-time scheduling 
decisions. A site may represent any combination of processing 
nodes and disks. In the hypercube multicomputer system, each 
ISS in the base cube corresponds to a site in Fig. 3, and 
the inter-ISS links correspond to the ring interconnection. 
The control cube and host node together correspond to the 
host node of Fig. 3. This site model is sufficiently general 
to accommodate a variety of other multicomputer systems as 
well. 

The main memory at each site is assumed to be large enough 
to accommodate local segments of two input relations (i.e., the 
local segments obtained after applying any applicable search 
predicates), partial results being produced at the site, and buffer 
space for several disk blocks to allow for prefetching. The 
assumptions on the site memory size are justifiable, given 
the current rate of growth of main memory capacities. For 
example, the second-generation Intel hypercube, the iPSCI2, 
allows up to 16 megabytes of memory per node and 128 nodes 
(i.e., 2-gigabyte system memory). Thus, if the system was 
designed to have 16-node ISS’s, then each ISS would have 
a main memory capacity of 256 megabytes. 

B. Operation Sequences 
An optimized query tree, in which each node represents a 

relational operator, is transformed into an OS-tree to aid in the 
scheduling of queries. The operation sequence is the smallest 
schedulable unit in a query and consists of an ordered list of 
one or more consecutive operations in a query tree where all 
the operations. except possibly the first, are unary operations. 

The first operation in the sequence may be a unary or binary 
operation. Operations at a lower level in the query tree appear 
first in the sequence. The length of an operation sequence is 
defined in terms of the number of operations in the sequence. 
Operation sequences can be of any one of three types, namely, 
selection, unary, and join. A selection operation performed on 
a base relation represents a selection sequence. The length of 
this sequence is always equal to 1. Since a selection sequence 
always operates on base relations, it is generally executed 
at the ISS that stores the corresponding base relation. A 
unary sequence is any sequence of unary database operations 
immediately following a selection sequence. The length of 
a unary sequence is greater than or equal to 1. Finally, a 
join sequence is a sequence in which the first operation is 
a relational join operation and the remaining operations, if 
any, are unary operations. Thus, a join sequence always has 
two inputs. The length of a join sequence is greater than or 
equal to 1. A join sequence in which at least one of the inputs 
is a selection sequence is called a base join sequence. Base 
join sequences are important in determining the number of 
resources (ISS’s) required by a query, as discussed in Section 
IV. Both, unary and join sequences operate on intermediate 
relations. 

Fig. 4(a) shows a query with three select operations, C T ~ ,  ~ 2 ,  

and 03; one projection operation, II1; two join operations, 
w1 and wp; an aggregation operation, al ;  and the “output” 
operation, 01. Fig. 4(b) shows the corresponding OS tree. The 
three select operations are transformed into the three selection 
sequences, SI, S2, and 5’3, respectively. The aggregation op- 
eration, al ,  is transformed into the unary sequence, U1. The 
join operation, w1, is combined with the subsequent project 
operation, II1 to form the join sequence, J1; and the join 
operation, w ~ ,  is combined with the output operation, 01, to 
form the join sequence, 52. Sequence J1 is an example of a 
base join sequence. 

Scheduling operation sequences instead of individual opera- 
tions allows for the standard optimizations that can be obtained 
by combining consecutive unary operations in a query. It also 
reduces the amount of data movement during query execution 
and reduces the number of scheduling decisions that need to 
be made. 

C.  System Catalogs 

The run-time system in the host node is required to maintain 
several data structures to handle intra- and interquery paral- 
lelism in the system. A sequence directory (SD) that stores 
all the information contained in an OS tree for each active 
(already scheduled) and inactive (to be scheduled) query in the 
system. Table I shows the typical entries in such a directory 
for three queries, Q1. Q2, and Q3. Query Q1 contains two 
selection sequences and one join sequence and operates on 
base tables R3 and Rg, which are stored in ISSl and IS&, 
respectively. Queries Q2 and Q3 contain a selection sequence 
and a simple sequence. The inputs to these queries are R7 and 
R g ,  respectively. 

Each entry in the SD catalog table has the following in- 
formation. A unique sequence number (SEQ#); sequence type 
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SEQ# SEQ-TYPE INIT-TIME INPUT-1 I N P U T S  

Q1-1 selection 102 R3 

Q1-2 selection 1 02 RS 
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SUCC ISS ACTIVE 

Q1-3 1 1 

Q1-3 3 1 

Fig. 4. 

~ 

Q1-3 join 102 Q1-1 Q1-2 Host 3 1 

Q2-1 selection 125 R7 Q2-2 2 1 

Example 

Q2-2 

Q3-1 

(a) 

query tree. (b) Equivalent operation 

simple 125 Q2- 1 Host 2 1 

selection 915 R4 Q3-2 - 0 

sequence tree. 

I Q3-2 I simple 1 915 I Q3-1 I I Host I - I 0 I 

(SEQ-TYPE); query submission/initiation time (INIT-TIME); 
input operand( s) required (INPUT-1, INPUT-2); the sequence 
number of the successor sequence (SUCC) or the entry “Host,” 
if this is the last sequence in the query; the ISS on which 
the sequence was scheduled (ISS), if this is an active query; 
and an indication whether the query is active or inactive 
(ACTIVE). A 0 in the ACTIVE column indicates that a 
query that has entered the system has not yet been scheduled, 
whereas a 1 indicates that the query has been scheduled and 
is currently being executed. In Table I, query Q3 is yet to be 
scheduled. 

The host node also maintains an ISS Activity Table, which 
provides the availability information for each ISS. Whenever 
an ISS becomes free, the next sequence that is ready to 
execute, if any, is scheduled from the sequence directory. A 
selection sequence is executable if the 1-0 controllers of the 
ISS containing the required base relation are free. A simple 
or join sequence is executable when the required input(s) 
becomes available. If there are no ready sequences and there 
are sufficient ISS’s to initiate the next query in sequence, 
as determined by the current query scheduling policy, then 
the new query is activated. Once a query terminates, the 
corresponding row entries are logged and deleted from the SD. 

D. Site Allocation Policies 

Site allocation is performed at the time of query execution. 
This section describes the various possibilities that arise, at 
run-time, in allocating a site to perform the next operation 
sequence in a given OS tree. 

Notation: The notation, SS, is used to denote a selection 
sequence, US, to denote a simple (or unary) sequence, and 
JS, to denote a join sequence. Let X , Y  denote generic 
operation sequences, regardless of their type. For a given 
operation sequence, say, X ,  Tdy represents its start time and 
A,y represents its estimated duration, i.e., estimated execution 
time. The variable s represents a processing node in the 
multicomputer system, and S represents the corresponding 
processing site (e.g., an ISS), which is a set of processing 
nodes. 

The function ExecSite(X), returns the address of the ex- 
ecution site of X ,  and BaseSite(R) returns the address of 
the site at which the base table R is stored. For a unary 
OS, Rel(X) retums the base relation accessed by the OS. 
Similarly, Re11 ( X )  and Rel2(X) return the relations accessed 
by a binary OS. Function Z = Slower(X,Y) computes the 
quantity, MAX(Ty+A,y. T ~ - + A ~ ~ ) ,  and retums the sequence, 
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Fig. 5.  (a)-(f) Six possible site scheduling cases. 

X or Y, that terminates last. Block(X) returns true the first time 
a node, s ,  where s E Site(X), blocks because of buffers in s 
filling up. Terminated(X) returns true when all nodes in Site(X) 
have completed executing all the operations in sequence, X. 
Scheduled(X), retums true if the sequence X has already been 
scheduled at some site. T = Nearest(S) retums an idle site 
that is “nearest” to site, S,  in terms of communication distance 
(measured in terms of number of hops in a point-to-point 
communication network). The value returned by Nearest(S) 
could be S itself. 

Six distinct types of nodes can be identified in a legal OS 
tree. Since a node in the OS tree represents a schedulable 
unit, these node types represent the six cases for which OS 
scheduling needs to be considered. Fig. 5(a) to 5(f) illustrate 
the various cases. Fig. 5(d) and 5(e) are different orientations 
of the same OS tree. The tree orientation is significant because 
the following discussion assumes that the left subtree of a node 
is always the first one to block or terminate. 

When executing operation sequences, it is assumed that 
whenever possible, pipelined parallelism is employed between 
operations sequences and between database operations within 
a sequence. Thus, the individual steps within each algorithm, 
such as sorting, data redistribution, and hash table creation, 
are executed as pipelined steps. The OS scheduling policies 
attempt to maximize pipelined parallelism and the overlap 
between computation and communication. For example, let 2 
denote a join sequence. Let the two input operation sequences 
to Z be X and Y ,  and let X be scheduled on ISS, and Y 
on ISS,. If the result of X becomes available first, then 2 is 
scheduled on an ISS, say, ISS,, which is closer to ISS,, and 
transfer of data is initiated from ISS, to ISS,. Also, the output 
data being generated at ISS, is transferred to ISS,. Choosing 
ISSz close to ISS, minimizes the impact on execution time 
of the data transfer between Y and 2 once Y terminates. 
Although the transfer from X to 2 may take longer, this time 
is overlapped with the processing of relation Y. Similarly, if 
the result of P becomes available first, then 2 is scheduled 
closer to ISS,. 

The join operation is initiated only after the data of both 
input operands have arrived at ISS,. However, to support 
pipelined parallelism, the appropriate preprocessing operation 

such as data redistribution, sorting, and hash-table creation, is 
initiated as soon as thefirst unit of data of either input arrives 
at ISS,. Data redistribution can be employed to reduce the 
join processing time in certain situations [ 3 ] .  Local sorting 
can be started in the case of global sort-based join algorithms. 
Similarly, local hash table creation can be initiated in advance 
in the case of the global hash-based join algorithm. Initiating 
preprocessing steps in this manner allows for overlap between 
operation sequences and provides for pipelined parallelism. 
Site allocation for each of the six cases of OS scheduling is 
discussed in the following subsections. 

Site Alloc~~tion-Case 1:  Fig. 5(a) shows Case 1 of site 
allocation, where the operation sequence is an SS node. The 
SS node is always scheduled at the site of the base table. If S1 
denotes the SS node, then ExecSite(S1) = BaseSite(Rel(S1)). 

Site Allocation-Case 2: The operation sequence in this 
case is a US node. Let U1 be the label of the US node, and 
let SI be the label of its child SS node, if any. The following 
scheduling policy is employed. 

if ((Block(S1) or Terminate(S1)) then 
begin 
Site(U1) = Nearest(Site(S1)); 
Route Output(S1) to Site(U1); 
Start preprocessing at Site(U1); 
end 

Site Allocation-Case 3: Fig. 5(c) shows an OS tree con- 
taining a JS node, J1, whose children are two SS nodes, S1 
and 5’2. The left subtree is assumed to block or terminate 
first. If the right subtree blocks or terminates first, S1 can be 
replaced by Sa, and vice versa, in the following. The JS node 
is scheduled as follows. 

if (Block(S1)) then 

else if (Terminate(S1)) then 
begin 

Site(J1) = Nearest(Site(Slower(S1. Sa))) 

Site(J1) = Nearest(Site(S2)); 
Route Output(S1) and Output(S2) to Site(J1); 
Start preprocessing at Site(J1); 

end 

Site Allocation-Case 4: Fig. 5(d) shows an OS tree con- 
taining a JS node, J z ,  whose left child is an SS node, S1, and 
whose right child is a JS node, J1. As before, the left subtree 
is assumed to block or terminate first. Node .I2 is scheduled 
as follows. 

if ((Block(S1) or Terminate(S1)) and (not Scheduled( .I1))) 
then 

Site(&) = Nearest(Site(J1)); 
else if (Block(S1) and Scheduled(J1)) then 
Site(J2) = Nearest(Site(Slower(S1,Jl))); 
else if (Terminate(S1) and Scheduled(J1)) then 

Site(J2) = Nearest(Site(S1)); 
Route Output(S1) and Output(J1) to Site(J2); 
Start preprocessing at Site(&); 

Site Allocatiorz-Case 5: Fig. 5(e) shows an OS tree con- 
taining a JS node, 52, whose left child is a JS node, .]I, 
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and whose right child is an SS node, SI. The sequence 51 
is assumed to block or terminate first. Node J2 is scheduled 
as follows. 

if (Block(J1)) then 
begin 
Create space in buffers of blocked node s ,  where 
s E Site(J1) 

(e.g., using redistribution and writing to disk); 
Resume J1; 

end 
else if (Terminate( JI))  then 
begin 

Site(J2) = Site(J1); 
Route Output(S1) and Output( 51) to Site(&); 
Start preprocessing at Site(J2); 

end 

Site Allocation-Case 6: Fig. 5(f) shows an OS tree con- 
taining a JS node, J3, with two child nodes, J1 and J2, which 
are both JS nodes. Node 51 is assumed to block or terminate 
first. If J2  terminates or blocks first, 51 can be replaced with 
J2 ,  and vice versa, in the following. Node J3 is scheduled as 
follows. 

if (Block(J1)) then 
begin 

Create space in buffers of blocked node s, where 
s E Site(J1) 
(e.g., using redistribution and writing to disk); 
Resume J1 ; 

end 
else if (Terminate(J1)) then 
begin 

Site(J3) = Site( Jz); 
preprocess Outputt 51) at Site( J1); 
When 52 terminates: 
co-begin 

Preprocess Output( 52); 
Transfer preprocessed data of 51 to Site(J3); 

co-end 
end 

A Dynamic Site Allocation Example: Site allocation for 
operation sequence execution is explained here via an example. 
As seen from the previous discussion, site allocation decisions 
are dynamic, except in the case of selection sequences. In 
general, specific sites are not reserved in advance when a 
query is activated. 

Consider the OS tree of Fig. 4(b). The tree contains the 
sequences shown in Table 11. The selection sequences, SI, 5’2, 

and S3 operate on relations R I ,  R2, and R3, respectively. 
Assume that the base cube of the multicomputer system 
contains four ISS’s, numbered 0 to 3 ,  as shown in Fig. 6. 
Suppose relations R1 and R3 reside on ISS1, and R2 resides 
on IS&. Thus, S1 and S3 are scheduled at ISS1, and S2 is 
scheduled at I S S 2 .  

In the example, assume that SZ completes first (Case 3). 
The join sequence, J1, is then scheduled near SI. Assume 
that J1 is scheduled on ISSl itself. The output of SZ is then 

JZ Join, Output 

TABLE 11 
EXAMPLE OF OPERATION SEQUENCES LN A QUERY 

(to be determined by the site allocation policies (TBD)) 

{ % , 0 1 }  R7,Rs TBD 

ISS * 

‘ R I  R3 

ISS , 

ISS 

s 2  

ISS 

“i 

( J I  s, ) 

Fig. 6. 
four ISS’s. 

Scheduling example using a hierachical multicomputer system with 

routed to ISSl from IS&. The available tuples of €24 and 
R5 are preprocessed at ISS1, and J1 is initiated when S1 
completes. S3 is also initiated as soon as S1 completes. After 
S3 terminates, U1 is scheduled at, say, ISS3 (assume that ISSl 
is still busy). Fig. 6 shows a summary of the order in which the 
various operations sequences are performed at each ISS. The 
join sequence, Jz, is scheduled as indicated in Case 6. Suppose 
the first input sequence to terminate is U,. The termination 
results in a message to the host node and the initiation of 
preprocessing operations at ISSl (= Site(Ul)). Now, when 51 
terminates, the preprocessed output of SI is sent from ISS3 to 
JSS1, and the join sequence J2 is initiated at IS&. The final 
output is collected via the OCN associated with ISS1. 

In the above example, if 5’1 had terminated first instead of 
S2, then J1 would have been scheduled at Nearest(Site(Sz)), 
say, at I S S 2  itself. Preprocessing of Rq and the available tuples 
of R5 would have begun at IS& and S3, and U1 would have 
been executed at ISS1. In this case, when J1 terminates, data 
would be tranferred from ISSl to IS&, and J2 would be 
executed at ISS2. In general, since it is difficult to compute 
the exact completion times of each OS, it is also difficult to 
statically determined the best site for executing each operation 
sequence in a given query. The problem becomes even more 
difficult when we allow interquery concurrency. Thus, the site 
allocation heuristics dynamically choose the best available site 
at the given point in time. 

E. Determining the Resource Requirements of a Q u e 9  

As mentioned earlier, each OS in the OS tree represents 
a minimum schedulable unit. An OS is associated with the 
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CPU, 1-0, and communication costs required to execute 
the individual database operations in that sequence. Thus, 
each OS is associated with certain “resource requirements.” 
To ensure that a query is executed to completion without 
resource deadlocks, the total resource requirements of the 
corresponding OS tree must be determined. Next the query 
scheduling policies must ensure that the system can satisfy 
the resource requirements of the query to be scheduled, given 
the resource allocation policies. Query resource requirements 
are determined as described in the following section. 

The Active Sequence Count (ASC): The resource require- 
ments of a query are determined by the active sequence count 
(ASC) of each query. The ASC is defined as follows. 

Definition 3.1: The ASC of a query is given by the sum 
of the number of base join sequences in the query plus the 
number of unary sequences in the query. 

Definition 3.2: A base join sequence is a join sequence in 
which at least one of the inputs is a selection sequence. 

The dynamic site allocation policies described in Section 
111-D provide an upper bound on the number of sites required 
to process a query that is equal to the ASC of the query. This 
result can be obtained by considering each of the six types of 
OS tree nodes mentioned in Section 111-D. 

Lemma 4.1: A selection sequence does not contribute to the 
ISS resource demands of a query. 

Proof: In optimized queries, selection sequences are as- 
sumed to be executed at the node 1-0 processors. If there 
are several selection sequences to be executed at a node, 
the requests are queued using a standard queueing discipline, 
e.g., first-in, first-out. If a node gets blocked during selection, 
i.e., if the buffers become full, then an ISS is found for the 
next operation, and data are routed via the communications 
processors and inter-ISS communications links. Thus, the node 
CPU’s are not employed in processing this sequence. Since the 
node CPU and intra-ISS communications resources are not 
employed in processing this OS, the number of sites needed 
for this OS is defined to be equal to 0. 

Fig. 5(a) shows an OS tree containing an SS node, From 
Definition 3.1, the ASC of this tree is equal to 0. 

Lemma 4.2: A unary sequence contributes one ISS to the 
ISS demands of a query. 

Proof: First, unary sequences can have only selection 
sequences as inputs. If they had a join sequence as input, the 
operations in the sequence would be combined with those of 
the preceding join sequence to obtain a new join sequence. As 
mentioned above, the selection sequence is scheduled on the 
1-0  processors of the appropriate site. When, this sequence 
blocks or terminates (Case 2 in site allocation), it is necessary 
to assign a site for the US node. Thus, the number of sites 
required for unary sequences is 1. 

Fig. 5(b) shows an OS tree containing an SS node and a US 
node. By Definition 3.1, the ASC of this tree is 1. 

Lemma 4.3: A join sequence contributes one ISS to the ISS 
demands of a query only if it is a base join sequence. 

Proof: Consider the four site allocation cases, namely, 
Cases 3 4 ,  in Section 111-D. Cases 3 and 4 require an ISS 
to be identified to execute the upcoming join sequence, as 
soon as the left-hand input blocks or terminates. However, 

Case 5 does not require a new ISS for executing the join 
sequence, because the join sequence is scheduled at the site 
of the left-hand input itself. However, note that Cases 4 and 5 
represent the same type of join sequence, namely, one that has 
a simple/join sequence as one input and a selection sequence 
as the other input. Thus, in terms of ISS requirements, Case 
4 represents the worst-case situation for such a join sequence. 
Finally, Case 6 does not require a new ISS to be allocated for 
the upcoming join. Thus, only Cases 3 and 4 require a site to 
be available in order to schedule the subsequent join sequence. 
Since the join sequences in Cases 3 and 4 represent base join 
sequences, the above lemma is proved. 

By Definition 3.2, the OS tree in Fig. 5(c), 5(d), and 5(e) 
will be assigned an ASC equal to 1, whereas the OS tree in 
Fig. 5(f) will be assigned an ASC equal to 0. From Lemmas 
4.1 to 4.3, it is clear that Definition 3.1 correctly specifies 
the resource requirements of a query, except in the case of 
Case 5 of Section 111-D, where the definition results in an 
overestimation. 

IV. QUERY SCHEDULING POLICIES 

When executing multiple queries concurrently, the host 
computer employs a policy by which to choose the next query 
to be scheduled. Queries are selected for execution based on 
their resource requirements, which is indicated by their ASC’s. 
The sum of all the ASC’s of all currently active queries is 
the total active sequence count (TASC). Thus, the number of 
available ISS’s in the system at any time is, AVAIL equals the 
total number of ISS’s in the system, or the TASC. A query is 
selected for execution only if its ASC 5 AVAIL. All queries 
are assumed to have the same level of priority. 

A. Indefinite Wait and Deadlock Prevention Mechanisms 

The query selection policies must ensure that both system 
deadlock and indefinite wait conditions are avoided. Indefinite 
waits are prevented by time-stamping queries with arrival 
times. A query is forced to the head of the query queue if 
its waiting time exceeds a given limit. Once the resources 
required to execute this query become available, the aged 
query is initiated. 

System deadlock is avoided by limiting the number of 
active queries in the system. For example, a deadlock may 
arise when processing, say, an OS tree that has the structure 
of a degenerate binary tree, if all later join sequences are 
scheduled on the available ISS’s and the first join sequence 
is unable to execute because of the unavailability of ISS’s. 
Such deadlocks are prevented by maintaining a running TASC 
count and ensuring that the TASC never exceeds the number 
of ISS’s in the system. The following TASC update policy is 
used in the control node. 

TASC Incrementation: The TASC is incremented by the 
ASC count whenever a new query is scheduled; i.e., TASC 
:= TASC + (ASC of the new, active query). 

TASC Decrementation: The TASC is decremented by one 
either (1) when a query containing at least one simple or join 
sequence terminates, or ( 2 )  whenever the second input to a 
join sequence terminates, provided that it is not a selection 
sequence. 
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Type Query Tree Description Frequency Height, h ASC 

1 60 1 0 

2 Single join operation 50 1 1 

Single select operation 

3 Linear ioin tree with two joins 35 2 2 

611 

Data Set 2 

B .  Simulation Study 

The performance of the various query scheduling policies 
was studied via simulations. The simulation program incorpo- 
rates the various site allocation policies described in Section 
111. The input to the simulation is a set of base relations and 
queries, and the output consists of the global and average 
query completion times as well as the average query initiation 
delay for all the queries in each query mix. The global 
query completion time is the time interval from the arrival 
of the first query until the completion of the last query. The 
average quety completion time is the average of the individual 
completion times of all the queries in the set, and the average 
initiation delay is the average of the time each query in the 
set must wait from its arrival time to the time it is actually 
scheduled. 

The simulation assumes a multicomputer system consisting 
of a 1024-node base cube divided into 64 ISS’s of 16 nodes 
each. The parameter values chosen were similar to those 
of the NCUBE hypercube system [20]. For example, each 
node contains a 2-MIPS CPU with internode communica- 
tion handled by communications processors using 20-Mbit/s 
communication links. A maximum limitation of 64 kilobytes 
is imposed on the packet size. A total of 100 different 
base relations are generated, with each relation consisting of 
between 2000 and 10000 tuples. All tuples are of 128 bytes, 
and the actual number of tuples in each of the 100 relations is 
randomly generated. The relations are distributed across the 
64 ISS’s such that each of the 36 lower-numbered (0-35) 
ISS’s store two relations, and the remaining 28 ISS’s store 
only one relation each. Within each ISS, tuples of relations 
are uniformly distributed across all the nodes. 

Generating an appropriate or representative query mix is 
important to the outcome of the experiments. The objective of 
the simulation here is not to tune the system performance for 
a particular type or class of workload. Rather, the intention 
is to study the behavior of the different query scheduling 
policies for the same set of random queries. A query mix 
containing eight types of queries of varying complexity is 
chosen. The base relations accessed by a query are determined 
by generating random numbers that link queries to relations. 
The query mix consists of 200 queries distributed among the 
eight different types as shown in Table 111. For each query 
type, the frequency of its occurrence in the mix, the height of 
the query tree, h (root is at level l), and the active sequence 
count, ASC, are shown. The following four query scheduling 
policies are investigated: 

1) The maximum active sequence count (MASC) policy, 
which selects the query with the greatest ASC first; 

2) The least active sequence count (LASC) policy, which 
selects the query with the least ASC first; 

3) The tallest query tree first (TQTF) policy, which selects 
the query with the greatest height first; and 

4) The shortest query tree first (SQTF) policy, which selects 
the query tree with the smallest height first. 

Results from running the simulation on 10 different data 
sets, i.e., the same set of queries running against different sets 
of base relations, are presented in Table IV. 

AQCT 2551 2526 1070 
AQID 1596 1814 160 
GQCT 14840 14840 16501 

TABLE 111 
QUERY M[X USED IN SIMULATION 

DataSet 3 

DataSet 4 

DataSet 5 

DataSet 6 

DataSet 7 

AQCT 3241 3135 1289 
AQID 1961 2210 154 
GQCT 6520 6520 8930 
AQCT 2330 2288 1000 
AQID 1442 1630 148 
GQCT 4957 4957 7031 
AQCT 2298 1709 995 
AQID 1524 1709 149 
GQCT 6956 6956 7909 
AQCT 2497 2467 1010 
AQID 1638 1819 138 
GQCT 9746 9746 11546 
AQCT 2924 2834 1209 

Linear join tree with six joins 
2 2 

DataSet 10 

TABLE IV 
SIMULATION RESULTS 

(all times in ms) 
GQCT=global query completion time 

AQCTzaverage query completion time 
AQID=average query initiation delay 

AQID 1633 1885 151 
GQCT 7337 7337 8178 
AQCT 2204 2151 1054 

DataSet I I MASC I TQTF I LASC 
GQCT 12571 12571 14075 

GQCT 6346 6346 7561 

GQCT 10529 10529 11721 

AQID 2021 
GQCT 5704 5704 6468 

Data Set 9 AQCT 2586 2533 1021 

I AQID 1 1334 I 1509 I 151 

Since queries are generated randomly, each data set repre- 
sents different base relation access requirements. For the above 
mix of queries, the LASC and SQTF policies provide identical 
results for reasons explained below. Thus, the table shows only 
the results for the MASC, LASC, and TQTF policies. The 
MASC and TQTF policies behave identically for linear OS tree 
queries, because in this case, the queries with the maximum 
ASC are also the ones with the greatest height. The global 
query completion time, average individual query completion 
times, and the average query initiation delay are computed for 
each data set. The 10 data sets cannot be compared against one 
another, because they represent different base relation access 
requirements; but certain characteristic pattems are common to 
all. For example, LASC and SQTF always behave identically; 
the MASC/TQTF policies result in lower global completion 
times but higher average processing times and average ini- 
tiation delays with respect to LASC; and though MASC and 
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Data Set 

Data Set 1 

DataSet 2 

Data Set 3 

Data Set 4 
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LASC SQTF 

AQCT 2302 2224 

AQID 418 401 

AQCT 1800 1795 

AQID 344 348 

AQCT 2836 2715 

AQID 402 365 

AQCT 1847 1903 

AQID 335 331 

TABLE V 
COMPARISON OF LASC AND SQTF POLICIES 

(all times are in ms) 
AQCT=average query completion time 
AQID=average query initiation delay 

TQTF have the same global query completion times, the TQTF 
policy has lower average individual completion times, but 
higher average initiation delays. 

The reasons for the similar performance of LASC and SQTF 
are as follows. For relatively simple queries, i.e., queries with 
few operations, both policies execute the queries in about the 
same order. Since a majority of queries in the above mix 
are simple queries, both LASC and SQTF provide the same 
results. Table V shows the results for these two policies for 
a query mix containing only complex queries, namely, Types 
5 ,  6, and 8 queries. In this case, there is a difference between 
the two policies. 

The lower global query completion times of the MASC 
and TQTF policies are directly related to the availability 
of the system resources. At startup, or under low resource 
utilization, all system resources are available. Thus, it is 
possible to initiate many complex queries without incurring 
long initiation delays. Since the simple queries can generally 
be scheduled without much initiation delays, because of their 
limited resource requirements, scheduling them later does not 
add much to the overall query initiation delay. Thus, these 
policies generally result in reduced overall processing time. 
On the other hand, if the simple queries are scheduled ahead 
of the complex queries (using, say, LASC), then relatively 
long initiation delays will result when the complex queries are 
scheduled, thereby leading to greater overall completion times. 
The longer average completion time and initiation delays of 
the MASC and TQTF policies is the result of the long initiation 
delays experienced by the simple queries, which have to wait 
for the complex queries to complete execution. 

The MASC policy results in higher average completion 
times, but lower average initiation delays than TQTF. Al- 
though both policies favor complex queries over simple ones, 
MASC executes the “more complex” Type 8 queries before the 
Types 3-6 queries. Thus, using the same reasoning as above, 
executing more complex queries first results in lower initation 
delays, but higher completion times. 

V. CONCLUSION 

We addressed some run-time system policy issues for data- 
base processing in distributed memory multicomputer sys- 
tems. Specifically, dynamic site allocation and query sched- 

uling policies were examined for a hierarchically structured, 
hypercube-based multicomputer system. The site allocation 
policies do not perform a priori optimizations. Instead, sites 
are selected as required during the execution of a query. The 
paper analyzed and studied the use of such policies in parallel 
computer systems, where it is difficult to precisely predict 
the time of occurrence of future events. A simulation was 
carried out using randomly generated data sets and queries 
to study a few query scheduling policies, assuming a run- 
time system that implements the given site allocation policies. 
For the query mix considered, the results showed that policies 
that gave preference to complex queries had higher average 
query completion times, but lower average initiation delays. 
The results obtained are applicable in general to a variety of 
multicomputer systems that satisfy the “site model” mentioned 
in Section 111. 

Many interesting issues still remain to be studied. Initial data 
distribution is an important consideration. We assumed partial 
declustering of data with uniform degree of declustering. Other 
schemes can also be examined. Several variations of the site 
allocation policies can be studied, including those that account 
for the sizes of intermediate relations. The simulation can also 
be carried out for different types of workloads to study whether 
certain allocation and scheduling policies are more suitable for 
particular workloads. 
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