
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 4, AUGUST 1994 609

Site and Query Scheduling Policies
Multicomputer Database Systems

in

Ophir Frieder, Senior Member, IEEE, and Chaitanya K. Baru, Senior Member, IEEE

Abstract- We study run-time issues, such as site allocation
and query scheduling policies, in executing read-only queries in
a hierarchical, distributed memory, multicomputer system. The
particular architecture considered here is based on the hypercube
interconnection. The data are stored in a base cube, which is
controlled by a control cube and host node hierarchy. Input query
trees are transformed into operation sequence trees, and the oper-
ation sequences become the units of scheduling. These sequences
are scheduled dynamically at run-time. Algorithms for dynamic
site allocation are provided. Several query scheduling policies
that support interquery concurrency are also studied. Average
query completion times and initiation delays are obtained for the
various policies using simulations.

Index Terms-Database systems, multicomputer systems, par-
allel database systems, query processing, scheduling, relational
joins

I. INTRODUCTION

ATABASE processing applications can benefit from the D use of parallel processing techniques such as data parallel
algorithms and intra- and interquery concurrency. The use
of data parallel algorithms improves the execution times of
individual database operations. Query response times can be
reduced by supporting intra- and interquery concurrency or
parallelism. A variety of special purpose database machines
have been proposed to exploit the various levels of parallelism
available in database applications. A survey of such machines
is available in 1371. However, the growth in the number
and variety of general purpose multiprocessor/multicomputer
systems provides a justification to study the use of such
systems for database processing. Various issues that need to
be addressed in using multicomputer systems for database
processing include the use of data parallel algorithms and par-
allel query execution strategies, data distribution/declustering
techniques, query coordination and result collection, single-
input, multiple-data (SIMD) versus multiple-input, multiple-
data (MIMD) mode of operation, e.g., concurrency control,
and logging and recovery.

Several parallel database system issues have been addressed
by earlier database machine projects, such as DIRECT [1 I],
GRACE 1241, RDBM 111, BUBBA 181, and GAMMA [12].

Manuscript received August 10, 1990; revised September 14, 1993. The
work of 0. Frieder was supported in part by the National Science Foundation
under Grant CCR-9109804; the work of C. Baru was supported in part by
the National Science Foundation under Grant IRI-87 10855.

0. Frieder is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030 USA.

C. Baru is with 1BM Toronto Laboratories, IBM Canada Ltd., North York,
ON, Canada.

IEEE Log Number 9403084.

DIRECT is a shared memory multiprocessor database machine
in which the data from disks are staged into shared memory
modules and the processors access the memory modules via
a crossbar network. GRACE is also a multiprocessor database
machine with a shared architecture. Data from disks are staged
into several memory modules via a ring interconnection and
reach the processors via a second ring interconnection. RDBM
employs functionally specialized processors. Data are stored
in a common disk subsystem, and the functionally specialized
processors receive data from this subsystem. The processors
communicate via shared memory. GAMMA and BUBBA are
classified as shared-nothing multicomputers 1381 where the
system consists of several independent computers, each having
its own memory, disks, and software. Thus, there is no sharing
of either memory or disks and processors communicate via
messages.

A . Database Processing on Hypercubes

Recently, several researchers have been studying the use
of hypercube-based architectures for database applications

[40]. An initial study of data redistribution and the nested-
loop join algorithm in a hypercube system is reported in [2].
A comparison of the nested-loop, global-sort, and global-
hash-based join algorithms is provided in 131. Algorithms
for theta-join computation are presented in 1131. [15l. Index
and hash-based join algorithms were studied in 1311, [32],
and the implementation of a variety of join algorithms on
a JPL Mark 111 hypercube is reported by Upchurch et al.
in [40]. An implementation of semijoin algorithms on a 16-
processor hypercube is discussed in 1331. Implementation of
join algorithms on an experimental 16-node hypercube and
comparisons based on the Wisconsin benchmark are described
in [9]. Information retrieval algorithms for a library database
are discussed in [SI. DeWitt er al. report the implementation
of GAMMA Version 2.0 on an Intel iPSCI2 containing 32
nodes [121. Frieder et al. [171 experimentally evaluated the
effects of data volume and distribution on the performance
of a hypercube database engine. Other relevant work includes
that of Pfaltz et al. 1361, where a formal notation is derived
for expressing database operators in a parallel environment and
Topkar et al. [391, where several duplicate removal algorithms
are presented and evaluated. Lakshmi and Yu 1251 evaluate
the overall effectiveness of parallel joins in the presence of
data skew is presented. An approach to database processing
based on logical E-R schema graphs is explored in [4], where
lower bounds are derived for the squashed embedding of

[21-[51, 191, 1121, [131, [151, [171, 1291, 1313-[333, [W , [39l,

10414347/94$04.00 0 1994 IEEE

610 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 6, NO. 4. AUGUST 1994

E-R schemas in hypercubes. Several studies have also been
conducted on file systems and input-output (1-0) architecture
for hypercube computers [lo], [191, 1211, 1421.

B . Site Allocation and Query Scheduling

Most of the work cited above is related to the study of
individual relational database operations. However, in a par-
allel database system, it is also neccesary to devise strategies
for the parallel execution of the various operations in a query
and concurrent execution of several queries. We present the
architecture of a run-time system that incorporates site allo-
cation and query scheduling algorithms to support inter- and
intraquery parallelism in a highly parallel, distributed memory
multicomputer system. The run-time system architecture is
based on simple, dynamic schemes that can operate effectively
in the presence of frequent changes in the events and state
of the computer system. For example, the site allocation and
query scheduling strategies use only current system informa-
tion rather than employing a priori optimization. This decision
is based on the realization that it is difficult to accurately
predict the times of future events in a highly parallel system.
The effect of this strategy on different query scheduling
policies is studied using simulated data sets and queries in a
hypercube multicomputer system. The general site allocation
and query scheduling methods described here are applicable to
a wide range of distributed memory multicomputer systems.
However, the system model and cost functions used here
assume a hypercube multicomputer system.

Martin, Lam, and Russell [28] examined the site allocation
problem. They defined queries by trees where nodes in the
query tree represented base and intermediate relations. Using
any of four suggested heuristic algorithms (branch and bound,
greedy, simulated annealing, and local search), they identified
the best allocation of the tree nodes onto the execution sites
of the multiprocessor system. Liu and Chang [27] focused
on the selection of a copy of a relation from within a set of
replicated copies in a distributed environment. By enumerating
all possible strategies, their algorithm selected the best copy
in terms of communication and processing costs. Finally, Yu
et al. [43] developed a heuristic approach to select the copy of
choice within a replicated distributed database environment
without the enumeration of all possible choices. Heuristic
algorithms that approximate optimal solutions for a problem
related to the mapping problem [6] are found in [6], [7], [16],
1261.

Prior query scheduling schemes are limited and mainly deal
with intraquery parallelism. Ganguly et al. [18] augment an
annotated join tree to handle query execution in a parallel en-
vironment. Ioannidis and Cha Kang [23], to reduce scheduling
complexity, schedule query fragments instead of individual
join operators. Finally, Pramanik and Vineyard [34] optimize
join queries in distributed environments by translating join
graphs into semijoin graphs and focusing on the various
components that comprise the execution of the query.

The remainder of this paper is organized as follows. Basic
definitions and background material are provided in Section
11. Section 111 discusses various issues in site allocation and

Fig. 1 . A 4-D hypercube.

the different cases that need to be considered for dynamic
site allocation. Issues in query scheduling are discussed in
Section IV. Four query scheduling policies are examined
and simulation results are presented. Section V provides a
conclusion.

11. BACKGROUND

A. System Architecture

The issues discussed herein are generally applicable to
any distributed memory multicomputer system. Our results,
however, are based on a hypercube multicomputer system. The
architecture model and other details of the hypercube system
are described here.

A hypercube system employs an n-dimensional Boolean
cube interconnection scheme. The n-dimensional Boolean
cube or Boolean n-cube, Qn, is defined as a cross-product of
the graph K2 and the (n- 1)-dimensional Boolean cube Q n - l r
with Q1 = Ka. The graph Qn contains p = 2" nodes, each of
which is uniquely identified by an n-bit label or node address.
Each node is connected (or adjacent) to n neighbors, such that
the addresses of the node and each neighbor differ in a single
bit. For example, in a 4-D cube, Q4, node 0000 is adjacent
to nodes 0001, 0010, 0100, and 1OOO. Fig. 1 shows a 4-D
cube containing 16 nodes. Commercially available hypercube
systems include Intel's iPSC/i860 and NCUBE's NCUBE/10
[201.

The multicomputer system is assumed to have a hierarchical
architecture, consisting of a base cube, Qb, a control cube,
Q c , and a host node, H , as shown in Fig. 2. Each node in this
system is a complete computer system containing a central
processing unit (CPU), memory, an intelligent disk controller,
and communications processors (with buffers) associated with
each communication link. The disk controller has direct mem-
ory access (DMA) capability to directly store data either in
local memory or in one of the communication buffers. Within
the base and control cubes, data transfer and communication
among nodes can be achieved by using packet-switching or
cut-through routing techniques. The internode communication

FRIEDER AND BARU: SITE AND QUERY SCHEDULING POLICIES 61 1

3 n

KEY

0 - Basecube

0 - Control Cube

Fig. 2. Hierarchical cube multicomputer system.

time, t,,,,, consists of a fixed startup overhead plus an
incremental data transfer time per byte, i.e., t,,,, = a: + /3z,
where a: is the startup overhead, B is the incremental transfer
time per byte, and z is the message size in bytes. Typical
values for a: and p are in the ranges 0.2-0.5 ms and 0.4-2.6
ps, respectively.

B. Initial Data Distribution

The database is stored in the base cube, Q b , containing
p = 2b nodes. Nodes in the base cube are logically partitioned
into uniformly sized subcubes called initial storage subcubes
(ISS’s), of dimension (L < b. Thus, there are 2’-” ISS’s in
the base cube. Database relations are declustered (i.e., data in
one relation are distributed over several nodes) across all the
nodes of an ISS. The appropriate ISS size is selected based on
parameters such as the 1-0, CPU, and primary and secondary
memory capabilites of each node, the size of relations in the
database, and the number of relations in the database. The
communication links at each node are divided into intra- and
inter-ISS links. Relations are transferred in their declustered
form across ISS’s using the inter-ISS links.

All the nodes in an ISS are connected to a single output
collection node (OCN) via a bus. All OCN’s are in turn
interconnected in the form of a hypercube, called the control
cube, Qc. The OCN’s send commands and collect output to
and from the ISS nodes. Finally, all OCN’s are connected
via a separate bus to the host node, H . The buses between
the different levels are used for transfer of commands and
results, not for executing the database operations. Thus, these
buses allow for the overlapping of output collection with result
computation.

In general, it is possible to employ ISS’s of nonuniform
sizes. In this case, data transfer algorithms need to be devised
for transferring data between subcubes of unequal size. A
similar situation also arises in a system with uniform ISS sizes

if relations are allowed to be declustered across a subset of the
nodes of the ISS. (In a hypercube system, the subset should
form a subcube.) The problems of ISS size selection, initial
data placement, and data transfer between subcubes of unequal
size are not discussed here. Henceforth, each base relation is
assumed to be contained entirely within a single ISS, with
the tuples evenly distributed among the ISS nodes. This form
of data distribution is referred to as partial declustering with
uniform degree of declustering; i.e., each relation is spread
across some, but not all, the nodes in the system (partial
declustering), and every relation is distributed across the same
number of nodes (uniform degree).

C. Parallel Algorithms
Let Qa denote an ISS. As mentioned above, there are Zb-”

ISS’s (or Qa’s) in Q b . Since relations are declustered across
the nodes of an ISS, one can employ data parallel algorithms
within each ISS for the various database operations such as
select, project, join, and scalar aggregation. Implementations
of some of these operations in a hypercube system are de-
scribed in 121, [3], 1151. Join algorithms that employ a cycling
(or global nested-loop) algorithm and use either nested-loop or
sort-merge algorithms locally, at each node, are introduced in
121. Several other hypercube join algorithms have since been
suggested in the literature, including schemes that employ
broadcast communication, semijoins, indices, and hashing
[31], [33], 1401. Global algorithms, based on global-sort
(Hyperquicksort [41]) and global-hash schemes are presented
in [3]. In the cycling schemes, the tuples of the smaller (outer)
relation (R l) are sent to all processors containing tuples of the
larger (inner) relation (R2) by forming a ring of processors
within the ISS and sending the data of the smaller relation
around the ring. In contrast, the global algorithms partition the
tuples of both R1 and R2 across the set of processors, based on
the join attribute values, using recursive halving schemes. The
performance of the cycling and global algorithms is compared
in 131, [15]. In general, the global algorithms were found
to outperform the cycling algorithms. A review of various
implementations of the join operation is provided in 1301.

111. DYNAMIC SITE ALLOCATION

Query execution is initiated by the arrival of a compiled
and optimized query at the host node, H . The output from
the optimization step is a query tree containing parallel data-
base operations at the nodes of the tree. This query tree
is transformed into an operation sequence tree (OS-tree) as
described below. The host node directs the necessary disk 1-0
commands to the relevant OCN’s, which queue disk requests
and broadcast them on a first-come-first-served basis to the ISS
nodes. The disk 1-0 requests are accompanied by the qualifiers
required for any selections that need to be performed on the
base relations. Further operations in the query are scheduled
at the nearest idle ISS. If k represents the number of inter-ISS
links to be traversed from a given ISS to any other ISS, then
the nearest ISS is the one for which k is a minimum. An idle
ISS is one in which none of the node CPU’s is executing a
parallel database operation.

612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 6, NO. 4, AUGUST 1994

n

Fig. 3. The site-based model of a multicomputer system

A . The System Model

For the purpose of site allocation and query scheduling,
a hierarchical multicomputer system is modeled as a set of
independent ‘‘sites’’ where each site has processing and I-
O capabilities. Fig. 3 illustrates this site-based model of the
system. The sites are connected together by a point-to-point
ring interconnection, and each site is also connected directly
to the central host, H , which makes the run-time scheduling
decisions. A site may represent any combination of processing
nodes and disks. In the hypercube multicomputer system, each
ISS in the base cube corresponds to a site in Fig. 3, and
the inter-ISS links correspond to the ring interconnection.
The control cube and host node together correspond to the
host node of Fig. 3. This site model is sufficiently general
to accommodate a variety of other multicomputer systems as
well.

The main memory at each site is assumed to be large enough
to accommodate local segments of two input relations (i.e., the
local segments obtained after applying any applicable search
predicates), partial results being produced at the site, and buffer
space for several disk blocks to allow for prefetching. The
assumptions on the site memory size are justifiable, given
the current rate of growth of main memory capacities. For
example, the second-generation Intel hypercube, the iPSCI2,
allows up to 16 megabytes of memory per node and 128 nodes
(i.e., 2-gigabyte system memory). Thus, if the system was
designed to have 16-node ISS’s, then each ISS would have
a main memory capacity of 256 megabytes.

B. Operation Sequences
An optimized query tree, in which each node represents a

relational operator, is transformed into an OS-tree to aid in the
scheduling of queries. The operation sequence is the smallest
schedulable unit in a query and consists of an ordered list of
one or more consecutive operations in a query tree where all
the operations. except possibly the first, are unary operations.

The first operation in the sequence may be a unary or binary
operation. Operations at a lower level in the query tree appear
first in the sequence. The length of an operation sequence is
defined in terms of the number of operations in the sequence.
Operation sequences can be of any one of three types, namely,
selection, unary, and join. A selection operation performed on
a base relation represents a selection sequence. The length of
this sequence is always equal to 1. Since a selection sequence
always operates on base relations, it is generally executed
at the ISS that stores the corresponding base relation. A
unary sequence is any sequence of unary database operations
immediately following a selection sequence. The length of
a unary sequence is greater than or equal to 1. Finally, a
join sequence is a sequence in which the first operation is
a relational join operation and the remaining operations, if
any, are unary operations. Thus, a join sequence always has
two inputs. The length of a join sequence is greater than or
equal to 1. A join sequence in which at least one of the inputs
is a selection sequence is called a base join sequence. Base
join sequences are important in determining the number of
resources (ISS’s) required by a query, as discussed in Section
IV. Both, unary and join sequences operate on intermediate
relations.

Fig. 4(a) shows a query with three select operations, C T ~ , ~ 2 ,

and 03; one projection operation, II1; two join operations,
w1 and wp; an aggregation operation, al ; and the “output”
operation, 01. Fig. 4(b) shows the corresponding OS tree. The
three select operations are transformed into the three selection
sequences, SI, S2, and 5’3, respectively. The aggregation op-
eration, al , is transformed into the unary sequence, U1. The
join operation, w1, is combined with the subsequent project
operation, II1 to form the join sequence, J1; and the join
operation, w ~ , is combined with the output operation, 01, to
form the join sequence, 52. Sequence J1 is an example of a
base join sequence.

Scheduling operation sequences instead of individual opera-
tions allows for the standard optimizations that can be obtained
by combining consecutive unary operations in a query. It also
reduces the amount of data movement during query execution
and reduces the number of scheduling decisions that need to
be made.

C. System Catalogs

The run-time system in the host node is required to maintain
several data structures to handle intra- and interquery paral-
lelism in the system. A sequence directory (SD) that stores
all the information contained in an OS tree for each active
(already scheduled) and inactive (to be scheduled) query in the
system. Table I shows the typical entries in such a directory
for three queries, Q1. Q2, and Q3. Query Q1 contains two
selection sequences and one join sequence and operates on
base tables R3 and Rg, which are stored in ISSl and IS&,
respectively. Queries Q2 and Q3 contain a selection sequence
and a simple sequence. The inputs to these queries are R7 and
R g , respectively.

Each entry in the SD catalog table has the following in-
formation. A unique sequence number (SEQ#); sequence type

FRIEDER AND BARU: SITE AND QUERY SCHEDULING POLICIES

SEQ# SEQ-TYPE INIT-TIME INPUT-1 I N P U T S

Q1-1 selection 102 R3

Q1-2 selection 1 02 RS

613

SUCC ISS ACTIVE

Q1-3 1 1

Q1-3 3 1

Fig. 4.

~

Q1-3 join 102 Q1-1 Q1-2 Host 3 1

Q2-1 selection 125 R7 Q2-2 2 1

Example

Q2-2

Q3-1

(a)

query tree. (b) Equivalent operation

simple 125 Q2- 1 Host 2 1

selection 915 R4 Q3-2 - 0

sequence tree.

I Q3-2 I simple 1 915 I Q3-1 I I Host I - I 0 I

(SEQ-TYPE); query submission/initiation time (INIT-TIME);
input operand(s) required (INPUT-1, INPUT-2); the sequence
number of the successor sequence (SUCC) or the entry “Host,”
if this is the last sequence in the query; the ISS on which
the sequence was scheduled (ISS), if this is an active query;
and an indication whether the query is active or inactive
(ACTIVE). A 0 in the ACTIVE column indicates that a
query that has entered the system has not yet been scheduled,
whereas a 1 indicates that the query has been scheduled and
is currently being executed. In Table I, query Q3 is yet to be
scheduled.

The host node also maintains an ISS Activity Table, which
provides the availability information for each ISS. Whenever
an ISS becomes free, the next sequence that is ready to
execute, if any, is scheduled from the sequence directory. A
selection sequence is executable if the 1-0 controllers of the
ISS containing the required base relation are free. A simple
or join sequence is executable when the required input(s)
becomes available. If there are no ready sequences and there
are sufficient ISS’s to initiate the next query in sequence,
as determined by the current query scheduling policy, then
the new query is activated. Once a query terminates, the
corresponding row entries are logged and deleted from the SD.

D. Site Allocation Policies

Site allocation is performed at the time of query execution.
This section describes the various possibilities that arise, at
run-time, in allocating a site to perform the next operation
sequence in a given OS tree.

Notation: The notation, SS, is used to denote a selection
sequence, US, to denote a simple (or unary) sequence, and
JS, to denote a join sequence. Let X , Y denote generic
operation sequences, regardless of their type. For a given
operation sequence, say, X , Tdy represents its start time and
A,y represents its estimated duration, i.e., estimated execution
time. The variable s represents a processing node in the
multicomputer system, and S represents the corresponding
processing site (e.g., an ISS), which is a set of processing
nodes.

The function ExecSite(X), returns the address of the ex-
ecution site of X , and BaseSite(R) returns the address of
the site at which the base table R is stored. For a unary
OS, Rel(X) retums the base relation accessed by the OS.
Similarly, Re11 (X) and Rel2(X) return the relations accessed
by a binary OS. Function Z = Slower(X,Y) computes the
quantity, MAX(Ty+A,y. T ~ - + A ~ ~) , and retums the sequence,

614 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 4, AUGUST 1994

(d) (e)

Fig. 5. (a)-(f) Six possible site scheduling cases.

X or Y, that terminates last. Block(X) returns true the first time
a node, s , where s E Site(X), blocks because of buffers in s
filling up. Terminated(X) returns true when all nodes in Site(X)
have completed executing all the operations in sequence, X.
Scheduled(X), retums true if the sequence X has already been
scheduled at some site. T = Nearest(S) retums an idle site
that is “nearest” to site, S, in terms of communication distance
(measured in terms of number of hops in a point-to-point
communication network). The value returned by Nearest(S)
could be S itself.

Six distinct types of nodes can be identified in a legal OS
tree. Since a node in the OS tree represents a schedulable
unit, these node types represent the six cases for which OS
scheduling needs to be considered. Fig. 5(a) to 5(f) illustrate
the various cases. Fig. 5(d) and 5(e) are different orientations
of the same OS tree. The tree orientation is significant because
the following discussion assumes that the left subtree of a node
is always the first one to block or terminate.

When executing operation sequences, it is assumed that
whenever possible, pipelined parallelism is employed between
operations sequences and between database operations within
a sequence. Thus, the individual steps within each algorithm,
such as sorting, data redistribution, and hash table creation,
are executed as pipelined steps. The OS scheduling policies
attempt to maximize pipelined parallelism and the overlap
between computation and communication. For example, let 2
denote a join sequence. Let the two input operation sequences
to Z be X and Y , and let X be scheduled on ISS, and Y
on ISS,. If the result of X becomes available first, then 2 is
scheduled on an ISS, say, ISS,, which is closer to ISS,, and
transfer of data is initiated from ISS, to ISS,. Also, the output
data being generated at ISS, is transferred to ISS,. Choosing
ISSz close to ISS, minimizes the impact on execution time
of the data transfer between Y and 2 once Y terminates.
Although the transfer from X to 2 may take longer, this time
is overlapped with the processing of relation Y. Similarly, if
the result of P becomes available first, then 2 is scheduled
closer to ISS,.

The join operation is initiated only after the data of both
input operands have arrived at ISS,. However, to support
pipelined parallelism, the appropriate preprocessing operation

such as data redistribution, sorting, and hash-table creation, is
initiated as soon as thefirst unit of data of either input arrives
at ISS,. Data redistribution can be employed to reduce the
join processing time in certain situations [3] . Local sorting
can be started in the case of global sort-based join algorithms.
Similarly, local hash table creation can be initiated in advance
in the case of the global hash-based join algorithm. Initiating
preprocessing steps in this manner allows for overlap between
operation sequences and provides for pipelined parallelism.
Site allocation for each of the six cases of OS scheduling is
discussed in the following subsections.

Site Alloc~~tion-Case 1: Fig. 5(a) shows Case 1 of site
allocation, where the operation sequence is an SS node. The
SS node is always scheduled at the site of the base table. If S1
denotes the SS node, then ExecSite(S1) = BaseSite(Rel(S1)).

Site Allocation-Case 2: The operation sequence in this
case is a US node. Let U1 be the label of the US node, and
let SI be the label of its child SS node, if any. The following
scheduling policy is employed.

if ((Block(S1) or Terminate(S1)) then
begin
Site(U1) = Nearest(Site(S1));
Route Output(S1) to Site(U1);
Start preprocessing at Site(U1);
end

Site Allocation-Case 3: Fig. 5(c) shows an OS tree con-
taining a JS node, J1, whose children are two SS nodes, S1
and 5’2. The left subtree is assumed to block or terminate
first. If the right subtree blocks or terminates first, S1 can be
replaced by Sa, and vice versa, in the following. The JS node
is scheduled as follows.

if (Block(S1)) then

else if (Terminate(S1)) then
begin

Site(J1) = Nearest(Site(Slower(S1. Sa)))

Site(J1) = Nearest(Site(S2));
Route Output(S1) and Output(S2) to Site(J1);
Start preprocessing at Site(J1);

end

Site Allocation-Case 4: Fig. 5(d) shows an OS tree con-
taining a JS node, J z , whose left child is an SS node, S1, and
whose right child is a JS node, J1. As before, the left subtree
is assumed to block or terminate first. Node .I2 is scheduled
as follows.

if ((Block(S1) or Terminate(S1)) and (not Scheduled(.I1)))
then

Site(&) = Nearest(Site(J1));
else if (Block(S1) and Scheduled(J1)) then
Site(J2) = Nearest(Site(Slower(S1,Jl)));
else if (Terminate(S1) and Scheduled(J1)) then

Site(J2) = Nearest(Site(S1));
Route Output(S1) and Output(J1) to Site(J2);
Start preprocessing at Site(&);

Site Allocatiorz-Case 5: Fig. 5(e) shows an OS tree con-
taining a JS node, 52, whose left child is a JS node, .]I,

FRIEDER AND BARU: SITE AND QUERY SCHEDULING POLICIES

Sequence

615

Type Operator List Inputs Executed A t

and whose right child is an SS node, SI. The sequence 51
is assumed to block or terminate first. Node J2 is scheduled
as follows.

if (Block(J1)) then
begin
Create space in buffers of blocked node s , where
s E Site(J1)

(e.g., using redistribution and writing to disk);
Resume J1;

end
else if (Terminate(JI)) then
begin

Site(J2) = Site(J1);
Route Output(S1) and Output(51) to Site(&);
Start preprocessing at Site(J2);

end

Site Allocation-Case 6: Fig. 5(f) shows an OS tree con-
taining a JS node, J3, with two child nodes, J1 and J2, which
are both JS nodes. Node 51 is assumed to block or terminate
first. If J2 terminates or blocks first, 51 can be replaced with
J2 , and vice versa, in the following. Node J3 is scheduled as
follows.

if (Block(J1)) then
begin

Create space in buffers of blocked node s, where
s E Site(J1)
(e.g., using redistribution and writing to disk);
Resume J1 ;

end
else if (Terminate(J1)) then
begin

Site(J3) = Site(Jz);
preprocess Outputt 51) at Site(J1);
When 52 terminates:
co-begin

Preprocess Output(52);
Transfer preprocessed data of 51 to Site(J3);

co-end
end

A Dynamic Site Allocation Example: Site allocation for
operation sequence execution is explained here via an example.
As seen from the previous discussion, site allocation decisions
are dynamic, except in the case of selection sequences. In
general, specific sites are not reserved in advance when a
query is activated.

Consider the OS tree of Fig. 4(b). The tree contains the
sequences shown in Table 11. The selection sequences, SI, 5’2,

and S3 operate on relations R I , R2, and R3, respectively.
Assume that the base cube of the multicomputer system
contains four ISS’s, numbered 0 to 3 , as shown in Fig. 6.
Suppose relations R1 and R3 reside on ISS1, and R2 resides
on IS&. Thus, S1 and S3 are scheduled at ISS1, and S2 is
scheduled at I S S 2 .

In the example, assume that SZ completes first (Case 3).
The join sequence, J1, is then scheduled near SI. Assume
that J1 is scheduled on ISSl itself. The output of SZ is then

JZ Join, Output

TABLE 11
EXAMPLE OF OPERATION SEQUENCES LN A QUERY

(to be determined by the site allocation policies (TBD))

{ % , 0 1 } R7,Rs TBD

ISS *

‘ R I R3

ISS ,

ISS

s 2

ISS

“i

(J I s,)

Fig. 6.
four ISS’s.

Scheduling example using a hierachical multicomputer system with

routed to ISSl from IS&. The available tuples of €24 and
R5 are preprocessed at ISS1, and J1 is initiated when S1
completes. S3 is also initiated as soon as S1 completes. After
S3 terminates, U1 is scheduled at, say, ISS3 (assume that ISSl
is still busy). Fig. 6 shows a summary of the order in which the
various operations sequences are performed at each ISS. The
join sequence, Jz, is scheduled as indicated in Case 6. Suppose
the first input sequence to terminate is U,. The termination
results in a message to the host node and the initiation of
preprocessing operations at ISSl (= Site(Ul)). Now, when 51
terminates, the preprocessed output of SI is sent from ISS3 to
JSS1, and the join sequence J2 is initiated at IS&. The final
output is collected via the OCN associated with ISS1.

In the above example, if 5’1 had terminated first instead of
S2, then J1 would have been scheduled at Nearest(Site(Sz)),
say, at I S S 2 itself. Preprocessing of Rq and the available tuples
of R5 would have begun at IS& and S3, and U1 would have
been executed at ISS1. In this case, when J1 terminates, data
would be tranferred from ISSl to IS&, and J2 would be
executed at ISS2. In general, since it is difficult to compute
the exact completion times of each OS, it is also difficult to
statically determined the best site for executing each operation
sequence in a given query. The problem becomes even more
difficult when we allow interquery concurrency. Thus, the site
allocation heuristics dynamically choose the best available site
at the given point in time.

E. Determining the Resource Requirements of a Q u e 9

As mentioned earlier, each OS in the OS tree represents
a minimum schedulable unit. An OS is associated with the

616 IEEE TRANSACTlONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6. NO. 4, AUGUST 1994

CPU, 1-0, and communication costs required to execute
the individual database operations in that sequence. Thus,
each OS is associated with certain “resource requirements.”
To ensure that a query is executed to completion without
resource deadlocks, the total resource requirements of the
corresponding OS tree must be determined. Next the query
scheduling policies must ensure that the system can satisfy
the resource requirements of the query to be scheduled, given
the resource allocation policies. Query resource requirements
are determined as described in the following section.

The Active Sequence Count (ASC): The resource require-
ments of a query are determined by the active sequence count
(ASC) of each query. The ASC is defined as follows.

Definition 3.1: The ASC of a query is given by the sum
of the number of base join sequences in the query plus the
number of unary sequences in the query.

Definition 3.2: A base join sequence is a join sequence in
which at least one of the inputs is a selection sequence.

The dynamic site allocation policies described in Section
111-D provide an upper bound on the number of sites required
to process a query that is equal to the ASC of the query. This
result can be obtained by considering each of the six types of
OS tree nodes mentioned in Section 111-D.

Lemma 4.1: A selection sequence does not contribute to the
ISS resource demands of a query.

Proof: In optimized queries, selection sequences are as-
sumed to be executed at the node 1-0 processors. If there
are several selection sequences to be executed at a node,
the requests are queued using a standard queueing discipline,
e.g., first-in, first-out. If a node gets blocked during selection,
i.e., if the buffers become full, then an ISS is found for the
next operation, and data are routed via the communications
processors and inter-ISS communications links. Thus, the node
CPU’s are not employed in processing this sequence. Since the
node CPU and intra-ISS communications resources are not
employed in processing this OS, the number of sites needed
for this OS is defined to be equal to 0.

Fig. 5(a) shows an OS tree containing an SS node, From
Definition 3.1, the ASC of this tree is equal to 0.

Lemma 4.2: A unary sequence contributes one ISS to the
ISS demands of a query.

Proof: First, unary sequences can have only selection
sequences as inputs. If they had a join sequence as input, the
operations in the sequence would be combined with those of
the preceding join sequence to obtain a new join sequence. As
mentioned above, the selection sequence is scheduled on the
1-0 processors of the appropriate site. When, this sequence
blocks or terminates (Case 2 in site allocation), it is necessary
to assign a site for the US node. Thus, the number of sites
required for unary sequences is 1.

Fig. 5(b) shows an OS tree containing an SS node and a US
node. By Definition 3.1, the ASC of this tree is 1.

Lemma 4.3: A join sequence contributes one ISS to the ISS
demands of a query only if it is a base join sequence.

Proof: Consider the four site allocation cases, namely,
Cases 3 4 , in Section 111-D. Cases 3 and 4 require an ISS
to be identified to execute the upcoming join sequence, as
soon as the left-hand input blocks or terminates. However,

Case 5 does not require a new ISS for executing the join
sequence, because the join sequence is scheduled at the site
of the left-hand input itself. However, note that Cases 4 and 5
represent the same type of join sequence, namely, one that has
a simple/join sequence as one input and a selection sequence
as the other input. Thus, in terms of ISS requirements, Case
4 represents the worst-case situation for such a join sequence.
Finally, Case 6 does not require a new ISS to be allocated for
the upcoming join. Thus, only Cases 3 and 4 require a site to
be available in order to schedule the subsequent join sequence.
Since the join sequences in Cases 3 and 4 represent base join
sequences, the above lemma is proved.

By Definition 3.2, the OS tree in Fig. 5(c), 5(d), and 5(e)
will be assigned an ASC equal to 1, whereas the OS tree in
Fig. 5(f) will be assigned an ASC equal to 0. From Lemmas
4.1 to 4.3, it is clear that Definition 3.1 correctly specifies
the resource requirements of a query, except in the case of
Case 5 of Section 111-D, where the definition results in an
overestimation.

IV. QUERY SCHEDULING POLICIES

When executing multiple queries concurrently, the host
computer employs a policy by which to choose the next query
to be scheduled. Queries are selected for execution based on
their resource requirements, which is indicated by their ASC’s.
The sum of all the ASC’s of all currently active queries is
the total active sequence count (TASC). Thus, the number of
available ISS’s in the system at any time is, AVAIL equals the
total number of ISS’s in the system, or the TASC. A query is
selected for execution only if its ASC 5 AVAIL. All queries
are assumed to have the same level of priority.

A. Indefinite Wait and Deadlock Prevention Mechanisms

The query selection policies must ensure that both system
deadlock and indefinite wait conditions are avoided. Indefinite
waits are prevented by time-stamping queries with arrival
times. A query is forced to the head of the query queue if
its waiting time exceeds a given limit. Once the resources
required to execute this query become available, the aged
query is initiated.

System deadlock is avoided by limiting the number of
active queries in the system. For example, a deadlock may
arise when processing, say, an OS tree that has the structure
of a degenerate binary tree, if all later join sequences are
scheduled on the available ISS’s and the first join sequence
is unable to execute because of the unavailability of ISS’s.
Such deadlocks are prevented by maintaining a running TASC
count and ensuring that the TASC never exceeds the number
of ISS’s in the system. The following TASC update policy is
used in the control node.

TASC Incrementation: The TASC is incremented by the
ASC count whenever a new query is scheduled; i.e., TASC
:= TASC + (ASC of the new, active query).

TASC Decrementation: The TASC is decremented by one
either (1) when a query containing at least one simple or join
sequence terminates, or (2) whenever the second input to a
join sequence terminates, provided that it is not a selection
sequence.

FRIEDER AND BARU: SITE AND QUERY SCHEDULING POLICIES

~

Type Query Tree Description Frequency Height, h ASC

1 60 1 0

2 Single join operation 50 1 1

Single select operation

3 Linear ioin tree with two joins 35 2 2

611

Data Set 2

B . Simulation Study

The performance of the various query scheduling policies
was studied via simulations. The simulation program incorpo-
rates the various site allocation policies described in Section
111. The input to the simulation is a set of base relations and
queries, and the output consists of the global and average
query completion times as well as the average query initiation
delay for all the queries in each query mix. The global
query completion time is the time interval from the arrival
of the first query until the completion of the last query. The
average quety completion time is the average of the individual
completion times of all the queries in the set, and the average
initiation delay is the average of the time each query in the
set must wait from its arrival time to the time it is actually
scheduled.

The simulation assumes a multicomputer system consisting
of a 1024-node base cube divided into 64 ISS’s of 16 nodes
each. The parameter values chosen were similar to those
of the NCUBE hypercube system [20]. For example, each
node contains a 2-MIPS CPU with internode communica-
tion handled by communications processors using 20-Mbit/s
communication links. A maximum limitation of 64 kilobytes
is imposed on the packet size. A total of 100 different
base relations are generated, with each relation consisting of
between 2000 and 10000 tuples. All tuples are of 128 bytes,
and the actual number of tuples in each of the 100 relations is
randomly generated. The relations are distributed across the
64 ISS’s such that each of the 36 lower-numbered (0-35)
ISS’s store two relations, and the remaining 28 ISS’s store
only one relation each. Within each ISS, tuples of relations
are uniformly distributed across all the nodes.

Generating an appropriate or representative query mix is
important to the outcome of the experiments. The objective of
the simulation here is not to tune the system performance for
a particular type or class of workload. Rather, the intention
is to study the behavior of the different query scheduling
policies for the same set of random queries. A query mix
containing eight types of queries of varying complexity is
chosen. The base relations accessed by a query are determined
by generating random numbers that link queries to relations.
The query mix consists of 200 queries distributed among the
eight different types as shown in Table 111. For each query
type, the frequency of its occurrence in the mix, the height of
the query tree, h (root is at level l), and the active sequence
count, ASC, are shown. The following four query scheduling
policies are investigated:

1) The maximum active sequence count (MASC) policy,
which selects the query with the greatest ASC first;

2) The least active sequence count (LASC) policy, which
selects the query with the least ASC first;

3) The tallest query tree first (TQTF) policy, which selects
the query with the greatest height first; and

4) The shortest query tree first (SQTF) policy, which selects
the query tree with the smallest height first.

Results from running the simulation on 10 different data
sets, i.e., the same set of queries running against different sets
of base relations, are presented in Table IV.

AQCT 2551 2526 1070
AQID 1596 1814 160
GQCT 14840 14840 16501

TABLE 111
QUERY M[X USED IN SIMULATION

DataSet 3

DataSet 4

DataSet 5

DataSet 6

DataSet 7

AQCT 3241 3135 1289
AQID 1961 2210 154
GQCT 6520 6520 8930
AQCT 2330 2288 1000
AQID 1442 1630 148
GQCT 4957 4957 7031
AQCT 2298 1709 995
AQID 1524 1709 149
GQCT 6956 6956 7909
AQCT 2497 2467 1010
AQID 1638 1819 138
GQCT 9746 9746 11546
AQCT 2924 2834 1209

Linear join tree with six joins
2 2

DataSet 10

TABLE IV
SIMULATION RESULTS

(all times in ms)
GQCT=global query completion time

AQCTzaverage query completion time
AQID=average query initiation delay

AQID 1633 1885 151
GQCT 7337 7337 8178
AQCT 2204 2151 1054

DataSet I I MASC I TQTF I LASC
GQCT 12571 12571 14075

GQCT 6346 6346 7561

GQCT 10529 10529 11721

AQID 2021
GQCT 5704 5704 6468

Data Set 9 AQCT 2586 2533 1021

I AQID 1 1334 I 1509 I 151

Since queries are generated randomly, each data set repre-
sents different base relation access requirements. For the above
mix of queries, the LASC and SQTF policies provide identical
results for reasons explained below. Thus, the table shows only
the results for the MASC, LASC, and TQTF policies. The
MASC and TQTF policies behave identically for linear OS tree
queries, because in this case, the queries with the maximum
ASC are also the ones with the greatest height. The global
query completion time, average individual query completion
times, and the average query initiation delay are computed for
each data set. The 10 data sets cannot be compared against one
another, because they represent different base relation access
requirements; but certain characteristic pattems are common to
all. For example, LASC and SQTF always behave identically;
the MASC/TQTF policies result in lower global completion
times but higher average processing times and average ini-
tiation delays with respect to LASC; and though MASC and

618

Data Set

Data Set 1

DataSet 2

Data Set 3

Data Set 4

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 4. AUGUST 1994

LASC SQTF

AQCT 2302 2224

AQID 418 401

AQCT 1800 1795

AQID 344 348

AQCT 2836 2715

AQID 402 365

AQCT 1847 1903

AQID 335 331

TABLE V
COMPARISON OF LASC AND SQTF POLICIES

(all times are in ms)
AQCT=average query completion time
AQID=average query initiation delay

TQTF have the same global query completion times, the TQTF
policy has lower average individual completion times, but
higher average initiation delays.

The reasons for the similar performance of LASC and SQTF
are as follows. For relatively simple queries, i.e., queries with
few operations, both policies execute the queries in about the
same order. Since a majority of queries in the above mix
are simple queries, both LASC and SQTF provide the same
results. Table V shows the results for these two policies for
a query mix containing only complex queries, namely, Types
5 , 6, and 8 queries. In this case, there is a difference between
the two policies.

The lower global query completion times of the MASC
and TQTF policies are directly related to the availability
of the system resources. At startup, or under low resource
utilization, all system resources are available. Thus, it is
possible to initiate many complex queries without incurring
long initiation delays. Since the simple queries can generally
be scheduled without much initiation delays, because of their
limited resource requirements, scheduling them later does not
add much to the overall query initiation delay. Thus, these
policies generally result in reduced overall processing time.
On the other hand, if the simple queries are scheduled ahead
of the complex queries (using, say, LASC), then relatively
long initiation delays will result when the complex queries are
scheduled, thereby leading to greater overall completion times.
The longer average completion time and initiation delays of
the MASC and TQTF policies is the result of the long initiation
delays experienced by the simple queries, which have to wait
for the complex queries to complete execution.

The MASC policy results in higher average completion
times, but lower average initiation delays than TQTF. Al-
though both policies favor complex queries over simple ones,
MASC executes the “more complex” Type 8 queries before the
Types 3-6 queries. Thus, using the same reasoning as above,
executing more complex queries first results in lower initation
delays, but higher completion times.

V. CONCLUSION

We addressed some run-time system policy issues for data-
base processing in distributed memory multicomputer sys-
tems. Specifically, dynamic site allocation and query sched-

uling policies were examined for a hierarchically structured,
hypercube-based multicomputer system. The site allocation
policies do not perform a priori optimizations. Instead, sites
are selected as required during the execution of a query. The
paper analyzed and studied the use of such policies in parallel
computer systems, where it is difficult to precisely predict
the time of occurrence of future events. A simulation was
carried out using randomly generated data sets and queries
to study a few query scheduling policies, assuming a run-
time system that implements the given site allocation policies.
For the query mix considered, the results showed that policies
that gave preference to complex queries had higher average
query completion times, but lower average initiation delays.
The results obtained are applicable in general to a variety of
multicomputer systems that satisfy the “site model” mentioned
in Section 111.

Many interesting issues still remain to be studied. Initial data
distribution is an important consideration. We assumed partial
declustering of data with uniform degree of declustering. Other
schemes can also be examined. Several variations of the site
allocation policies can be studied, including those that account
for the sizes of intermediate relations. The simulation can also
be carried out for different types of workloads to study whether
certain allocation and scheduling policies are more suitable for
particular workloads.

REFERENCES

[I] H. Auer et al., “RDBM: A relational database machine.” Inform. Syst.,
vol. 6 , no. 2, pp. 91-100, 1981.

[2] C. K. Baru and 0. Frieder, “Database operations in a cube-connected
multicomputer system,” IEEE Trans. Comput., vol. 38, pp. 920-927,
June 1989.

[3] C. K. Baru and S. Padmanabhan, “Join and data redistribution algorithms
for hypercubes,” IEEE Trans. Knowd. Data Eng., vol. 5 , pp. 161-168,
Feb. 1993.

141 C. K. Baru and P. Goel, “Squashed embedding of E-R schema graphs in
hypercubes,” J . Parallel Distrib. Computing, vol. 8, pp. 340-348, Apr.
1990.

[5] A. Bataineh, F. Ozguner, and A. Sarwal, “Parallel Boolean operations
for information retrieval,” Inform. Processing Lett., vol. 39, pp. 99-108,
1991.

[6] S. H. Bokhari, “On the mapping problem,” IEEE Trans. Cnmput. , vol.
30, no. 3, pp. 207-214, Mar. 1981.

[7] S. W. Bollinger and S. F. Midkiff, “Processor and link assignment in
multicomputers using simulated annealing,” Proc. Int. Conf. Parallel
Processing, 1988, pp. 1-7.

[8] H. Bora1 et al., “Prototyping Bubba, a highly parallel database system,”
IEEE Trans. Knowl. Data Eng., vol. 2, pp. 4-24, Mar. 1990.

191 K. Bratbergsengen, “The development of the parallel database computer
HC16- 186,” Proc. 4th Conf. Hypercubes, Concurrent Comput., and
Applic., 1989, pp. 173-180.

I O] D. K. Bradley and D. A. Reed, “Performance of the Intel rPSC/2
input/output system,” Proc. 4th Conf Hypercubes. Concurrent Comput..
Applics., 1989, pp. 141-144.

I I] D. J. DeWitt, “DIRECT: A multiprocessor organization for supporting
relational database management systems,” IEEE Trans. Comput., vol.
C-28, no. 6, pp. 395408, June 1979.

121 DeWitt et al., “The gamma database machine project,” IEEE Trans.
Knowd. Data Eng., vol. 2, pp. 4 4 4 2 , Mar. 1990.

[13] DeWitt et al., “An evaluation of non-equijoin algorithms,” Proc.. 17th
Conf o n Very Large Data Bases, 1991, pp. 443452 .

[141 T. H. Dunigan, “Performance of a second generation hypercube,” Tech.
Rep. ORNL/TM-1088 I . Oak Ridge National Laboratory, Oak Ridge,
TN, USA, 1988.

[I 51 0. Frieder, “Multiprocessor algorithms for relational-database operators
on hypercube systems,” IEEE Comput., vol. 23, pp. 13-28, Nov. 1990.

[16] 0. Frieder and H. T. Siegelmann, “On the allocation of documents
in information retrieval systems,” Proc. 14th ACM SICIR, 1991, pp.
23G239.

FRLEDER AND BARU: SITE AND QUERY SCHEDULING POLICIES 619

0. Frieder, V. A. Topkar, R. K. Kame, and A. K. Sood, “Experimenta-
tion with hypercube database engines,” IEEE Micro, vol. 12, pp. 42-56,
Feb. 1992.
S. Ganguly, W. Hasan, and R. Krishnamurthy, “Query optimization for
parallel execution,” Procs. ACM SICMOD, 1992, pp. 9-18.
H. Hddimioglu and R. J. Flynn, “The architectural design of a tightly-
coupled distributed hypercube file system,” Proc. 4th Conf. Hypercubes,
Concurrent Coniput.. Applics., 1989, pp. 147-150.
J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J . Palmer,
“Architecture of a hypercube supercomputer,” IEEE Micro, vol. 6, pp.
653-660, Aug. 1986.
J . P. Hong et al . , “A hypercube project and a simulator for a hypercube
of computers.” Proc. 2nd Conh Hypercube Multiprocessors, SIAM, Sept.
1986.
Intel iPSC Data Sheet, Order 280101-001, 1985.
Y. loannidis and Y. Cha Kang. “Randomized algorithms for optimizing
large join queries,” Prnc,. ACM SICMOD, 1990, pp. 312-321.
M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Architecture and
performance of the relational algebra machine, GRACE,” Proc. Int.
Conf. Parallel processing, Aug. 1984.
M. Lakshmi and P. Yu, “Effectiveness of parallel joins,” IEEE Trans.
KnoK’l. Data Eng., vol. 2, pp. 41W24. Dec. 1990.
S.-Y. Lee and J. K. Aggarwal, “A mapping strategy for parallel
processing.’’ IEEE Tram. Compur. , vol. 36, no. 4. pp. 433-442, Apr.
1987.
A. Liu and S. Chang, “Site selection in distributed query processing.”
Proc. 3rd Con$ Distrib. Computin,q Sysr., 1982, pp. 7-12.
T. Martin, K. Lam, and J . Russell, “An evaluation of site selection
algorithms for distributed query processing,” Conzput. J., vol. 33. pp.
61-70, 1990.
B. L. Menezes, K. Thadani. A. G . Dale, and R. Jenevien. “Design of a
HyperKYKLOS-based multiprocessor architecture for high-performance
join operations,” Proc. 5th Ini. Workxhop Database Machines, 1987. pp.
88- 10 I.
P. Mishra and M. H. Eich. “Join processing in relational databases,”
ACM Computing Surv., vol. 24, pp. 63-1 13, Mar. 1992.
E. R. Omiecinski and E. T. Lin, “Hash-based and index-based join
algorithms for cube and ring connected multicomputers,” IEEE Trans.
Know’/. Dora Eng., vol. I , pp. 329-343, Sept. 1989.
E. R. Omiecinski and E. T. Lin, “The adaptive-hash join algorithms for
a hypercube multicomputer,” IEEE Trans. Parallel Distrib. Syst., vol. 2,
pp. 334349, May 1992.
R. P. Pargas, J . C. Peck. and A. L. Pugh, “Use of qemi-join programs for
join queries on a hypercube,” Proc. 4th Conf. on Hypercubes. Conurrent
Comput.. and Applics., 1989, pp. 457462.
S. Pramanik and D. Vineyard, “Optimizing join queries in distributed
databases,” IEEE Trans. Software Eng., vol. 14, Sept. 1988.
J. C. Peterson, J. 0. Tuazon, D. Lieberman, and M. Pniel, “The MARK
111 hypercube-ensemble concurrent computer.” Prnc. Int. Con6 Parallel
PrwessIrig, 1985, pp. 71-73.
J. L. Pfaltz, J. C. French, and S. H. Son, “Parallel set operators,” Prnc.
4th Cor$ Hypercubes, Conc.urrent Computers, and Applics., 1989, pp.
48 1-486.
S. Y. W. Su, Database Machines: Concepts and Techniques. New
York: McGraw-Hill, 1988.
M. Stonebraker, “The case for shared nothing,” Data Eng., vol. 9, Mar.
1986.

[39] V. A. Topkar, 0. Frieder, and A. K. Sood, “Duplicate removal on
hypercube engines: An experimental analysis,” Parallel Computing, vol.
17, pp. 845-971, Oct. 1991.

1401 E. Upchurch et al., “Parallel joins on the Mark I11 hypercube,” Prnc. 4th
Conf. Hypercubes, Concurrent Comput.. Applics., 1989, pp. 453456.

1411 B. Wagar, “Hyperquicksort: A fast sorting algorithm for hypercubes,”
Proc. 2nd Conf. Hypercube Multiprocessors, Sept. 1986.

1421 A. Witkowski, K. Chandrakumar, and G. Macchio, “Concurrent 1 - 0
system for the hypercube multiprocessor,” Proc. 3rd Con$ on Hypercube
Concurrent Comput. and Applics., SIAM, Jan. 1988.

[431 C. Yu, C. Chang, D. Templeton, and E. Lund, “On the design of a
distributed query processing algorithm,” Prnc. ACM SICMOD, 1983,
pp. 3G39.

i
0. Frieder (SM’93) received the Ph.D. degree from
the University of Michigan in 1987.

From 1987 to 1990, he was a Member of Tech-
nical Staff in the Applied Research Area of Bell
Communications Research. In 1990, he joined the
Department of Computer Science, George Mason
University, where he is now an Associate Professor.
While at George Mason University, he has also
served as a Staff Consultant at the Federal Bureau
of Investigations from 1991 to 1993, and at the
Institute for Defense Analysis from 1992 to 1993.

Since 1993, he has been a Staff Consultant to IBM FSC (now Loral Federal
Systems). His research interests include parallel and distributed database and
information retrieval systems and biological and medical data processing
architectures.

Dr. Frieder has published more than 50 refereed papers, has been granted
two patents, and has received research support from several govemment
and industrial organizations. In 1993, he received the National Science
Foundation‘s National Young Investigator Award. He is the Area Editor for
databases of IEEE Conipurer. He is a member of Phi Beta Kappa.

C. K. Baru (S‘S&M’85-SM’94) received the Ph.D.
degree in electrical engineering trom the University
of Flonda, Gainewille, FL, USA, in 1985

He IS currently one of the team leaders in the IBM
DB2 Parallel Database Project at the IBM Toronto
Laboratories, North York, ON, Canada He has
research and development experience I n the areas of
pdrallel and object-oriented database systems Prior
to joining IBM, he was dn Assistant Professor of
Computer Science and Engineering at the University
of Michigan, Ann Arbor, USA, where his research

was funded by the National Science Foundation and the AT&T Foundation
Dr Baru has published %vera1 article\ in hir areas of research interest,

and he has also presented induwy tutorials on these topics He I\ a member
of ACM.

