RFEATURE

The rising cost of shutfing
down systems for
maintenance and repair is
forcing developers to look
at ways to reparr
softwarelas it runs. The
authors briefly -~ describe
available updating
systems and present a
prototype.

JAARK] €. SEGAL
Belicore

OPHIR FRIEDER

George Masorl University

reprinted from

.

ON-THE-FLY PROGRAM
MODIFICATION:
SYSTEMS FOR DYNAMIC
UPDATING

At]vancesl in software-development]
echnology] and methods continue
to help engineery build larger and more
complex sysems. but those sysems ae
neither error-free nor can they| satisfy
every| anticipated need. Despite all our
advances. software must still be
changed to repair bugs and add new
functions-often resulting in downtime.
As users grow to depend on a system they
become more and more intolerantl of
thee interruptions)

For some companies, the cogt of sysq
ten shutdown cen be prohibitive] Chang-
ing thd softwarel that controls an orbiting
spacecraft, for example, camot bd done &
al if it means disabling the life-support
system. And| althoughf not life-threaten-

ing, disbling a bank-transaction process:
ing svsteml mav hare significant| economuc
consequences — paticulaly if thd com-
panies involved have a reputation for pro-|
viding| a highly| availablel seen-ice. In'the
telecommunicationd domain. switching]
systemy have a maximuml downtime re-
quirement of lesd than two hours withir| 401
years!

If the &ware being| changed| is pat of
a distributed svsteni — in which many
programs| interact] oven g’cog‘raphiml[J
distributed networks — these problems
become even more acute. Sot onlyl must
you address thel problems associated with
downtime. but you must a0 coordinate
the shutdownl If one computer begins|
runnmng the new Software while the othersl

IEEE SOFTWARE

0740-7458,/33,/0300,/0053,/803 OC @ EEE

@ JEEE COMPUTER SOCIETY

”, ELECTROMICS ENGINEERS. INC.

@ THE INSTITUTE OF ELECTRICAL ANO

53

FEATURE

contnue to run older versions, they might |

exchange incompatble data.
Clearly, there is a need for novel main-

tenance approaches that do not interrupt |

system operation for long periods.

One such approach is a system thatup-
dates or replaces a pro-
gram version without
stopping the current one.
A dynamic program-updat-
ing system can make it easy
to repair bugs or enhance
running software without
the cost of system shut-
down.

In this article, we
briefly describe a number
of research and produc-
tion updating systems and
present a prototype system developed at
the University of Michigan and enhanced
at Bellcore.

GENERAL CHARACTERISTICS

The techniques a system uses for dy-
namic updating are influenced by the ap-

a group of procedures without interrup-
ton). Some updating systems go further
by providing policies for determining
when program components can be up-
dated. An update policy could be some-

| thing as simple as updating a program

THE MORE
TRANSPARENT
AN UPDATING
SYSTEM, THE
MORE PEOPLE
WILL USEIT.

plication domain and the desired perfor- |
mance and correctness guarantees. Thus, |

a system for dynamically updating an in-
formation server used in a tme-sharing
environment, for example, would gener-
ally not be appropriate for updating a real-
tme process-control program. There are,
however, several characteristics thatall up-
dating systems should possess, regardless
of their intended use. The relative impor-
tance of these characteristics varies with
the applicanon domain.

All these characteristics work to make
the system as transparent as possible to
both its users and programmers and its
execution environment. The more trans-
parent an updating system, the more likely
programmers and managers are to use it.

In general, all updating systems should

¢ Preserve program correctness. Program
correctness must be preserved during the
update as well as at imes when no updates
are in progress. Mechanisms for preserv-
ing correctness include tools for discover-
ing program state to prevent updating at
incorrect times and tools for atomically
replacing program components (replacing

|

module (a group of pro-
cedures and their associ-
ated dat) only if it has no
ourstanding requests, or
as complicated as updat-

the dara it references is
being accessed by another
module.

This need to preserve
Program COITECTNESS is es-
sential because it lays the
foundation for other
characteristics such as minimizing human
intervendon. If policies to preserve pro-
gram correctness are in place, programs
can be updated correctly with lictle human
assistance; if these policies are notin place,
the burden of determining when to update
a program component rests on those who
control the system.

You can also extend program correct-
ness to account for ime by arguing that if
the system causes a program to take signif-
icantly more tme to produce results, it is
affecting program correctness. Real-time
systems are a good example. If updating
makes a real-time program execute longer,
vou are violating the program-correctness
criterion. Unfortunately, most updating
systems do degrade program performance
during an update, and anyone designing
an updating systern should try to minimize
this effect. Similarly, designers of updating
systems and the related parts of the
computer’s runtime system should ensure
that the updating system does not degrade
program performance when no updates
are in progress.

+ Minimize human intervention. Part of
preserving program correctness during an

update means ensuring that the updatmv
components are applied in the correct
order and at the right uime. Even a metic-

| ulous person can perform an update im-

properly. There must also, of course, be
ways to override default updating se-
quences if conditions warrant it.

ing a module if none of |

* Support low-level program changes. To
dynamically update 2 range of programs,
an updaunz SYStEm IMust Support a variety
of low-level program changes. The sim-
plest kind of change is to replace a module
with a new one that is implemented differ-
ently. In this scenario, the module’s inter-
face (its calling conventons) remains the
same, and the module retains no internal
state between invocations. More compli-
cated changes include changing the
module’s interface, having the module re-
tain state between invocations, changing
the state’s implementation, and changing
the implementations of both the interface
and state variables. Changing the imple-
mentation of state variables often occursin
programs that implement data structures
as abstract dara types.

+ Support code restructurmg. Significant
code restructuring can occur during main-
tenance — a change beyond simple mod-
ule replacement. An updating system must
be able to update programs when new
modules are added, existing modules are
deleted, and functionality is moved be-
tween modules, for example.

¢ Update distributed programs. Many
programs that benefit from dynamic up-
dating are distributed by nature. Furure
distributed programs will consist of collec-

tions of modules running on a variety of |

heterogeneous hardware. These pro-
grams will communicate and cooperate
across mutually distrustful administrative
domains. Administranve domains are net-
works of computers each controlled by a
separate organization. From a security
standpoint, these networks are mutually
distrustful because one organizaton can-
not make arbitrary changes to another’s
computers. The updating system and the
programs being updated must cope with
the reliability problems such a large-scale
| network presents.

The updating system’s algorithms
must scale to large distributed programs,
in which there are hundreds of thousands
of individual modules, and cooperate with
other updating systems across administra-
tve domains.

& Not require special-purpose bardware.

already, but such hardware usually in-

54

MARCH 1883

creases system costs and can decrease
bility. Adding additional hardwaretoalarge
distributed systemn is even more expensive.

* Not constrain the language and envi-
romment. The user must be free to choose
a language and system environment. An
updating system must not force pro-
grammers to write code or call operatng-
system primitives in a radically different
manner. Doing so would prevent many
large programs already in use from bene-
fitting from an updatng system. Ideally,
updating systems should tolerate a variety
of programming styles — or at least re-
quire a style that is already widely used —
and allow substantial code reorganization
between versions of the program being

updated.
HARDWARE-BASED SOLUTIONS

Before looklng at software-based up-
daang systems, it is worth briefly examin-
ing hardware-based solutions, although
they are costly and have a narrow applica-
tion. In a system that uses hardware-based
dymrmc updating, an entire running pro-
gram is dynamically updated with a second
system identical to the one executing the
program. Because the second computer sys-
tem with the new version of the program is
loaded while the first computer continues to
execute the older version, programs can be

updated with minimal downtime and max- |
| the operatng-system in-
| terface, the user must
| physically partition the
| SCP into two systems

murm flexibility in restructuring.

To perform the update, you stop the
first computer at a safe point in the pro-
gram and simultaneously start the second.
Some work in progress may be lost during
the update, but you will need only a short
dme to complete this type of update in
IMost cases.

The principal disadvantage of this
technique is its substantial cost. It is typi-
cally used in systems that need redundant
hardware anyway to provide fault-toler-
ance — telecommunicatons systems for

example. However, even then, building a |

redundant computer system and properly
connecting it with the main computer sys-
tem is both difficult and expensive. Not
only must the hardware be intercon-
nected, but the software shared between

kept consistent. Moreover, such an ap-
proach, which requires close synchroniza-
ton between systems, does not scale to a
distributed environment. For these rea-
sons, our focus in this article is on soft-
ware-hased systems.

A slight variaton of this dynamic-up-
dating rechnique is in Bellcore’s Service
Control Point, which provides facilites
for high-speed 800-number lookup and
calling-card verification for local tele-
phone companies. The SCP must always
be available to service both kinds of re-
quests. To achieve the desired perfor-
mance, fault-tolerance, and availability
goals, each SCP is constructed with re-
dundant computer and communication
hardware. A copy of the SCP software
runs on each set of redundant hardware
and the communications subsystem routes
requests to available processing hardware.

In a dynamic update, the user reconfig-
ures the SCP to reroute all requests to
other programs that perform the same
function, and then replaces the program(s)
that must be changed. After the programs
are updated, the SCP
routes all requests to the
newly replaced programs.
The programs that han-
dled the requests during
the inital update are then
replaced. If the changes

involve modifications to

during the update. In this
worst-case scenario, the
update takes approxi-

| mately two weeks to plan and eight hours
to complete. Communications subsystem |

software is updated using redundant hard-
ware, redundant intersite communication
links, and rerouting algorithms similar to

ones justdescribed.

SOFTWARE-BASED SYSTEMS

Software-based updating systems are
characterized by several structural, behav-
ioral, and performance metrics. We distin-

the systems (such as databases) must be | guish systems by the granularity of the

ANY PROGRAM
CANBE SO
POORLY
WRITTEN THAT
IT CANNOT BE
DYNAMICALLY
UPDATED.

program components being updated and .;

the way they communicate. The box on
pp- 58-59 describes these metrics and
gives a quick-reference comparison table
of the systems we describe.

Unfortunately, we have found no sin-
gle system (nor do we believe one exists)
that lets you incorporate all possible
changes into any program structure. In
other words, any program can be so
poorly written that it cannot be dynami-
cally updated. Perhaps this is why those
researching dynamic updating have con-
centrated on creating dynamic updating
techniques for specific, well-accepted, and
well-understood program structures.

Fully automadc dynamic updating,
which requires no human intervention
beyond starting the update, has the poten-
dal to update many program structures.
But as of yet, it cannot work properly if
semantic information is needed to per-
form any aspect of the updatng. Humans
are error-prone, and if a human must per-
form nontrivial program updates, the
scope of dynamic updating will be limited
by that person’s capabili-
ties. Perhaps research in
program verification and
understanding may re-
duce this limitaton.

The types of software-
based systems include re-
placementof abstractdata

types in programs, re-

communication topolo-

gies, and the updating of |

| programs in procedural languages.

Repladng abstract data types. The first

type of system allows replacement of ab-
stract data types in programs. In this cate-
gory are the dynamic-type-replacement
approach and the DAS operating system.

Dynamic type replacement. Dynamic type re-
placement involves changing the imple-
mentation of user-defined abstract data
types, which is described in a collecton of
procedures called the type manager.

placement of servers in dli- |
ent-server systems, updat- |

IEEE SOFTWARE

55

QFEATURE

When the type manager is changed, the old
and new data-representation formatsare dif-
ferent, and previous instantations of this
type will not work correctly with the new
type manager. To handle this sitnaton,
programmers must build a version-tag-
ging and data-conversion mechanism.
Robert Fabry used version numbers to
tag each object of a spedific type." If an
object is an old version, the type manager
calls a routine to convert the old represen-
tation to the new representation.
| Although the dynamic
. type-replacement ap-
proach provides a reason-
able method of updating
abstract data types, it fails
to address the more gen-
eral issue of changing
code structure as well as
implementaton. For in-
stance, changing the call-
ing conventions (inter-
face) of a type manager
(other than merely aug-
mentng them) is not sup-
ported. Also, Fabry’s ap-
proach requires a capa-
bility-based addressing scheme, thus lim-
iting its applicability to capability-based
systems.
DAS aperating system. Hannes Goullon and

colleagues constructed an experimental
operating system, the Dynamically Alter-

able System, for teaching and research at |
| number of dynamic updating systems |

the Technische Universitit Berlin.” DAS
provides support for dynamic updating of
application programs by letung a module
be replaced witha newmodule thathas the
same interface.

Conceprually, DAS is similar to dy-
narnic-type-replacement systems. It per-
forms dynamic updating using “replug-
ging,” a mechanism built on DAS’s ad-
dress-space managementsystem, which is,
in turn, built on the addressing hardware
of DEC’s PDP 11/40E. When a proce-
dure in a different module is called, DAS
performs an address-space transition by
placing the descriptor table entries of the
new module into the address-mapping
hardware, while saving the current entries
on a stack. Only one code segment is kept

in the process’s virtual address space (to | blocks, access rights, open files, and so on.
compensate for the PDP 11’s small vir- | Thus, a service may be constructed from
| tual-address space). The information used | several abstract data types. When an ab-

USING
ARCHITECTURE
BASED ON
VIRTUAL
MEMORY
MAKES
UPDATING
TOO COMPLEX.

| to keep track of each module is stored m a
linked list of descriptors called a descriptor
chain. Repluggingis done by changing the
links within the descriptor chain.

data stored within the modules. Restruc-
uring is performed in conjunction with
replugging. _

One significant problem with DAS is
its use of virual memory
to aid updating. The vir-
tual-memory architecture
— consistng of the de-
scriptor chains and the
mechanism for address-
space transition — is both
overly complex and ineffi-
cent. The large, sparse ad-
dress spaces available on
current CPUs make the ar-
chitecture somewhat obso-
lete. To implement it with
acceptable performance
on the PDP 11, the DAS
designers had to code
‘ portions of it in microcode and use pre-

viously unused opcodes to reference the |

microcode routines.

Another problem is that DAS fails to
interfaces change between versions.
Replacing servers in dient-server systems. A

have been constructed for systems thatob-
serve a client-server relatonship, in which
One or more servers supply services toa set
of clients. The clients and servers may or
| may not run on physically distributed
computers.
| Software for this paradigm has a struc-
ture similar to that of programs for dy-
‘ namic type replacement. In each case,
| parts of the program invoke a set of ser-
| vices or abstract-data-type managers.
The two approaches differ in the gran-
| ularity of the objects to be updated: an
abstract data type is smaller than a service.
A file server provides access to files, which
| may be built from a number of abstract
| data types that manage lists of free disk

provide mechanisms for procedures whose |

stract data type in a dynamic-type-re-
‘ placement system isupdated, only the rep-
| resentation of the type and the code that
| manipulates it change. When a server is

DAS also supports the restructuring of ‘ updated, however, any of the code within

| the server may change.
‘ Systems in this category include the
| Michigan Terminal System and Argus.

| Michigan Teminal Sysem. MTT'S, a time-shar-
ing system for IBM-compatble main-
frames, can dynamically update large sys-
tem services, such as command-language
| interpreters and mail systems. Programs
requesting services call the servers indi-
| rectly through a service manager. By mod-
ifying the service manager to call a new
| version of the service, you can change the
implementation of a service at runtime.
Programs running an old version of the
service continue to execute it while new
requests invoke the updated version.
This approach assumes that only the
implementation of a service changes be-
| tween versions, but not its interface. It
| also assumes that programs are explicity
written to call service managers instead
| of services.

MTS has several disadvantages. Be-
cause it is designed primarily for large
components of an operating system, asop-
posed to end-user software, it does not ex-
| plicitly address the problem of a new ser-
vice calling an old service. If such a
| dependency exists, MTS deals with it by

updating all dependent services simulta-
! neously — an action that requires dis-
| abling the services to users for the duraton
of an update. Also, because MTS is fully
reentrant, data used by these services is
stored in special data areas, so you cannot
change the data format between versions.

Argus. Toby Bloom describes a dynamic
updating system® in the context of the

| Argus distributed programming system
developed by Barbara Liskov.* Argus is a

| language based on Clu and an underlying
operating system. In Argus, a program

| consists of a collection of servers called
guardians that implement a logical set of

56

MARCH 1893

functions through a set of handlers. Be-
cause a guardian’s internal state is not ac-
cessible to other guardians except through
the use of handlers, a guardian is similar to
the abstract data type described earlier ex-
cept it is larger. Guardians can manage
persistent data and function in a distrib-
uted environment. All communication
among them is handled through a mes-
based communications system.

To dymamically update a program in
Argus, the user replaces related collections
of guardians, called subsystems. Argus’s
communications infrastructure and its
ability to maintain consistent versions of
persistent data when the system crashes
enable guardians to be temporarily inac-
cessible during an update. Because Argus
lets a guardian’s persistent data be associ-
ated with different guardians over time, it
can manipulate persistent data or transfer
it to new versions of guardians during an
updare.

Much of Bloom’s work addresses keep-
ing data consistent and ensuring that an
update does not make subsequent guard-
ian interactions inconsistent. This is possi-
ble, in part, because Argus lets guardians
crash and restart in a consistent way and

expects clients to tolerate this occurrence. |

The disadvantage of this system is that
it is tightly tied to the Argus system, so
adapting it to other systems could be diffi-
cult. Crash-recovery facilities are neces-
sary for the Argus updating approach to
work properly, yet few operating systems,
runtime systems, or languages contain the
necessary support code for crash recovery.
Furthermore, Bloom acknowledges that
the subsystem, which is the atomic com-
ponent of updating in Argus, may be too
large for some applications. If a small part
of a subsystem is changed, the entire sub-
system is unavailable during the update.

tems. The third type of software-based up-
datng system is designed for distributed
programs that communicate using exter-
nally specified communication topologies.
Conic — developed by Jeff Magee, Jeff
Kramer, Morris Sloman, and colleagues

_lsasj,lstemmthlsﬂtﬂg()ly]—Jke ‘\I'gUS, |

Conic provides a language and a runtime

environment for constructing distributed 1 cludes a module from selecting where to '

programs. Conic programs are con-
structed as a set of task modules. Each task
module can have a number of entry and
exit ports. Task modules communicare
using these ports, which are unidirec-
tonal, typed communication channels.

One of Conic’s key design goals is to
totally separate module programming
from configuration management. For this
reason, a task module’s ports do nor di-
rectly refer to any other task modules. In-
stead, Conic provides the Configuration
Manager, which lets you build a distrib-
uted program by specifying a set of task
modules and their port interconnections.
Module interconnections may be within
the boundaries of a single physical com-
puter or may cross a network. This separa-
tion makes it easy to reconfigure task-
module interconnections because you do
not have to modify the source code.

In a dynamic update, the Configura-
tion Manager updates a task module M by
removing the links to M's ports, setting up
links to the new version of M’s ports, and

ing state information
from the old version of M
to the new version.

It relinks and copies
state when M is in an in-
acuve state. Because a task
module cannot ascertain
which other task modules
itis connected to, the up-
date is transparent to all
task modules. Similarly,
because the Configura-
tdon Manager cannot see
the implementation of

task modules, it may arbi-

CODE

PROCEDURE-
ORIENTED
UPDATING
EMPHASIZES
GENERAL

RESTRUCTURING.

| send a request at runtime. Unless inter-
connections are created for all task mod-
ules that may wish to communicate, im-
plementing programs such as mail
systems and remote log-in facilities would
be extremely difficult.

Updating programs in procedural languages.
The third type of updating system is pro-
cedure-oriented, for programs written in
procedural languages like Pascal and C. In
such programs, a natural unit of replace-
ment is the procedure or function. Be-
cause many programs are written in pro-
cedural languages, there is strong
motvation for investigating dynamic up-
dating in this environment. A distant rela-
tive of procedure-oriented updating,
though notsuitable for dynamic updating,
is dynamic linking, which is described in
the box on p. 60.

The granularity of procedure-oriented

dynamic updating differs from that of |

other software-based updating tech-
niques. The servers in client-server sys-
tems are typically built
from many procedures.
When a server is updated,
all procedures constitut-
ing a serverare replaced as
a unit. Even if only a small
portion of the server has
changed, the entire server
is unavailable during the
update. In many cases, the
granularity of type man-
agers is also larger than an
individual procedure. Dy-

namic type replacement |

emphasizes the internal re-

trarily restructure them internally during , structuring of abstract data types; whereas,

an update.

Although Conic provides a powerful
and versatile environment for dynamic
updating, it has two potental problems.
First, as with Argus, you have only one
choice of language and runtime system,
and Conic is not a well-known language.
Second, Conic does not impose 2 client-
server reladonship on a distributed pro-
gram, but it does force 2 module to com-
municate through a fived set of ports to a
fixed set of modules. This structure pre-

| procedure-oriented updating emphasizes
more general code restructuring.

Several research and commercial sys-
tems use procedure-oriented dynamicup-
dating, including the DMERT operating

| system, Dymos, and PODUS.

DMERT operating system. AT&T’s 3B20D
processor, a part of the Number 5 Elec-
tronic Switching System, runs the Duplex
Multiple Environment Real-Time oper-
atng system. The Field Update Subsys-

IEEE SOFTWARE

57

‘ SELECTING A SUITABLE UPDATING SYSTEM

After deciding that vour ap-

Companies such as Stratus and

able Distributed Systems, for

omitted because they are self-

. | plicaton domain requiresdy- Tandem sell computer systems example. explanatory):
| | namic program updating, the that use redundant hardware to Table A is a list of the updar- ¢ Type of updating system.
| nextlogmcal stepis determining provide fault-tolerance and ing techniques and systemswe The system types correspond
| | which system would best fill high availability, have described and their asoci- to the classifications used in the
your needs. Papers describing dynamic ated fearures, Itand the refer- main article, Examples are pro- |
Anumber of sources ofin- program updatng systemsre- ences at the end of the article cedure, client-server, module, | |
| formation about specific dy- search may be found in the pro- should help point you in the abstract data type, and hard- | ‘
| namic updating systems are ceedings of the [EEE Confer- right direction. ware-based. |
‘ available. The Bell System Tech- ence on Software Maintenance, The table rows consist of ¢ System-support require- , ‘
nical Jowrnal describes the inter- the IEEE International Confer- the metrics or attributes we ments. This is thesupportthat |
| nal workings, including updat- ence on Distributed Compurter used to evaluate the systems. the development and underly- .
ing issues, of all AT&T’s Systems, and the IEE Interna- ~ Enuries and their explanadons ing runtme environment must :
|‘ electronic switching systems. tional Workshop on Configur- are (rows like System Statusare provide to make the updating | ‘
i
| TABLE A
‘ COMPARISON OF DYNAMIC UPDATING SYSTEMS
| |
(| Feature Argus Conic DAS DMERT ||
‘ Creator MIT Imperial College Technische AT&T 1|
| Universitit, Berlin ‘ ‘ -
i 'I ‘ Type of updating system Client-server Module-based Procedure-based Procedure-based | ‘
| | Status Research project Research praject/ Research project Commercial |
| product product !
: Hardware requirements None None PDP-11/40E None |
i]
| | (s Argus runtime Conic runtime DAS operating DMERT operating '
| | requirements environment environment system system ,
Language Argus Conic Procedural C . "
'I requirements 1=
| | | Diswribuzeds Yes Yes No No | ‘
[1]
[{
| Distributed interprocess ~ Remote Message passing — == 1]
| communicaton procedure calls | |
| Granularity Whole server Task module Procedure Procedure WY
| Changes supported Guardian (service) Task-module Procedure Procedure |
| implementaton implementation implementation implementation J |
. ‘ I
| | | Degree of human Inclear Moderate Unclear Moderate | ‘
‘ | intervention ‘
| | Update ume Short to moderate Short Unclear Short to moderate ‘ ‘
(presumed short) -
| | | Main limitadons Works only with Special-purpose No support for No support for ,
. Argus language; complex changes; complex changes [|
‘ interprocess requires PDP-11 | j
! communication [|
requires explicit .
intermodule links |

‘ “Segrented virtial memory speeds up.
te) -
Segmented virtual memaory improves performance |

58 MARCH 1883

system work properly. The less

support required, the easier it

is to adapt an updating system
| toapartcular platform. Exam-
ples are redundant hardware,
capability-based addressing,
and choice of language and op-
eraring system.

¢ Distributed meerprocess

commeunication. If the updating
system can update distributed
programs, the type of inter-
process commuication used af-
fects the kinds of programs
that can be updated. Examples

include no communicaton, re-
mote procedure call, and mes-
sage passing.

¢ Granularity. Granularity
is the unit of what the updating
svstern replaces, The finer the
granularity (smaller the unit),
the more easily and quickly the
system can update programs
with small, localized changes.
Units include procedure, mod-
ule, abstract data type, and
whole program.

¢ Changes supported. The
types of changes supported de-

pend on the system's granular-
ity. Systems that support fine-
grained program changes let
you change a procedure or an
abstractdata type, including its
local dara. These types of up-
dating systems are best for mak-
ing small, localized program
changes.

Updating systems that sup-
port course-grained changes
update large pieces of pro-
grams; they are better for mak-
ing sweeping changes to major
program components. The ex-

treme example of course-
grained change is replacing an
entre program as a single unit
with new code; this lets you do
arbitrary code restructuring.
The types of changes sup-
ported depend on the system’s
granularity. Fine-grained sys-
temns support changing the im-
plementation of a procedure or
an abswract data type, including
its local data; coarse-grained
systemsare better at changing
aprocedure’s or an abstract data
type’s specification.

——
Dynamic Dynamic '
Dymos e MTS PODLS SCP
] || linking type replocement
|‘ | Insup Lee Multiple Robert Fabry University of MarkSegaland Bellcore
' Michigan Ophir Frieder '
| | Procedure-based Procedure-based Abstract-data- Client-server Procedure-based =~ Hardware-based
. type-based
Research project ~ Commercial Research project Research Researchproject Commercial |
product project/product product ‘
None None Capability-based ~ IBM 370- None* Redundant CPUs |
addressing compatible
mainframe
Dymos runtime Implemented in Capability-based ~ MTS operating None' VMS operating
| environment operating systern operating system system system
‘ ‘ | StarMod None Procedural None Procedural None
' No (but — No No Yes No |
multichreaded) ;'
— — — - Remote —
procedure call |
Procedure Procedure; library ~ Abstracrdatatype Whole program Procedure Whole program |
Procedure Procedure Abstract-data-type Arbitrary code Procedure Arbitrary code
specificadonand implementation implementaton restructuring implementation restructuring
implementation I
Moderate Low Unclear Moderate Lowto Extremely high |
- moderate [
Moderate Short Unclear Short Moderate Long
' (presumed short)
| | Redquires fully No support for Can’tchangecode Can’tmapstate/ Requires top-down Needs fully _
‘ ‘ integrated system complexchanges; structure; needs calling sequences structured redundanr hardware |
' no way to preserve capability-based across changes programs |
| l correctness addressing |
|
|] |
‘ |
IEEE SOFTWARE 59

FEATURE

WHY NOT DYNAMIC-LINKING SYSTEMS?

A somewhat distant relative to procedure-oriented systems is the concept of dynamic
linking, or late binding. Available in many commercial operating systems, it lets you link
references to an external procedure (usually part of the operating system or a library) to
the external procedure itself when the program is run or when the external procedure is
firstreferenced during the run.
| Programs can thus invoke the most recent version of operating-system or library pro-
| cedures without having to relink each time a new version of the library is made available.
In this regard, it is similar to dynamic program updating since replacing a dynamically
linked library essentially updates part of a program.

Examples of operating systems that provide such a capability are Multics, HP/
Apollo’s Aegis, Sun Microsystems’ SunOS 4.0, and Microsoft’s OS/2.

Dynamic linking does not provide true dynamic updating capabilities because it does
not let you change references to an external procedure during a run after they have been
established. Even if an external reference is resolved every time the external procedure is
invoked, dynamic linking would not be an updating system because it still lacks correct-
ness-preserving mechanisms. For example, a library could be replaced while a program
is execuring a procedure inside the library, which could lead to undefined program be-

|

havior.

Dynamic linking systems also do not have mechanisms for mapping internal state

across library versions.

tem of DMERT supports the updating of
the C functons that make up the 5w1rch-
ing software running on the 3B20D.° The

Field Update Subsystem is used primarily |

to install emergency partches into switch-
ing software.

The DMERT operating system sup-
ports dynamic updating in the followmg
manner. Each DMERT processcontainsa
wransfer vector that provides a level of in-
direction berween a function call and the
actual address of the function in memory.
By changing the address for a particular
funcron in the transfer vector, all future
references to that function are routed to
the new version of the function. The Field
Update Subsystem provides automated
mechanisms that cause this change to take
place (and to back it outif need be) as well
as update the disk-based program images
| and logs of the programs running on thc
3B20D.

The DMERT operating system as-

sumes that the interfaces of the functions |
do not change between versions, and does |
‘ let you change a procedure’s interface be-

not provide a mechanism for moving static

an example of a software system that can
dynamically update programs in an appli-
cation domain that is relatvely intolerant
of system downtme.

Dynamic Modification System. The Dynamic
Modification System, developed by Insup
Lee,” provides a fully integrated environ-
ment for software development and pro-
gram updating for programs written in
StarMod — a concurrent language similar
to Modula. The Dymos environment
contains a command interpreter, a source-
code management system, a StarMod
compiler, a file editor, and a rundme envi-

ronment. In Dymos, a program is updated
by replacing individual procedures. Be-

. cause StarMod supports the concepts of
| modules and abstract data types directly,

you can update a program at the module
level. (Although languages like Pascal and
| C do not support these concepts directly,
you can implement modules and abstract
data types in them.)

Dymos also provides mechanisms that

state information between versions of | tween versions as well as implement static

functions. Despite these limitations, it is

| daralocal to a procedure.

Because Dymos is integrated, the source
code, object code, and compilation artifacts
(like parse trees and symbol tables) of the
program being executed or updated are
available at all tmes. Dymos uses this pro-

| gram information to aid in software devel-
‘ opment and dynamic updating.

To update a program in Dymos, you
must expliatly inform the system which
procedures to update and under what setof
conditions. The conditions for updatinga |

| procedure consist of waiting for a specified
| set of procedures or modules to become
idle (not executed by any process).

For example, the Dymos command

update Awhen X, Y, Zidle

tells the updating system to update proce-
dure 4 when procedures X, ¥, and Z are
idle. Dymos uses this command, the com-
pilation artifacts, and the state of the run-
ning program to determine when it is safe
to update procedure 4.

Although Dymos’s general architec-
ture is simular to that of several procedure-
oriented updatng systems, it fails to pro-
vide some of the general characterisucs
described earlier.

¢ It is language spedfic. StarMod is not
widely used, and its syntax was modified to
support dynamic program updatng. Al-
tering a language’s syntax to support dy-
namic updating (or anything else) invari-
ably leads to portability problems. |

¢ It is fully integrated. Dymos’s full in-
tegration causes two problems. First, the
tools available under the host operating
system must either be modified (assuming |
the source code is available) to manipulate
the compilation artifacts that Dymos
maintains, or simply not be used. This be-
comes a problem if, for example, the
Dymos editor has a different user inter-
face than the editor the user is accus-
tomed to.

Second, Dymos implicitly assumes
that source code is available — a possibly
invalid assumption when the software
provider and the user are different. For
example, a company providing propri-
etary software to a customer will, in gen-
eral, not want to give the customer the
source code. If the software must be dy-
namically updated and the source code is
| not available, you cannot use Dymos.

60

MARCH 1883

+ Each procedure must be updated explicitly.

| Although the language constructs sup-

plied for updating are quite expressive, an
inexperienced user could update the

wrong procedure at the wrong tme by |

typing an incorrect update command. In
some cases, you can even deadlock
Dymos.

¢ No support for distributed programs.
Because Dymos supports only mulu-
threaded programs, it may not be as effec-
tive for updating programs written in
other styles, such as single-threaded or
distributed. For example, whenevera pro-
cedure is invoked, a locking protocol must

be executed to control access to the proce- |
dure during an update. A performance |

penalty is paid for executing this protocol
regardless of whether an update is in prog-
ress. If Dymos did not support mult-
threaded programs, this protocol could be
made much simpler or even eliminated.
More important, the locking protocol
does not scale to a distributed system.

PODUS. In the Procedure-Oriented Dy-

dated. First, programs must be written in a

a top-down manner. If the overall struc- |

ture is top down, the
high-level logic is speci-
fied at the top levels of the
call graph, and the
program’s implementa-
tion is specified at the
lower levels. Typically,
the lower level imple-
mentation of program
logic changes more often
than the higher level, so
there is generally less
work during an update
because less code has
changed. The lower level
procedures become inactive sooner, caus-

WE HAVE USED
THE PODUS
PROTOTYPE
TO EVALUATE
PROGRAMS OF
VARYING
COMPLEXITY.

| MAantcs across com &)uterboundarles Dis-

tibuted PODUS' js nearly identical to
the centralized system ex-
cept that semanti(nliy de-
pendent procedures must
reside at the same site.
This exception lets site
administrators initiate
updates without worrying
about other sites. Using a
monitor-like control
structure for remote-pro-
cedure-call server-side
code, and system-gener-
ated stubs for client-side
code, PODUS success-
fully updates geographi-
| cally distributed programs.

ing the update to complete sooner. Sec- |

ond, data accessed by several different pro-
cedures (such as global variables) is
accessed through abstract data types.

. Thus, procedures are updated only when

namic Updating System, developed at the |

University of Michi 9g-m and later en-
hanced at Bellcore,® a program is up-
dated by loading the new version of the
program and replacing each old procedure
with its corresponding new procedure
during execution. Updating a procedure

involves changing the binding from its |
| preserving the program’s interface and in-

current version to the new version. When
all procedures have been replaced by their
corresponding new versions, the program
update is complete.

As a program executes, users request |

that newer versions be loaded into other
sections of memory. The loads are per-
formed without affecting the execution of

| the current version. Once a new version

has been loaded, the user inidates the up-
date by invoking an update command.
The updatng system interrupts the pro-
gram and examines the current state of its
runtime stack. Using this information and
the list of all procedures that each proce-
dure can call (generated by the compiler),
the updating system calculates when each
procedure may be updated.

PODUS imposes two requirements on
the structure of the programs to be up-

they are inactive. Badly written programs,
such as those that consist of one large main
procedure, cannot be updated using
PODUS because the procedure would be

active undl it exits. By definition, dynamic |

updating systems update a runming pro-
gram, so there would never be a ume to
update such a program.

Using the binding architecture, inter-
procedures, and mapper procedures,
PODUS lets you updane a program while

ternal state. An interprocedure, shown in
Figure 1, is a user-specified routine that
converts the procedure’s interface. This
ensures that proceduresare not called with
the wrong number or type of parameters.
If an old procedure attempts to invoke a
new procedure, the corresponding inter-
procedure is automatically invoked. Inter-
procedures invoke only procedures that
are in their new updated version and exitto
procedures that have yet to be updared.
Mapper procedures, or mprocedures, per-

form a conceptually similar task by con- |

verting the static data used by a procedure
into a format suitable for the new version
of the procedure.

PODUS is suitable for distributed en-
vironments because it uses remote proce-
dure calls to preserve procedure-call se-

" PROTOTYPE SYSTEM

To evaluate the potental of the
PODUS approach, we developed a proto-
| type implementation and several sample
programs that would be candidate scenar-
ios for dynamic updating. The prototype
| helps us experiment with dynamic updar-
ing techniques and provides timing tools
to evaluate the PODUS updating algo-

Ulwrix).
We have used the prototype to dynam-
ically update several sample programs of

Procedure P,
(old version)

Procedure P'J.
{new version)

Interprocedure k
Invoke P,
Return fo P,

| Fig::e L. Invoking a procedure usmg an inter-
| procedure.

rithms. It runs in a Berkeley Unix-com- |
patible environment (such as SunOS or |

varying complexity.”' For one applica- |

IEEE SOFTWARE

61

Figure 2. Structure of a prototype system based on PODUS, which bas rwo components: the program-update
processor, called pup, and the updating-system shell, called ush. The dashed arrow imdiates a potential
interaction. Ush communicates with only one process at a time. No connection is set up until 1t needs 1o

comunicate with another pup process.

tion — the updating of a hypothetcal
Internet gpacket router — we did a tming
The analysis revealed that
&roaghout the acrual updare, there was
relatively lirtle system degradation; the l
router contnued processing at 90-percent
efficiency.

Components. The prototype has two
main components, as Figure 2 shows. The

updating-system shell provides com-
mands for loading, running, and dynami-
cally updating programs, as well as facili- |
tes for managing multiple programs and
online help. Users interact with PODUS
by sending commands to the updating-
system shell.

The program-update processor con- ‘
trols a separate Unix process in which pro-
grams are run. The processor managesthe |
loading of programs and provides the vir-
tual-memory primitives to perform dy- |
narnic updanng It accepts commands l
from the updatng-system shell and pro-
cesses themn, taking no action on its own |
other than to notify the shell when opera-
tons complete.

The user program runs inside the pro- ‘

| gram-update processor’s address space.

For each version of a program loaded into |
the processor, the program’s code, statc ‘
data, and procedure name/address map-

pings are saved. Interprocedures and map- |
per procedures needed to update from

version 7 to version i+1 are also stored in

the processor’s version area. Overall pro- |
gram-state information (like procedure-
call graphs and the state of an update) are
stored in the updating-system shell. |

Under normal circumstances, the user
program cannot detect the presence of the

| program-update processor or the updat-

ing-system shell. Because all processor-
shell communication is done through
Internet interprocess communication, the

. shell and the processor need not reside on

the same machine. In fact, in one updating
application, the shell ran at Bellcore while
the processor ran at the University of
Michigan. Muldple program-update pro-
cessors (for different programs) can be run
on the same physical machine; a PODUS
port mapper lets programs register and
unregister themselves with the machine.

Updating. The user may initiate an up-
date at any point throughout execution.

| Once an update request has been gener-

ated, the updating system determines the

set of active procedures, S. A procedure, |

P, is actve if it is on the runtime stack or
its new version can direcdy or indirecty
invoke any other procedure, Fj, that is ac-
tive. Thus, by definition, the main proce-
dure is always actve.

Having determined S, the updating

However, syntactic dependencies
alone are not always sufficient for it to
make this determinaton. Sometmes a
group of procedures will interact in subtle
ways that cannot be ascertained from the
program’s syntax. For example, a group of
procedures that control different eters
for a robot may not call each other, but stll
depend on each other’s actions. We call

. these relationships semantic dependendes.

system replaces the old version of P, with |

its corresponding new version, P;, when-
ever P; is not an element of S. Once a
procedure is updated, it is marked as new
and is not considered further.

PODUS idendfies actuve procedures
by examining the state of the program’s
runtime stack and procedure-call graph. It
looks at the calling relationships between

. procedures — syntactic dependencies —

and uses that information in determining
when the user can update a procedure.

Thus, PODUS must look at both syn-
tactic and semantic dependencies in deter-
mining when an update is possible. It can
find syntactc dependencies automatically
because the procedure-call graph can be cal-
culated from the language’s syntax and
program’s source code. However, it cannot
detect semantic dependencies automati-
cally, so the programmer must specify them
before the program is updated. PODUS
atomically updates semantically dependent
procedures. Such updates occur only when
all the semantically dependent procedures

Both syntactic and se:mnnc dependen-
cies have formal definitions” that guarantee
an old version of 2 procedure P, invokes the
most recent version of P, namely P, or P;,
depending on whether an update of P; has
already occurred. However, a new versionof
P, P/, invokes only the new version of a
procedure P;, namely P;’.

Because the ser of active procedures

| changes throughout the program’s execu-

tion, S must continuously be reevaluated.
To reduce the overhead incurred by re-
peatedly recomputing S, you must be able
to tell when a procedure becomes a candi-
date for updating. Quite simply, an inac-

tve old procedure cannot become active |

because it would have been converted to a
new version when it first became inactive.
Thus, recomputing Sislimited to whenan
active procedure becomes inacave. Old
actve procedures become inactive pre-
cisely when the runtme stack contains
fewer elements than there were during the
most recent procedure update. If no pro-
cedures have been updated, old active pro-

cedures become inactive when the run- |

time stack contains fewer elements than
when the update was initiated.

P, comprises two components: the pro-
cedure specification, P;.spec, and the pro-

B2

MAHRCH 1883

cedure implementation, P.imp. P,.spec
abstractly corresponds to the specification
of P;'s behavior, while P.imp corresponds
1o the behavior’s implementaton.

P,imp is represented by an address cor-
responding to where the code for the pro-
cedure resides. Conceptually, PODUS
keeps track of the specification/imple-
mentation binding in a data structure
called a binding table. The binding of
Pispecto Puimp is a mapping between P/'s
abstract behavior and a specific imple-
mentation of that behavior. In this context,
P/s interface (calling sequences and return
value) is part of P.imp.

Changing the interfoce. PODUS views an

| update as the change of binding of P,.spec

from P;imp to P;’.imp. If the interface to a
procedure does not change as part of the
update, the rebinding of P.spec to P,/.imp
poses few problems.

If an update does require changing the
interface, however, there must be a way to
convert the old interface to the new inter-
face as part of the procedure invocation
and the new interface to the old interface
as part of the return statement. Consider,
for example, a sort routine that initally
sorts integers and is later replaced by a sort
routine that sorts real numbers. A routine
is needed that converts the dara format
from integer to real numbers on proce-
dure invocaton and back to integer values
upon the return. Likewise, data included
in or missing from the new invocation
must be maintained or generated to en-
sure program COrrectness.

In the sort example just described, a
possible interprocedure for the sort-pro-
cedure invocation is logically defined as

interprocedure sort (data ; armay of integer);

var
real_dam : array of real;
{

real_dat := convert_to_real (data);

sort (real_dam);

data = convert_to_integer (real_daw);
{

Address space. PODUS’s underlying ar-
chitectural model consists of a very large,
sparse virmal-address space. Sparse ad-
dress spaces are not required; instead, they
are used as an absmraction of the runtime

VIRTUAL MEMORY AND SPARSE VIRTUAL-ADDRESS SPACES
Conventional virtual-memory systems give you the illusion thar the computer has

| more physical memory for your program than it really does. By moving parts of a pro-
| gram from disk to memory and back, the virmal-memory system lets you run programs

thatare larger than the physical memory. Virtual memory frees you from having to man-
| age overlays (make sure the correct parts are in memory ata given time).
| Asthe cost of memory continues to decrease, the importance of running large pro-
- grams in computers with small physical memoriesis also diminishing. In spite of this
| tend, virmal memory is still an important part of contemporary operaring systems. Be-
sides providing a mechanism for managing small physical-address spaces, itis used in
multitasking operating systems to prevent the memory used by one process from being
accessed or modified by another.

Also, if the architectare can manipulate large enough addresses, the information used
by the operating system to protect a process’s address space can be encoded into the ad-
dress irself. Using this technique, you can encode attributes such as location information
(useful in distributed systems), owner information, and type information into an address.

If the addresses are made even larger, vou can address file dam as if it resides in pri-
mary memory. This style of file access is called a single-level store. A single-level store
was first provided in the Multics system and has been since used in the IBM System/38
and the Apollo Domain system. By combining a single-level store with the addressing in-
formation, you can build a system that uses a large, sparse virtual-address space.

The address space is sparse because most of the addresses do not actually contain
dara. Instead, only the parts of the address space that contain useful information are
broughtinto physical memory as is done in conventional virtual-memory systems. Simi-
larly, programs in this type of system do not generate addresses that contain hundreds of
bits; the large addresses are generated from a combination of normal machine addresses
' and values stored in registers. The HP Precision Architecture and IBM PC RTs use vari-

| ‘adons of this style of addressing.

Most of today’s architecrures do not directly provide mechanisms for manipulating
sparse address spaces. Sparse address spaces can be emulated using existing machine reg-
isters (instead of registers explicidy designed for this purpose) to manage pares of the ad-
dress space. Jn PODUS, for example, we use the registers normally associated with seg-
mented virzal-memory systems to manage the version and procedure IDs associated

design as well as an effident implementation on existing architectures.

i with the large addresses. By performing this mapping, we can provide a good conceprual
L

s e e e
Other ‘ Machine D | Version ID Type Procedure 1D Displacement
-1 m 1 i i 0

Figure 3. Address-space description.

environment. As Figure 3 shows, each ma-
chine address consists of # bits and the
following components:

+ amachine ID denoting ar which ma-
chine the program segment resides;

¢ a version ID denoting which version
of the program the address references (mul-
tiple versions can reside smultaneously);

¢ a set of type bits to signify whether
the procedure the address references is a
normal procedure, an interprocedure, ora
mapper procedure;

+ a procedure ID that specifies which
procedure the address references;

+ adisplacement, which represents the

| offset into the code of the procedure de-

noted by the procedure ID; and

+ other miscellaneous bits used by the
operating system for various related func-
tons such as process IDs or protection
information.

By incorporating a version ID into the
virtual address, the large address space is
partitioned into a number of version
spaces. Within each version space, the ob-
ject code for a speafic version of a pro-
gram and its static data are stored, along
with a binding table. Only the procedures
in that version space use the binding table.

When a procedure is updated, the

IEEE SOFTWARE

B3

binding table in the old version space is set ' on these systems has been published. As a

to point to the interprocedure for the pro-
cedure, and the binding table in the new
Version space is set to point to the new
version of the procedure. Active old pro-
cedures that invoke the procedure just up-
dated actually invoke the interprocedure,
while updated procedures
will invoke the new ver-
sion of the procedure.
Unfortunately, most
current CPU architec-
tures do not provide sup-
port for this kind of ad-
dressing. To overcome
this deficiency, we map
the components of these
large addresses onto the
existing registers of a con-
ventional segmented vir-
tual-memory system, as

OF A

" described in the box on p.

63. Performing this mapping (described in
derail elsewhere®) lets PODUS use a
sound architectural model and stll be re-
alizable on existing hardware.

Comparison. Like some other updatng
systems, PODUS provides mechanisms
and policies for preserving program cor-
rectness during an update. But it goes be-
yond many of these systems by providing
an algorithm for replacing the procedures
of the program being updated in anappro-
priate order. This algorithm, along with
methods to manually override it, const-
tutes PODUS’s updating policy, which
together with updating mechanisms, lets
you update programs quickly with mini-

human intervention.

PODUS also minimizes performance
degradation. By building an updating sys-
tem on top of a well-known (and well-stud-
ied) foundation — segmented virtual mem-
ory — it can exploit a range of existing
hardware, software, and theory. Although
not a requirement, a good unplm'lenmnon
of PODUS usingconunen:ial virtual-mem-
ory hardware could substantally improve
our prototype system's performance.

Unfortunately, we cannot compare
PODUS’s performance to that of other
software-based updating systems because,
to our knowledge, no performance data

 small program using a prototype imp

PODUS ALSO
SUPPORTS
MULTIPLE
VERSIONS

RUNNING
PROGRAM.

| result, there is very little information to
| determine how fast our system is in com-
parison to other updanng systems, or how
fast it should be. We have published per-
formance data on the effects of updating a
le-
mentation of PODUS. Uss
This p: r data
showed tha: PODUS did

not significantly degrade

program being updarted.
More meaningful data
could be obtained by
comparing how quickly
production-grade imple-
mentations of PODUS
and like systems updated
similar large, complex
programs. Programs
must have a single thread
of control. Data shared between proce-
dures (including file data) must be ac-

the performance of the |

cessed through abstract data types. Aslong |

as these constraints are obeyed, PODUS
lets you update a procedure’s code, its in-
terface to other procedures, and the im-
plementaton of its internal data struc-
tures. Besides making localized changes,
these building blocks can be used to re-
structure the program being updated.
Many earlier systems perform only a sub-
set of these changes.

Unlike many earlier updating sys-
tems, PODUS does not force vou to use
specific development tools to obrain the
benefits of dynamic updating. It does,
however, require you to make appropri-
ate modifications to compiler code gen-
erators and linkers to correctly interface
them with the updating system. Al-
though this work is not trivial for the

system programmer, the modifications |

will be transparent to the application
programmer. To some extent, PODUS's
design dicrates the class of languages and
programming style, but we believe irs
requirements are reasonable. They en-
compass a range of languages and spec-
ify top-down programming, a style that
has been advocated for some time.

We also believe that the language and
programming style scale to distributed en-

vironments — many of which must run
contnuously and would benefic signifi-
canty from the use of a dynamic updating
system.

PODUS updates distributed programs
written using a subset of the remote-pro-
cedure-call paradigm. It goes beyond
most updating systems by supporting
muldple versions of a running program.
This support is essendal in a geographi-
cally distributed environment because up-
dates take time to propagate across unreli-
able networks. We envision future
distributed systems being shared by muld-
ple, administratively distinct organiza-
tions, each of which uses its own favorite
hardware and software. If these systems
are to interact (and be updatable), a

namic program-updating system must be |

able to operate under these circumstances.
By design, PODUS accommodates heter-
ogeneous distributed hardware, software,
and administrative domains.

Finally, unlike some updating systems
that require redundant hardware to pro-
vide dynamic updating facilives, PODUS
needs no special hardware to work prop-
erly. Virual-memory hardware can be
used to improve PODUS'’s performance,
but itis not essential.

the software-based dynamic up- |

1l
Adating systems described require
some kind of indirection between the pro-
gram modules that invoke each other, If
indirection cannot be incorporated into a
language or its underlying runtime sys-

tem, dynamic updating cannot be done. |

As we have seen, indirection is not suffi-
cient for dynamic updating. A dynamic

updating system must also provide tech- |

niques for preserving the correcmess of a
program being updared.

Much work remains to be done before
dynamic updating systems can become an
integral part of today’s computing infra-
structure. Some tasks that will require fur-
ther study are

¢ Develop tools for testing support code.
Although there are tools to help program-
mers make intelligent decisions about
code modification, thus reducing the
chance of human error. there are no tools
for constructing and testing the support

64

MARCH 1883

rm—

code of dynamic updating systems (the |
. ing of these programs, probably because

interprocedures and mapper procedures).
Testing support code under conditions
similar to the actual update is particularly
difficult.

¢ Increase the number of languages and
styles that can be updated. Furure updating
systemns should support multilingual pro-
grams and should let vou update programs
in different styles. Most of the rechniques
we described update programs by proce-
dure or module, for example. Future up-
dating systems might update programs
written in declaradve, functional, or ob-
ject-oriented languages.

¢ Support updating of multithreaded pro-
grams. Because many future programs are
likely to be distributed or parallel, there
must be support for multithreaded pro-
grams as well as programs that do not
communicate using remote procedure
calls. Some systems, such as Conie, can
update programs that use a limited form of
message passing, but future systems
should extend this idea to support pro-
grams that use less restrictive communica-
tion pattermns.

¢ Obtain comparative performance dara.
No such data for updating systems has
been published, although dynamic updat-
ing systems have been around since the
1970s. The lack of data is probably be-
cause either the updating system’s perfor-

mance was hard to characterize—and con- |

sequently the data was hard to collect—or
they were built as research prototypes and
never applied to real problems. We partic-
ularly need experiments that evaluate the
effects the computational model and the
granularity of the updatable component
have on the performance of the updadng
system, This information will illustrate the
limitanions of current systems and help
identify areas for further research. Perfor-
mance informatdon will also aid pracu-
tioners who are trying to select an updat-
ing system for their domains.

® Support hard real-time programs.
These programs can really benefit from
dynamic program updating because they

isting updatng system supports the updat-

they are especially difficult to maintain.
At Bellcore, we are investigating

the feasibility of using PODUS to dynam-

ically update several large Bellcore prod-

ucts. We are also expanding PODUS’s
updating algorithms to work with distrib-
uted systems that do not communicate
using remote procedure calls — specific-
ally the control software for a multimedia
communicadons system. +

‘ ACKNOWLEDGMENTS

We thank Peter Bates, Al Davis, Gita Gopal, Carlyn Lowery, Lillian Ruston, John Unger, and the anony-
mous [EEE Softare referees for their many helpful suggestions. Their knowledge of some of the systems we
| describe helped us improve the accuracy and clanty of this arnele. Their stvlisne comments also dramarically |

| improved the editorial quality.

Bellcore's policy is to avoid any statements of comparative analysis or evaluation of products or vendors.
Any mennon of products or vendors in this article is for scientfic accuracy and precision or for illustration

REFERENCES

and should not be construed as commentary. The inclusion or omission of a product or vendor should not be
interpreted as indicating a posinon or opinion of ¢ither the authors or Bellcore.

| 1. R.Fabry, “How to Desizn A System in Which Modules Can Be Changed on the Fly,” Proc. fntf Conf.
Sofrware Eng., IEEE-CS Press, Los Alamitos, Calif,, 1976, pp. 470-476.

Trans. Software Eng., July 1978, pp. 298-307.
3. T. Bloom, Dynanric Module Repl
Press, Cambridge, Mass,, 1983,

ware Eng,, June 1989, pp. 663675,

1983,

1. H. Goullon, R. Isle, and K- Léhr, “Dynamic Restructuring in an Experimental Operating System,” JEEE
i a Distributed Progranmmmg System, doctoral dissertation, MIT

4. B. Liskov, *Distmibuted Programming in Argus,” Commi. ACM, Mar. 1988, pp. 300-312.
- J. Magee, J. Kramer, and M. Sloman, *Constructing Distributed Systems in Conie.” IEEE Trans. Soft-

. R. Yacohellis etal., “The 3B20D Processor and DMERT Operaung Svstem: Freld Administraton Sub-
svstemn,” Bell Systems Teebnical 7., Jan. 1983, pp. 323-339.
. L Lee, Dymos: A Dynamic Modificaion System, docroral dissertation, University of Wisconsin, Madison,

. M. Segal and O. Frieder, *Dynamic Program Updating: A Software Maintenance Technique for Mini-

[mizing Software Downtme,” 7. Software Matntenance: Research and Pracaa, Sept. 1989, pp. 34-79.
9. O. Frieder and M. Segal, “On Dynamically Updating a Computer Progmam: From Concept to Proto-
tvpe,” 7. Systems and Software, Feb, 1991, pp. 111-128.

. M. Segal and O. Frieder, “Dynamically Updating Distributed Software: Supporting Change in Uncer-

tin and Misorustful Emvironments,” Proc. It/ Conf. Sofrware Mamtznance, [EEE CS Press, Los Alamitos,

Calif, 1989, pp. 254-261,

Mark E. Segal is a member
of the technical saffin
Bellcore’s Nerwark Systems
Research Deparmment. His
research interests include op-
erating systems, distributed
software eninser-

ing and maintenance, com-
puter networks and software
structures for large-scale
mulamedia communications systems.

Segal received a BS, an MS, and a PhD in computer
and communications sciences from the University of
Michigan, Ann Arbor. He is 1 member of the [EEE and

must produce correct results at a specific | ACM

time. By definition, they should not be in-
terrupted to install new versions (or for
any other reason). Unfortunately, no ex-

Ophir Frieder is an associ-
ate professor of computer
science at George Mason
University. His research in-
terests include paralle] and
distributed architectures,

" database systems, and oper-

i | atng systems. He s also g
. . £

staff consultant for the Fed-
eral Bursau of Investiga-
nons and the Institute for Defense Analvsis.

Frieder received a BSc in computer and communi-
cations science and an MSc and a PhD in compurer sci-
ence and engineering, all from the University of Michi-
gan. He is a member of the IEEE Computer Sodety
and Phi Beta Kappa.

Address questions abour this artcle t Segal ar Bellcore, MRE 2A275, 435 South St., Morristown, NJ 07962-

1910; Internet ms@thumper bellcore.com.

IEEE SOFTWARE

Copyright © 1993 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from |EEE SOFTWARE,

10662 Los Vagueros Circle, Los Alamitos. CA 90720

