
down systems for

maintenance and repair is

forcing developers to look

at ways to repair

software as it runs. The

authors briefly describe

available updating

systems and present a

prototype.

MARK E. SEGAL
Belltore

OPHIR FRIEDER
George Mason University

Advances in sofbvare-development
technolo,?- and methods continue

to help em$neers build larger and more
complex systems. but those systems are
neither error-free nor can the! satisfi-
ewry anticipated need. Despite all our
advances. software must stil l be
changed to repair bugs and add new
functions-often resulting in downtime.
.k users ~grox- to depend on a s?>tem. the!
become more and more mtolerant of
these intemrptions.

For some companies, the cost of sys-
tern shutdown can be prohibitive. Chang-
ing the softxare that controls an orbiting
spacecraft. for example, cannot bc done at
all if it means disablinp the life-support
system. Anti. ahhou~h not iife-threaren-

ing, disabling a bank-transaction process-
ing swem mav hare s@ificant economrc
consequences - particularly if the com-
panies involved have a reputation forpro-
x-idingr a highlv a&able seen-ice. In the
telecommunications domain. -switching
sysrems have 3 m~x~mlmurn downtime rc-
quirement ofless than two hours &bin 30
years!

If the .&ware heiy chayed is part of
a distributed s-stern - in &ich manv
pro.~ams i&act over geographically
disnibuted networks - these problems
become even more acute. Sot only must
you address the problems associated with
downtime. but you mwr also coordinare
the shutdonn. If one computer begins
nmnmp the new software while the otben

IEEE SOFTWARE 07ao7‘?5w33/u3co,ml,~~ m OEE 5 3

IEEE COMPUTER SOCIETY THE wfmm OF ELECTRICAL AN0
, ELECTRON!CS ENGINEERS. INC.

continue to run olderversions, they might a group of procedures uithout intermp t Suppmh,-levelprogram changes. To
exchange incompatible data. tion). Some updating qmms go further dynamically update a rangt of programs,

Clearly, there is a need for novel rnain-
tenance approaches that do not interrupt
system operation for longperiods.

One such approach is a system that up-

by providing policies for determining an updatingsystem must support a variety
when program components can be up-
dated. An update policy could be some-
thing as simple as updating a pro-gram

dates or replaces a pro- module (a group of pro-
gram version without cedures and their associ-
stopping the current one. THE MORE ated data) only if it has no
,4 o$umupmgram-updar- outstanding requests, or
ing~yaon can make it easy TRANSPARENT as complicated as updat-
to repair bugs or enhance AN UPDATING ing a module if none of
running software without I the data it references is
the cost of system shut- SYSTEM, THE being accessed ty another

down. MORE PEOPLE In this article, we This need to preserve
briefly des&be a number WILL USE IT. program correctness is es-
of research and produc- sential because it lays the

of low-level program changes. The sirn-
plest h d of change is to replace a module

, with a new one that is implemented differ-
ently. In this scenario, the module's inter-
face (its calling conventions) remains the
same, and the module retains no internal
state between invocations. lMore compli-
cated changes include changing the
module's intehce, ha\ing the module re-
min state between invocations, c h a n p g
the state's implementation, and c h a n p g

, the implementations of both the interface
and state variables. Changing the imple-
mentation of state variables often occurs in
programs that implement data srmctures

tion updating systems and foundation for other : asabstract damtype.
present a p r o t o w system developed at characteristics such as minimizing human i t Suppmmde remunuling. Significant I . the University of M i c h l p and enhanced I mtervention. If policies to preserve pro- 1 code rmcturingcan occur during main-
at Bellcore.

GENERAL CHARACTERISTICS

The techniques a system uses for dy-
namic updating are influenced by the a p
plication domain and the desired perfor-
mance and correcmess guarantees. Thus,
a system for dynamically updating an in-
formation server used in a rimesharing

gram correcmess are in place, programs tenance - a change beyond simple mod-
can be updated correctlywith little human , ule replacement An updating system must
assistance; if these policies are not in place, be able to update programs when new
the burden ofdeterminingwhen to update
a program component rests on those who
control the system.

You can also extend program correct-
ness to account for time by %ping that if
the system causes a program to take signif-
icantly more time to produce resuls, it is

environment, for example, would gener- affecting program correctness. Real-time
ally not be appropriate forupdatingareal- ' systems are a good example. If updating
time process-conaol program. There are, rnakesa real-time programexecute longer,
however, several characteristics that all up- you are violating the program-correcmess
dating systems should possess, regardless criterion. Unformnately, most updating
of their intended use. The relative impor- ' systems do de,pde program performance
tance of these characte.stio varies uith ' during an update, and anyone designing
the application domain. an updating system should uy to minimize

.a1 these characteristics work to make thiseffect Sirnilarly,desipersofupdating
the system as uansparent as possible to systems and the related parts of the i

modules are added, existing modules are
deleted, and functionality is moved be-
tween modules, for example.

t Update ditributed program. Many
programs that benefit from dynamic up-

, dating are distributed by nature. Future
disnibuted programs will consistofcollec-
tions of modules running on a variery of
heterogeneous hardware. These pro-
grams will communicate and cooperate

I
, across mutually distrustful adminisuative

domains. Adminisuative domains are net-
works of computers each controlled by a
separate organization. From a security
standpoint, these network, are mutually
distrustful because one organization can-
not make arbitrary changes to another's

both its users and pro,pmmerj and its computer's runtime system should ensure computers. The updating system and the
execution environment. The more ti-ans- programs being updated must cope uith

programmers and manaps are to use i t
parent an updatingsystem, the more likely the reliability problems such a large-scale

network preseno.
In general, all updating systems should t Minimize human immlentim. Part of The updating system's algorithms
t hw~eprogram mermen-. Pro,- preserving pro,- correcmess during an must scale to large dismbuted proLpms,

I .
correcmess must be preserved during the ' update means ensuring that the updating
update as =,ell as at times when no updates components are applied in the correct
are in progress. Mechanisms for preserv- order and at the right time. Even a metic-
ing correcmess include tools for dscover- ulous person can perform an update im-
ing pro,pm state to prevent updating at properly. There must also, of course, be
incorrect times and tools for atomically ways to override default updating se-

m whlcb there are hundreds of thousands
of individual modules, and cooperate with
other updating systems across adrninistra-
tive domains.

t hTot require qeiial-purpose barbdare.
They can, of course, exploit it if it is there

replacing pro,- cornponenu (replacing / quences if conditions warrant i t ; already, but such hardware usually in-

1 1

I E E E S O F T W A R E 5 5

cleases system cosa and can d m porta-
biity. A d h g additional hardware to a large
distributed systemis even more expensive.

4 Not m a i n the kmguage and envi-
nmmott. The user must be free to choose
a language and system environment An
updating system must not force pro-
grammen to writecodeorcalloperating-
system primitives in a radically different
manner. Doing so would prevent many
large programs already in use from bene-
firting from an updating system. Ideally,
updating systems should tolerate a variety
of programming styles - or at leas re-
quire a style that is already widely used -
and allow subsrantid code reorganization
between versions of the program being
updated.

HARDWARE-BASED SOLUTIONS

Before looking at software-based u p
dating systems, it is worth briefly examin-
ing hardware-based solutions, although
they are costly and have a narrow applica-
tion. In a system that uses hardware-based
dynamic updating, an enendre running pro- I
gram is dynamically updated with a second
system identical to the one executing the
program. Because the second computer sys-
tem with the new version of the program is
loaded while h e first computer continues to
execute h e older version, programs can be
updated with minimal downtime and maxi-
mum flexibility in meuchning.

TO perform the update, you stop the
first computer at a safe point in the pro-
gram and simultaneously start the second.
Some work in progress may be lost during
the update, but you will need only a short
time to complete this t)rpe of update in
most cases.

The principal disadvantage of this

kept consistent Moreover, such an ap-
proach, which requires close ~ c h r o n i z a -
tion between systems, does not scale to a
dismbuted environment For these rea-
sons, our focus in this article is on soft-
ware-based systems.'

A slight variation of this dynamic-up-
dating techmque is in Bellcore's Service
Control Point, which provides fadlides
for high-speed 800-number lookup and
calling-card verification for local tele-
phone companies. The SCP must alwar
be available to service both h d s of re-
quests. To achieve the desired perfor-
mance, fault-tolerance, and availability
goals, each SCP is conac t ed with re-
dundant computer and communication
hardware. A copy of the SCP software
runs on each set of redundant hardware
and the communications subsystem routes
requests to available processing hardware.

In a dynamic update, the user reconfig-
ures the SCP to reroute all requests to
other programs that perform the same
funaion, and then replaces the program(s)
that must be changed. After the programs
are updated, the SCP

program components being updated and
the way they communicate. The box on I

pp. 58-59 describes these memcs and I
gives a quick-reference companson table
of the ?%ems we describe. i

unfortunately, we have found no sin- i gle system (nor do ure believe one exim)
that lets you incorporate all possible ~
changes into any program snucture. In 1

other words, any program can be so ~
poorly written that it cannot be dynami- i
cally updated. Perhaps this is why those !
researching d>namic updating have con- /
centrated on creating dynamic updating
techniques for specific, well-accepted, and
well-understood program snuctures.

Fully automatic dynamic updating,
which requires no human intervention
beyond starting the update, has the poten-
tial to update many program smctures.
But as of yet, it cannot work properly if
semantic information is needed to per-
form any aspect of the updating. Humans /
are mor-prone, and if a human must per- 1
form nontrivial program updates, the
scope of dynamic updating will be limited

by that person's capabili-

technique is its substantial cost It is typi- softwareisupdatedusingredundanthard- i Repbdng abstract dnia types. The first
cally used in systems that need redundant ware, redundant intersite communication ' qpe of system allows replacement of ab-
hardware anyway to ~rovide fault-toler- i links, and rerouting algorithms similar to I stract data yper in pro3-r In dus ate-

routes all requests to the ties. Perhaps research in
newlyreplaced programs.

I
pro-gram verification and

The programs that han- ANY PROGRAM understanding may re-
dled the requests during CAN BE SO duce this limitation.
the initial update are then

POORLY
The types of software-

replaced. If the changes based systems include re- ,
involve modifications to W R ~ ~ E N THAT placementof abmactdata :
the operating-system in- types in programs, re-
terface, the user must IT CANNOT BE placement ofservers in di-
physically pamtion the ent-server systems, updat-
SCP into two systems ,gofdisaibuted programs
during the update. In this UPDATED. that use excernallyspeafied
worst-case scenario, the communication topolo-
update takes approxi- gies, and the updating of
mately two weeks to plan and eight hours ; pro-grams in p d u r a l langua-m.
to complete. Communications subsystem i

ance - telecommunications systems for : ones justdescribed.
example. However, even then, building a !
redundant computer system and properly SOFTWARE-BASED SYSTEMS
connecting it with the main computer sys- 1
tem is both difficult and expensive. sot I Sofnvare-based updadng systems are
only must the hardware be intercon-
nected, but the software shared between

 go^ are the dynamic-we-replacement
approach and the DA4S operating system.

D w i c type r e p / o m t . I)ynamic type re-
placement involves chan -~g the imple-
mentation of user-de6ned abstract data characterized by several smcnual, behav-

ioral, and performance memo. We distin- types, which is described in a collection of
the systems (such as databases) must be guish systems by the granularity of the

/
procedures called the type manager.

l j
5 6 M A R C H 1993

blocks, access rights, open files, and 50 on.
Thus, a service may be mnstructed from
several abstract data types. When an ab-
stract data type in a dynamic-type-re-
placement system is updated, only the r e p
resentation of the type and the code that
manipulates it change. When a server is
updated, however, any of the code within
the server may change.

Systems in this category include the
Michigan Terminal System and Argus.

Mirhigm TeminralSystem. MTS, a time-shar-
ing system for IBM-compatible main-
frames, can dynamically update large sys-
tem services, such as command-language
interpreters and mail systems. Programs
requesting services call the servers indi-
rectly through a s e ~ c e manager. By mod-
ifying the service manager to call a new
version of the service, you cm change the

; implementation of a service at runtime.
Programs running an old version of the
service continue to execute it while new
requests invoke the updated version.

This approach a m e s that only the
implementation of a service changes be-
tween versions, but not its interface. It
also assumes that programs are expliatly
written to call service managers instead

in the process's virtual address space (to
Compensate for the PDP 1 1's smaU vir-

' tual-address space). The informationused
to keep uadc of each module is stored in a
M e d list of desaiptors called a descriptor
chain. Repluggingisdone by changingthe
links wirhrn the descriptor chain.

DAS also supporn the r e s u u h g of
data stored w i h the modules. R~SUUC-
turing is performed in conjunction with
replugging.

One significant problem with DAS is

I
Mihen h e -manager is changed, the old 1 andnew data-rep-n&on hrmatsare&-

I

I
1

systems.

DAS cpmthg rn. Hannes Guullon and
colleagues constructed an experimental
operating system, the Dynamically Alter-

ferent, and praious instantiations of dus
qpe will not work correctly with the new
type manager. To handle &s situation,

/ Although the dynamic its use of v i a l memory
type-replacement ap- to aid updating. The vir-
proach provides a reason-

I
USING tual-memory architecrure

able method of updating - consisting of the de-
absuact data types, it fails ARCHITECTURE scriptor chains and the
to address the more gen- BASED ON mechanism for address-

i era1 issue of changing
VIRTUAL

space uansition - is both
code snvcture as well as overly complex and ineffi-
implementation. For in- MEMORY cient The laqe, sparse ad-
stance, changing the call- dress spaces available on
ing conventions (inter- MAKES current CPUsmakethear-
face) of a type manager UPDATING chiteam somewhat obso-
(other than merely aug- lete. To implement it with
mendng them) is not s u p TOO COMPLEX, acceptable performance
ported. Also, Fabry's a p on the PDP 11, the DAS
proach requires a capa- designers had to code
bity-based addressing scheme, thus lim-
iting its applicability to capability-based

miuocode routines. of services.
Another problem is that DAS fails to MTS has several disadvantages. Be-

programmers must build a version-tag-
ging and data-conversion mechanism.

pofions of it in microcode and use pre-
viously unused opcodes to reference the

1

1
1 '

provide mechanisms for procedures whose
interfaces change betweenversions.

I

cause it is designed primarily for large
components of an operating ?tern, as op-
posed to end-user software, it does not ex-

Robert Fabry used version numbers to
tag each object of a specific type.' if an
object is an old version, the type manager
calls a routine to convert the old represen-

I tation to the new representation.

plidtly address the problem of a new ser-
vice calling an old service. If such a

dure m a mfferent module is called, D.4S
!/ performs an addressspace uansition by
! placing the descriptor table enmies of the

new module into the address-mapping
hardware, while saving the current entries

able System, for teaching and research at Repbtbg servers in dim-server systems. A

The two approaches differ in the gran- Argus distributed pro,gamming system
ularity of the objects to be updated: an developed by Barbara Lskov? Argus is a
abstract data type is smaller than a service. language based on Clu and an underlying
A file server provides access to files, which ! operaring system. In Argus, a program
may be built from a number of abstract i consists of a mlletion of servers called

the T e h s c h e Universiet Berh.' DAS

on a stack Only one code segment is kept i data types that manage lisrs of free disk / guardians that implement a logical set of

number of dynamic updating systems
provides support for dynamic updating of
application programs by leving a module
be replaceduith a new module that has the
same interface.

Conceptually, DAS is slrnilar to dy-
namic-type-replacement systems. It per-
form dynamic updadng using "replug
&g," a mechanism built on DAS's ad-
&m-~~acemana~mentsys te~which is ,
in turn, built on the addressing hardware
of DEC's PDP llI40E. When a pme-

. .

have been conmucted for systems that ob- dependency exists, MTS deals with it by
serve a client-server relationship, in whlch updating all dependent services simulta-

, one or more servers supply services to a set , neously - an at ion that requires dis-
of clients. The clients and servers may or ablingthe services tousersforthe duration
may not run on physically dismbuted of an update. Also, because MTS is fully
computers. I reentrant, dam used by these services is

Soha re for this paradigm has a smc-
nue similar to that of programs for dy-
namic type replacement In each case,

i pars of the program invoke a set of ser-

stored in special data areas, so you cannot
change the data format between versions.

Argus. T o Bloom describes a dynamic
mcesorabsma-data-orne managers. updating system3 in the context of the

I E E E S O F T W A R E 5 7

functions through a set of handlers. Be-
cause a guardian's intemal state is not ac-
cessible to other guardians except through
the use of handlers, a guardian is similar to
the abstract data type described earlier ex-
cept it is larger. Guardians can manage
persistent data and function in a &suib-
uted environment. All communication
among them is handled through a mes-
sage-based communications system.

To dyrrarmcally update a p r o w in
Argus, the user replaces related collections
of guardians, called subsystems. Argus's
communications infrasuucture and its
ability to maintain consistent versions of
persistent data when the system crashes
enable guardians to be temporarily inac-
cessible during an update. Because Argus
lets a guardian's persistent data be associ-
ated with different guardians over h e , it
can manipulate persistent data or transfer
it to new versions of guardians during an
update.

Much of Bloom's workaddresses keep-
ing data consistent and ensuring that an
update does not make subsequent guard-
ian interactions inconsistent Thls is possi-
ble, in pan, because Argus lets guardians
crash and restart in a consistent u y and
expea clients to tolerate this occurrence.

The disadvantage of this system is that
it is tightly tied to the Argus system, so
adapting it to other systems could be diffi-
cult crash-recovery facilities are neces-
say for the Argus updating approach to
work properly, yet few operating systems,
runtime systems, or languages contain the
necessary support code for c~ash recovery.
Furthermore, Bloom acknowledges that
the subsystem, which is the atomic com-
ponent of updating in Argus, may be too
large for some applications. If a small pan
of a subsystem is changed, the entire sub-
system is unavailable during the update.

Upcbiing in comtrrined mmagepsdng SYS-
tents. The thud gpe of sohare-based up-
dating system is designed for disaibuted
programs that communicate usng exter-
nally specified communication topologies.

Conic - developed by JeffMagee, Jeff
Kramer, Morris Sloman, and colleagues
-is a system in this category.' Like AT-gus,
Conic provides a language and a runtime

environment for constructing dimibuted
programs. Conic programs are con-
ssaucted as a set of task modules. Each task
module can have a number of enny and
exit ports. Task modules communicate
using these ports, which are unidirec-
tional, typed communication channels.

One of Conic's key design goals is to
totally separate module programming
fiom configuration management For th~s
reason, a task module's ports do not &-
rectly refer to any other task modules. In-
stead, Conic provides the Configuration
Manager, which lets you build a dimib-
uted program by specifying a set of task

cludes a module &om selecting where to
send a request at runtime. Unless inter-
connections are created for alI task mod-
ules that may wish to communicate, im-
plementing programs such as mail
systemsand remote log-infadtieswould
be emmely difficult

Updating p q a n s in poceduml h p g e s
The third type of updating system is pro-
cedure-oriented, for programs written in
procedural languages like Pascal and C. In
such programs, a natural unit of replace-
ment is the procedure or function. Be-
cause many programs are written in pro-

modules and their port interconnections. cedural languages, there is strong
Module interconnections may be within motivation for investigating dynamic u p
the boundaries of a single physical com- dating in this environment A distant rela-
puter orrnaycrossanetworkThis separa- tive of procedure-oriented updating,
tion makes it easy to reconfigure task-
module interconnections because you do
not have to modify the source code.

In a dynamic update, the Con6gura-
tion Manager updates a task module Mby
removingthe I d s t o w s porn, setting up
links to the new version of lWs porn, and

though not suitable for dynamicupdating,
is dynamic linking, which is desaibed in
the box on p. 60.

The granularityofprocedure-oriented
dynamic updating differs from that of
other software-based updating tech-
niques. The servers in client-server sys-

copying state information tems are typically built
&om the old version of M from many procedures.
to the new version.

I
PRMEDURE- U'hen a server is updated,

It relinks and copies
ORIENTED

all procedures constitut-
state when M is in an in- ing a server are replaced as
active state. Because a task UPDATING a unit. Even if only a small
module cannot ascertain pomon of the server has
whch other task modules EMPHASIZES changed, the entire sewer
it is connected to, the u p GENERAL is unavlulable during the
date is uansparent to all update. In many cases, the
task modules. similarly, CODE granularity of type man-
because the Configura- awers is also larger than an
tion Manager cannot see R E S T R m R l m * $&dual procedure. Dy-
the implementation of namic type replacement
task modules, it may arbi- emphasizes the internal re-
trarily restrumn them internally during
an update.

Although Conic provides a powerful
and versanle environment for dynamic
updating, it has two potential problems.
Fint, as with Argus, you have only one
choice of language and ndtime system,

suucturing of abstract data qxs; whereas,
procedure-oriented updating emphasizes
more general code resrmcnuing.

Several research and commercial sys-
rems use procedure-oriented dynamicup
dating, including the DMERT operating
system, Dymos, and PODCS.

and Conic is not a well-known lanqage.
Second, Conic does not impose a client- DMERT opemtr'ng sysfem. AT&T's 3BZOD
server relationship on a dimibuted pro- processor, a part of the hTumber 5 Elec-
gram, but it does force a module to com- tronic Switching System, runs the Duplex
municate through a fixed set of porn to a Multiple Environment Real-Time oper-
fixed set of modules. This ssaucme pre- ating system. The Field Update Subsys-

SELECTING A SUITABLE UPDATING SYSTEM
After decidmg that your ap- Companies such as Stratus and able Dismbuted Systems, for omirted because they are self-

plication domain requires dy- Tandem sell computer ~ t e r n s example. explanatory):
namic p r o w updating, the that use redundant hardware to Table A is a list of the updat- Type Ofupdmingq~ .
nexr logical step is determining provide fault-tolerance and ing techniques and systems we The system types correspond 1
which sptem would best HI high availability. have described and their associ- ro the classifications used in the 1
your needs. Papers describing dynamic ated features. It and the refer- main ardcle. Examples are pro-

Anumber of sources of in- program updating systems re- ences at the end of the d d e cedure, client-server, module,
about specific dv- search may be found in the pro- should help point you in the a h c t data type, and hard-

namic updadng systems are ceedings of the IEEE Confer- right drecdon. ware-based.
available. The Bell System Ech- ence on Soba re Maintenance, The able rows consist of . S v ~ - n r p p m t reguive-

nualJoznnd describesthe inter- the IEEE International Confer- the memo or amibutes we m u . Tlus is the support that
nal worhgs, includingupdat- ence on Disaibuted Computer used to evaluate the systems. the development and underlv-
ing issues, of all AT&T's Systems, and the IEE Intema- Enmes and their explanations ing runtime environment must
elemonic switching systems. tional l lorbhop on Configur- are (rows like System Stam are provide to make the updadng

~rgus conic DAs DMERT i
Creator Fnrr Imperial Collep TedYusche AT~LT

Universitat, Berlin

I i irp orupdatingsyxem Cl~ent-server Module-based Procedure-based Procedure-based

Com
prod1

PDP-11/40E None

System-smnnrt Argus runrime Conic runtime D.4S opera tin^ DMERT oneratine I 1 requirem environmt enwonment system syste~

Language Argus Coluc Procedural C / I reauirements
Yes

-
Yes

1 1 ' Ulsu~butea lnterprocess KemOte Messace Dasslng - -

I
cornmumcanon procedure calls

I / Granularity XX'hole ser Task Procedure Procedure

Changes supported Guard~an (semce) Task-module Procedure Procedure
~mplernentanon mplementanon ~mplementanon ~mplementanor

I

Degree of human Undear
intervention

Moderate Unclear Moderate

Update time Short to moderate 5hort Unclear bhort to moderate 1
(presumed short)

, , tam limitations sped NO suppol NO sl
complex c cOmE

1 1 inteq requires P I
communication

I i requires explicit I
intermodule links ~

ly with al-purpos1
[age;
 roc en

rt for upport for
)lex chang

p- - -- -

5 8 M A R C H 1993

system work properly. The less
support required, the easier it
is to adapt an updating system
to a pardcular platform. h a m -
ples are redundant hardware,
capability-based addressing,
and choice of language and op-
erating system.

+ Di.rt7ibutedinteqmces
I communication. If the updating

system can update dismbuted
programs, the type of inter-
process commuication used af-
fects the kinds of programs
that can be updated. Examples

include no communication, re-
more procedure call, and mes-
sage passing.

+ Granulmny. Granularity
is the unit of what the updadng
system replaces. The finer the
granulariv (smaller the unit),
the more easily and quickly the
system can update proL.rams
with small, localized changes.
Units include procedure, mod-
ule, abstract data type, and
whole program.

+ Changesiuppmed. The
types of changes supported de-

pend on the srrstem's manular- ueme example of course-
grained change is replacing an
en&e proTam as a single unit
uith new code; b s les you do
arbimqcode resuucnuing.
The types of changes sup-
ported depend on the system's
granularity. Fine-grained sys-
tems support changing the im-
plementation of a procedure or
an abstract data >?e, includmg
in local data; coarse-grained
systems are better a t changing
aprocedure's or an abstract data
?-pels specification.

ity. Systemsthat support fine-
p i n e d propam changes let
you change a procedure or an
absmccdata w e , indudingits
local data. These types o f u p
dating systems are best formak-
ing small, localized program
changes.

Updating systems that s u p
port course-pined changes
update large pieces of pro-
grams; they are better for mak-
ing sweeping changes to major
pro-pm components. The a-

Dynamic
linking

Dynamic
type replacement MTS

i~ , I 1

I Insu~ Lee MultipIe Robert Fabry University of Mark Segal and Bellcore
1

% a n p h r Fnedt
I (1 re-based Procedure-based Abstract-data- Ll~ent-server A .ocedure-based Hardware-based Procedu

type-based
Rese: earch

lectlprodu
Capabilim-based IBV 370-
address~ng compatible

mmframe
Capability-based MTS operating
operating system syx

Researcl

None

?search prr

V41S operatine

I\ one '

 one+
I

1 Dymos runtime Implemented in
ennrom operamg system

Sone
nent

Procedural So l

Remote -
procedure call
Procedure Vhole pro
Procedure xbiaary coae
implementation restructuring

1 '
Procedure
Procedure ' spec~ficanonand
implementahon

Alderate

Procedure; library Abswact data type \%%ole program
Procedure Absuact-data-tvpe .%rbitrarycode
implementation lrnplementation restructuring

Low to Extremely high
moderate
Moderate Long

1 : 1 '~
i I 11

Low Unclear Moderate

Unclear Short
(presumed short)

No sug
complc
no wa?
correcl

Require!
integrate

j fully
?d system

)port for
3x changes
t o presen

Can't
; smcl
re capak . .

change cc
we; nee&
~ility- basec

de Can
; calli
1 acrc

!'t map stal
ng sequen
IS change!

:e/ Re
ces str
i Pr'

Jeeds full!
edundant : hardware

addre

E E S O F T W A R E 5 9

i I DYNAMIC-LINKING SYSTEMS' WHY NOT
A some

,. . .

references
the extern:
first refex -

Dynm
auoss libr:

to an exter
d procedur
nced durin

nal proced
r iselfwh
g the run. . . .

lure (usual1
en the pro!

d systems i ~s the wnci

ypartofd
p i s nu

~g system c
he mema

:a new ver
p m updat

wing med
g a procedi

lanians. F,
ure inside 1

or example
he library,

!, ilibrG4
which cot

systems als
S.

;o do not h

:odd be re
11d lead to 1

nisms for r

- ~ a ~,
library is r
epla* a

run after t
the extern
".,=a ;+ -'I1

napping in

nade availz
dynalnical

hey have t
a l procedu
l.v.Lc "A,..'

ilea pmgr
ProgTam b

i 1 Because Dymosis integrated, the source I
code. obiect code. and mm~ilacion adam ,,

I

6 0 M A R C H 1993

~- ~ ~ , ~ , ~ ,
what distantrelative to procedu w e parse uees and symbol tables) of the

or late binding. Available in many commerua operanng systems, program being executed or updated are ,
adable at all dmes. Dymos uses this pro-
gram information to aid in .ofturn devel- ~
opment and dynamic updating.

I.'mgrams can thus mVok the most recent vemon or operamp-man or noranoran To update a program in Dymos, you 1
cedures without having to relink each dme sion of the must expliatly inform the system which
In th~s regard;it is similar to dynamic p r q ing since r procedures to update andunder what set of
linked library essentially updates part ofa ~ L U ~ ; L ~ L & .

ii conditions. The conditions for updating a ,;

I h p l e s of opera@ ~ t e m s that provide such , , ivLuncs, nr/ . / procedure consist of waiting for a specified

1 Apollo's Aegis, Sun&hcrosystems' SunOS 1.0, and A OSD. I set of procedures or modules to become

Dynamic !.mhg does not m e dynamic upaanng mbilities because it does (not executed process).

not let you change references to an external procedure during a r e n For example, the Dymos command

established. Even if an external reference is resolved wery h e i 1 update .&-hen X, Y, Zide

invoked, dynamic linking would not be an updating qnem be&- L, -- LV1l a- / the system to update proce-
, , dure A when procedures X, Y , and Z are I

idle. Dymos uses h s command, the com-
pilation ardfam, and the state of the run-
ning program to determine when it is safe

'
'

to update procedure A.

A Although DymosSs general architec-
ture is sirmlar ro that of several procedure-

1 oriented updating systems, it fails to pro-
wde some of the general charactensics I rem of DMERT supporn the updating of an example of a software system that can described earlier.

the C functions that make up the suitch- dynamically update programs in an appli- + It l j language q e n j c . StarMod is not , :
ing sohrat-e running on the ~ B z o D . ~ The cation domain that is relatively intolerant , widelyused, and in syntaxwas modified to
Field Update Subnstem is used primarily ' of system downtime. support dynamic progmm updating. Al-
to install emergency patches inro switch- tering a language's syntax to support dy-
ing software. Oynomic Mdihtin S F . The Dynamic namic updating (or anythu~g else) invari-

The D h E R T operating system sup- 1 Modjfication System, developed by Insup ably leads to portabili~problems.

manner. Each DAERT processcontains a ment for software development and pro- tegration causes two problems. First, the
porn d>narnic updadng in the follouing Lee,' provides a fully integrated environ- + It isfic4 integrated. Dymos's full in-

m s f e r vector that provides a level of in- gram updating for programs written in tools available under the host operating
direction between a function call and the StarMod - a concurrent language similar system must either be modified (assuming
actual address of the function in memory. I to Modula. The D p o s environment : the source code is available) to manipulate
By changing the address for a pardcvlar I conrains a m a n d interpreter, a source-

1 funcdon in the mnsfer vector, all future ' code management system, a StarrMod
references m that function are routed to compiler, a file editor, and a r u n h envi-
the newversion ofthe function. The Field ronment In Dymos, a program is updated

I Update Subsystem provides automated by replacing individual procedures. Be- i
mechanisms that cause h s change to take cause Star,Zlod suppom the concepts of
place (and to back it out if need be) as well modules and absuact data types brectly,

the compilation artifacts that Dymos
maintains, or simplynot beused.Ths be-
comes a problem if, for example, the
Dymos editor has a different user inter-
face than the editor the user is accus-
tomed to.

Second, Dymos implicitly assumes
/ as update the disk-based program images , you can update a p r o p at the module that source code is available - a possibly

and logs of the pro,ms running on the ' level. (-Uthough languages like Pascal and invalid assumption when the sofxare

3B?E DMERT operating system as-
C do not support these concepts brectly, provider and the user are different. For 11
you can implement modules and absuact example, a company provlbng pmpri- '~

sumes that the interfaces of the functions data types in them.) I etary software to a customer will, in gen-
I i do not change between versions, and does &nos also provides mechanisms that eral, not want to give the customer the

i notpro~ideamechanismformovingstatic let you change a procedure's interFace be- source code. If the sofnvare must be dy- , ,
state information between versions of tween versions as well as implement static namically updated and the source code is !

funco'ons. Despite these limitations, it is 1 data local to a procedure. not available, you cannot use Dymos.

I/

I E E E S O F T W A R E 6 1

+ Eachpnxehremwtbe~dmedesplia't~.
Although the language consuucts sup-
plied for updating are quite expressive, an

dated. Fim, programs must be written in a 1 mantics across com uterboundaries. Dis- t. a top-down manner. If the overall smc- I mbuted PODUS1 1s nearly identical to
ture is top down, the the centralized system ex-

inexperienced user could update the , hgh-level logic is speci- cept that semantically de-
wrong procedure at the wrong time by i fied at the top levels ofthe

I
pendent procedures must

typing an incorrect update command. ~n 1 call graph, and the WE HAVE USED reside at the same site.
some cases, you can even deadlock program's implementa- THE PODUS T h s exception lets site
Dymos.

+ No ncpport jk dim'hted pmgrmns.
Because Dymos supports only multi-
threaded programs, it may not be as effec-

tion is specified at the
PROTONPE

administrators initiate
lower levels. Typically, updateswithout wonying
the lower level imple- 10 EVALUATE about other sites. Using a
mentation of program monitor-like control

tive for updating programs written in ' ~ o g c changes more often PROGRAMS OF smaure for remote-pro-
other styles, such as single-threaded or than the hgher level, so VARYING cedure-call server-side
dismbuted. For example, wheneverapro- there is generally less code, and *em-gner-
cedure is invoked, a locking protocol must work during an update COMPLEXIP(. ated stubs for client-side
be executed to conuol access totheproce- because less code has code, PODUS success-
dure during an update. A performance I changed. The lower level fully updates geographi-
penalty is paid for executing h s protocol I procedures become inactive sooner, caus- I cally disuibuted programs.
regardless of whether an update is in prop-
ress. If Dymos did not support multi-
threaded programs, this protocol could be
made much simpler or w e n e h a t e d .
More important, the locking protocol

ing the update to complete sooner. Sec-
ond, dataaccessed by several dfferentpro-
cedures (such as global variables) is
accessed through absn-act data types.
Thus, procedures are updated only when

/
PROTONpL SYSTEM

To evaluate the potential of the
PODUS approach, we developed a proto-
type implementation and several sample
programs that would be candidate scenar-
ios for dynamic updating. The prototype
helps us experiment with dynamic updat-

/ ing techniques and provides timing tools
to evaluate the PODUS updating algo-
rithms. It runs in a Berkeley Unix-com-
patible environment (such as SunOS or
bluix).

We have used the prototype to dynam-
ically update several sample programs of
varying complexity?.10 For one applica-

1
1

Invoke Yi

1

Figute 1. Innoking a procedure uring an inter-
procedm.

does not scale to a distributed system. ' they are inactive. Badly written programs,
such as those that consist of one large main

PODUS. In the Procedure-Oriented Dy- procedure, cannot be updated using
namic Updating System, developed at the I PODUS because the procedure would be
University of Ahchigan and later en-
hanced at ~ellcore,8'~ a program is up-
dated by l o a h g the new version of the
program and repladngeachold procedure
with its corresponding new procedure

active until it exits. By definition, dynamic
updating systems update a running pro-
gram, so there would never be a time to
update such a program.

Using the binding archireme, inter-
during execution. Updating a procedure 1 procedures, and mapper procedures,
involves changing the binding from its : PODLTS lea you update a program while
current version to the new- version. When preserving the program's interface and in-
all procedures have been replaced by their ternal state. An interprocedure, shown in
corresponding new versions, the program
update is complete.

Figure 1, is a user-specified routine that
convem the procedure's interface. T h s

As a program executes, users request ensures that procedures are not called with
that newer versions be loaded into orher
sections of memory. The loads are per-
formed without affecting the execution of
the current version. Once a new version
has been loaded, the user initiates the u p
date by invokng an update command.

' the wrong number or type of parameters.
If an old procedure attempts to invoke a
new procedure, the correspondmg inter-
prmdure is automatically invoked. Inter-
procedures invoke only procedures that
arein their new updated version and exit to

The updating system interrupts the pro- procedures that have yet to be updated.
g m and examines the current state of its Mapper procedures, or mprocedures, per-
runtime stack Using this infomadon and form a conceptually similar rask by con-
the list of all procedures that each proce-
dure can call kenerated by the compiler),
the updating system calculates when each
procedure may be updated.

verdng the static data used by a procedure
into a fomat suitable for the new version
of the procedure.

PODUS is suitable for dismbuted en-
PODUS irnposesnvo requiremens on xironmenb because it uses remote proce-

the structure of the pro_grams to be up- dure calls to presenre procedure-call se-

=- I

6 2 M A R C H 1993

wh rode pup code I

However, syntactic dependencies
alone are not always sdc ien t for it to !
make this determination. Sometimes a
group of procedures will interact in subtle

1 program's qmtau. For example, a p u p of
1 ways that cannot be ascertained from the

procehussthatconuol differatparameters 1.
,i i 1 for a robot may not call each other, but still 1
! I I depend on each other's acdons. U'e call

these relationshps semantic dependencies. 1;
Figure 2. ~ a c t u n O ~ ~ ~ O ~ O Z ~ ~ b a ~ d m r0DC.S. rhich has roo c p o : t o a m - h e ~ h ~ , W D ~ S look at both syn- ~
processor, called pup, and the updating-gxtem shell, called urh. The darhed arm indicates a potential and semantic dependencies in deter- lI
interam'on. Crh communicates mith onh one pnxess at a time. No cmnem'm is set up until it nee& ro mining when an update is possible. It can

mith anotherpup process. h d syntactic dependencies automatidy 1
because the procedure4 _graph can be cal-

tion - the updating of a hypotheocal Under normal circumstances, the user dated fmm the l an~age ' s nnW and ~1
acket router - we did a timing program cannot detect the presence of the 1 P ~ P) source code. Howme? it cannot

'
T h e analysis revealed that pro-gram-update processor or the updat- detect semantic dependencies

throughout the amal update. there was ing-system shell. Because all processor- 1 call?', the ~ m ~ e r m - t s ~ e a r y t h ~ ~
relatively little system degradation; the shell communication is done through I before the P r V is updaed ,
router continued processing at 90-percent ; Internet interprocess communication, the a"Mc"Uv U P ~ E S s h dependent 1 1
effiaency. shell and the processor need not reside on i pmdures. Such updam od!' when

the same machine. In fact, in one updating 1 the w ~ t i r a l h . dependent ~ r m e d m
Components. The prototype has two application, the shell ran at Bellcore while a r e ~ ~ ~ e 0 u s h r i n a ~ ' e . I mam components, as Figure 2 shows. The 1 the processor ran at the University of i B o ~ ? n ~ h c and semantic dependen-

i
updating-system shell provides com- Michigan. 3Iultiple program-update pro- have formal d ~ ~ t i ~ ~ ~ that g ~ m ~ e '

mands for loading, &g, and dynami- cessors (for different programs) can be run an w ~ i o n of a procedure P, invokes the

1 C* updating programs, as well as facili- on the same physical madune; a PODUS I most cent version of Pj namely 9 or pi', I
ties for managing multiple programs and 1 port mapper leu prorams register and depending on whether an update of Pj has
online help. Csers interact with PODUS unregister themselves with the machine. ' alrea+occurred. Howewr,aneu~xrsionof
by sending commands to the updating- P, P,', invokes ondy the new version of a !

system shell. Updating. The user may inidate an up- procedure ?, namely Pi. I
The program-update processor con- date at any point throughout execution. Became the of a&ve procedures i aols a separate Unix process in which pro- . Once an update request has been gener- changes throughout the propram7s execu-

grams are run. The processor manages the ared, the updating qTtem determines the +ion, S must continuousk be remluated.
loading of programs and provides thevir- set of acdve procedures, S. A procedure, ' T, reduce the overhead inwed by re-
tual-memory primitives to perform dy- Pi, is active if it is on the runtime stack or
namic updating. It accepts commands its new version can directly or indirectly
&om the updrhg--em shell and pro- 1 invoke any other procedure, Pj , that is ac-

pearedly recomputing S, you be able
to when a procedure becomes a Can&-
dare for updrank Quite sbp]y, an inac- ~

cesses them, taking no action on its own . tive. Thus, by deh t ion , the main proce- old procedure m o t become active
other than to notifv the shell when opera- dure is always active. because it would have been convened to a
tions complete. Having determined S, the updating new ve;ersion when it first became inactive.

,
1

The user program runs inside the pro- ?stem replaces the old version of Pi, wl& Thus, recomputing S i s h t e d to when an
gram-update processor's address space. i s co~~esponding new version, Pi', when- active procedure becomes inactive. Old
For each version ofa program loaded into ever P, is not an element of S. Once a ' acdve procedures become inactive pre-

cisely when the runtime stack contains ;
fewer elemenn than there were duringthe , !
most recenr procedure update. If no pro-
cedures have been updated, old ac5ve pro-

the processor, the program's code, static 1 procedure is updated, it is marked as new
data, and procedure nameladdress map- ' and is not considered funher.
p i a d . t and map- PODUS identiaes a&ve procedures
per procedures needed to update from by examining the state of the proLgram's

1
;

version i to version i+l are also stored in 1 -time srackand procedure-call graph. It i cedures become ina&e when the run- !

the processor's version area. Overall prc- loola at the calling relationships b e e k ~ e stack contains fewer elemenu than
gram-sate information w e procedure- / procedures - syntactic dependencies - when the update was initiated.
call graphs and the smte of an updare) are ' and uses that informadon in determining Pi comprises w o componens: the pro-
stored in the updating-ystem shell. when the user can update a procedure. cedure specification, P;.spec, and the pro-

I1

Other

ake sure th
)f memory
~ters with r

gm are in
to decrem
cal mernor

memory a.
z, the impc
iesisalsoc

IUU1Cr.

:canmanil
protect a 1

arse becaw
s of the ad(
101); as is d,

uutp

mres don
se address

>date lag
~rocea's ac

the ad&
that cona
ventional v

. .

ies do not :
in useful ir
i d - m e r

provide m
be . . emtdan

echanisms
:d using ew

ing pam o
S T j O U r n F

ne).
umlinglar
5. In spite c

don inm ax
if it resides

I

!
cedure implementation, P,.imp. P,.spec
absuacdy corresponds to the specification
of Pis behavior, while P;.imp corresponds
to the behallor's implementation.

P;.imp is represenred by an address cor-
respondmg to where the code for the pro- he information used

1 cedure resides. Conceptually, PODUS lcoded into the ad- '
I ' keepS track Of the s~ecificanon/im~le- T/OU encode amibum wch as location infomeon

',

mentation binding in a data suucture er inhrmation. and type informa;
called a binding table. The binding of

! pi.specto P1.imp is a mapping between Pi's

! absaact and a specific imple-
mentadon that behavior. In this
pi's interface sequences and re- ' value) is part of pi.imp.

! The addres space is sp
I Changing the intedare. PODUS views an data. Instead, only the pan

I update as the change of binding of PI.spec brou&rinro physical men
: ~omp,.imp top,'.imp. Ifthe interface to a

bits, the large addresses are generat& mbinauon of normal procedure does not change as part of the / and d u e s stored in registers. The H I Architecture and IB update, the rebinding of Pi.spec to Pi.imp
auons of chis sryle of ad&"-- ' poses feu.problems.

: h1m of today+ archiw If an update does require changingthe I or d m c q
for manipulating

i sparse address spaces Spar interface, however, there must be a way to Spaces-
convert the old interface

for example, a sort routine that initially ! da i9 existing an
sorts integers and is later replaced by a sort - ,

1ctually COl

Iformation
no'y syster

I

E a pro-
Iropms

ge pro-
,frtus

routine that som real numbers. -4 routine
is needed that converts the data format
from integer to real numbers on proce-
dure invocation and back to integer values
upon the return. Likewise, data included
in or missing from the new invocation

m. Be-
d i n
m being

7
i
i , , ...,. Jn ID , Type Procedure ID , Displacement
j I 1 1 i

I 1 0 !
must be maintained or generated to en- ! -
sure program correcmess. I Figure 3. Addrea-space description.

!
:1 In the sort example just described, a

1 address.
in pri-
S store

ncain

offset into the code of the procedure de-
noted by the procedure ID; and

+ other miscellaneous bits used by the
operadng system for various related func-
tions such as process IDS or protection ,
information.

By incorporating a version ID into the
v k d address, the large address space is

spaces. \VIthin each version space, the ob-
partitioned into a number of version

ject code for a specific version of a pro- ~
gram and its static data are stored, along
uith a b i n h g cable. Only the procedures
in that version space use the bindmg cable.

When a procedure is updated, the

I possible interprocedure for the sort-pro- enlironment. As Figure 3 shows, each ma-
I cedure invocation is 1ogicaUy defined as c h e address consim of n bits and the

interprocedure sort (data : m y of integer); ' fouOhS cOmPnen":

are
ns. Simi-

/I
~ .

I E E E S O F T W A R E 6 3

real-data : array ofreal;
a machine ID denoting at which ma-

chine the program segment resides;
a version ID denodng which version

rml-data := convert-to-real (data);
son (real-data):

1 . of the program the address references (mul-
data := conven-m-inteser (ra]-da=); i nple versions can reside dmultane~usl~l

1 the procedure the address references is a
1 a set of type bits to s i p + whether

Aklress we. PODUS'S underlying ar- normal procedure, an interprocedure, or a
chitemral model consists of a very large, mapper procedure;
sparse virrual-address space. Sparse ad- a procedure ID that specifies which
dress spaces are not required; instead, they ~rocedure the address references;
are used as an abstraction of the runtime ! a d~splacement, which represents the

I1

6 4 M A R C H 1993

'

'
j '

binding table in the old version space is set on these systems has been published. As a
to point to the intelprocedure for the pro- result, there is very little information to
cedure, and the binding table in the new I determine how fast our system is in com-
version space is set to point to the new parison to other updating systems, or how
version of the procedure. Active old pro- fast it should be. U'e have published per-
cedures that invoke the procedure just up- ' fomance data on the effeca of updating a

i dated a d y invoke the interprocedure, , small program using a prototype imple-
while updated procedures mentation of PODUS?
will invoke the new ver- This preliminary data
sion of the procedure.

vironments - many of which must run
continuously and would benefit siLgni6-
cantly from the use of a dynamicupdating
system.

PODUS updates disnibutedprograms
written using a subset of the remote-pro-
cedure-call paradigm. It goes beyond
most updating systems by supporting
multiple versions of a running program.
T h s support is essential in a geographi-

dates take h e to propagate across unreli- I

able networks. We envision future

cally distributed environment because up- ~
dismbuted systems beingshared by multi- ' 1
ple, adminisuatively distinct organiza-
tions, each of which uses its own favorite
hardware and sobme. If these systems
are to interact (and be updatable), a dp-
narnic program-updating system must be !
able to operateunder thesecircumstances.
By design, PODUS accommodates heter-
ogeneous disuibuted hardware, software,
and adminisuative domains.

Finally, unlike some updating systems
that require redundant hardware to pro-
vide dynamic updating fadlines, PODUS
needs no speaal hardware to work prop-
erly. Virmal-memory hardware can be
used to improve PODUS's performance,
but it is not essential.

1l the software-based dynamic u p
ating systems described require

some kind ofindirection between the prc-
gram modules that invoke each other. If 1
indirection cannot be incorporated into a 1
language or its underlying runtime sys-
tem, dynamic updating cannot be done.
As we have seen, indirection is not suffi-
cient for d~mamic updating. A dynamic
updating system must also provide tech-
niques for preserving the correcmess of a
program beingupdated.

Much work remains to be done before ~
dvnarnic updating systems can become an ~
Gtegral part of todafs compudng i n h - 1

I
showed that PODUS did

Unfortunately, most

SUPPORTS the performance of the
program being updated.

PODUS ALSO not significantly degrade
current CPU architec-
tures do not provide sup-
port for this kind of ad- MULTIPLE More meaningful data
dressing. To overcome VERSIONS could be obtained by
this deficiency, we map comparing how quickly
the components of these OF A production-grade imple-
large addresses onto the RUNNING mentations of PODUS
exisdng registers of a con- and like systems updated
ventional segmented vir- PROGRAM. similar large, complex
tual-memory system, as programs. Programs
described in the box on p. must have a single thread
63. Performingthismapping(describedin of conuol. Data shared between proce-
detail elsewhere? lets PODUS use a I dures (including file data) must be ac-
sound architectural model and dl be re- cessed through aabsact data types. As long
alizable on existing hardware. ! as these consuaints are obeyed, PODUS

lets you update a procedure's code, its in-
Compcrbah Like some other updating terface to other procedures, and the im-

systems, PODUS provides mechanisms plernentation of its internal data smc-
and policies for preserving program cor- , cures. Besides rnaldng localized changes,
recmess during an update. But it goes be- these building blocks can be used to re-
yond many of these systems by providing , suucture the program being updated.
an algorithm for replacing the procedures Many earlier systems perform only a sub-
ofthe program beingupdatedin anappro-
priate order. This algorithm, along with
methods to manually override it, consti-
tutes PODUS's updating policy, which
together with updating mechanisms, lets
you update programs quickly with mini-
mal human intervention.

PODUS also minimizes performance
degradation. By building an updating sys-
tem on top ofa well-known (and well-stud-
iec$ foundation- segmented virtual mem-
ory - it can exploit a range of existing
hardwq rdhwq and theory. Although

I set of these changes.
Unlike many earlier updating sys-

tems, PODUS does not force you to use
specific development tools to obtain the
benefits of dynamic updating. It does,
however, require you to make appropri-
ate modifications to compiler code gen-
erators and linkers to correctly interface ' them with the updating system. Al-
though this work is not trivial for the
system programmer, the modifications
will be uansparent to the application
programmer. To some extent, PODUS'S

not a requirement, a Lpod implementation
ofPODUS using commercial virtual-mem-
ory hardware could substandly improve
our prototype system's performance.

Unfortunately, we cannot compare
PODUS's performance to that of other
software-based updating systems because,
to our knowledge, no performance data / prograrnmingstylescaletodistributed en- for consmcting and testing the supporc / 1

design dictates the class of languages and
prog~amming style, but we believe its

smcnm. Some tasks that wdl require fur-
ther srudy are

requirements are reasonable. They en- , + Dmelop twlr fw te.m'ng *port rode.
compass a range of languages and spec- / Although there are tools to help prograrn-
ify top-doun programming, a syie that i mers make intelligent decisions about
has been advocated for some time. ' code modification, thus reducing the

UTe also believe that the language and chance of human error, there are no tools i

~~ code of dynamic updating systems (the istingupda~gsystemsupportstheupdat- ucts. Uk are also expanding PODUS'S 1
, interprocedures and mapper procedures). ing of these programs, probably because updatin~ alprithms to work uith distrib- '
'

Testinp support code under conditions they are especially difficult to maintain. uted systems that do not communicate 1:
1 similar to the actual update is pdcularly r Bellcore, we are investigating 1 using remote procedure calls - specific- ~I
' difficult. the feasibilityofusing PODCS todyam- ally the conuol software for a multimedia

1 + I n ~ ~ e a ~ e tbe n u d o - o f l a z p g e ~ and ically update several l q e Bellcore prod- / communications system. *
q k s that can be updated. Fume updatinp I

' qstems should support mdtilinpal pro- ~
m s and should let you update promms ,
h different styles. 3lost oithe techr;lques

I we described update pro-grams by proce-
dure or module, for example. Future up-

i
: ACKXOWLEDGMEhTS
I !I> t h d Peter Bate, V D3\79, Gim Gopal. Carlyn Lowery, Lillian Rusron. John Unger. and the anony- ' mous 1EEESofr;nw referees for their many helpiul sur:esdons. Their Lnowledqe ofsame of the systems u.e

- -

, dahng *terns might update proqams I describe helped us improvehe accura? and clang. of this ardcle. Their styl~sdc~commens also dramadcall? I 1
mitten in declarative, functional, or ob- improved &e editorial qualig.. i

' ject-oriented languases. 1 , Bcllcore's poliqis to avoid an? statemens ofcomparative analpls or evaluadon ofprodurn orvendors. I/ , suppm 6mui~thYeadedPmro : b y mention of p r o d w or vendors in thi- midr is for mintific accuraq and pxcision or hr iUusnadon
and should nor be conrrmed as commenury.The inclusion or omission of a product or rendnr ~hould not be

I pam Because man?' future are ~nternreted a* inrlirndnr. rmioon or ooinlon of either the authors or Bellcnru. . .
likely to be dismbuted or parallel, there 1 must be suppon for multiheaded pro- 1 REFERENCES
-grams as well as programs that do not 1 ' 1. R. Fahn., "How to D e s i p A System in Iihich 3lodules Can Bc Changed on che Fly." Plor inr7Cont:

communicate remote procedure Sofimr En.?., E E E C S Press. Las Marnitos. Calif., 1976, pp. 470-476.

some sc.stems, such a conic, can ; 1 2 . H. Goullon. R. Isle, and I; Lohr, "@narmc Resmcturing in an E.qcrimental Operannp Systm." IEEE
Trm Sof-;.areEn,q.. Julv 1978. pp. 298-307. progams that use a hted form of ' 3. T Bloom. Qmzc.I.lodrrie Rcpk<mmrin o D r m i ~ ~ t c d P ~ ~ o m ? n m , o . ~ v n n n , donoral dissenadon. ZlIT

, message passing, but future systems I ; Pres,Cambridpe..Mas.,198j.
, shodd extend this idea to suppon pro- , 4. B. Lishov, "Disnibured P r o ~ m m g i n . 4 r p s . " C-. .?C.W Mar. 1948, pp. 300-312.

, ms that use less resnjcdx,e ,.-,-unica- / 5 . J. Ma~ee. J. Kramer. and ?I. Sloman, "Consmctmg Dismbuad Systems in Coluc," IEEE Pm. &$-

hen patterns.
+ Obtain mmpaiztize pe$nnance dan

KO such data for updaong systems has

1 been published, although dparnic updat-
inp systems have been around since the
1970s. The lack of data is probably be-

', cause either the u p d a ~ g system's perfor-
mance was hard to characterize-and con- ! sequently the data was hard m collect-or
they were built as research prototlrpes and
never applied to real problems. partic-

i ularly need experiments that evaluate the
.. . . ~.

eftects the computational model and the
p-anularity of the updatable component

i have on the performance of the updating
?stem. This informationuill illustrate the
limitations of current systems and help
identiG areas for further research. Perfor-

' mance information udl also aid pracd-
tioners who are nying to selea an updat-

i ing svstern for their domains.

xnrr Eng.,June 1989. pp. 663-6:S.
6. R. Yacobellis et al.. "The 3BZOD Processor and DZIERT Opcratin~ Sy5rem: Field -\dminisaadon Sub-

L n i ~ e n i y of\iisconsin, .\.ladisun.
I 1983.

8. 1. Se?l and 0 . Frieder. *D!namicProgam Updadng: A Saftwarr Maintenance lixhnique for Mini-
mizvlg Sofnrare Doumdme,"J. Safi~are.\.lcintenmc: RmorrhnndPmm~c~. Sept. 1989, pp. 54-79,

9. 0 . Frieder and M. Segal, "On &namically Updatinga Computer P r o ~ n m : From Concept to Proto-
? ~ e . - 3 . SymnndSoF; . rn , Feb. 1991, pp. 111-126.

10. M. Segal and 0 . Frieder, 'D>namiallyLpdating Dismbured S o b a r e : Suppamng Change in
m n and .\fisrms& En\onrnena, ' %K, inr%ConfSofi~~m.Zlomtenmre, IEEE CS Press, Los Uamitos.
Calit 1989. pp. 251-261.

Mark E. See1 is a member 1 Ophir Frieder is an associ-
of rhe techmcal swff in ate professor of computer
Bellcore's Se tvork Sgtems science at George.\lason
Research D e p m e n t . His Lniversin.. f i s research ~ n -
rerearch lnteresn include op- reresrs include parallel and

1 e iadcgq~tems. discibuted - disnibuted archirecturer.
msrems. soh.are en$neer- ; database systems, and oper-
ingma mamrenance, com- adnr ?stems. He is also a
puter n e w o r k and s o h a r e s c a f f c o d m r forthe Fed-
smccures for larpe-sale era1 Bureau of lnsesdp-

I 2 . ~ ~

+ SzIPPOYt hard real-tinte programs. m . ~ ~ 7 1 c m curn;rumc.~dons ysrems. I dons and thc Ini>r;rc ;brDefense .bal!sis.
Scgd recen-ed a BS. an .\IS. and a PhD in computer 1 Fneder received a BSc in computer and cornmun- ! ' I These prOgams Can reah benefit from and c o m ~ i c a ~ o n s sciences i o r n the Kninirersi~ of a d o r n rciencc and anZIScand a PhD in compcrer sd-

dynamic program updating because they , . \ I ich i~n . .hr \ rbor . H e is a member ofthe IEEE and ; ence and en+eerink aU *om the Universiy b f ~ ~ i c h i - 1

must produce correct results at a speafic ACU. a n . H e is a member oithe IEEE Computer S o a e y :

and Phi Beu Kappa. i 3 I,

1: h e . By definition, they should not be in- ! ,

I tempted to install new versions (or for .%ddras quesdonr abour this m c l e m Sepl at Bellcore. .WRE ?.V;j, W j Souch St., .\lorrirtoun, 17 07962-
any other reason). 'Cinfortunatel~, no ex- 1910; Interne? m ~ ~ p e r . b e U m r e . c m o m

,
--. - -

l E E E S O F T W A R E
Copyright 3 1993 The Institute of Electrical and Electronics Engineers, Inc.

Reprinted with permission from IEEE SOFTWARE,
6 5

10662 Los Vaqueros Circle. Los Alarnitos, CA 90720

