
SOFTWARE—PRACTICE AND EXPERIENCE. VOL. 22(3). 245–264 (March 1992)

A Parallel Database-driven Protocol
Verification System Prototype

O. FRIEDER
Department of Computer Science, George Mason University, 4400 University Drive,

Fairfax, Virginia 22030-4444, U.S.A.

SUMMARY

Protocol verification systems test the specification of communication protocols. A prototype of a protocol
verification system based on parallel database primitives for a hypercube multicomputer is described.
Using the described prototype, two conventional protocols are verified. To evaluate the performance of
verification systems, a synthetic protocol that is to be used as a benchmark is proposed. Extensions to
and properties of the synthetic protocol are described. Using this protocol, the performance of the
developed verification system is evaluated.

KEY WORDS Protocol verification systems Multiproccssor database Hypercube multicomputer Protocol bench-
marks

INTRODUCTION

Protocol verification systems 1–9 test the specification of interprocess communication
software, namely protocols, and determine their correctness. A protocol is viewed
as correct with respect to a set of properties. For example, a protocol is considered
correct with respect to deadlock-freedom if there does not exist a sequence of
transitions that results in deadlock. General background in this topic can be found
in the tutorials on protocol verification techniques by Choi, 10 Miller 11 and Yuang, 12

and the text by Holzmann. 13

Since a communicating process pair may be in any one of many global states,
generating and testing each of these states, especially for complex protocols, requires
great computational power. Thus, for verification systems to be of practical interest,
namely maintaining a low response time, suitable computational resources must be
available. We concentrate on parallel protocol verification systems like those
described in References 1, 5 and 6, and employ parallelism as a means by which to
meet the computational demands of protocol verification systems. We differ from
Aggrawal, et al. 1 in that they propose a set of loosely-coupled workstations connected
in a local area network (LAN) to parallelize their system, whereas our system is

0038–0644/92/030245–20$10.00 Received 1 October 1990
© 1992 by John Wiley & Sons, Ltd. Revised 31 October 1991

246 O. FRIEDER

based on a (tightly-coupled) hypercube multicomputer. * Aggrawal et al. concluded
that a maximum of tens of workstations can be used in their implementation while
maintaining performance. The analysis by Frieder and Herman, 6 however, demon-
strated the effectiveness of using a hypercube multicomputer of up to 128 processors
for the verification of highly complex protocols. We focus on verification systems
that are built on top of readily available commercial hardware. This excludes the
implementation described in reference 5, which is based on a special-purchase
system.

The protocol verification system evaluated here is based on the database-driven
verification algorithm discussed by Lee and Lai, 7 and on an extension of the parallel
relational database effort on a hypercube described by Baru and Frieder. 14 An
analytical study of our system, a portable, parallel, database-driven, protocol verifi-
cation system, was reported by Frieder and Herman. 6 In this paper we review,
extend and evaluate a prototype implementation of the system proposed therein.

As there is currently no standard by which to evaluate the performance of
multiprocessor verification systems, we propose a synthetic benchmark protocol, and
use it to evaluate our system. For generality of use by others, the structure of the
proposed protocol is automatically generated and can be represented in multiple
forms, e.g. expressions of various types for systems like those in References 1, 2
and 5 and finite state representations for systems like those in References 3, 4, 6,
7 and 8. As the standard for representing protocols is based on the finite state
model, we present our description of the benchmark protocol in a finite state format.
By incorporating the maximal fanout from any state and the maximal path-length
of a typical protocol to be verified by the system, the complexity of generic protocols
is captured by the synthetic structure.

We analyse the structure of the proposed synthetic benchmark protocol mathemat-
ically in terms of the number of generated global reachable states. As memory and
processor capacity limit the capability of a verification system, determining the
maximal protocol complexity that the system can verify is crucial. Since protocol
complexity can be approximated by the total number of reachable global states, the
ability to pre-compute the number of states can reduce the number of the required
experimental tests.

Finally, we demonstrate our system by verifying conventional protocols such as
X21 15 and Modified Bi-Synch 3 and evaluate the performance of our system using
the benchmark protocol.

The remainder of this paper is organized as follows. We initially present the
overall system architecture of our prototype. The multicomputer (hypercube) data-
base primitives used in the implementation are then presented. We continue by
illustrating our database-driven protocol verification algorithm that is a modification
of the verification algorithm presented in Reference 7. Finally, the structure of the
proposed synthetic benchmark protocol is described and an evaluation of a running
prototype using conventional protocols and various configurations of the benchmark
protocol is presented.

* Although there arc many commonly accepted definitions for multicomputer systems, throughout this paper it
is assumed that a multicomputer system is my architecture comprising multiple nodes with each node being a
complete computer. That is, each node has a set of resources, namely dedicatcd I/O, memory, and CPU, and is
under the independent control of its own operating system. However, it is not neccssary for each computer to be
fully configured or have all the resources that are theoretically available under its operating system.

PROTOCOL VERIFICATION SYSTEM 247

SYSTEM ARCHITECTURE

As developing software for a parallel environment is particularly difficult, especially
if the code development is further hindered by the particularities of a given parallel
engine, we implemented our protocol verification system using a set of macros
developed at Argonne National Laboratories. These macros, described in Reference
16, provide a fully-portable, simulated, distributed-memory environment that hides
most of the machine specifics from the development process. If a shared-memory
system is desired, communication among processors takes a small number of memory
access times, independent of the actual inter-node communication delay. The pack-
age employed maintained its own logical clock. It must be noted, however, that the
use of these macros introduces significant overheads. Hence, our measurements
should be used only to evaluate the potential parallelism of this approach and not
as absolute values. A production version of this verification approach would
implement the software directly on an actual hypercube with the database primitives
incorporated into the operating system.

Control architecture

Each parallel entity is a lightweight process. Processes are logically either masters
or slaves; the master process acting as a supervisor with the slaves actually performing
the work. Communication between processes is accomplished via the use of dedicated
channels. In the environment provided by the Argonne macros, an application is a
single master process and a set of slave processes. Processes are statically allocated
to processors. If each slave process is allocated one per physical processor, the macro
package actually emulates, and not just simulates, the user-defined interconnection
network architecture.

The system executes as follows. Initially, the master creates a set of slaves and
establishes the master/slave and slave/slave dedicated communications channels. As
our protocol verification system is logically based on a hypercube, the inter-slave
communication is limited to a nearest-neighbour hypercube topology. In addition,
each node directly communicates with the master through a dedicated link. In a
production version of this approach, the host machine would act as the master
controller.

The master program consists of a set of commands that are issued sequentially to
the slaves. All slaves contain the same code and execute only when instructed by
the master. In this implementation, the verification algorithm resides at the master
process, and the slaves possess the database routines. The actual database processing
is performed completely by the slaves and is independent of the protocol verification
algorithm. Replacing the verification algorithm in the master process with any other
relational sequence of instructions is possible and results in a new database program.

After establishing the channel, the master partitions the verification algorithm
into steps. A step is a sequence of database operators. Each step is a command
message sent by the master to all the slaves. Each slave executes the command on
its local partition of the database, communicating with other slaves when dictated
by the database algorithms. Slaves acknowledge command execution termination
and await the next command. This continues for all steps in the verification algorithm.
Upon completion of the verification algorithm, the master issues a termination
command to all the slaves and the program terminates.

248 O. FRIEDER

Operation logging is performed by the master. Each issued command is recorded.
In debugging, this logging mechanism proved to be of a substantial benefit. Under
normal execution, the logging of events enables the starting and stopping of the
verification algorithm depending on the availability of the system and its resources.
For example, if the verification algorithm takes longer than expected, the database
already created can be repartitioned across a larger cube. The repartitioning can be
done by invoking the balancing operation on a larger cube dimension (see the Section
on ‘Data redistribution primitives’).

Database structure

The entire database is stored as a tree of memory/secondary storage blocks. Blocks
are of various sizes and are not-necessarily in contiguous storage. The root of the
tree is called database. Relations comprise of one or more blocks, each block
containing some number of tuples. All tuples within a relation are of fixed size. In
the system, relations are horizontally partitioned across the slaves. That is, every
slave contains a possibly empty subset of the tuples of each relation R. Empty subsets
result when the stored relation is small in comparison to the number of slaves. All
slaves maintain an identical structure of their portion of the entire database.

Each relation is represented by a relation descriptor block (RDB) that consists of
six fields. The Next-RDB field is a pointer to the next relation in the database.
Relation-Name is a string identifier that is unique throughout the entire database and
designates the relation name. The number of attributes and the total size of each
tuple in the relation are stored in the Number-of-Attributes and the Tuple-Size fields,
respectively. Both fields are integers. The remaining two fields in the RDB are
pointers. The first is a pointer to the first attribute description block (ADB), one
ADB per each attribute in the relation. The second pointer points to the first in a
list of data description blocks (DDB).

Each ADB also has six fields including a pointer to the next ADB within the
relation and a string designating the attribute name. All attributes within a relation
must have unique names. To simplify the data packetization and transfer among
nodes while still supporting machine portability, four additional integer fields are
included in each ADB. These fields correspond to the attribute number within the
relation, its corresponding size and offset from the beginning of the tuple (both in
bytes), and the domain type of the attribute. Possible domain types include string,
short integer, short real, integer, real, and boolean.

Data description blocks have four fields, starting with a pointer to the next DDB.
The three remaining fields include an integer indicating the maximum size of the
data block in bytes, the number of tuples already stored in the data block, and a
pointer to the actual data block. The number of bytes in a data block indicates the
physical memory limitation of the data block and is always a multiple of the size of
the relation’s tuple. The data block itself consists of packed relational data stored
in row major form. All memory blocks are dynamically acquired from the operating
system.

PROTOCOL VER1FICATION SYSTEM 249

RELATIONAL DATABASE PRIMITIVESON HYPERCUBES

The primitives used here are of two types: those supporting dynamic data redistri-
bution, i.e. the ‘on-the-fly’ reorganization of data, and those that directly implement
the relational operations, such as select, join, etc. For further details, see the tutorial
by Frieder. 17

Data redistribution primitives

Several data redistribution primitives are needed in the implementation of the
relational database operations on a hypercube. These primitives are described below.
All descriptions assume an N -node system.

Tuple Balancing redistributes the tuples to achieve a roughly even distribution
across all the nodes, avoiding uneven processor execution time. The pseudocode for
simultaneously balancing two relations is as follows:

1. The local tuple counts of the relations R 1 and R 2 are computed.
2. During each stage j (1 ≤ j ≤ n, n = log 2 N), the nodes whose addresses differ

in the j th bit exchange their local R 1 tuple count. The node with the greater
number of tuples (if any) sends the excess tuples to the other. Simultaneously,
the nodes whose addresses differ in the ((j + 1 mod n)th bit balance R2. Thus,
after completion of this step, the nodes whose address differs in the j th bit
contain roughly the same number of R 1 tuples, whereas the nodes whose
address differs in the ((j + 1) mod n)th bit contain roughly the same number of
R 2 tuples.

3. The local tuple counts for R 1 and for R 2 are updated at each node.
4. Steps 1 to 3 are repeated n times.

Relation compaction and replication (RCR) replicates the smaller relation R,, orig-
inally stored in a cube of dimension n, in such a manner that it will be replicated in
each of the two, equal-sized, n – 1 dimension, logical, cube partitions of the original
cube. The goal of this primitive is to increase the number of tuples from R, stored
at each node until one packet size of R 1 is present at each node, or until R 1 has
been fully replicated at each node. This primitive ensures that packets used in the
join phase will be as full as possible, and that the packet formation overhead per
tuple will be minimized for the cycling primitive. The process implementaiton is as
follows:

1. The local tuple count of R, is computed.
2. During each stage j (1 ≤ j ≤ n, n log2 N), the nodes whose addresses differ in

the j th bit exchange their local R 1 tuple count. RCR is possible if the sum of
the R 1 tuple storage volumes in a node pair is less than one full packet size. If
RCR is possible then all nodes transmit their tuples to their paired neighbor.

3. The tuple count for the compacted and replicated relations is updated.
4. Steps 1 to 3 are repeated until either n RCR steps have occurred or the

termination of the RCR operation has been signalled.

Cycle creates a Hamiltonian ring within each logical cube partition generated by
the RCR primitives and pipelines the data packets throughout the ring. A Hamilton-
ian cycle can be dynamically generated via the use of reflexive Gray codes.

Data repartition by value (DRV) redistributes data according to attribute(s) values.

250 O. FRIEDER

Each node is assigned a non-overlapping subset of the global attribute domain. The
union of the attribute value range assignment across all nodes is the global domain.

1. During each stage j (1 ≤ j ≤ n, n = log2 N), all nodes partition their local tuples
into two sets: those tuples that according to their respective attribute(s) values
the final destination are nodes whose j th bit equals 1 and those nodes whose
j th bit equals 0.

2. All nodes keep the tuple set whose destination equals the value of their
respective j th bit. The other tuple set is sent to the node whose address differs
ones own address in only the j th bit. The received tuple set is merged with the
kept tuple set.

3. Steps 1 and 2 are repeated n times.

Database primitives

The database primitives are performed as follows.

Selection

As each node has direct access to a dedicated secondary storage device and
relations are horizontally partitioned across these devices, our implementation of
the selection operation exploits conventional data parallelism. That is, each node
performs local selection on its resident data in parallel. If the results are to be
collected, then an output collection step is incorporated; otherwise no global oper-
ation is necessary.

Projection

Projection is performed in three steps. Initially, attribute trimming (the removal
of non-relevant columns/attributes from each tuple) is performed. Secondly, the
DRV operation partitions the tuples across the processors according to the values
of the attributes that remained after trimming. Finally, local duplicate elimination
based on sorting is performed.

Join

Two join algorithms are applied. The first, broadcast based, is employed in cases
where it is known that one relation is significantly larger than the other.

The broadcast join comprises of three basic primitives. First, tuple balancing is
performed to ensure an even distribution of input tuples. Secondly, the RCR
operation replicates the smaller relation, enhancing the available parallelism while
reducing the packet formation overhead per tuple in the cycling phase. Thirdly, the
cycling primitive pipelines the tuples of the smaller relation, in a ring-like manner,
within each local cube partition formed in the second step. Local joins are performed
at each node.

The second join algorithm is bucket based and proceeds as follows. Both relations
are repartitioned according to attribute values via the DRV primitive. Once par-
titioned, all nodes locally sort their data and compute the local join.

PROTOCOL VERIFICATION SYSTEM 251

Bucket based approaches reduce the computations time at the expense of
additional inter-node communication. The reduction in computation time results in
bucket joins having lower total join processing times, as compared to broadcast-
based joins, when both joining relations are comparable in size. 17 The exact disparity
in size required for the broadcast join to yield lower processing times than the bucket
join is system dependent. That is, the time required to format the packet, the
effective internode communication link speed, the routeing architecture employed,
the number of nodes in the system, and the type of CPU employed, all play a
significant role in determining the required size.

A DATABASE-DRIVEN PROTOCOL VERIFICATION ALGORITHM

The protocol verification algorithm described in Reference 7 and used as a basis for
the control structure here is based on the relational database model. Our version
incorporates various query optimizations (operation execution reordering) that
reduce the size of the intermediate relations and hence the total processing time.
As the optimization techniques used do not alter the skeleton/behaviour of the
relational verification algorithm presented in Reference 7, we do not discuss them
further. Throughout the remainder of this paper, we assume the reader is familiar
with the fundamentals of the relational database model. For a comprehensive text
on the relation database. see Reference 18.

A protocol verification algorithm

The input to our system is a set of four relations representing the send and receive
transitions of each process in the process pair, respectively. The verification algorithm
consists of a sequence of relational operations which compute a final global relation.
Each tuple in the global relation designates a possible global system configuration.
Erroneous states, e.g. those transitions leading to deadlock and unspecified recep-
tion, are detected by querying the database.

The code segments provided below illustrate the verification algorithm as
implemented in the prototype. Function calls not directly related to the verification
algorithm, for example load partitioning routines that maintain a balanced workload
across the multiple processor, are not included. It should be noted that the verifi-
cation algorithm initially proposed by Lee and Lai 7 was modified in the implemen-
tation both to improve efficiency and to aid in the parallelization process. The Iog_fp
file descriptor is used in the logging of the operation execution. The verification
algorithm can be viewed conceptually as comprising of five basic steps:

1. Convert the finite state description of the protocol into tabular (relational)
form. The relations specifying the protocol, namely HA (send transitions of
A), RA (reception transitions of A), HB (send transitions of B), and RB
(reception transitions of B), are provided as input to the verification system.

2. Create the steady system transition relation—defined as a system in which only
one message is allowed to be transmitted at a time. 7 The relational database
operation sequence required to generate the steady system transition relation,
J, from the input relations is shown below. As seen, the implementation
employs procedures based on the relational database whenever possible (see
Figure 1).

252 O. FRIEDER

.
/* having the selected slaves read in the initial data */

/*IAB=HA JOIN RB*/
join(proc_ids, "IAB", "HA JOIN RR WHERE [HA.AM = mi(-1) RB.BM]

[A0 = HA.AS B0) = RB.BS AM = HA.AM RM = RB.BM Al = HA.AN B1 = RB.BN]", log_fp);

/*IBA=RA JOIN HB*/
join(proc_ids, "IBA", "RA JOIN HB WHERE [RA.AM = mi(-1) HB.BM]

[A0=RA.AS B0=HB.BS AM = RA.AM BM = HB.BM Al = RA.ANB1 = HB.BN log_fp);

/*I=IAB U IBA*/
union(proc_ids, "I", "IAB UNION IRA", log_fp);

/* R = PROJECT I */
project(proc_ids, "R", "PROJECT I [A0 = I.A0 B0 = I.B0 Al = I.A1 B1 = I.B1]", log_fp);

flag = TRUE
i = 0 ;
while (global_continue && flag)

{
i ++;
join(proc_ids, "S1","R JOIN ST WHERE [(ST.SA = R.A0) && (ST.SB = R.B0)]

[SA = R.AI SB = R.Bl]", log_fp):
join(proc_ids, "TEMP", "SI JOIN SR WHERE [(SI.SA = SR.SA) && (SI.SB = SR.SB)]

[SA = SI.SA SB = SI.SB] ", log_fp);
diff(proc_ids, "TEMP2", "SI - TEMP", log_fp);
rename(proc_ids, "SI", "TEMP2", log_fp);
copy(proc_ids, "ST", "COPY SI", log_fp);
if (slcount(proc_ids, "ST", log_fp) > 0)

slappend(proc_ids, "SR", "APPEND ST F", log_fp);
else

flag = FALSE;
}/* endwhile */

/* RS = SR */
copy(proc_ids, "RS", "COPY SR", log_fp);

/* TAB= IAB JOIN RS */
join(proc_ids, "TAB", "IAB JOIN RS WHERE [(IAB.A0 = RS.SA) && (IAB.B0= RS.SB)]

[A0=IAB.A0B0= IAB.B0 AM = IAB.AM BM = IAB.BM Al = IAB.A1 B1 =IAB.B1]", log_fp);

/* TBA = IBA JOIN RS */
join(proc_ids, "TBA", "IBA JOIN RS WHERE [(IBA.A0 = RS.SA) && (IBA.B0 = RS.SB)]

[A0 = IBA.A0 B0 = IBA.BO AM = IBA.AM BM = IBA.BM Al = IBA.A1 B1 = IBA.B1]", log_fp);

/*J=TAB U TBA*/
union(proc_ids, "J", "TAB UNION TBA", log_fp);

3.

4.

Figure 1. The generation of a steady system

Transform the steady system relation, J, into a synchronous global transition
relation, T. In a synchronous global system, multiple messages may be trans-
mitted simultaneously, however the process transmissions are synchronized. At
this stage, relation T represents all possible transitions in a synchronous system
(see Figure 2).
Compute the final global transition relation, F. The final relation enumerates

PROTOCOL VERIFICATION SYSTEM 253

/* T0 = TAB JOIN ZER0 (no predicate) */
join(proc_ids "T0", "TAB JOIN ZERO [A0 = TAB.A0 B0 . TAB.B0 X0 = ZERO.Z YO = ZERO.Z AM =

TAB.AM BM = ZERO.ZA1 = TAB.A1 B1 = TAB.B1 Xl = ZERO.Z Y1 =TAB.BM]", log_fp);

/* TEMP = TAB JOIN ZERO (no predicate) */
join(proc_ids, "TEMP", "TAB JOIN ZERO [A0 = TAB.A1 B0 = TAB.B0 X0 = ZERO.Z YO = TAB.

BM AM = ZERO.Z BM = TAB.BM Al = TAB.A1 B1 = TAR.B1 Xl = ZERO.Z Y1 = ZERO.Z]", log_fp);

/* TO = TO + TEMP */
slappend(proc_ids, "T0", "APPEND TEMP T", log_fp);

/* TEMP = TBA JOIN ZERO (no predicate) */

join(proc_ids, "TEMP", "TBA JOIN ZERO [A0. TBA.A0 B0 = TBA.B0 X0 = ZERO.Z YO = ZERO.
Z AM = ZERO.Z BM = TBA.BM Al = TBA.A0 R1 = TBA.B1 Xl = TBA.AM Y1 = ZERO.Z]", log_fp);

/* TO = TO +TEMP */
" ,"APPEND TEMP T",log_fp);slappend(proc_ids, "T0

/* TEMP = TBA JOIN ZERO (no predicate) */
join(proc_ids, "TEMP", "TBA JOIN ZERO [A0 = TBA.A0 B0 = TBA.Bl X0 = TBA.AM YO = ZERO.

ZAM =TBA.AM BM = ZERO.Z Al = TBA.A1 B1 = TBA.B1 X1 = ZERO.Z Y1 = ZERO.Z]", log_fp);

/*TO = TO + TEMP */
slappend(proc_ids, "T0", "APPEND TEMP T", log_fp);

/* TEM = PROJECT T0 */
project(proc_ids, "TEM", "PROJECT T0 [A0 = T0.A0 B0 = T0.B0 X0 = T0.X0 Y0 = T0.Y0]", log_fp;

/* TEMP = PROJECT T0 */
project(proc_ids, "TEMP","PROJECT T0 [A0 = T0.A1 B0 = T0.R1 X0 = T0.X1 Y0 = T0.Y1]", log_fp);

/* TEM = TEM + TEMP (delete TEMP) */
slappend(proc_ids, "TEM", "APPEND TEMP T", log_fp);

Figure 2. The generation of a synchronous global transition relation

all possible system configurations. Intuitively, each pass of the while-loop
above, computes all the new system configurations that can be reached when
either or both communicating processes simultaneously send and/or receive a
single message. The sending and/or receiving can occur when the global system
is in any of the already known configurations (see Figure 3).

5. Query the database, namely relation F, for erroneous states. As all possible
transitions are represented as tuples in F, using database queries, it is possible
to detect the existence of erroneous protocol properties. In Reference 7,
queries necessary to detect deadlock, incomplete specification, nonexecutable
interaction, etc., are formulated. The code segment above illustrates the query
detecting various deadlock conditions (with and without empty channels) (see
Figure 4).

254 O. FRIEDER

/*STEM=GO=Gl=TEM*/
copy(proc_ids, "STEM", "COPY TEM". log_fp));
copy(proc_ids, "GO", "COPY TEM", log_fp);
copy(proc_ids, "G1", "COPY TEM". log_fp);

flag = TRUE
while (global_continue && flag)

{
/*Tl =Gl JOIN HA*/
join(proc_ids, "Tl", "Gl JOIN HA WHERE [(HA.AS = GI.A0) && (G1.Y0 = cs(0))]

[A0= G1.A0 B0 = GI.B0 X0 = G1.X0 Y0 = G1.Y0 AM = HA.AM BM = cs(0)
Al = HA.AN B1 = G1.B0 X1 = G1.X0 Y1 = mi(-1) HA.AM]", log_fp);

/* T2 = G1 JOIN RA */
join(proc_ids, "T2", "Gl JOIN RA WHERE [(RA.AM = G1.X0) && (RA.AS = G1.A0)]

[A0=G1.A0 B0=G1.FWX0=G1. X0 Y0=GI.Y0AM = RA.AMBM =cs(0)
Al = RA.AN B1 = GI.B0 Xl = cs(0)) Y1 = G1.Y0]", log_fp);

/ * T l = T l + T 2 * /
slappend(proc_ids, "Tl", “APPEND T2 T", log_fp);

/*T2=Gl JOIN HB */
join(proc_ids, "T2", "Gl JOIN HB WHERE [(HB.BS = GI.B0) && (G1.X0 = cs(0))]

[A0=G1.A0B0=G1.B0X0=CI.X0Y0=G1.Y0AM=cs(0)BM=HB.BM
Al =G1.A0BI = HB.BN Xl = mi(-1) HB.BM Y1 = G1.Y0]", log_fp);

/* T1 = T1 + T2 (destroy T2) */
slappend(proc_ids, "T1","APPEND T2 T", log_fp):

/*T2=Gl JOIN RB*/
join(proc_ids, "T2", "Gl JOIN RB WHERE [(RB.BM = GI.Y0) && (RB.BS = G1.B0)]

[A0=G1.A0B0=Gl.B0X0=G1.X0Y0=G1.Y0AM=cs(0)BM =RB.BM
Al = G1.A0 B1 = RB.BN Xl = G1.X0 Y1 = cs(0)]", log_fp);

/* T1 = T1 + T2 (destroy T2) */
slappend(proc_ids, "T1", "APPEND T2 T", log_fp);

/ * T l = T 1 - T 0 * /
diff(proc_ids, "T", "T1 - T0", log_fp);
rename(proc_ids, "T1", "T", log_fp);

/ * T 0 = T 0 + T l * /
slappend(proc_ids, "TO", "APPEND T1 F", log_fp);

/* G1 = PROJECT T1 */
"PROJECT T1 [A0 = T1.A1 B0 = TI.B1 X0 = T1.X1 Y0 = T1.Y1]". log-fp);project(proc_ids, "G1",

/ * G l = G 1 - G 0 * /
diff(proc_ids, "T", "G1- G0", log_fp);
rename(proc_ids, "G1", "T", log_fp);

if (slcount(proc_ids, "Gl", log_fp) > 0)
slappend(proc_ids, "GO", "APPEND G1 F". log_fp);

else
flag = FALSE;

}/* endwhile */

Figure 3. The generation of the final global transition relation

PROTOCOL VERIF1CATION SYSTEM 255

/*********************/
/*deadlock state detection */

/*********************/

/* DL= PROJECT T0 */
project(proc_ids, "DL", "PROJECT T0 [A0 = T0.A 1 B0 = T0.B1 X0 = T0.X1 Y0 = T0.Y1]", log_fp);

/* TEMP = DL JOIN T0 */
join(proc_ids, "TEMP","DL JOIN T0 WHERE [(DL.A0 = T0.A0) && ((DL.B0 = T0.B0) &&

((DL.X0 = T0.X0) && (DL.Y0 = T0.Y0)))] [A0 = DL.A0 B0 = DL.X0 X0 = DL.X0 Y0 = DL.Y0]",
log_fp);

balance(proc_ids, "TEMP", log_fp);

/* DL = DL - TEMP */
diff(proc_ids, "TEMP2", "DL - TEMP", log_fp);
rename(proc_ids, "DL", "TEMP2", log_fp);

/**************************************/

/* deadlock state with no message in the channel */
/***/

/* DS = SELECT DL */
select(proc_ids, "DS", "SELECT DL WHERE [(DL.X0 = cs(0)) && (DL.Y0 = cs(0))]", log_fp);

Figure 4. Querying the protocol for deadlock

K-process protocol verification: database structures

The protocol verification algorithm described in the preceding section verifies the
specification of a two process protocol. An extension of the described relational
database-driven verification algorithm that supports the verification of protocols
comprising k processes is provided in Reference 19. Here we briefly comment on
the modifications to the underlying database system necessary to support the verifi-
cation of k -process protocols.

The described algorithm requires the specification of tables representing the
reception and transmission of each process (HA, HB, RA, RB). An equivalent
representation maintains only two tables indicating the source, destination, and
message type associated with the transmission or reception, respectively.

The use of the two table representation scheme directly supports the verification
of k-process protocols. In the reception table, all attributes are always atomic. In
the transmission table, the source attribute is always atomic; however, the destination
attribute is atomic only when multicast transmission is not supported. (If atomic
attributes are required, conventional relational normalization techniques can be
employed. The normalization may yield up to 2 k -1 target attributes depending on
the degree of multicast supported.)

A BENCHMARK PROTOCOL

As no standard exists for comparing the performance of protocol verification systems,
similar to the Gibson instruction mix 20 used in evaluating the performance of CPUs
and the Wisconsin benchmark 21 that developed a generic set of relations and associ-
ated queries for the evaluation of the performance of database architectures, we

256 O. FRIEDER

developed a generic protocol as a benchmark for protocol verification systems. We
focus on two critical constraints in defining the proposed benchmark protocol family*
structure. First, all benchmarks must be portable. That is, the benchmark must
conform to the input requirements of many of the verification systems to be evalu-
ated. Since protocols are represented differently in each system, simple, automated
generation of an instance of a benchmark protocol is required. Secondly, to evaluate
parallel verification systems, a benchmark protocol must be scalable, i.e. supporting
a structured increase in complexity. For a comprehensive treatment of benchmarking
techniques, see Reference 22.

The proposed synthetic protocol consists of two identical processes, A and B,
whose representation are the graphs G(A) and G(B), respectively. Let N(G) rep-
resent the nodes of G and E(G) represent the edges of G. Processes A and B each
consists of set of states S and transitions T, such that SA = { ai | ai ∈ N (G (A))}, SB

= { b i | b i ∈ N (G (B))}, TA = {(a i | ai) | (a i, aj) ∈ E (G (A))} and TB = {(b i,b j)|
(bi, bj) ∈ E (G (B))}. It is assumed that the processes are connected by a full duplex,
error-free, FIFO channel. No assumptions governing the amount of time a message
can remain in the common channel nor the amount of time a process can remain at
a given state are made.

Analytically, each process in the benchmark protocol is a complete m -ary tree†
of depth d, with the leaf nodes adjacent to the root‡. Thus, each process consists
of

states and

transitions.
The general structure of each process in the protocol family structure is shown in

Figures 5(a) and 5(b). Figure 5(a) illustrates the labels for each branch (transition)
in the protocol. By convention, the positive arcs represent message receptions and
the negative arcs, message transmissions. Since each node can send and receive each
message type, the outdegree of every state is even. Hence, m/2 is an integer. Figure
5(b) designates the state numbering scheme. As shown, state i is the parent of m
states numbered mi, mi+ 1, mi+2, (i +l) m 2, (i +l) m -1. Every leaf node has
m transitions to the root. Each node, with the exception of the root, has an indegree
of 1 and an outdegree of m. The root has an indegree of md+ 1. By definition the
root node is state 1. As shown, the state labelling is non-continuous, but unique.
The numbering scheme presented is a direct extension of the breadth-first node
labeling of binary trees. The complexity of the protocol is modified by varying the
depth (d) and number of message types (m). Figures 6(a)-(c) illustrate (d = 1, m =4),
(d =2, m =2) and (d =2, m= 4) protocols, respectively.

* We choose the term protocol family since we are actually proposing a set protocols as our benchmark. Each
set member is derived from a common structure, but with different generating parameters.

† Although not an actual tree (leaf to root transitions), due to its structural similarity to a tree. we will refer to
each process as a tree.

‡ By definition, the root of a tree is of depth d = 0,

PROTOCOL VERIFICATION SYSTEM 257

Figure 5. (a) Synthetic protocol message labelling

Figure 5. (b) Synthetic protocol state labelling

Figure 6. Sample synthetic protocols

258 O. FRIEDER

Analysis of benchmark structure

Efficient use of the benchmark protocol family requires a priori knowledge of
constraints on the final generated global state space. For example, monitoring

the
the

boundary conditions of uniprocessor and multiprocessor, main-memory based sys-
tems requires a protocol to generate a global state space which is sufficiently large
but does not exceed the memory capacity. In parallel verification systems, evaluating
communication overhead when large messages are routed, also demands a sufficiently
large state space. In characterizing the benchmark family, both the size of the stable
state space as well as the final global state space are analysed. A single message
channel capacity is assumed in the analysis.

As defined in Reference 7, a steady system is a system in which only one message
is allowed to be transmitted at a time. In a steady system, no message may be sent
until the previous message is received, and processes do not receive messages
simultaneously. Stable states are global states with both channels empty; transitions
between stable global states occur when the triggering event of the transition in the
reception process matches the triggering event in the sending process.

The cardinality of the stable state space (Ss(d)) is equal to the initial number of
transitions of a single process; namely

Let q be the number of all possible steps a process pair can initiate from an empty
channel, where a step is an event pair such that both process A and B execute a single
transition. Therefore, in an m -ary benchmark protocol, q = 3m/2. For example, if
m = 4, then there are two message types, namely 1 and 2, and the possible steps
are {〈 +1, +1 〉 , 〈 +2, +2 〉 , 〈 +1, –l 〉 , 〈 +2, –2 〉, 〈 –1, +1 〉, 〈 –2, +2 〉 }. The cardinality
of the global state space (Gs(d)) is

(m 2 + 2m), d= 0

(m2 + 2m) (q + 1), d= 1

(m2 + 2 m) (q2 + q + 1)-
(m 4+ m 3-2 m 2)

4 d= 2

d ≥ 3

Thus, given any member in the protocol family, the exact number of steady and
global states can be computed analytically, and the complexity can be estimated.

Extensions to structure

The protocol family described above forms a basis for analysing verification
systems. However, multiple communicating processes, non-symmetrical processes,
as well as some protocol properties, e.g. deadlock, unspecified reception and non-
executable interaction, are not represented in the benchmark.

PROTOCOL VERIFICATION SYSTEM 259

Multiple communicating processes and non-symmetrical processes are incorporated
into the benchmark in a straightforward manner. By replicating each process t -fold,
a t -process communicating system benchmark is provided. The transition labels must
then be encoded to indicate which subset of processors are involved with the
transition. Similarly, if a non-symmetric communicating system is desired, some
number of subtrees from one or more processes are removed. The pruning of
subtrees also incorporates erroneous protocol properties in the benchmark structure,
as described below.

To test that the verification system under evaluation detects erroneous property
p, several structural extensions are proposed. Note that this property behaviour list
described below is not exhaustive. The intent is to demonstrate the feasibility of
incorporating different protocol errors into the existing structure. The erroneous
property definitions are based on those provided in Reference 12.

A deadlock state is a global state reachable from the initial global state, with all
channels empty, in which no transitions are possible. An unspecified reception is a
reception that is executable but not specified in the design. Such a reception results
in an unpredictable system behaviour. Modifying the benchmark structure so as to
incorporate deadlock and unspecified reception states in the resulting global state
space is accomplished by removing all m links and descendants of node i. Note that
this results in node i having an outdegree of 0.

A non-executable interaction is a transmission or reception that is specified in the
design but never executed. Non-executable interactions are introduced by modifying
all m outgoing links of node i to point to the root. All other states and transmissions
are left unchanged. This results in having all the children nodes of i, namely mi,
mi +l, mi+2, (i +l) m -1, having an indegree of 0. Thus, states mi, mi+ 1,
mi+2, (i+ 1) m – 1 are unreachable from the starting state and hence generate
nonexecutable global states.

PERFORMANCE EVALUATION

Invoking the protocol verification system using two slaves and the finite state
specification of the (d= 1, m = 12) synthetic protocol results in the output in Figure
7. The output consists of the number of tuples (transitions) in the steady (156),
synchronous global (312), and asynchronous global (3192) transition relations, fol-
lowed by a listing of the protocol errors detected as part of the verification. In this
case, no serious error was detected. However, several of the global states were
ambiguous (non-distinguishable).

In addition to the information related to the protocol itself, system oriented
information is provided. Namely, both the actual and simulated time for each slave
and for the master process are recorded. The number of bytes sent and received by
each process is also presented.

The timings presented here were obtained by emulating a hypercube on an Encore
Multimax TM running the Umax™ 4·2 operating system, a distributed version of
UnixTM. The Multimax configuration-consisted of 18 processors and 128 megabytes
of memory. Each logical hypercube node was actually a Multimax process and

™ Multimax is a trademark of Encore Corp.; Umax is a trademark of Encore Corp.; Unix is a registered
trademark of Unix International.

260 O. FRIEDER

Dimension I output

**Card(J) is 156
** Card(T) is 312
** Card(F) is 3192
!! No Deadlock States Detected
!! No Nonexecutable Transmission for A
!! No Nonexecutable Transmission for B
! ! No Nonexecutable Reception for A
!! No Nonexecutable Reception for B
! ! Ambiguity State Exists
!! Protocol incomplete

STATS for total run
----------------------------------win slave 0 timing stats ----------------------------
User time = 10475.417s System time = 18.467s
User Send time = 103.767s Sys Send time = 0.767 s
User Rcv time = 268.717 s Sys Rcv time = 4.083 s
User Read time = 0.213 s Sys Read time = 0.070 s
Send count = 828 Bytes sent = 1826252
Rcv count = 733 Bytes rcvd = 2099376
Simulated Time = 7418.265 s
----------------------------------end slave 0 timing stats ----------------------------

----------------------------------start slave 1 timing stats ----------------------------
User time . = 10476 .383s System time = 17.583 s
User Send time = 15.067s Sys Send time = 0.267 s
User Rcv time = 143.867s Sys Rcv time =0.717 s
User Read time = 0.267 s Sys Read time = 0.067 s
Send count =721 Bytes sent = 1883564
Rcv count = 1208 Bytes rcvd = 2055152
Simulated Time = 7241.583 s
----------------------------------end slave 1 timing stats ----------------------------

----------------------------------start master timing stats ----------------------------
User time = 10480.850s System time = 13.933 s
ChidrenUsertime = 0.000 s Children System time = 0.000 s
User Send time = 4.550 s Sys Send time = 0.383 s
User Rcv time = 10475.717 s Sys Rcv time = 12.783 s
Send count = 753 Bytes sent = 453376
Rcv count =361 Bytes rcvd = 8664
Simulated Time = 2.029 s
----------------------------------end master timing stats ----------------------------
done global_continue = T

Figure 7. Sample protocol verification system prototype output

executed on a dedicated node. As viewed by the verification software, each node
comprised its own separate memory and disk storage, and inter-node communication
was restricted by the emulation software to support only the nearest-neighbour
communication channel of hypercube systems. Neglecting the significant multiplicat-
ive overhead involved in emulating a hypercube system, the timings produced
are indicative of the expected behaviour in performance obtained by running the
verification software on a 16-node hypercube.

(Only the timings obtained using the complete verification software are presented.

PROTOCOL VERIFICATION SYSTEM 261

That is, no results demonstrating the effects of the various data redistribution
primitives (Section 3.1) on the performance of the underlying database operations
are given. For the results from such experimentation, the reader is referred to
Reference 17.)

Two protocols, namely a modified Bi-Synch 3 and X.21, 15 were verified using the
developed system. Timings on a 2, 4, 8 and 16 node emulated hypercube are
presented in Figures 8(a) and (b). As shown in Figure 8(a), minimal reduction in
the computation (verification) time resulted from parallelism in the verification of
the X.21 protocol. The minimal improvement resulting from the small problem size.
The final asynchronous global relation F for the X.21 protocol comprises of only
238 transitions. As the problem size increases, as in the modified Bi-Synch case
(Figure 8(b)), the reduction in processing time due to parallelism becomes more
significant. The Bi-Synch protocol verification results in a final asynchronous global
relation F comprising 354 transitions.

To evaluate the scalability of the developed system, three synthetic protocols were
verified. Protocols with d–m parameters of (d= 1, m = 12), (d =2, m =6), and (d= 3,
m = 4)were selected according to the size of their respective final asynchronous
global relation F, 3192, 4008, 5424, respectively. Figure 9 illustrates the times
associated with verifying each protocol on 2, 4, 8 and 16 node systems. Note that
in the verification of the (d =3, m =4) protocol, nearly a sixfold reduction in the
overall verification time was observed when a factor of 8 times the number of nodes
were employed.

The analytical analysis of this system described in Reference 6, postulated the
effective use of over 100 processors for protocol verification of highly complex
protocols. Unfortunately, as the facilities were limited, this postulate could not be

Number of Processors Number of Processors
(a) (b)

Figure 8. Verification times of existing protocols: (a) X.protocol verification: (b) Bi-Synch protocol
verification

262 O. FRIEDER

Figure 9. Verification times of synthetic protocols: evaluation

verified. However, based on the limited runs we ran,

via synthetic protocols

it seems likely that for
highly complex protocols encountered in such applications as telecommunication and
distributed database systems, effective exploitation of parallelism is possible and is
likely to be required to verify the protocols.

CONCLUSION

Protocol verification requires great computational resources. To meet the needed
computational demands, we proposed, implemented, and evaluated a prototype of
a parallel, database-driven protocol verification system. A description of our system
was presented.

To evaluate our system we proposed and analysed a family of protocols as a
benchmark for protocol verification systems. Using this benchmark, we evaluated
our system and demonstrated the potential of exploiting parallelism in verifying
complex protocols. We also used our system to verify two simple conventional
protocols.

Our implementation used the Argonne National Laboratories’ macro package to
abstract out the machine dependencies. Unfortunately, the overhead incurred in
emulating the hypercube multicomputer using these macros rendered our measure-
ments meaningless in terms of absolute execution times. Only a system scalability
evaluation could be performed using our timings.

As part of future work, we plan to modify our verification system to support the
verification of protocols specified in the extended finite state automata model. 10

This will be accomplished using inline procedure invocation within the actual data-
base, similar to the approach described by Stonebraker, et al. 23 We will also investi-
gate the parallelization of the actual verification algorithm itself. This parallelization
is in addition to what has previously been done in terms of the basic relational
operators of which the verification algorithm is composed. Currently, the verification

PROTOCOL VERIFICATION SYSTEM 263

algorithm is a serial driver with the underlying relational operations being evaluated
in parallel. With a parallel driver invoking parallel primitives, we hope to extend
the range of complexity of the communication protocols that can be verified using
our system. Finally, we plan on implementing this system on an actual hypercube.

ACKNOWLEDGEMENTS

I graciously acknowledge the software development efforts of Nick Karonis and Paul
Jackson, the analytical assistance of Tom Richardson, and guidance by Tony Lee.

This research was partially supported by the U.S. National Science Foundation
under contract No. CCR-91-09804 and the Virginia Center for Innovative Technology
under contract No. INF-91-010. This work used the computational resources of the
Northeast Parallel Architectures Center (NPAC) at Syracuse University, which is
funded by DARPA/RADC contract No. F306002-88-C-0031. (Portions of the
described effort were developed while the author was at Bellcore.)

REFERENCES

1. S. Aggarwal, R. Alonso and C. Courcoubetis, ‘Distributed reachability analysis for protocol
verification environments’, in Discrete Event Systems: Models and Applications, Lecture Notes in
Control and Information Science, Springer-Verlag, 1987, pp. 40–56.

2. S. Aggarwal, D. Barbara and K. Z. Meth, ‘A software environment for the specification and
analysis of problems of coordination and concurrency’, IEEE Trans. Software Engineering., SE-
14 (3) , 280–290 (1988).

3. C. H Chow, M. G. Gouda and S. S. Lam. ‘A discipline for constructing multiphase communication
protocols’, ACM Trans. Computer Systems, 3 (4), 315–343 (1985).

4. C. H. Chow and S. S. Lam, ‘PROSPEC: an interactive programming environment for designing
and verifying communication protocols’, IEEE Trans. Software Engineering, SE-14 (3), 327–338
(1988).

5. D. M. Cohen and T. M. Cuinther, ‘The IC* system for protocol development’, Proceedings of the
ACM SIGCOMM ’87, August 1987.

6. O. Frieder and G. E. Herman, ‘Protocol verification using database technology’, IEEE J. Selected
Areas in Communications, SAC’7 (3), 324–334 (1989).

7. T. T. Lee and M. Y. Lai, ‘A relational algebraic approach to protocol verification’, IEEE Trans.
Software Engineering, SE- 14 (2), 184–193 (1988).

8. D. P. Sidhu and T. P. Blumer, ‘Verification of NBS class 4 transport protocol’, IEEE Trans.
Communications, COM-34 (8), 781–789 (1986).

9. T. Suzuki, S. M. Shatz and T. Murata, ‘A protocol modeling and verification approach based on
a specification language and Petri nets’, IEEE Trans. Software Engineering, SE-16 (5) (1990).

10. T. Y. Choi, ‘Formal techniques for the specification, verification, and construction of communi-
cation protocols’, IEEE Communications Magazine, 23 (10), 46–52 (1985).

11. R. Miller, ‘Protocol verification: the first ten years, the next ten years: some personal observations’,
CESDIS Technical Report, Goddard Space Flight Center, No. TR-90-14, 1990.

12. M. C. Yuang, ‘Survey of protocol verification techniques based on finite state machine models’,
Proceedings of Computer Networking Symposium, 1988.

13. G. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

14. C. K. Baru and O. Frieder, ‘Database operations in a cube-connected multicomputer system’,
IEEE Trans. Completers, C-38 (6) 920–927 (1989).

15. C. W. West and P. Zafiropulo, ‘Automated validation of a communications protocol: the CCITT
X.21 recommendations’, IBM J. Research and Development, 22 (1), 60–71 (1978).

16. E. Lusk, R. Overberk. J. Pattersen, R. Stevens, J. Boyle, R. Butler, T. Disz. B. Glickfeld.
Portable Programs for Parallel Processors, Holt, Reinehart and Winston, Inc. 1987.

17. O. Frieder, ‘Multiprocessor algorithms for relational database operators on hypercube systems’,
IEEE Computer, 23 (11), 13–28 (1990).

18. D. Maier. The Theory of Relational Databases, Computer Science Press. Rockville. Maryland.
1983.

264 O. FRIEDER

19. N. Karonis, ‘Using the relational algebra for complete protocol verification’, CIS Technical Report
89-10, Syracuse University, 1989.

20. J. C. Gibson. ‘The Gibson mix’, IBM Technical Report TR00.2043, June 1970.
21. P. B. Hawthorn and D. J. DeWitt. ‘Performance analysis of alternative database machine architec-

tures’. IEEE Trans. Software Engineering, SE-8 (l), (1982).
22. M. F. Morris and P. F. Roth, Computer Performance Evaluation, Van Nostrand Reinhold, New

York, 1982.
23. M. Stonebraker, J. Anton and E. Hanson, ‘Extending a database system with procedures’, ACM

Trans. on Database Systems, 12 (3), 350–376 (1987).

	A Parallel Database-driven Protocol Verification System Prototype
	SUMMARY
	INTRODUCTION
	SYSTEM ARCHITECTURE
	Control architecture
	Database structure

	RELATIONAL DATABASE PRIMITIVESON HYPERCUBES
	Data redistribution primitives
	Database primitives
	Selection
	Projection
	Join

	A DATABASE-DRIVEN PROTOCOL VERIFICATION ALGORITHM
	A protocol verification algorithm
	K-process protocol verification: database structures

	A BENCHMARK PROTOCOL
	Analysis of benchmark structure

	PERFORMANCE EVALUATION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

