
ON DYNAMICALLY UPDATING A COMPUTER PROGRAM:
FROM CONCEPT TO PROTOTYPE

OPHIR FRIEDER and MARK E. SEGAL

Reprinted From: The Journal of Systems end Soflware
Volume 14 Number 2 February 1991

1. SYSTEMS SOFTWARE
1991; 14:lll-128

On Dynamically Updating a Computer Program:
From Concept to Prototype

Ophir Frieder'
Department of Computer Science, George Mason University, Fairfax, Virginia

Mark E. Sega12
Bellcore, Morristown, New Jersey

An approach to dynamically updating a computer pro-
gram, i.e., updating while it is executing, is presented.
Dynamic updating is crucial in applications where the
cost of stopping and restarting the program makes
doing so impractical. The presented system works
with programs written in procedural languages such as
Pascal and C. It is assumed that computer programs
are written in a top-down manner consistent with
good software engineering practices. Also assumed is
that the underlying computer system logically provides
a network-wide sparse virtual address space. Using
these assumptions, it is possible to update computer
programs with minimum interruption to the running
program. By partitioning the address space into a num-
ber of version spaces, the handling of multiple simulta-
neous updates is possible. This allows one update to
begin before previous updates complete. Via appropri-
ate mapping mechanisms, old versions of procedures
may call new procedures and maintain consistency.
An overview of the design and implementation of a
working prototype updating system is discussed and a
sample updating session is illustrated.

1. INTRODUCTION

By its very nature, computer software is constantly
changing. Change may be necessary because new fea-
tures were added to a program or because bugs were
discovered in the current version. Sometimes change

Address correspondence to Mork E. Segal, Bellcore, 445 South
Street, Room 2A275, Morristown, NJ 07962-1910.

'Portions of this work were performed while this author was at
Bellcore, Momstown, NJ.

'portions of this work were performed, while this author was with
the Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI.

may be necessary when the specifications of the tasks a
program must perform, how it must perform them, or
the environment where the tasks must be performed
have changed. Once the appropriate modifications have
been made to a program, the old version may be
stopped and the new version may be loaded and run.
There are circumstances, however, where temporarily
stopping a program while a new version is being loaded
is not viable. This is primarily due to the significant
cost of such an operation. This cost might be manifest
in lost revenue (an airline reservation system or a
telecommunications switching system) [2, 5, 111 or in
terms of danger to human life (a computer-controlled
life-support system or an air-traffic control system).
The ability to dynamically update a program, i.e., load
a new version of a program without stopping the cur-
rently running version, could alleviate these costs in
many cases.

An approach to dynamic program updating is de-
scribed. The approach updates programs written in
procedural programming languages by replacing the
program's individual procedures. This approach can be
used to update distributed programs [21] across a net-
work of machines by performing a similar updating
sequence to that done on a single machine. The main
limiting assumption of the presented approach is the
requirement that programs be written in procedural
programming languages using a top-down design
methodology. As the top-down design approach is con-
sistent with good software engineering practices, no
attempt is made to weaken this precondition.

The remainder of this paper is organized as follows:
Section 2 reviews previous research in dynamic updat-
ing of computer programs. An overview of the updat-

O Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York. NY 10010

112 I. SYSTEMS SOFTWARE
1991; 14:111-128

0. Frieder and M. E. Segal

ing system is presented in Section 3, with an in-depth
examination of the updating system architecture com-
prising Section 4. In Section 5, a description of a
prototype updating system is provided. An illustrative
sample update is included in Section 6. Finally, a
conclusion is provided in Section 7.

2. PREVIOUS WORK

We classify prior approaches to the problem of replac-
ing portions of computer programs without stopping
them into three main categories: hardware-based, ser-
vice-oriented, and procedural. Hardware-based ap-
proaches attack the problem by providing a redundant
CPU and peripherals to be configured with a new
version of the program while the old one continues to
run [19]. When the program is updated, the old system
is physically disabled while the new one is enabled.

Software-based, service-oriented approaches attack
the problem by imposing a server/client relationship on
the programs they can update 141. In such an approach,
a number of clients request a service from a server via
some well-defined mechanism such as an operating
system primitive or a remote procedure call [3]. A
server may be updated by temporarily disabling its
services and then installing a new server. Although this
approach executes in a distributed system, it will only
work with software systems that observe a server/client
relationship.

The Conic System [26] uses a variation of this idea.
A Conic distributed program is divided into a set of
modules that communicate with other modules via a set
of software "links" between the modules. A Conic
program is dynamically updated by changing the links
from connecting old versions of modules to the new
versions. Although Conic programs are not structured
in a server/client fashion, each module still must be
replaced as a single unit. As with service-oriented
approaches, this replacement mechanism may not be
appropriate for programs built from large modules
since small changes within a module require the entire
module to be replaced.

Finally, software-based, procedure-oriented ap-
proaches attack the problem by replacing individual
procedures as the program executes. In such an ap-
proach when all of the "old" procedures have been
replaced by all of the "new" procedures, the program
has been updated. This class of updating system is
related in some respects to dynamic-type replacement
systems such as Fabry [13]. In a type replacement
system, the routines providing access to abstract data
types are replaced while the program using them con-
tinues to run. Although this type of system allows
abstract data type implementation to be changed be-

tween versions of a program, it does not address the
more general issues of code restructuring, such as
interface changes. The DMERT [25], the Secure On-
the-Fly Method [6], and the DAS operating systems
[IS] all provide mechanisms for replacing the individ-
ual procedures that comprise a program. These systems
only address the case where the specification (parame-
ters and return values) of the procedures being updated
have not changed and are thus limited to those particu-
lar circumstances.

The DYMOS System [17] is a complete dynamic
updating system. It provides editors. compilers, and a
shell to facilitate updating a computer program written
in the StarMod language [8]. DYMOS will work in a
tightly-coupled multiprocessor but does not scale well
to a distributed system since it requires a complicated
locking protocol for every procedure invocation regard-
less of whether or not an update is actually being
performed.

In this section, a number of systems that perform
dynamic updating to various degrees were described
and their shortcomings noted. Our primary collective
criticism of the systems described is that they are not
transparent to the programmer who must use them.
Some of the updating systems require the programmer
to use a specific language or system to obtain the
benefits of dynamic updating while others lack support
for distributed computation. We believe such limita-
tions preclude these systems from being used on a wide
variety of problems in different application domains.

3. THE BASIC APPROACH TO OUR DYNAMIC
UPDATING SYSTEM

In the approach presented here, the procedure-oriented
model to dynamic program updating was adopted since
many of the programs that could benefit from such a
capability tend to be written in procedural languages.
For example, portions of the code in a telephone switch
1191 and most of the unixTM operating system (kernel
and utilities) are written in C [20]. This research ad-
heres to four main goals.

to provide a system where a new version of a
program can be loaded without stopping and restart-
ing, or significantly degrading the performance of
the currently running version, . to provide a system that is usable with existing
languages and scalable to a large-scale (on the order
of several hundred computers) distributed environ-
ment,

T M ~ n i x is a trademark of AT&T Bell Laboratories

Uynamically Updating a Program I. SYSTEMS SOFTWARE 113
1991; 14:lll-128

. to minimize the amount of user intervention needed
to perform an update in order to allow novice com-
puter users to operate the updating system, and

to support multiple simultaneous updates, i.e., start-
ing one update before the previous updates complete.

The last goal, multiple simultaneous updates, is es-
sential in a distributed system since an update may take
time to propagate through a network. Also, by having
this capability, computers in the system can be offline
(or can defer an update) when the update is initiated.

Since two of the above goals are to operate on a wide
variety of programming languages and be easy to use
by a novice, there are cases where the proposed updat-
ing system does not work well. As it is assumed that
programs are written in a top-down manner, programs
that do not follow this requirement cannot be updated
by our system. For example, if a program is written as,
say, one large procedure, the approach will not work.
We believe the increased simplicity of our system
gained by not attempting to update such programs is a
worthwhile tradeoff.

3.1 Updating Nomenclature
Before discussing some of the updating system details,
a precise definition of an update is required. A program
no,, is updated to a new version JI,,, when all proce-
dures P in no,, have been replaced by their corre-
sponding new versions in II,,. A procedure Pol, is
updated when it is replaced by its new version P,,,,.
Alternatively, one can view the updating of a procedure
P as changing the binding of the name "P" from its
"old" implementation to its "new" implementation.

3.2 Synopsis of an Update

Prior to the initiation of an update, the new version of
the program is compiled, linked, and loaded into the
computer. Thus, the time required to replace an old
version of a procedure with its corresponding new
version is significantly reduced.

When an update is initiated, the updating system
examines the state of the running program and deter-
mines which procedures may be updated immediately
and which procedures must be updated at a later time.
Throughout the update process, the state of the modifi-
cation is checked periodically and old procedures are
updated when all the updating conditions are satisfied
(see Section 3.3). In a "well-structured" program,
when all procedures have been updated, the program
has been updated since it is identical to the new version
of the program.

3.3 Criteria for Updating a Procedure

The updating system updates a procedure based on
system-computed syntactic criteria and user-provided

procedural semantic dependencies. An automatic detec-
tion of all semantic dependencies is not possible, if
semantic dependencies exist between procedures, the
user must provide a semantic dependency list. All
dependencies are characterized in the definition of ac-
tive procedures. Only procedures that are both syntacti-
cally and semantically inactive can be updated.

3.3.1 Syntactic Dependencies. Syntactic dependen-
cies are the relationships between procedures in the
program that can be ascertained from the program's
syntax. In this implementation, syntactic dependencies
are detected by the system. Formally, syntactically
active is defined as follows.

Let a program TI consist of a set of procedures
PI , . . . , P".

Let P be a procedure in II. Let 6*(P) be the set of
procedures which are reachable from P in the proce-
dure call graph corresponding to II . Thus, an invoca-
tion of P may result in the direct or indirect invoca-
tion of procedures in 6*(P). We refer to 6*(P) as the
syntactic dependency function since it may be calcu-
lated from II's call graph, i.e., II's syntax.

At any time t, all procedures on the runtime stack are
active. In addition, a procedure P is active if its new
version P,,, can call a procedure Q already on the
runtime stack, i.e., Q E B*(P,,,,).

A procedure P is inactive when the above criteria for
being active are not met.

The active definition and the updating algorithm
allow new (updated) procedures to call other new pro-
cedures. Old (not updated) procedures may call other
old procedures or new procedures via appropriate
mechanisms. The primary motivation for this structure
is to force programs to be updated from old to new
versions. Not only does this correspond to the way the
program was developed, i.e., an implicit evolution
from old to new, but it also reduces the amount of
additional work the programmer must perform to main-
tain consistency during the update (see Section 3.5.).

3.3.2 Semantic Dependencies. A semantic depen-
dency is a relationship between procedures that is not
detectable from the program's syntax, e.g., two proce-
dures work together to perform some task but do not
directly reference any of the same entities. The updat-
ing system deals with semantic dependencies by using
information supplied by the programmer. Semantic de-
pendencies are formally stated as follows.

Let 6,*,(P) denote the semantic dependency function
of procedure P: the set of all procedures Q that must
be concurrently updated with P. If Q did not change

114 J . SYSTEMS SOFTWARE
1991: 14:Ill-128

0. Frieder and M. E. Segal

bctween versions, it must still be inactive when P is
updatcd.

If 3Q E 6zp(P) and Q is active, then P is active.
Based on these definitions, a procedure P can only be

updated when it is inactive and all procedures Q E 6 3 P)
are also inactive. This allows the programmer to spec-
ify procedures that must be updated concurrently, thus
allc~wing semantic dependencies to be accommodated.
The updating system updates all procedures Q E 6&(P)
atomically. The detection of semantic dependencies
adds an additional check before a procedure can be
updated.

Using the syntactic and semantic dependency defini-
tions, a procedure may be updated as follows: A proce-
dure P that has not changed between versions and has
no associated semantic dependency should he updated2
whcn the update is first initiated. Alternatively, a pro-
cedure Q that has changed betwccn versions or is
semantically dependent on another procedurc Q' nlay
be updated only when i t and Q' are not active. For the
remainder of this paper, an active procedure satisfies
both the syntactic or semantic depentlcncy active defi-
nitions.

Periodically the updating system rechecks for activc
procedures becoming inactive. The rechecking occurs
whenever the runtime stack contains lcvs elenlents than
it did when the last procedural update occurred. Since
an inactive old procedure cannot become active (it will
have already been converted to a new procedure), by
checking the size of runtime stack after the return of
each procedure call, all procedures are updated at the
earliest possible update time.

3.4 Justification for the Updating Criteria

Based on the definitions given in the previous section, it
is possible to contrive examples in which the proposed
updating system would not work. Fortunately, if a
top-down programming method [7, 10, 241 is followed,
such programs should not occur in practice. In pro-
grams developed using a top-down approach, the
higher-level procedures specify the algorithms of the
program and hence are not likely to changc bctween
versions. On the other hand, the lower-level proce-
dures, which descrihe many of the details used to
implement the algorithms, are more likely to change
between versions. Consequently, in most cases, an
update to a program will complete in a short period of
time since:

much of the program will not change between ver-
sions,

-

'ln this case, the procedure is no1 achlally replaced but instcad
flagged as being "new" since its old and new versions arc the same.

higher-lcvcl procedures will tend to bc thc same
between versions,

lower-level procedures will tcnd to be less active
than the higher-level procedures, and

much of the code is not frequently executed, e.g.,
code for exception handling.

3.5 Maintaining Consistency During an Update

During an update, the program may contain a cnmbina-
tion of both old and ncw procedures. To maintain
program consistency, specially-constructed procedures,
called interprocedures, that map old procedure specifi-
cations, i.e., calling sequences and return codes, into
new procedure specifications are required. Similarly,
special-purpose procedures called mapper-procedures
map old static data to the appropriate new representa-
tion. These procedures aid in providing an ordcrly
migration path from the old version of the program to
the new version. Mapping static data or specifications
from new to old is not required due to thc bottom-up
procedure replacement scheme employed. Thus, no
additional mapping prnccdurcs are needed.

3.5.1 Mapper Procedures. When a procedure that
contains local static data is updated, the updating sys-
tem invokes a user-written mapper-procedure or mpro-
cedure that maps the static data into whatever represen-
tation is required by the new version of the procedure.
The mapping operation need only be done once per
update for each procedure that requires it. Extending
this to encompass non-local data requires that all non-
local data to be accessed via abstract data types (ADTs)
[I]. Note that this restriction is consistent with the
programming style constraints discussed earlier.

By taking advantage of the large address space (see
Section 4). the mprocedure programmer can write an
mprocedure for a procedure P that copies pertinent data
from the old version of P, to the new vcrsion of P,
P,,,,. This mprocedure is invoked by the updating
system when prnccdurc P is updated. When P,, is
invoked for the first time, the state information accumu-
lated by Pold will have already been installed into P,,,,.

3.5.2 inter procedure^. Suppose program II calls a
sorting procedure "sort" and sort was initially imple-
mented as a bubble sort. In the new version of 11,
suppose that sort is implemented as a Qnicksnrt. The
specification, i.e., the parameters passed to and the
values returned from sort, has not changed between
versions. Instcad, what has changed is the implementa-
tion of sort. In this case, the updating system, as
described thus far, is able to replace the old sort with
the new sort. What happens if the specification of sort
as well as its implementation has changed between
versions'.' For example, suppose sort previously sorted

~>ynamically Updating a Program J . SYS'I'EMS SOYI'WARF. 115
1991; 14:lll-12R

Ealln with new specihcatiom

is only a- of

aalln with new
new specifications

 cations

calls with old

must be a- of ~ro th the
new and old spooifi~~~tinns

-rrays of integers but now sons arrays of real numbers.
'o properly updatc sort, a method of convening the
pe6ification of sort from one version to another is
. equired.

Converting procedure specifications from old to new
versions is similar to converting local static data (Sec-
tion 3.5.1). Suppose procedure P has bccn updated as
shown in Figure 1. When any procedure Q that has not
been updated calls P, it thinks it is calling Po,, since it
does not know about P,,, . Because P has been updated,
P's interprocedure will be invoked instead of Pol,. The
interprocedure will then map the call to Pol, into an
equivalent3 call to P,,,,. In effect, the interprocedure is
creating two illusions. Besides making Q think it is
calling Po,,, the interprocedure is also making P,,,
think that a new version of Q is calling P,,,,. Due to
this organization, the interprocedures are aware of the
dynamic updating and that multiple versions of a pro-
gram exist, while the procedures in a particular version
of the program are not.

4. THE DYNAMIC PROGRAM UPDATING
SYSTEM ARCHITECTURE

In this section, the key architectural design issues of the
proposed updating systems are discussed. The section
begins with an introduction to the updating system
procedure-binding issues and concludes with a discus-
sion of the system memory organization.

'ln the c a m where an exact mapping is not possible, the mapping
should be a "reatonahle approximation" to the correct caII. Deter-
mining such a niapping is left to the discretion of the programmer(s)
writing both the program and the interprocedures. Since the interpro-
ccdures would normally be written at thc samc time the new version
of the program is written, the knowledge required to construct the
mapping would be known a1 this time.

Figure 1. Invocation of an updated procedure P.

4.1 Binding Tables
In the updating system, the ability to quickly bind and
unbind the name of a procedure with its address in a
particular version is of paramount importance. In ab-
stract Icrms, a method of associating a procedure's
name (the version-independent specification of the task
that the procedure performs) with its address (the ver-
sion-dependent implementation of how the procedure
performs its task) is required.

One binding scheme that could be employed in the
updating system relies on binding tables and proceeds
as follows. A procedure call is performed by indexing
the table and branching to the address stored in that
table entry. For example, suppose in program IT,
procedure foo calls procedure bah. If bah is procedure
#2 in n , 2 is the index into the binding table. The
address stored in location 2 is that of bah. This scenario
is depicted in Figure 2.

If the targct computer's architecture supports indirect
addressing, e.g., the Motorola MC6X020 [I R] or the
Intel 80386 [Y], the procedure invocation operation can
be made quite efficient. In the example given above, a
procedure call that uses this typc of indirection might
look like:

CALL [BTBA + 31
where BTBA denotes the binding table base address
and the brackets denote the contents of address BTBA
+ 3. In contrast, an ordinary, i.e., no indirection.
procedure call, might look like:

CALL bah

where bah is the address of procedure bah. The main
advantage of using thc indirection is that the binding of

116 J. SYSTEMS SOFTWARE
1991; 14: l l l -128

0. Frieder and M. E. Segal

entry 2 of binding table
(INDM=2)

.
; code for foo
; ca l l proc. bah

c a l l [index]
from proc. bah

o£fsets into thiB table are
procedure "numbers"

continue executing here
after the procedure call

Figure 2. Implementing an updating system with a binding cally provided by the hardware, ne large
table. are partitioned into fields as shown below.

bah can be changed by modifying the value stored at other@version ID@^^^^@^^^^ ~ ~ @ d i ~ ~
address BTBA + 3. This would be done by the updat-
ing system at the appropriate times.

The binding table mechanism described above pro-
vides a simple method of procedure binding but has a
number of problems. Because the binding table is shared
between the operating system and the user program,
efficient methods of accessing and protecting the consis-
tency of the binding table must be devised. Another
problem with the simple binding table model is that it
does not provide a straightforward way of incorporat-
ing interprocedures into the updating system.

Consider the following scenario. Suppose procedure
P has been updated. Other procedures that have also
been updated will attempt to call P with P's new
parameters while procedures that have not been up-
dated will attempt to call P with P's old parameters.
Because there is only one location in the binding table
to store the address the procedure P, either the old
procedures or the new procedures will be calling the
wrong version of P. To avoid this scenario, the binding
table must be multiplexed in some manner.

4.2 Large Address Space Model

To address the above concerns conceptually, the entire
updating system rests on top of a large, sparse address
space.4 The addressing mechanisms need not be physi-

4~ similar approach was taken in the Apollo Domain system 1161
where a large address space was used to build unique object identi-
fiers, or UIDs, to address every entity in the system.

addresses

The "other" field denotes addressing information
used by the operating systems such as process IDS, user
IDS, or location information. This field can also be
used to provide for hardware consistency checking as
well as security between processes and machines.

The "proc ID" field denotes the procedure ID of a
given procedure. This number corresponds to the pro-
cedure number used to index the binding table. The
"procedure ID" for procedure P remains consistent
throughout all versions of the program. Thus, the pro-
cedure ID may be thought of as the internal name of the
procedure it represents.

The "disp" field is the displacement within a proce-
dure and is used for accessing code and data within a
procedure. By convention, a zero displacement denotes
the beginning of a procedure.

The "type" field specifies what kind of procedure
proc ID is. A procedure can be a normal procedure, an
interprocedure, an mprocedure, or a remote procedure.
The use of remote procedures in the updating system is
not discussed here. Interested readers are referred to
Segal and Frieder [21]. If the notion of "procedure" is
extended to data, the type field can also be used to
specify if a given proc ID is code or data. This
capability can be used to implement a single-level
store.

The "version ID" field represents the version num-
ber of the specified procedure. The version ID parti-

Dynamically Updating a Program I . SYSTEMS SOFTWARE 117
1991; 14:l l l -128

tions the address space into a number of distinct version
spaces. Within each version space is a complete copy
of a given version of the program being updated.
Because our system manages versions at the operating
system level, the program itself need not be directly
concerned with versions or version spaces. Within each
version space there is a binding table for that particular
version of the program. Only procedures in a given
version space utilize the binding table in that space.
This allows us to effectively multiplex binding tables
since each version has its own. The only entities that
may cross version spaces are interprocedures and
mprocedures. Thus, these are the only entities that need
to know about more than one version of the program
and the updating system. Partitioning the address space
in this manner also allows multiple versions of a pro-
gram to exist simultaneously (see Section 4.6).

It should be noted that the addresses described above
are generated by a combination of addressing informa-
tion encoded in instructions, information kept in auxil-
iary registers, and data structures. In particular, if the
address space is, say, 96 bits, all 96 bits need not be
encoded in the addressing information of every instruc-
tion. Similarly, the CPU(s) in the system do not require
96 address lines. The smaller addresses are converted
to large addresses by a virtual memory controller
(VMC). This type of addressing architecture is de-
scribed further in Frieder [14].

4.3 Segmented Virtual Memory

The updating system requires that the underlying com-
puter system support a logical, segmented virtual mem-
ory [12]. Such a virtual-memory system takes an ad-
dress of the form
segment descriptor@displacement

and maps it into a physical address (or a virtual address
which is passed to a paged virtual-memory system).
Information for each process' segments is stored in a
segment descriptor table. Each entry in the table con-
tains information such as the segment's base address in
real memory, the size of the segment, and the attributes
of the segment (is the segment readable, writable,
executable, etc.), and any other information that the
operating system and architecture requires.

Since this information is different for each process in
the system, most architectures have a segment descrip-
tor register that points to a segment table. The register
points to different segment descriptor tables depending
upon which process is running.

4.4 Mapping t he Large Address Space t o
Segmented Virtual Memory

The procedure ID field of the large address and the
segment descriptor described above are quite similar in
a number of respects. Both the procedure ID and

segment descriptor name objects. The procedure ID
denotes the "name" of a procedure while the segment
descriptor denotes the "name" of a segment. Recall
that the updating system must bind the specification of a
procedure to its implementation just as a virtual-mem-
ory system must bind a segment descriptor to an ad-
dress in real memory. From these comparisons, the
following equalities are noted.

(1) procedure ID (name) = procedure specification
= segment descriptor

(2) procedure address = procedure implementation =
physical address

Variants of each item on line (2) are bound to their
corresponding item on line (1). The updating system
uses the binding table to perform its binding operation
while the virtual memory system uses the segment
descriptor table to perform its binding operation.

4.5 The Updating System and Segmented Virtual
Memory

In the updating system, procedure IDS in programs to
be updated are represented by segment descriptors.
Since this results in exactly one procedure per segment,
the displacements within procedures are identical to
displacements within segments. Therefore, segment de-
scriptor tables are binding tables. As the virtual mem-
ory architecture supports a segment descriptor table
register, by changing this register to point to a different
segment descriptor table, we are changing the proce-
dure specification implementation to the bindings of the
program. Such an operation is supported by an operat-
ing system primitive accessible to the updating system.
During program execution, the only time this register
changes is when an interprocedure or mprocedure
crosses version space boundaries. Because the program
being updated does not know about version spaces, no
references to the spaces nor the segment descriptor
table register need to appear in the program's code.
Since ordinary address generation in an executing pro-
gram does not directly reference the segment descriptor
table register, these concepts are compatible. An imple-
mentation of the updating system using segmented vir-
tual memory is shown in Figure 3.

By partitioning the space of segment descriptors, the
type field of the large address is incorporated into the
segment descriptors. Hence, interprocedures and mpro-
cedures are accessed using the same method as normal
procedures. Partitioning the segment descriptors this
way also enables data to be accessed directly. This
allows permanent i.e., file data to be accessed via the
single-level store, assuming the operating system pro-
vides a method of mapping the data into the address
space. Also, mprocedures can use this mechanism to

118 J . SYSTEMS SOFTWARE
1991: 14:lll-128

0. Frieder and M. E. Segal

address in SDTR p i n t s to the SDT
Segment Descriptor comesponding to the program's

current nameladdress bindings -
Segment Descriptor Table version i of P

; invoke P
call n: 0

address in SJYl' points
here before P i s updated

address in SJYl' points
here after P i s updated

i interproc

I Segment Descriptor Table

version i+l of P

Figure 3. Implementing an updating system with virtual When a procedure P is updated, the segment descrip-
memory. tor table entry for P is changed to the address of P's

interprocedure since other old procedures need to ac-
gain access to data in other procedures for conversion cess P's interprocedure instead of P itself. The machine
to the new version of the corresponding procedure. code for P's interprocedure might look like:

i proc: ;manipulate parameters -
SVC INTERCALL,proc,v + 1 ;call new proc
, . . . ;manipulate return code

RET ;return from interproc

This code fragment performs local parameter manip- procedure that called the interprocedure is in version v
ulation, changes bindings to the new version space, and the new procedure is in version v + 1. The IN-
invokes the procedure, and returns. Assumed is that the TERCALL routine denotes an operating system call

Dynamically Updating a Program I. SYSTEMS SOFTWARE 119
1991; 14: l I l -128

that will cross version spaces and invoke the version
v + l of procedure proc. INTERCALL must know
about both version spaces and adjust the segment de-

INTERCALL:
PUSH SRD
MOV SDR,TABLE[V
CALL U proc -

POP SDR
RET U

This code saves the current segment descriptor table,
loads the segment descriptor register with the new
version space bindinglsegment table, and invokes the
procedure. When the procedure returns, the segment
descriptor register is reset and control is returned to
user code. The code to check parameters and manipu-
late the parameters on a runtime stack is not shown
here. Also, CALL U and RET U denote routines that
perform domain s4tches to us& code before perfonn-
ing the standard CALL or RETURN functions. TABLE
denotes a table of segment table addresses. For index x,
TABLE[x] contains the address of the version x bind-
ing table.

3 Multiple Simultaneous Updates

As more than two versions ("old" and "new") can
exist simultaneously, multiple simultaneous updates,
i.e., starting one update before previous updates have
completed, are possible. Having this capability is essen-
tial since the time required to update a program is a
function of how well it is written. In a distributed
system, updating time is also a function of the number
of computers in the network. As a result, it may take a
long time for an update to propagate to all computers in
the network. Similarly, some computers may be offline
when the update is initiated. It may also be desirable to
" e r an update if a computer is temporarily overloaded

if the program running on it cannot tolerate the
rsible performance degradation that an update might

5. PROTOTYPE IMPLEMENTATION

A prototype of the updating system described in this
paper has been constructed. The prototype executes on
Sun Microsystems computers running SunOsTM [23] (a
BSD 4.3-compatible Unix system) and consists of sev-
eral major components. The primary user interface to
the prototype is called the Updating Shell (ush or
"u-shell"). The ush reads commands typed from the
user's terminal and, based on the type of command,
performs some local action or interacts with other

T M ~ u n ~ s is a trademark of Sun Microsystems, Inc.

scriptor table register accordingly. The INTERCALL
routine might be written as follows:

;parameter checking
;save seg . desc . register

+ I] ;load new seg. table
;call user proc in new space
;reload current version
;return to user code

components of the updating system if necessary. The
ush is capable of dynamically loading and linking5 user
programs.

User programs are not executed in the same address
space as the ush, but rather in the address space of a
separate component of the updating system called the
Program Update Processor (pup). User programs are
loaded by the ush and then downloaded to the pup. The
pup and the ush communicate with each other via
internet-domain sockets [22], and thus need not reside
on the same physical computer system. No direct inter-
action with the sockets occurs; a communication ab-
straction reminiscent of remote procedure calls is used
instead. This communications subsystem allows mes-
sages representing commands to the pup and ush to be
interchanged without regard to the idiosyncrasies of
sockets. Block data transfers as well as asynchronous
message notification are also supported.

The ush can control multiple different programs run-
ning on the same host or different hosts. This is accom-
plished via state-management code in the ush and pup
and an additional subsystem (discussed below). Ini-
tially, a pup contains no state information. When an
ush connects to a pup, state information for the pup's
configuration is built and stored in the ush. Upon
termination of the ush/pup connection, the state of the
pup is transferred from the ush to the pup. As long as
the pup (Unix) process is not terminated, the state
information is retained. From now on, whenever an ush
connects to this pup, the state information is transferred
back from the pup to the ush and reconstructed there.
This allows the ush user to make and break connections
to different pups when desired. The ush may be uncon-
nected from a pup at any time except while an update is
in progress.

Each computer in the network may have more than
one pup running on it simultaneously. Each pup is
referenced by a symbolic program name assigned to it
when it is run. The user-specified name symbolizes the

 h his feahln is not available in standard BSD Unix. It was
implemented in the prototype using the. standard Unix linker (Id) and
a locallydeveloped loading system.

120 1. SYSTEMS SOFTWARE
1991; 14:lll-128

name of the program that will be loaded into the pup.
To arbitrate access to the different pups, a Pup Port
Mapper Daemon or pupmapper was constructed. The
pupmapper serves a similar function to the Sun Unix
RPC portmap daemon. The pupmapper listens on a
"well-known," i.e., constant, TCP port for pup map-
ping commands. When a pup is started, its name is
specified as a command-line argument. The pup allo-
cates a TCP port from the available pool on the local
machine and passes the tuple [pup name, process ID,
TCP port number] to the pupmapper. The pupmapper
registers this information for future access requests.
When an ush attempts to connect to a pup, it first
communicates with the pupmapper. The pupmapper
obtains the needed information and returns the tuple to
the ush. Additionally, the pupmapper alerts the pup that
a user is establishing a connection. By knowing the
pup's TCP port number, it can communicate with the
pup directly. When a user terminates a pup, the pup

Figure 4. A system-level view of the prototype updating
system.

0. Frieder and M. E. Segal

removes its information from the pupmapper before
exiting. Any future attempts by an ush to connect to
this pup will be rejected by the pupmapper.

The entire prototype is shown pictorially in Figure 4.
In Figure 4, a number of computers are connected

via an interconnection network. Each computer con-
tains peripherals similar to the one shown at the bottom
of the figure. At each site there is a single pupmapper
(dog with question mark), zero or more pups (dog),and
one of the computers has an ush running (shell). The
details of the interconnection network are not important
herc; we merely assume that it is possible (at some
level) to get packets from one machine to any other via
the network.

6. UPDATING EXAMPLE: NON-STOP PIZZA
PREPARATION

The Non-Stop Pizza Preparation Program (pizza) illus-
trates the events that occur when a program is dynami-
cally updated, as well as some of the capabilities of the

Dynamically Updating a Program J. SYSTEMS SOFTWARE 121
1991; 14:lll-128

prototype dynamic program updating system. The pizza pizzas by a three-step process. The basic algorithm for
program controls the hardware of a hypothetical pizza- pizza may be coded in the C programming language as
baking machine. This machine produces fully-baked shown below:

{
while (1)

do pizza(); -
1
/* do pizza drives the procedures that create the pizza.
* Each pizza is assigned a unique pizza descriptor that
* is passed to the lower-level procedures. Messages are
* printed when a pizza is started and when a pizza is
* finished. The actual parameters used to control how
* the pizza is constructed are local to the procedures
* that do the work.
*/

do pizza()
I -

static int pd = 1; /*pizza descriptor*/
printf("pizza number %d preparation begins. . . \ nM,pd);
set oven temp (pd);
mix ingredients (pd);
bake pizza (pd);
printT('6pizza number %d preparation complete \ n \ n",pd);

The main procedure repeatedly calls the do pizza pro-
cedure, in which turn calls set oven temp, mix in-
gredients, and bake pizza. One ihvocacon of do phza
results in the invocation of all procedures necessary to
produce one fully-baked pizza. Status messages are also
printed as part of do pizza's pizza-creation process.

The set oven temp procedure preheats the oven to a
set temperature.-This temperature is stored internally to
the procedure. When set oven temp returns, the oven
has been successfully set to theaesired temperature and
is ready to use. The mix ingredients procedure mea-
sures the appropriate amount of ingredients needed to
construct the pizza, mixes the dough, and assembles a
pizza. When this procedure returns, the pizza refer-
enced by the pizza descriptor may be baked. The pizza
is baked by the bake pizza procedure. When bake pizza
returns, the pizza k piping hot and ready-to-eat. As
with set oven temp, both mix ingredients and
bake pizza use parameters that are Gored as local data
withh the procedures. The set oven temp, mix in-
gredients, and bake pizza procedures a% shown belzw.

-

/* set oven temp pre-heats the pizza oven to the
* int&alljkpecified temperature in Fahrenheit
* degrees. When this routine returns, the oven is
* ready to cook at that temperature.
*/

set oven temp(pd) - -

int pd;
{

int temp = 400;
/* (device-specific pre-heating code using temp) */
printf(" oven pre-heated to %d degreesM,temp);

printf("Fahrenheit for pizza %d \ n",pd);
1

/* mix ingredients mixes the internally-specified mass
* (in pounds) of the ingredients to form a pizza. When
* this routine returns, the pizza has been assembled
* and may either be baked or frozen.
*/

mix ingredients (pd)
int $;
{

double dough = 0.75; /* dough mass (lb) */
double meat = 0.25; /* meat mass (lb) */
double veggie = 0.25; /* veggie mass (Ib) */
double cheese = 0.50; /* cheese mass (lb) */
/* (device-specific mixing and kneading code) */
printf("pizza %d contains % .21f Ib dough,",pd,dough);

printf("%.2lf lb meat,",meat);
printf(" % .2 If Ib veggies,",veggies);
printf(" % .2lf Ib cheese \ nw,cheese);

I

/* bake pizza will bake the pizza for the internally-
* speczed amount of time in minutes. When this routine

122 J. SYSTEMS SOFTWARE
1991: 14:111-128

0. Frieder and M. E. Segal

* returns, the pizza has been successfully baked.
"1

bake pizza(@)
int $;
i

int time = 10;
/* (device-specific baking code) */
printf("pizza %d baked for %d minutes \ nW,pd,time);

1
An experienced C programmer might write pizza dif-
ferently than shown above; this programming style was
chosen for the purposes of top-down design and clarity.

Suppose that pizza has now been put into production
use and is baking large numbers of pizza for an ever-in-
creasing customer base. Suppose further that the pa-
rameters and algorithms coded in set oven temp,
mix ingredients, and bake pizza produce &e thin-crust
styleof pizza generally eaten in New York City. Unsat-
isfied with their revenues, the owners of the pizza
machine decided to change the program that runs their
pizza machine to produce the deep-dish (thick-crust or

"stuffed") pizza generally eaten in Chicago. To ac-
complish this, the set oven temp, mix ingredients, and
bake pizza procedures were altered tojroduce the new
recipe. The do pizza procedure was also changed to
print slightly afferent status messages. After these
changes have been made, the new version of pizza must
be installed. Rather than shut down the pizza machine
to install the new software (and lose additional revenue),
the pizza machine owners decide to dynamically update
the pizza program with the new thick-crust version.

6.1 Updating the Pizza Program

Having explained what pizza does and given an
overview of the prototype, we now demonstrate how
pizza is loaded, executed, and updated using the proto-
type dynamic program updating system. Selected sam-
ple dialogs with the ush and pup are shown below.
User input is shown in boldface type.

When the ush is started, the following is displayed:

chi% ush
Updating System Shell version 0.0 (compiled on May 15/89 at 02:24)

running under SunOS version 4.0 on host citi
>

When the pup is started on another computer, the following is displayed:

gto% PUP x
program,update processor version 0.0 (compiled on May 14/89 at 033

running under SunOS version 4.0 for program x

To connect the shell started above to the pup, the ush puter named citi and the pup is running on a different
must be given a symbolic name of a program and told computer named gto.
which host on the network is running a pup for the > program x
desired program. The program name should correspond The current program is now x
to the name of the program supplied on the pup (x in > connect gto
the example above). If no host is specified in the Connected to pup for program x on host gto

connect command, ush assumes that the pup resides on Pup for program x on host gto is new

the same host as the ush. Since the ush and the pup >

need not reside on thc same physical computer, it is Once the connection has been established, programs
possible to remotely load, execute, and update pro- may be loaded and run. To load version 1 of pizza, the
grams. In this example, the ush is running on a com- following is done:

> load 1 pizzal.delta pizzn1.0
Load sequence begins.. .

extracted updatable procedures from delta file pizzal.delta
program x has 5 updatable procedures
program x's procedures registered with pup name service on host gto
delta* computed for 5 procedures in x:

0 1 1 1 1
0 0 1 1 1
0 0 0 0 0 " '

Dynamically Updating a Program J . SYSTEMS SOFTWARE 123
1991; 14: l I l -128

program object code image requires 1192 bytes
program loading at address 0x26738 in pup x's address space on host gto
program linking complete
loaded VMC segment descriptor table into gto's VMC
copying code to pup . . . complete
no interprocedures loaded for version 1
no mprocedures loaded for version 1

Version 1 of program x loaded successfully
>

This display is printed with the full debugging option of the table is zeros. Once the program has been
compiled into the ush. The 6* table shown above has loaded, it may be run immediately or additional ver-
been shrunk for the purpose of this example. Because sions of pizza may be loaded. Loading version 2 results
there are only five procedures in this program, the rest in:

> load 2 pizza2.delta pizza2.o
Loaded sequence begins. . .

extracted updatable procedures from delta file pizza2.delta
program x has 5 updatable procedures
program x's procedures registered with pup name service on host gto
delta* computed for 5 procedures in x:

0 1 1 1 1
0 0 1 1 1
0 0 0 0 o . . .
0 0 0 0 0
0 0 0 0 0

program object code image requires 1272 bytes
program loading at address 0x27548 in pup x's address space on host gto
program linking complete
loaded VMC segment descriptor table into gto's VMC
copying code to pup . . complete

iproc object code image requires 608 bytes
iproc loading at address Ox283a8 in pup x's address space on host gto
iproc linking complete
copying code to pup . complete

mproc object code image requires 264 bytes
mproc loading at address 0x2860~ in pup x's address space on host gto
mproc linking complete
copying code to pup . complete

Version 2 of program x loaded successfully
Version 1 interprocedures loaded successfully
Version 1 mprocedures loaded successfully
>

Although not shown here, it is also possible to load a though none are required. In the prototype, every
new version of the program while the current version is procedure has an interprocedure and mprocedure asso-
executing. Notice that the output indicates interproce- ciated with it. If the interprocedure or mprocedure is
dures have been loaded for the pizza program even not required, it merely passes parameters without alter-

124 J. SYSTEMS SOFTWARE
1991; 14:llI-128

0. Frieder and M. E. Segal

ing them (interprocedure) o r returns without doing
anything (mprocedure) .

Running version 1 of pizza is accomplished by:

z run
Program x is now running
>
When the ush is given the run commnand, version 1

of the current program is executed. On the pup, the
following i s printed when debugging is enahlcd (debug-
ging messages are preceded by pup:):

pup: INTERRUPT! (pup state: 0) received command RUN
Execution begins at address 0x26738. . .
pizza number 1 preparation begins. . .

oven pre-heated to 400 degrees Fahrenheit for pizza 1
pizza 1 contains 0.75 Ig dough, 0.25 lb meat. 0.25 Ib

veggies,
0.50 Ib cheese
pizza 1 baked fur 10 minutes

pizza numbcr 1 preparation complete
pizza nutnber 2 preparation begins. . .

oven pre-hctlled to 400 degrees Fahrenheit fur pizza 2
pizza 2 contains 0.75 lb dough. 0.25 lb meat. 0.25 Ib

veggies,
0.50 Ib cheese
pizza 2 hakcd lor 10 minares

pizza number 2 preparation complete

The INTERRUPT message signifies that the pup has
received a RUN command from the ush. This causes
version 1 of the currently loaded program to begin
execution. As shown above, pizza is creating pizzas
and printing out status information for each stcp.

Suppose we wish to update pizza to version 2 to
begin preparing thick-crust pizzas. On the ush side, we

type:

> update pizza2.changes
Updue of program x from version 1 to version 2 begins.. .

4 procedures have changed between versions:

-
do pizza

- fiecoven temp

- mix ingdients
bake pizxn

program x &time stack beckace:

-
do pizza
main2

w a d - I unchanged procedures into version space 2
computed inactive procedures:

- set oven temp

- mix ingGdients
hakc pizza

warpca 3 chinged procedures into version space 2
enabled procedure return interrupts

Program x uplnte initiated successfully
>

some rime passes. . .
' Program x updated to version 2 successfully *

>

and on the pup side, we see (with debugging enabled):

pizza number 6 preparation begins. . .
oven pre-heated to 400 degrees Fahrenheit for pizza 6
pizza 6 contnins 0.75 Ih dough, 0.25 lb meat, 0.25 Ib

vcggies.
0.50 Ib cheese

pup: INTERRUPI'! (pup state: 2) received command
UPDATE - -

pup: UPDATE dispatcher received command GET RTS
pup: UPDATE dispatcher received command SET-SDTE . -

pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE -
pup: UPDATE dispatcher received command SET SDTE
pup: UPDATE dispatchcr received command SET-HRVN
pup: UPDATE dispatcher received ~vmrnand EI ~ J P
pup: UPDATE dispatcher rcceived command E6F
'TC pizza 6 baked for IS minutes

pup: PROCEDURE INVOCAI'ION TERMINATED!
pup: UPDATE dispatcher received command GET RTS
pup: UPDATE dispatcher receivcd command ~ O P -

pizza numbcr 6 preparation complete
pup: PROCEDURE INVOCATION TERMINATED!

pup: UPDATE dispatcher reccivd command GET RTS
pup: UPDATE dispatcher received command SETSDTE
pup: UPDATE dispatcher received command DI POP
pup: UPDATE dispatcher received command E6F

TC pizza number 7 preparation begins. . .
oven pre-heated to 475 degrees Fahrenheit for TC pizza 4
TC pizza 74 contains 1.25 Ib dough, 0.50 Ib meat, 0.50 Ib
veggies, 1.00 Ib cheese
TC pizza 7 baked for 15 minutes

TC pizza number 7 preparation complete

As before, the lines preceded with pup: are the
debugging output of the pup interacting with the ush to
perfonn the update. These lines correspond to the ush's
view of the update operation. Looking at the ush out-
put, when pizza was interrupted, it was inside the
dn pizza procedure. The ingredients have been mixed
bui thc pizza has nnt yet been baked. The main and
do pizza procedures are currently on the runtime stack
a s shown in the previous ush screen display. At this
point, set oven temp, mix ingredients, and bake pizza
may be ~Tjdatedsince theyare not active (Section3.3).
The do pizza procedure may not be updated since it is
active (because it is on the runtime stack).

The actual update is accomplished by the ush sending
a number of commands to the pup. Before cach com-
mand is processed, a pup debugging message is printed.
The GET RTS command causes a runtime stack snap-
shot to h e k n t from the pup to the ush. This is used by

Dynamically Updating a Program J . SYSTEMS SOFTWARE 125
1991: I4: l l l -128

Thi
ma1
con

run
COU

SUC
..-+
l l"L

Aft
chr
mnl

retl
piz;
and

inac
not
inte

the ush to determine what procedures may be updated.
s list is printed by the ush. The SET SDTE com-
nd causes the pup to manipulate the visual memory
 troller's segment descriptor tables which cause pro-

cedure bindings to be changed. This is done at least
once per procedure update. The SET HRVN command
causes the pup to set its internal notion of highest
- -ning version number. In this example, the update

11d not be completed when it was initiated. When
h a situation occurs, the ush instructs the pup to
ify it whenever procedure invocations terminate.
er each procedure invocation, the pup asyn-
onously notifies the ush of this event. This is nor-

..., lly undetectable by the user running the updating
system. After the ush has been notified of the procedure
termination, it rechecks the program's state to see if the
update may be continued. This mode is set by the
El POP command, which signifies enabling procedure-
inka t ion return interrupts.

After this mode has been set, pizza continues execu-
tion. The next step of the pizza process is the baking of
the pizza. As can be seen from the pup screen display,
this step takes place.6 When the bake pizza procedure

lms, the pup interrupts the ush. A quick check of
ca's runtime stack reveals that do pizza is still active

execution continues. When control returns to
do pizza, it prints a message stating that pizza number
6 Fias been prepared. After this occurs, do pizza re-
turns control to main. The do pizza procedure is now

:tive and is updated. Upon completion, the ush
ifies the pup to disable the procedure termination
-rrupts by sending the pup a DI POP command. The

interrupts are no longer needed since all changed proce-
dures have now been updated. The ush then prints out a
message informing the user that the update is complete.
The pizza program now continues to execute its second
version. Note that in the second version, the amount of
ingredients, temperatures, and baking times are differ-

ent. All messages are also preceded with the letters TC,
signifying "thick-crust" pizza is being made. The pizza
descriptor numbers are kept sequential by an mproce-
dure associated with procedure do pizza. When
do pizza was updated, this mprocedure &pied the value
of the pizza descriptor from the old do pizza into the
new do pizza. If this were not done, thz first time the
version-2 do pizza procedure ran, it would start with
pizza # 1, vTolating the uniqueness rule of the pizza
descriptors.

6.2 The Semantic Dependencies of Baking a
Pizza

Although the pizza program appears to have been up-
dated successfully, this is not entirely correct. When
pizza number 6 was baked, it was baked for 15 minutes
instead of the usual 10 minutes of bake time required
by a thin-crust pizza. Notice also that the baking mes-
sage is preceded by TC. This update is wrong since the
pizza was baked too long, thus resulting in a burnt
pizza. Even though all changed procedures were up-
dated when they were inactive, something else has gone
wrong.

This update did not proceed correctly because a
semantic dependency (Section 3.3.2) between the three
procedures that control the pizza machine
(set oven temp, mix ingredients, bake pizza), and the
procedure that controls when these procedures
(do pizza) are called, was not stated. Although there is
n o t b g in the program's syntax that says a thin-crust
pizza cannot be baked for 15 minutes, this information
must be given to the updating system. In the prototype
this is accomplished by specifying which procedures
must be updated concurrently. This allows semantically
dependent procedures to be updated as a group, thus
maintaining program consistency. If this semantic de-
pendency were correctly specified, the update would
have appeared as follows:

> update pizza2.changes.sd
Update of program x from version 1 to version 2 begins. . .

4 procedures have changed between versions:

- do pizza

- setoven temp

- mix ingdients
bake pizza

program x runtime stack backtrace:
do pizza -
mGn2

wapd 1 unchanged procedures into version space 2
computed inactive procedures:
no changed procedures could be warped to version space 2 at this time

6 ~ o t e that TC precedes the messages. This change will be ex-
plained shortly.

126 J . SYSTEMS SOFTWARE
1991: 14:Lll-128

0. Frieder and M. E. Segal

enabled procedure return interrupts
Program x update initiated successfully

>
some time passes. . .
*** Program x updated to version 2 successfully ***

>

pizza number 10 preparation begins. . .
oven pre-heated to 400 degrees Fahrenheit for pizza 10
pizza 10 contains 0.75 Ib dough, 0.25 Ib meat, 0.25 Ib veggies,

0.50 Ib cheese
pup: INTERRUPT! (pup state: 2) reccived command UPDATE

pup: UPDATE dispatcher received command GET RTS
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-HRVN
pup: UPDATE dispatcher received command EI FOP
pup: UPDATE dispatcher received command EOF
pizza 10 baked for 10 minutes

pup: PROCEDURE INVOCATION TERMINATED!
pup: UPDATE dispatcher received command GET RTS
pup: UPDATE dispatcher received command EOF-

pizza number 10 preparation complete

pup: PROCEDURE INVOCATION TERMINATED!
pup: UPDATE dispatcher received command GET RTS
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command Dl FOP
pup: UPDATE dispatcher received command E 6 F

TC pizza number 11 preparation begins. . .
oven pre-heated to 475 degrees Fahrenheit for TC pizza 11
TC pizza I1 contains 1.25 lb dough, 0.50 lb meat. 0.50 Ib

veggies, 1.00 Ib cheese
TC pizza 11 baked for 15 minutes

TC pizza number 11 preparation complete

In this case, the pizza that was being prepared when
the update was initiated (pizza 10) was correctly baked.
Pizza 11 was correctly prepared as a thick-crust pizza.
The semantic dependency forced set oven temp,
mix ingredients, bake pizza, and do pizza to he up-
date3 concurrently, t h s resulting in-correctly baked
pizza and happy customers.

7 . CONCLUSIONS AND FUTURE WORK

In numerous applications, e.g., air-traffic control,
telecommunications, life support systems, etc., dis-
abling the application to update its software is very
costly, at times even unacceptable, and such downtime
should be minimized. As large-scale software systems
with stringent downtime requirements become more

prevalent, the scope and importance of this problem
will increase.

This paper described the algorithms, constraints, and
architecture of a dynamic program updating system.
The updating system replaces a running program with a
new version without stopping the program. While our
system does not require special-purpose hardware or
programming-language extensions to work properly,
some programming system requirements were imposed.
A hardware and software architecture for the u~datine -
system was presented. We showed how this architec-
ture can be constructed on top of a conventional seg-
mented virtual-memory system. To verify the updating
system concepts, a prototype updating system was con-
structed. Sample sessions using the prototype to update
an example program were given. The prototype was

Dynamically Updating a Program I. SYSTEMS SOFTWARE 127
1991; l4 : l I l -128

rami

able to correctly update the pizza program, thus show-
ing that dynamically updating programs written in a
conventional programming language (C) by procedure
is feasible.

Among some of the topics left for future work are
the design and implementation of tools to aid program-
mers writing interprocedures and mprocedures. Our
experiments with the prototype system have shown that
constructing these procedures is both tedious and
error-prone, and could benefit from appropriate tools.
To further examine the viability of our approach, per-
formance data for updates of larger programs must be
obtained. We are presently undertaking this work using
a packet router as the sample program. Performance
and scalability issues in a distributed environment must
also be examined.

Because some languages are better-suited to some
tasks than others, an updating system should allow
programs written in multiple languages, non-procedural
languages, such as LISP and Prolog, or concurrent or
parallel languages to be updated. Future updating sys-
tems should have such capabilities.

Hard real-time programs (programs that must com-
pute results at a given time), by definition, should not
be interrupted to install new versions. Unfortunately,
no existing updating system (including ours) supports
the updating of hard real-time programs. Currently,
updating systems do not have a method of processing
rules of the form, "Procedure P must be updated in the
next 18 milliseconds because it will be needed to meet
the next deadline in 34 milliseconds." Although our
updating system architecture strives for efficiency, it by
no means guarantees hard real-time deadlines. A real-
time dynamic program updating system should be in-
vestigated, as it would potentially allow more types of
programs to be updated.

If an updating system is to play a role in the develop-
ment and maintenance of future software systems, the

fications of dynamic updating in software develop-
and maintenance environments must be examined.

inamic updating can be done inexpensively and
quickly, software developers and maintainers might
install bug fixes and enhancements sooner than is cur-
rently done. This could lead to better software, happier
customers, and higher profits. The appropriateness of
dynamic updating systems in real environments will be
determined by how well they work for a given prob-
lem, their ease of use, and the willingness of program-
mers and managers to incorporate them into their cod-
ing and business practices.

REFERENCES

1. A. V. Aho, J . E. Hopcroft, and J. D. Ullman, Data

Structures and Algorithms, Addison-Wesley , Read-
ing, MA, 1983.
S. R. Ali, Analysis of total outage data for stored
program control switching systems, IEEE Journal on
Selected Areas in Communications, SAC-4(7) (1986).
A. Birrell and B. Nelson, Implementing remote proce-
dure calls, ACM Transactions on Computer Sys-
tems, 2(1) (1984).
T. Bloom, Dynamic Module Replacement in a Dis-
tributed Programming System, Ph.D. Dissertation,
MIT, June 1983.
J. 0. Boese and A. A. Hood, Service control
point-database for 800 service, IEEE Global Telecom-
munications Conference, 1986.
R. T. Boute, J. DeMan and H. Peeters, Secure on-the-fly
software modification, Proceedings of the IEE Fourth
Int'l Conference on Software Engineering for
Telecommunications Switching Software, 1981.
F. P . Brooks, Jr., The Mythical Man-Month, Addi-
son-Wesley, Reading, MA, 1975.
R. P. Cwk, StarMod-A language for distributed pro-
gramming, IEEE Trans. Software Engineering, SE-
6(6), (1980).
J . H. Crawford and P. P. Gelsinger, Programming the
80386, SYBEX, Inc., San Francisco, 1987.
0. J . Dahl, E. W. Dijkstra, and C. A. R. Hoare,
Structured Programming, Academic Press, 1972.
C. L. Davis and E. A. Irland, Software reliability and
quality, an assessment of the state of the art, IEEE
Global Telecommunications Conference, December
1985.
H. M. Deitel, An Introduction to Operating Sys-
tems, Addison-Wesley, Reading, MA, 1984.
R. Fabry, How to design a system in which modules
can be changed on the fly, Proc. Second International
Conference on Software Engineering, IEEE, Octo-
ber 1976.
G. Frieder, Cooperative module architectures and their
underlying operating system, State of the Art Report
on Distributed Systems, INFOTECH Publications,
Berkshire, 1976.
H. Goullon. R. Isle, and K. Lohr, Dynamic restructur-
ing in an experimental operating system, IEEE Trans.
Software Engineering, SE-4(4) (1978).
P . J. Leach, P. H. Levine, B. P. Douros, J. A.
Hamilton, D. L. Nelson, and B. L. Stumpf, The archi-
tecture of an integrated local network, IEEE Journal
on Selected Areas in Communications, SAC-1(5),
(1983).
I. Lee, DYMOS: A Dynamic Modification System,
Ph.D. Dissertation, University of Wisconsin, 1983.
Motorola, Inc., MC68020 32-Bit Microprocessor User's
Manual, Prentice-Hall, Englewood Cliffs, N . J . , 1985.
R. F. Rey, (ed.), Engineering and Operations in the
BeN System (second edition), AT&T Bell Laboratories,
Murray Hill, NJ, 1986.
D. M. Ritchie and K., Thompson, The Unix timeshar-
ing system. CACM 17(7), (1974).
M. Segal and 0. Frieder, Dynamically- updating dis-

128 I. SYSTEMS SOFTWARE
1991; 14:111-128

tributed software: Supporting change in uncertain and
mistrustful environments, in Proc. IEEE Conference
on Software Maintenance, October 1989.

22. Sun Microsystems, Tnc., Interpmcess communication
primer, Networking on the Sun Workstation, Moun-
tain View, CA, 1985.

23. Sun Microsystems, Inc., U n k Interface Reference
Manual, Mountain View, CA, 1986.

24. N. Wirth, &ogram Development by Stepwise Refine-

0. Frieder and M. E. Segal

ment, CACM 14(4), (1971).
25. R. H. Yacobellis, J. H. Miller, B. G. Niedfeldt, and S.

S. Weber, The 3B20D processor & DMERT operating
system: Field administration subsystem, The Bell Sys-
tem Technical Journal, 62(1), (1983).

26. .I. Magee, J. Kramer. and M. Sloman, Constructing
Distributed Systems in Conic, ZEEE Trans. Software
Engineering, SE- 15(6), (1 989).

