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An approach to dynamically updating a computer pro- 
gram, i.e., updating while it is executing, is presented. 
Dynamic updating is crucial in applications where the 
cost of stopping and restarting the program makes 
doing so impractical. The presented system works 
with programs written in procedural languages such as 
Pascal and C. It is assumed that computer programs 
are written in a top-down manner consistent with 
good software engineering practices. Also assumed is 
that the underlying computer system logically provides 
a network-wide sparse virtual address space. Using 
these assumptions, it is possible to update computer 
programs with minimum interruption to the running 
program. By partitioning the address space into a num- 
ber of version spaces, the handling of multiple simulta- 
neous updates is possible. This allows one update to 
begin before previous updates complete. Via appropri- 
ate mapping mechanisms, old versions of procedures 
may call new procedures and maintain consistency. 
An overview of the design and implementation of a 
working prototype updating system is discussed and a 
sample updating session is illustrated. 

1.  INTRODUCTION 

By its very nature, computer software is constantly 
changing. Change may be necessary because new fea- 
tures were added to a program or because bugs were 
discovered in the current version. Sometimes change 
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may be necessary when the specifications of the tasks a 
program must perform, how it must perform them, or 
the environment where the tasks must be performed 
have changed. Once the appropriate modifications have 
been made to a program, the old version may be 
stopped and the new version may be loaded and run. 
There are circumstances, however, where temporarily 
stopping a program while a new version is being loaded 
is not viable. This is primarily due to the significant 
cost of such an operation. This cost might be manifest 
in lost revenue (an airline reservation system or a 
telecommunications switching system) [2, 5, 111 or in 
terms of danger to human life (a computer-controlled 
life-support system or an air-traffic control system). 
The ability to dynamically update a program, i.e., load 
a new version of a program without stopping the cur- 
rently running version, could alleviate these costs in 
many cases. 

An approach to dynamic program updating is de- 
scribed. The approach updates programs written in 
procedural programming languages by replacing the 
program's individual procedures. This approach can be 
used to update distributed programs [21] across a net- 
work of machines by performing a similar updating 
sequence to that done on a single machine. The main 
limiting assumption of the presented approach is the 
requirement that programs be written in procedural 
programming languages using a top-down design 
methodology. As the top-down design approach is con- 
sistent with good software engineering practices, no 
attempt is made to weaken this precondition. 

The remainder of this paper is organized as follows: 
Section 2 reviews previous research in dynamic updat- 
ing of computer programs. An overview of the updat- 
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ing system is presented in Section 3, with an in-depth 
examination of the updating system architecture com- 
prising Section 4. In Section 5, a description of a 
prototype updating system is provided. An illustrative 
sample update is included in Section 6. Finally, a 
conclusion is provided in Section 7. 

2. PREVIOUS WORK 

We classify prior approaches to the problem of replac- 
ing portions of computer programs without stopping 
them into three main categories: hardware-based, ser- 
vice-oriented, and procedural. Hardware-based ap- 
proaches attack the problem by providing a redundant 
CPU and peripherals to be configured with a new 
version of the program while the old one continues to 
run [19]. When the program is updated, the old system 
is physically disabled while the new one is enabled. 

Software-based, service-oriented approaches attack 
the problem by imposing a server/client relationship on 
the programs they can update 141. In such an approach, 
a number of clients request a service from a server via 
some well-defined mechanism such as an operating 
system primitive or a remote procedure call [3]. A 
server may be updated by temporarily disabling its 
services and then installing a new server. Although this 
approach executes in a distributed system, it will only 
work with software systems that observe a server/client 
relationship. 

The Conic System [26] uses a variation of this idea. 
A Conic distributed program is divided into a set of 
modules that communicate with other modules via a set 
of software "links" between the modules. A Conic 
program is dynamically updated by changing the links 
from connecting old versions of modules to the new 
versions. Although Conic programs are not structured 
in a server/client fashion, each module still must be 
replaced as a single unit. As with service-oriented 
approaches, this replacement mechanism may not be 
appropriate for programs built from large modules 
since small changes within a module require the entire 
module to be replaced. 

Finally, software-based, procedure-oriented ap- 
proaches attack the problem by replacing individual 
procedures as the program executes. In such an ap- 
proach when all of the "old" procedures have been 
replaced by all of the "new" procedures, the program 
has been updated. This class of updating system is 
related in some respects to dynamic-type replacement 
systems such as Fabry [13]. In a type replacement 
system, the routines providing access to abstract data 
types are replaced while the program using them con- 
tinues to run. Although this type of system allows 
abstract data type implementation to be changed be- 

tween versions of a program, it does not address the 
more general issues of code restructuring, such as 
interface changes. The DMERT [25], the Secure On- 
the-Fly Method [6], and the DAS operating systems 
[IS] all provide mechanisms for replacing the individ- 
ual procedures that comprise a program. These systems 
only address the case where the specification (parame- 
ters and return values) of the procedures being updated 
have not changed and are thus limited to those particu- 
lar circumstances. 

The DYMOS System [17] is a complete dynamic 
updating system. It provides editors. compilers, and a 
shell to facilitate updating a computer program written 
in the StarMod language [8]. DYMOS will work in a 
tightly-coupled multiprocessor but does not scale well 
to a distributed system since it requires a complicated 
locking protocol for every procedure invocation regard- 
less of whether or not an update is actually being 
performed. 

In this section, a number of systems that perform 
dynamic updating to various degrees were described 
and their shortcomings noted. Our primary collective 
criticism of the systems described is that they are not 
transparent to the programmer who must use them. 
Some of the updating systems require the programmer 
to use a specific language or system to obtain the 
benefits of dynamic updating while others lack support 
for distributed computation. We believe such limita- 
tions preclude these systems from being used on a wide 
variety of problems in different application domains. 

3. THE BASIC APPROACH TO OUR DYNAMIC 
UPDATING SYSTEM 

In the approach presented here, the procedure-oriented 
model to dynamic program updating was adopted since 
many of the programs that could benefit from such a 
capability tend to be written in procedural languages. 
For example, portions of the code in a telephone switch 
1191 and most of the unixTM operating system (kernel 
and utilities) are written in C [20]. This research ad- 
heres to four main goals. 

to provide a system where a new version of a 
program can be loaded without stopping and restart- 
ing, or significantly degrading the performance of 
the currently running version, . to provide a system that is usable with existing 
languages and scalable to a large-scale (on the order 
of several hundred computers) distributed environ- 
ment, 
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. to minimize the amount of user intervention needed 
to perform an update in order to allow novice com- 
puter users to operate the updating system, and 

to support multiple simultaneous updates, i.e., start- 
ing one update before the previous updates complete. 

The last goal, multiple simultaneous updates, is es- 
sential in a distributed system since an update may take 
time to propagate through a network. Also, by having 
this capability, computers in the system can be offline 
(or can defer an update) when the update is initiated. 

Since two of the above goals are to operate on a wide 
variety of programming languages and be easy to use 
by a novice, there are cases where the proposed updat- 
ing system does not work well. As it is assumed that 
programs are written in a top-down manner, programs 
that do not follow this requirement cannot be updated 
by our system. For example, if a program is written as, 
say, one large procedure, the approach will not work. 
We believe the increased simplicity of our system 
gained by not attempting to update such programs is a 
worthwhile tradeoff. 

3.1 Updating Nomenclature 
Before discussing some of the updating system details, 
a precise definition of an update is required. A program 
no,, is updated to a new version JI,,, when all proce- 
dures P in no,, have been replaced by their corre- 
sponding new versions in II,,. A procedure Pol, is 
updated when it is replaced by its new version P,,,,. 
Alternatively, one can view the updating of a procedure 
P as changing the binding of the name "P" from its 
"old" implementation to its "new" implementation. 

3.2 Synopsis of an  Update 

Prior to the initiation of an update, the new version of 
the program is compiled, linked, and loaded into the 
computer. Thus, the time required to replace an old 
version of a procedure with its corresponding new 
version is significantly reduced. 

When an update is initiated, the updating system 
examines the state of the running program and deter- 
mines which procedures may be updated immediately 
and which procedures must be updated at a later time. 
Throughout the update process, the state of the modifi- 
cation is checked periodically and old procedures are 
updated when all the updating conditions are satisfied 
(see Section 3.3). In a "well-structured" program, 
when all procedures have been updated, the program 
has been updated since it is identical to the new version 
of the program. 

3.3 Criteria for Updating a Procedure 

The updating system updates a procedure based on 
system-computed syntactic criteria and user-provided 

procedural semantic dependencies. An automatic detec- 
tion of all semantic dependencies is not possible, if 
semantic dependencies exist between procedures, the 
user must provide a semantic dependency list. All 
dependencies are characterized in the definition of ac- 
tive procedures. Only procedures that are both syntacti- 
cally and semantically inactive can be updated. 

3.3.1 Syntactic Dependencies. Syntactic dependen- 
cies are the relationships between procedures in the 
program that can be ascertained from the program's 
syntax. In this implementation, syntactic dependencies 
are detected by the system. Formally, syntactically 
active is defined as follows. 

Let a program TI consist of a set of procedures 
PI , . . . ,  P". 

Let P be a procedure in II. Let 6*(P) be the set of 
procedures which are reachable from P in the proce- 
dure call graph corresponding to II .  Thus, an invoca- 
tion of P may result in the direct or indirect invoca- 
tion of procedures in 6*(P). We refer to 6*(P) as the 
syntactic dependency function since it may be calcu- 
lated from II's call graph, i.e., II's syntax. 

At any time t, all procedures on the runtime stack are 
active. In addition, a procedure P is active if its new 
version P,,, can call a procedure Q already on the 
runtime stack, i.e., Q E B*(P,,,,). 

A procedure P is inactive when the above criteria for 
being active are not met. 

The active definition and the updating algorithm 
allow new (updated) procedures to call other new pro- 
cedures. Old (not updated) procedures may call other 
old procedures or new procedures via appropriate 
mechanisms. The primary motivation for this structure 
is to force programs to be updated from old to new 
versions. Not only does this correspond to the way the 
program was developed, i.e., an implicit evolution 
from old to new, but it also reduces the amount of 
additional work the programmer must perform to main- 
tain consistency during the update (see Section 3.5.). 

3.3.2 Semantic Dependencies. A semantic depen- 
dency is a relationship between procedures that is not 
detectable from the program's syntax, e.g., two proce- 
dures work together to perform some task but do not 
directly reference any of the same entities. The updat- 
ing system deals with semantic dependencies by using 
information supplied by the programmer. Semantic de- 
pendencies are formally stated as follows. 

Let 6,*,(P) denote the semantic dependency function 
of procedure P: the set of all procedures Q that must 
be concurrently updated with P. If Q did not change 
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bctween versions, it must still be inactive when P is 
updatcd. 

If 3Q E 6zp(P) and Q is active, then P is active. 
Based on these definitions, a procedure P can only be 

updated when it is inactive and all procedures Q E 6 3 P )  
are also inactive. This allows the programmer to spec- 
ify procedures that must be updated concurrently, thus 
allc~wing semantic dependencies to be accommodated. 
The updating system updates all procedures Q E 6&(P) 
atomically. The detection of semantic dependencies 
adds an additional check before a procedure can be 
updated. 

Using the syntactic and semantic dependency defini- 
tions, a procedure may be updated as follows: A proce- 
dure P that has not changed between versions and has 
no associated semantic dependency should he updated2 
whcn the update is first initiated. Alternatively, a pro- 
cedure Q that has changed betwccn versions or is 
semantically dependent on another procedurc Q' nlay 
be updated only when i t  and Q' are not active. For the 
remainder of this paper, an active procedure satisfies 
both the syntactic or semantic depentlcncy active defi- 
nitions. 

Periodically the updating system rechecks for activc 
procedures becoming inactive. The rechecking occurs 
whenever the runtime stack contains lcvs elenlents than 
it did when the last procedural update occurred. Since 
an inactive old procedure cannot become active (it will 
have already been converted to a new procedure), by 
checking the size of runtime stack after the return of 
each procedure call, all procedures are updated at the 
earliest possible update time. 

3.4 Justification for the Updating Criteria 

Based on the definitions given in the previous section, it 
is possible to contrive examples in which the proposed 
updating system would not work. Fortunately, if a 
top-down programming method [7, 10, 241 is followed, 
such programs should not occur in practice. In pro- 
grams developed using a top-down approach, the 
higher-level procedures specify the algorithms of the 
program and hence are not likely to changc bctween 
versions. On the other hand, the lower-level proce- 
dures, which descrihe many of the details used to 
implement the algorithms, are more likely to change 
between versions. Consequently, in most cases, an 
update to a program will complete in a short period of 
time since: 

much of the program will not change between ver- 
sions, 

- 

'ln this case, the procedure is no1 achlally replaced but instcad 
flagged as being "new" since its old and new versions arc the same. 

higher-lcvcl procedures will tend to bc thc same 
between versions, 

lower-level procedures will tcnd to be less active 
than the higher-level procedures, and 

much of the code is not frequently executed, e.g., 
code for exception handling. 

3.5 Maintaining Consistency During an Update 

During an update, the program may contain a cnmbina- 
tion of both old and ncw procedures. To maintain 
program consistency, specially-constructed procedures, 
called interprocedures, that map old procedure specifi- 
cations, i.e., calling sequences and return codes, into 
new procedure specifications are required. Similarly, 
special-purpose procedures called mapper-procedures 
map old static data to the appropriate new representa- 
tion. These procedures aid in providing an ordcrly 
migration path from the old version of the program to 
the new version. Mapping static data or specifications 
from new to old is not required due to thc bottom-up 
procedure replacement scheme employed. Thus, no 
additional mapping prnccdurcs are needed. 

3.5.1 Mapper Procedures. When a procedure that 
contains local static data is updated, the updating sys- 
tem invokes a user-written mapper-procedure or mpro- 
cedure that maps the static data into whatever represen- 
tation is required by the new version of the procedure. 
The mapping operation need only be done once per 
update for each procedure that requires it. Extending 
this to encompass non-local data requires that all non- 
local data to be accessed via abstract data types (ADTs) 
[I]. Note that this restriction is consistent with the 
programming style constraints discussed earlier. 

By taking advantage of the large address space (see 
Section 4). the mprocedure programmer can write an 
mprocedure for a procedure P that copies pertinent data 
from the old version of P, to the new vcrsion of P, 
P,,,,. This mprocedure is invoked by the updating 
system when prnccdurc P is updated. When P,, is 
invoked for the first time, the state information accumu- 
lated by Pold will have already been installed into P,,,,. 

3.5.2 inter procedure^. Suppose program II calls a 
sorting procedure "sort" and sort was initially imple- 
mented as a bubble sort. In the new version of 11, 
suppose that sort is implemented as a Qnicksnrt. The 
specification, i.e., the parameters passed to and the 
values returned from sort, has not changed between 
versions. Instcad, what has changed is the implementa- 
tion of sort. In this case, the updating system, as 
described thus far, is able to replace the old sort with 
the new sort. What happens if the specification of sort 
as well as its implementation has changed between 
versions'.' For example, suppose sort previously sorted 
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Ealln with new specihcatiom 

is only a- of 

aalln with new 
new specifications 

 cations 

calls with old 

must be a- of ~ro th  the 
new and old spooifi~~~tinns 

-rrays of integers but now sons arrays of real numbers. 
'o properly updatc sort, a method of convening the 
pe6ification of sort from one version to another is 
. equired. 

Converting procedure specifications from old to new 
versions is similar to converting local static data (Sec- 
tion 3.5.1). Suppose procedure P has bccn updated as 
shown in Figure 1. When any procedure Q that has not 
been updated calls P, it thinks it is calling Po,, since it 
does not know about P,,, . Because P has been updated, 
P's interprocedure will be invoked instead of Pol,. The 
interprocedure will then map the call to Pol, into an 
equivalent3 call to P,,,,. In effect, the interprocedure is 
creating two illusions. Besides making Q think it is 
calling Po,,, the interprocedure is also making P,,, 
think that a new version of Q is calling P,,,,. Due to 
this organization, the interprocedures are aware of the 
dynamic updating and that multiple versions of  a pro- 
gram exist, while the procedures in a particular version 
of the program are not. 

4. THE DYNAMIC PROGRAM UPDATING 
SYSTEM ARCHITECTURE 

In this section, the key architectural design issues of the 
proposed updating systems are discussed. The section 
begins with an introduction to the updating system 
procedure-binding issues and concludes with a discus- 
sion of the system memory organization. 

'ln the c a m  where an exact mapping is not possible, the mapping 
should be a "reatonahle approximation" to the correct caII. Deter- 
mining such a niapping is left to the discretion of the programmer(s) 
writing both the program and the interprocedures. Since the interpro- 
ccdures would normally be written at thc samc time the new version 
of the program is written, the knowledge required to construct the 
mapping would be known a1 this time. 

Figure 1. Invocation of an updated procedure P. 

4.1 Binding Tables 
In the updating system, the ability to quickly bind and 
unbind the name of a procedure with its address in a 
particular version is of paramount importance. In ab- 
stract Icrms, a method of associating a procedure's 
name (the version-independent specification of the task 
that the procedure performs) with its address (the ver- 
sion-dependent implementation of how the procedure 
performs its task) is required. 

One binding scheme that could be employed in the 
updating system relies on binding tables and proceeds 
as follows. A procedure call is performed by indexing 
the table and branching to the address stored in that 
table entry. For example, suppose in program IT, 
procedure foo calls procedure bah. If bah is procedure 
#2 in n ,  2 is the index into the binding table. The 
address stored in location 2 is that of bah. This scenario 
is depicted in Figure 2. 

If the targct computer's architecture supports indirect 
addressing, e.g., the Motorola MC6X020 [ I  R] or the 
Intel 80386 [Y], the procedure invocation operation can 
be made quite efficient. In the example given above, a 
procedure call that uses this typc of indirection might 
look like: 

CALL [BTBA + 31 
where BTBA denotes the binding table base address 
and the brackets denote the contents of address BTBA 
+ 3. In contrast, an ordinary, i.e., no indirection. 
procedure call, might look like: 

CALL bah 

where bah is the address of procedure bah. The main 
advantage of using thc indirection is that the binding of 
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entry 2 of binding table 
(INDM=2) 

. 
; code for foo 
; ca l l  proc. bah 

c a l l  [index] 
from proc. bah 

o£fsets into thiB table are 
procedure "numbers" 

continue executing here 
after the procedure call 

Figure 2. Implementing an updating system with a binding cally provided by the hardware, ne large 
table. are partitioned into fields as shown below. 

bah can be changed by modifying the value stored at other@version  ID@^^^^@^^^^ ~ ~ @ d i ~ ~  
address BTBA + 3. This would be done by the updat- 
ing system at the appropriate times. 

The binding table mechanism described above pro- 
vides a simple method of procedure binding but has a 
number of problems. Because the binding table is shared 
between the operating system and the user program, 
efficient methods of accessing and protecting the consis- 
tency of the binding table must be devised. Another 
problem with the simple binding table model is that it 
does not provide a straightforward way of incorporat- 
ing interprocedures into the updating system. 

Consider the following scenario. Suppose procedure 
P has been updated. Other procedures that have also 
been updated will attempt to call P with P's new 
parameters while procedures that have not been up- 
dated will attempt to call P with P's old parameters. 
Because there is only one location in the binding table 
to store the address the procedure P, either the old 
procedures or the new procedures will be calling the 
wrong version of P. To avoid this scenario, the binding 
table must be multiplexed in some manner. 

4.2 Large Address Space Model 

To address the above concerns conceptually, the entire 
updating system rests on top of a large, sparse address 
space.4 The addressing mechanisms need not be physi- 

4~ similar approach was taken in the Apollo Domain system 1161 
where a large address space was used to build unique object identi- 
fiers, or UIDs, to address every entity in the system. 

addresses 

The "other" field denotes addressing information 
used by the operating systems such as process IDS, user 
IDS, or location information. This field can also be 
used to provide for hardware consistency checking as 
well as security between processes and machines. 

The "proc ID" field denotes the procedure ID of a 
given procedure. This number corresponds to the pro- 
cedure number used to index the binding table. The 
"procedure ID" for procedure P remains consistent 
throughout all versions of the program. Thus, the pro- 
cedure ID may be thought of as the internal name of the 
procedure it represents. 

The "disp" field is the displacement within a proce- 
dure and is used for accessing code and data within a 
procedure. By convention, a zero displacement denotes 
the beginning of a procedure. 

The "type" field specifies what kind of procedure 
proc ID is. A procedure can be a normal procedure, an 
interprocedure, an mprocedure, or a remote procedure. 
The use of remote procedures in the updating system is 
not discussed here. Interested readers are referred to 
Segal and Frieder [21]. If the notion of "procedure" is 
extended to data, the type field can also be used to 
specify if a given proc ID is code or data. This 
capability can be used to implement a single-level 
store. 

The "version ID" field represents the version num- 
ber of the specified procedure. The version ID parti- 
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tions the address space into a number of distinct version 
spaces. Within each version space is a complete copy 
of a given version of the program being updated. 
Because our system manages versions at the operating 
system level, the program itself need not be directly 
concerned with versions or version spaces. Within each 
version space there is a binding table for that particular 
version of the program. Only procedures in a given 
version space utilize the binding table in that space. 
This allows us to effectively multiplex binding tables 
since each version has its own. The only entities that 
may cross version spaces are interprocedures and 
mprocedures. Thus, these are the only entities that need 
to know about more than one version of the program 
and the updating system. Partitioning the address space 
in this manner also allows multiple versions of a pro- 
gram to exist simultaneously (see Section 4.6). 

It should be noted that the addresses described above 
are generated by a combination of addressing informa- 
tion encoded in instructions, information kept in auxil- 
iary registers, and data structures. In particular, if the 
address space is, say, 96 bits, all 96 bits need not be 
encoded in the addressing information of every instruc- 
tion. Similarly, the CPU(s) in the system do not require 
96 address lines. The smaller addresses are converted 
to large addresses by a virtual memory controller 
(VMC). This type of addressing architecture is de- 
scribed further in Frieder [14]. 

4.3 Segmented Virtual Memory 

The updating system requires that the underlying com- 
puter system support a logical, segmented virtual mem- 
ory [12]. Such a virtual-memory system takes an ad- 
dress of the form 
segment descriptor@displacement 

and maps it into a physical address (or a virtual address 
which is passed to a paged virtual-memory system). 
Information for each process' segments is stored in a 
segment descriptor table. Each entry in the table con- 
tains information such as the segment's base address in 
real memory, the size of the segment, and the attributes 
of the segment (is the segment readable, writable, 
executable, etc.), and any other information that the 
operating system and architecture requires. 

Since this information is different for each process in 
the system, most architectures have a segment descrip- 
tor register that points to a segment table. The register 
points to different segment descriptor tables depending 
upon which process is running. 

4.4 Mapping t he  Large Address Space  t o  
Segmented Virtual Memory 

The procedure ID field of the large address and the 
segment descriptor described above are quite similar in 
a number of respects. Both the procedure ID and 

segment descriptor name objects. The procedure ID 
denotes the "name" of a procedure while the segment 
descriptor denotes the "name" of a segment. Recall 
that the updating system must bind the specification of a 
procedure to its implementation just as a virtual-mem- 
ory system must bind a segment descriptor to an ad- 
dress in real memory. From these comparisons, the 
following equalities are noted. 

(1) procedure ID (name) = procedure specification 
= segment descriptor 

(2) procedure address = procedure implementation = 
physical address 

Variants of each item on line (2) are bound to their 
corresponding item on line (1). The updating system 
uses the binding table to perform its binding operation 
while the virtual memory system uses the segment 
descriptor table to perform its binding operation. 

4.5 The Updating System and Segmented Virtual 
Memory 

In the updating system, procedure IDS in programs to 
be updated are represented by segment descriptors. 
Since this results in exactly one procedure per segment, 
the displacements within procedures are identical to 
displacements within segments. Therefore, segment de- 
scriptor tables are binding tables. As the virtual mem- 
ory architecture supports a segment descriptor table 
register, by changing this register to point to a different 
segment descriptor table, we are changing the proce- 
dure specification implementation to the bindings of the 
program. Such an operation is supported by an operat- 
ing system primitive accessible to the updating system. 
During program execution, the only time this register 
changes is when an interprocedure or mprocedure 
crosses version space boundaries. Because the program 
being updated does not know about version spaces, no 
references to the spaces nor the segment descriptor 
table register need to appear in the program's code. 
Since ordinary address generation in an executing pro- 
gram does not directly reference the segment descriptor 
table register, these concepts are compatible. An imple- 
mentation of the updating system using segmented vir- 
tual memory is shown in Figure 3. 

By partitioning the space of segment descriptors, the 
type field of the large address is incorporated into the 
segment descriptors. Hence, interprocedures and mpro- 
cedures are accessed using the same method as normal 
procedures. Partitioning the segment descriptors this 
way also enables data to be accessed directly. This 
allows permanent i.e., file data to be accessed via the 
single-level store, assuming the operating system pro- 
vides a method of mapping the data into the address 
space. Also, mprocedures can use this mechanism to 
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address in SDTR p i n t s  to the SDT 
Segment Descriptor comesponding to the program's 

current nameladdress bindings - 
Segment Descriptor Table version i of P 

; invoke P 
call n: 0 

address in SJYl' points 
here before P i s  updated 

address in SJYl' points 
here after P i s  updated 

i interproc 

I Segment Descriptor Table 

version i+l of P 

Figure 3. Implementing an updating system with virtual When a procedure P is updated, the segment descrip- 
memory. tor table entry for P is changed to the address of P's 

interprocedure since other old procedures need to ac- 
gain access to data in other procedures for conversion cess P's interprocedure instead of P itself. The machine 
to the new version of the corresponding procedure. code for P's interprocedure might look like: 

i proc: . . . .  ;manipulate parameters - 
SVC INTERCALL,proc,v + 1 ;call new proc 
, . . . ;manipulate return code 

RET ;return from interproc 

This code fragment performs local parameter manip- procedure that called the interprocedure is in version v 
ulation, changes bindings to the new version space, and the new procedure is in version v + 1. The IN- 
invokes the procedure, and returns. Assumed is that the TERCALL routine denotes an operating system call 
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that will cross version spaces and invoke the version 
v + l of procedure proc. INTERCALL must know 
about both version spaces and adjust the segment de- 

INTERCALL: . . . . 
PUSH SRD 
MOV SDR,TABLE[V 
CALL U proc - 

POP SDR 
RET U 

This code saves the current segment descriptor table, 
loads the segment descriptor register with the new 
version space bindinglsegment table, and invokes the 
procedure. When the procedure returns, the segment 
descriptor register is reset and control is returned to 
user code. The code to check parameters and manipu- 
late the parameters on a runtime stack is not shown 
here. Also, CALL U and RET U denote routines that 
perform domain s4tches to us& code before perfonn- 
ing the standard CALL or RETURN functions. TABLE 
denotes a table of segment table addresses. For index x, 
TABLE[x] contains the address of the version x bind- 
ing table. 

3 Multiple Simultaneous Updates 

As more than two versions ("old" and "new") can 
exist simultaneously, multiple simultaneous updates, 
i.e., starting one update before previous updates have 
completed, are possible. Having this capability is essen- 
tial since the time required to update a program is a 
function of how well it is written. In a distributed 
system, updating time is also a function of the number 
of computers in the network. As a result, it may take a 
long time for an update to propagate to all computers in 
the network. Similarly, some computers may be offline 
when the update is initiated. It may also be desirable to 
" e r  an update if a computer is temporarily overloaded 

if the program running on it cannot tolerate the 
rsible performance degradation that an update might 

5. PROTOTYPE IMPLEMENTATION 

A prototype of the updating system described in this 
paper has been constructed. The prototype executes on 
Sun Microsystems computers running SunOsTM [23] (a 
BSD 4.3-compatible Unix system) and consists of sev- 
eral major components. The primary user interface to 
the prototype is called the Updating Shell (ush or 
"u-shell"). The ush reads commands typed from the 
user's terminal and, based on the type of command, 
performs some local action or interacts with other 

T M ~ u n ~ s  is a trademark of Sun Microsystems, Inc. 

scriptor table register accordingly. The INTERCALL 
routine might be written as follows: 

;parameter checking 
;save seg . desc . register 

+ I ]  ;load new seg. table 
;call user proc in new space 
;reload current version 
;return to user code 

components of the updating system if necessary. The 
ush is capable of dynamically loading and linking5 user 
programs. 

User programs are not executed in the same address 
space as the ush, but rather in the address space of a 
separate component of the updating system called the 
Program Update Processor (pup). User programs are 
loaded by the ush and then downloaded to the pup. The 
pup and the ush communicate with each other via 
internet-domain sockets [22], and thus need not reside 
on the same physical computer system. No direct inter- 
action with the sockets occurs; a communication ab- 
straction reminiscent of remote procedure calls is used 
instead. This communications subsystem allows mes- 
sages representing commands to the pup and ush to be 
interchanged without regard to the idiosyncrasies of 
sockets. Block data transfers as well as asynchronous 
message notification are also supported. 

The ush can control multiple different programs run- 
ning on the same host or different hosts. This is accom- 
plished via state-management code in the ush and pup 
and an additional subsystem (discussed below). Ini- 
tially, a pup contains no state information. When an 
ush connects to a pup, state information for the pup's 
configuration is built and stored in the ush. Upon 
termination of the ush/pup connection, the state of the 
pup is transferred from the ush to the pup. As long as 
the pup (Unix) process is not terminated, the state 
information is retained. From now on, whenever an ush 
connects to this pup, the state information is transferred 
back from the pup to the ush and reconstructed there. 
This allows the ush user to make and break connections 
to different pups when desired. The ush may be uncon- 
nected from a pup at any time except while an update is 
in progress. 

Each computer in the network may have more than 
one pup running on it simultaneously. Each pup is 
referenced by a symbolic program name assigned to it 
when it is run. The user-specified name symbolizes the 

 h his feahln is not available in standard BSD Unix. It was 
implemented in the prototype using the. standard Unix linker (Id) and 
a locallydeveloped loading system. 
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name of the program that will be loaded into the pup. 
To arbitrate access to the different pups, a Pup Port 
Mapper Daemon or pupmapper was constructed. The 
pupmapper serves a similar function to the Sun Unix 
RPC portmap daemon. The pupmapper listens on a 
"well-known," i.e., constant, TCP port for pup map- 
ping commands. When a pup is started, its name is 
specified as a command-line argument. The pup allo- 
cates a TCP port from the available pool on the local 
machine and passes the tuple [pup name, process ID, 
TCP port number] to the pupmapper. The pupmapper 
registers this information for future access requests. 
When an ush attempts to connect to a pup, it first 
communicates with the pupmapper. The pupmapper 
obtains the needed information and returns the tuple to 
the ush. Additionally, the pupmapper alerts the pup that 
a user is establishing a connection. By knowing the 
pup's TCP port number, it can communicate with the 
pup directly. When a user terminates a pup, the pup 

Figure 4. A system-level view of the prototype updating 
system. 

0. Frieder and M. E. Segal 

removes its information from the pupmapper before 
exiting. Any future attempts by an ush to connect to 
this pup will be rejected by the pupmapper. 

The entire prototype is shown pictorially in Figure 4. 
In Figure 4, a number of computers are connected 

via an interconnection network. Each computer con- 
tains peripherals similar to the one shown at the bottom 
of the figure. At each site there is a single pupmapper 
(dog with question mark), zero or more pups (dog),and 
one of the computers has an ush running (shell). The 
details of the interconnection network are not important 
herc; we merely assume that it is possible (at some 
level) to get packets from one machine to any other via 
the network. 

6. UPDATING EXAMPLE: NON-STOP PIZZA 
PREPARATION 

The Non-Stop Pizza Preparation Program (pizza) illus- 
trates the events that occur when a program is dynami- 
cally updated, as well as some of the capabilities of the 
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prototype dynamic program updating system. The pizza pizzas by a three-step process. The basic algorithm for 
program controls the hardware of a hypothetical pizza- pizza may be coded in the C programming language as 
baking machine. This machine produces fully-baked shown below: 

{ 
while (1) 

do pizza( ); - 
1 
/* do pizza drives the procedures that create the pizza. 
* Each pizza is assigned a unique pizza descriptor that 
* is passed to the lower-level procedures. Messages are 
* printed when a pizza is started and when a pizza is 
* finished. The actual parameters used to control how 
* the pizza is constructed are local to the procedures 
* that do the work. 
*/ 

do pizza( ) 
I - 

static int pd = 1; /*pizza descriptor*/ 
printf("pizza number %d preparation begins. . . \ nM,pd); 
set oven temp (pd); 
mix ingredients (pd); 
bake pizza (pd); 
printT('6pizza number %d preparation complete \ n \ n",pd); 

The main procedure repeatedly calls the do pizza pro- 
cedure, in which turn calls set oven temp, mix in- 
gredients, and bake pizza. One ihvocacon of do phza 
results in the invocation of all procedures necessary to 
produce one fully-baked pizza. Status messages are also 
printed as part of do pizza's pizza-creation process. 

The set oven temp procedure preheats the oven to a 
set temperature.-This temperature is stored internally to 
the procedure. When set oven temp returns, the oven 
has been successfully set to  theaesired temperature and 
is ready to use. The mix ingredients procedure mea- 
sures the appropriate amount of ingredients needed to 
construct the pizza, mixes the dough, and assembles a 
pizza. When this procedure returns, the pizza refer- 
enced by the pizza descriptor may be baked. The pizza 
is baked by the bake pizza procedure. When bake pizza 
returns, the pizza k piping hot and ready-to-eat. As 
with set oven temp, both mix ingredients and 
bake pizza use parameters that are Gored as local data 
withh the procedures. The set oven temp, mix in- 
gredients, and bake pizza procedures a% shown belzw. 

- 

/* set oven temp pre-heats the pizza oven to the 
* int&alljkpecified temperature in Fahrenheit 
* degrees. When this routine returns, the oven is 
* ready to cook at that temperature. 
*/ 

set oven temp(pd) - - 

int pd; 
{ 

int temp = 400; 
/* (device-specific pre-heating code using temp) */ 
printf(" oven pre-heated to %d degreesM,temp); 

printf("Fahrenheit for pizza %d \ n",pd); 
1 

/* mix ingredients mixes the internally-specified mass 
* (in pounds) of the ingredients to form a pizza. When 
* this routine returns, the pizza has been assembled 
* and may either be baked or frozen. 
*/ 

mix ingredients (pd) 
int $; 
{ 

double dough = 0.75; /* dough mass (lb) */ 
double meat = 0.25; /* meat mass (lb) */ 
double veggie = 0.25; /* veggie mass (Ib) */ 
double cheese = 0.50; /* cheese mass (lb) */ 
/* (device-specific mixing and kneading code) */ 
printf("pizza %d contains % .21f Ib dough,",pd,dough); 

printf("%.2lf lb meat,",meat); 
printf(" % .2 If Ib veggies,",veggies); 
printf(" % .2lf Ib cheese \ nw,cheese); 

I 

/* bake pizza will bake the pizza for the internally- 
* speczed amount of time in minutes. When this routine 
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* returns, the pizza has been successfully baked. 
"1 

bake pizza(@) 
int $; 
i 

int time = 10; 
/* (device-specific baking code) */ 
printf("pizza %d baked for %d minutes \ nW,pd,time); 

1 
An experienced C programmer might write pizza dif- 
ferently than shown above; this programming style was 
chosen for the purposes of top-down design and clarity. 

Suppose that pizza has now been put into production 
use and is baking large numbers of pizza for an ever-in- 
creasing customer base. Suppose further that the pa- 
rameters and algorithms coded in set oven temp, 
mix ingredients, and bake pizza produce &e thin-crust 
styleof pizza generally eaten in New York City. Unsat- 
isfied with their revenues, the owners of the pizza 
machine decided to change the program that runs their 
pizza machine to produce the deep-dish (thick-crust or 

"stuffed") pizza generally eaten in Chicago. To ac- 
complish this, the set oven temp, mix ingredients, and 
bake pizza procedures were altered tojroduce the new 
recipe. The do pizza procedure was also changed to 
print slightly afferent status messages. After these 
changes have been made, the new version of pizza must 
be installed. Rather than shut down the pizza machine 
to install the new software (and lose additional revenue), 
the pizza machine owners decide to dynamically update 
the pizza program with the new thick-crust version. 

6.1 Updating the Pizza Program 

Having explained what pizza does and given an 
overview of the prototype, we now demonstrate how 
pizza is loaded, executed, and updated using the proto- 
type dynamic program updating system. Selected sam- 
ple dialogs with the ush and pup are shown below. 
User input is shown in boldface type. 

When the ush is started, the following is displayed: 

chi% ush 
Updating System Shell version 0.0 (compiled on May 15/89 at 02:24) 

running under SunOS version 4.0 on host citi 
> 

When the pup is started on another computer, the following is displayed: 

gto% PUP x 
program,update processor version 0.0 (compiled on May 14/89 at 033 

running under SunOS version 4.0 for program x 

To connect the shell started above to the pup, the ush puter named citi and the pup is running on a different 
must be given a symbolic name of a program and told computer named gto. 
which host on the network is running a pup for the > program x 
desired program. The program name should correspond The current program is now x 
to the name of the program supplied on the pup (x in > connect gto 
the example above). If no host is specified in the Connected to pup for program x on host gto 

connect command, ush assumes that the pup resides on Pup for program x on host gto is new 

the same host as the ush. Since the ush and the pup > 

need not reside on thc same physical computer, it is Once the connection has been established, programs 
possible to remotely load, execute, and update pro- may be loaded and run. To load version 1 of pizza, the 
grams. In this example, the ush is running on a com- following is done: 

> load 1 pizzal.delta pizzn1.0 
Load sequence begins.. . 

extracted updatable procedures from delta file pizzal.delta 
program x has 5 updatable procedures 
program x's procedures registered with pup name service on host gto 
delta* computed for 5 procedures in x: 

0 1 1 1 1  
0 0 1 1 1  
0 0 0 0 0 " '  
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program object code image requires 1192 bytes 
program loading at address 0x26738 in pup x's address space on host gto 
program linking complete 
loaded VMC segment descriptor table into gto's VMC 
copying code to pup . . . complete 
no interprocedures loaded for version 1 
no mprocedures loaded for version 1 

Version 1 of program x loaded successfully 
> 

This display is printed with the full debugging option of the table is zeros. Once the program has been 
compiled into the ush. The 6* table shown above has loaded, it may be run immediately or additional ver- 
been shrunk for the purpose of this example. Because sions of pizza may be loaded. Loading version 2 results 
there are only five procedures in this program, the rest in: 

> load 2 pizza2.delta pizza2.o 
Loaded sequence begins. . . 

extracted updatable procedures from delta file pizza2.delta 
program x has 5 updatable procedures 
program x's procedures registered with pup name service on host gto 
delta* computed for 5 procedures in x: 

0 1 1 1 1  
0 0 1 1 1  
0 0 0 0 o . . .  
0 0 0 0 0  
0 0 0 0 0  

program object code image requires 1272 bytes 
program loading at address 0x27548 in pup x's address space on host gto 
program linking complete 
loaded VMC segment descriptor table into gto's VMC 
copying code to pup . . complete 

iproc object code image requires 608 bytes 
iproc loading at address Ox283a8 in pup x's address space on host gto 
iproc linking complete 
copying code to pup . complete 

mproc object code image requires 264 bytes 
mproc loading at address 0x2860~ in pup x's address space on host gto 
mproc linking complete 
copying code to pup . complete 

Version 2 of program x loaded successfully 
Version 1 interprocedures loaded successfully 
Version 1 mprocedures loaded successfully 
> 

Although not shown here, it is also possible to load a though none are required. In the prototype, every 
new version of the program while the current version is procedure has an interprocedure and mprocedure asso- 
executing. Notice that the output indicates interproce- ciated with it. If the interprocedure or mprocedure is 
dures have been loaded for the pizza program even not required, it merely passes parameters without alter- 
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ing them (interprocedure) o r  returns without doing 
anything (mprocedure) . 

Running version 1 of pizza is accomplished by: 

z run 
Program x is now running 
> 
When the ush is given the run commnand, version 1 

of the current program is executed. On the pup, the 
following i s  printed when debugging is enahlcd (debug- 
ging messages are preceded by pup:): 

pup: INTERRUPT! (pup state: 0) received command RUN 
Execution begins at address 0x26738. . . 
pizza number 1 preparation begins. . . 

oven pre-heated to 400 degrees Fahrenheit for pizza 1 
pizza 1 contains 0.75 Ig dough, 0.25 lb meat. 0.25 Ib 

veggies, 
0.50 Ib cheese 
pizza 1 baked fur 10 minutes 

pizza numbcr 1 preparation complete 
pizza nutnber 2 preparation begins. . . 

oven pre-hctlled to 400 degrees Fahrenheit fur pizza 2 
pizza 2 contains 0.75 lb dough. 0.25 lb meat. 0.25 Ib 

veggies, 
0.50 Ib cheese 
pizza 2 hakcd lor 10 minares 

pizza number 2 preparation complete 

The INTERRUPT message signifies that the pup has 
received a RUN command from the ush. This causes 
version 1 of the currently loaded program to begin 
execution. As shown above, pizza is creating pizzas 
and printing out status information for each stcp. 

Suppose we wish to update pizza to version 2 to 
begin preparing thick-crust pizzas. On the ush side, we 

type: 

> update pizza2.changes 
Updue of program x from version 1 to version 2 begins.. . 

4 procedures have changed between versions: 

- 
do pizza 

- fiecoven temp 

- mix ingdients 
bake pizxn 

program x &time stack beckace: 

- 
do pizza 
main2 

w a d -  I unchanged procedures into version space 2 
computed inactive procedures: 

- set oven temp 

- mix ingGdients 
hakc pizza 

warpca 3 chinged procedures into version space 2 
enabled procedure return interrupts 

Program x uplnte initiated successfully 
> 

some rime passes. . . 
**' Program x updated to version 2 successfully *** 

> 

and on the pup side, we see (with debugging enabled): 

pizza number 6 preparation begins. . . 
oven pre-heated to 400 degrees Fahrenheit for pizza 6 
pizza 6 contnins 0.75 Ih dough, 0.25 lb meat, 0.25 Ib 

vcggies. 
0.50 Ib cheese 

pup: INTERRUPI'! (pup state: 2) received command 
UPDATE - - 

pup: UPDATE dispatcher received command GET RTS 
pup: UPDATE dispatcher received command SET-SDTE . - 

pup: UPDATE dispatcher received command SET-SDTE 
pup: UPDATE dispatcher received command SET-SDTE - 
pup: UPDATE dispatcher received command SET SDTE 
pup: UPDATE dispatchcr received command SET-HRVN 
pup: UPDATE dispatcher received ~vmrnand EI ~ J P  
pup: UPDATE dispatcher rcceived command E6F 
'TC pizza 6 baked for IS minutes 

pup: PROCEDURE INVOCAI'ION TERMINATED! 
pup: UPDATE dispatcher received command GET RTS 
pup: UPDATE dispatcher receivcd command ~ O P -  

pizza numbcr 6 preparation complete 
pup: PROCEDURE INVOCATION TERMINATED! 

pup: UPDATE dispatcher reccivd command GET RTS 
pup: UPDATE dispatcher received command SETSDTE 
pup: UPDATE dispatcher received command DI POP 
pup: UPDATE dispatcher received command E6F 

TC pizza number 7 preparation begins. . . 
oven pre-heated to 475 degrees Fahrenheit for TC pizza 4 
TC pizza 74 contains 1.25 Ib dough, 0.50 Ib meat, 0.50 Ib 
veggies, 1.00 Ib cheese 
TC pizza 7 baked for 15 minutes 

TC pizza number 7 preparation complete 

As before, the lines preceded with pup: are the 
debugging output of the pup interacting with the ush to 
perfonn the update. These lines correspond to  the ush's 
view of the update operation. Looking at the ush out- 
put, when pizza was interrupted, it was inside the 
dn pizza procedure. The ingredients have been mixed 
bui thc pizza has nnt yet been baked. The main and 
do pizza procedures are currently on the runtime stack 
a s shown  in the previous ush screen display. At this 
point, set oven temp, mix ingredients, and bake pizza 
may be ~Tjdatedsince theyare not active (Section3.3). 
The do pizza procedure may not be updated since it is 
active (because it is on the runtime stack). 

The actual update is accomplished by the ush sending 
a number of commands to the pup. Before cach com- 
mand is processed, a pup debugging message is printed. 
The GET RTS command causes a runtime stack snap- 
shot to h e k n t  from the pup to the ush. This is used by 
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the ush to determine what procedures may be updated. 
s list is printed by the ush. The SET SDTE com- 
nd causes the pup to manipulate the visual memory 
  troller's segment descriptor tables which cause pro- 

cedure bindings to be changed. This is done at least 
once per procedure update. The SET HRVN command 
causes the pup to set its internal notion of highest 
- -ning version number. In this example, the update 

11d not be completed when it was initiated. When 
h a situation occurs, the ush instructs the pup to 
ify it whenever procedure invocations terminate. 
er each procedure invocation, the pup asyn- 
onously notifies the ush of this event. This is nor- 

..., lly undetectable by the user running the updating 
system. After the ush has been notified of the procedure 
termination, it rechecks the program's state to see if the 
update may be continued. This mode is set by the 
El POP command, which signifies enabling procedure- 
inka t ion  return interrupts. 

After this mode has been set, pizza continues execu- 
tion. The next step of the pizza process is the baking of 
the pizza. As can be seen from the pup screen display, 
this step takes place.6 When the bake pizza procedure 

lms, the pup interrupts the ush. A quick check of 
ca's runtime stack reveals that do pizza is still active 

execution continues. When control returns to 
do pizza, it prints a message stating that pizza number 
6 Fias been prepared. After this occurs, do pizza re- 
turns control to main. The do pizza procedure is now 

:tive and is updated. Upon completion, the ush 
ifies the pup to disable the procedure termination 
-rrupts by sending the pup a DI POP command. The 

interrupts are no longer needed since all changed proce- 
dures have now been updated. The ush then prints out a 
message informing the user that the update is complete. 
The pizza program now continues to execute its second 
version. Note that in the second version, the amount of 
ingredients, temperatures, and baking times are differ- 

ent. All messages are also preceded with the letters TC, 
signifying "thick-crust" pizza is being made. The pizza 
descriptor numbers are kept sequential by an mproce- 
dure associated with procedure do pizza. When 
do pizza was updated, this mprocedure &pied the value 
of the pizza descriptor from the old do pizza into the 
new do pizza. If this were not done, thz first time the 
version-2 do pizza procedure ran, it would start with 
pizza # 1, vTolating the uniqueness rule of the pizza 
descriptors. 

6.2 The  Semantic Dependencies of Baking a 
Pizza 

Although the pizza program appears to have been up- 
dated successfully, this is not entirely correct. When 
pizza number 6 was baked, it was baked for 15 minutes 
instead of the usual 10 minutes of bake time required 
by a thin-crust pizza. Notice also that the baking mes- 
sage is preceded by TC. This update is wrong since the 
pizza was baked too long, thus resulting in a burnt 
pizza. Even though all changed procedures were up- 
dated when they were inactive, something else has gone 
wrong. 

This update did not proceed correctly because a 
semantic dependency (Section 3.3.2) between the three 
procedures that control the pizza machine 
(set oven temp, mix ingredients, bake pizza), and the 
procedure that controls when these procedures 
(do pizza) are called, was not stated. Although there is 
n o t b g  in the program's syntax that says a thin-crust 
pizza cannot be baked for 15 minutes, this information 
must be given to the updating system. In the prototype 
this is accomplished by specifying which procedures 
must be updated concurrently. This allows semantically 
dependent procedures to be updated as a group, thus 
maintaining program consistency. If this semantic de- 
pendency were correctly specified, the update would 
have appeared as follows: 

> update pizza2.changes.sd 
Update of program x from version 1 to version 2 begins. . . 

4 procedures have changed between versions: 

- do pizza 

- setoven temp 

- mix ingdients 
bake pizza 

program x runtime stack backtrace: 
do pizza - 
mGn2 

wapd 1 unchanged procedures into version space 2 
computed inactive procedures: 
no changed procedures could be warped to version space 2 at this time 

6 ~ o t e  that TC precedes the messages. This change will be ex- 
plained shortly. 
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enabled procedure return interrupts 
Program x update initiated successfully 

> 
some time passes. . . 
*** Program x updated to version 2 successfully *** 

> 

pizza number 10 preparation begins. . . 
oven pre-heated to 400 degrees Fahrenheit for pizza 10 
pizza 10 contains 0.75 Ib dough, 0.25 Ib meat, 0.25 Ib veggies, 

0.50 Ib cheese 
pup: INTERRUPT! (pup state: 2) reccived command UPDATE 

pup: UPDATE dispatcher received command GET RTS 
pup: UPDATE dispatcher received command SET-SDTE 
pup: UPDATE dispatcher received command SET-HRVN 
pup: UPDATE dispatcher received command EI FOP 
pup: UPDATE dispatcher received command EOF 
pizza 10 baked for 10 minutes 

pup: PROCEDURE INVOCATION TERMINATED! 
pup: UPDATE dispatcher received command GET RTS 
pup: UPDATE dispatcher received command EOF- 

pizza number 10 preparation complete 

pup: PROCEDURE INVOCATION TERMINATED! 
pup: UPDATE dispatcher received command GET RTS 
pup: UPDATE dispatcher received command SET-SDTE 
pup: UPDATE dispatcher received command SET-SDTE 
pup: UPDATE dispatcher received command SET-SDTE 
pup: UPDATE dispatcher received command SET-SDTE 
pup: UPDATE dispatcher received command Dl FOP 
pup: UPDATE dispatcher received command E 6 F  

TC pizza number 11 preparation begins. . . 
oven pre-heated to 475 degrees Fahrenheit for TC pizza 11 
TC pizza I1 contains 1.25 lb dough, 0.50 lb meat. 0.50 Ib 

veggies, 1.00 Ib cheese 
TC pizza 11 baked for 15 minutes 

TC pizza number 11 preparation complete 

In this case, the pizza that was being prepared when 
the update was initiated (pizza 10) was correctly baked. 
Pizza 11 was correctly prepared as a thick-crust pizza. 
The semantic dependency forced set oven temp, 
mix ingredients, bake pizza, and do pizza to he  up- 
date3 concurrently, t h s  resulting in-correctly baked 
pizza and happy customers. 

7 .  CONCLUSIONS AND FUTURE WORK 

In numerous applications, e.g., air-traffic control, 
telecommunications, life support systems, etc., dis- 
abling the application to update its software is very 
costly, at times even unacceptable, and such downtime 
should be minimized. As large-scale software systems 
with stringent downtime requirements become more 

prevalent, the scope and importance of this problem 
will increase. 

This paper described the algorithms, constraints, and 
architecture of a dynamic program updating system. 
The updating system replaces a running program with a 
new version without stopping the program. While our 
system does not require special-purpose hardware or 
programming-language extensions to work properly, 
some programming system requirements were imposed. 
A hardware and software architecture for the u~datine - 
system was presented. We showed how this architec- 
ture can be constructed on top of a conventional seg- 
mented virtual-memory system. To verify the updating 
system concepts, a prototype updating system was con- 
structed. Sample sessions using the prototype to update 
an example program were given. The prototype was 



Dynamically Updating a Program I. SYSTEMS SOFTWARE 127 
1991; l4 : l I l -128 

rami 

able to correctly update the pizza program, thus show- 
ing that dynamically updating programs written in a 
conventional programming language (C) by procedure 
is feasible. 

Among some of the topics left for future work are 
the design and implementation of tools to aid program- 
mers writing interprocedures and mprocedures. Our 
experiments with the prototype system have shown that 
constructing these procedures is both tedious and 
error-prone, and could benefit from appropriate tools. 
To further examine the viability of our approach, per- 
formance data for updates of larger programs must be 
obtained. We are presently undertaking this work using 
a packet router as the sample program. Performance 
and scalability issues in a distributed environment must 
also be examined. 

Because some languages are better-suited to some 
tasks than others, an updating system should allow 
programs written in multiple languages, non-procedural 
languages, such as LISP and Prolog, or concurrent or 
parallel languages to be updated. Future updating sys- 
tems should have such capabilities. 

Hard real-time programs (programs that must com- 
pute results at a given time), by definition, should not 
be interrupted to install new versions. Unfortunately, 
no existing updating system (including ours) supports 
the updating of hard real-time programs. Currently, 
updating systems do not have a method of processing 
rules of the form, "Procedure P must be updated in the 
next 18 milliseconds because it will be needed to meet 
the next deadline in 34 milliseconds." Although our 
updating system architecture strives for efficiency, it by 
no means guarantees hard real-time deadlines. A real- 
time dynamic program updating system should be in- 
vestigated, as it would potentially allow more types of 
programs to be updated. 

If an updating system is to play a role in the develop- 
ment and maintenance of future software systems, the 

fications of dynamic updating in software develop- 
and maintenance environments must be examined. 

inamic updating can be done inexpensively and 
quickly, software developers and maintainers might 
install bug fixes and enhancements sooner than is cur- 
rently done. This could lead to better software, happier 
customers, and higher profits. The appropriateness of 
dynamic updating systems in real environments will be 
determined by how well they work for a given prob- 
lem, their ease of use, and the willingness of program- 
mers and managers to incorporate them into their cod- 
ing and business practices. 
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