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This paper presents an introduction to the field of three-dimensional medical imaging

It presents medical imaging terms and concepts, summarizes the basic operations

performed in three-dimensional medical imaging, and describes sample algorithms for

accomplishing these operations. The paper contains a synopsis of the architectures and

algorithms used in eight machines to render three-dimensional medical images, with

particular emphasis paid to their distinctive contributions. It compares the performance
of the machines along several dimensions, including image resolution, elapsed time to
form an image, imaging algorithms used in the machine, and the degree of parallehsm

used in the architecture. The paper concludes with general trends for future
developments in this field and references on three-dimensional medical imaging.
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Survey; C.0 [Computer Survey Organization]: General; C,5 [Computer Systems

organization]: Computer System Implementation; 1,3.2 [Computer Graphics]:
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CASE STUDY

A patient with intractable seizure activ-
ity is admitted to a major hospital for
treatment. As the first step in treatment,
the treating physician collects a set of 63
magnetic resonance imaging (MRI) im-
age slices of the patient’s head. These
two-dimensional (2D) slices of the pa-
tient’s head do not disclose an abnormal-

ity. A three-dimensional (3D) model of
the MRI study reveals flattening in the
gyri of the lower motor and sensory
strips, a condition that was not apparent
in the cross-sectional MRI views. The
physician orders a second study, using
positron emission tomography (PET), to
portray the metabolic activity of the
brain. Using the results of the PET study,
the physician assembles a 3D model of
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the average cortical metabolic activity.
The model reveals a volume of hyperme-
tabolic activity. Because PET has rela-
tively poor modality resolution, the
location of the abnormality cannot be
correlated with surface anatomical land-
marks. To correlate the results of the two
studies, the physician combines the 3D
MRI model of the patient’s brain with
the 3D PET model using post-hoc image
registration techniques to align the two
sets of data. This combined model pro-
vides the anatomical and metabolic in-
formation required for precise location of

lImage, or tissue, registration permits Images of
volumes acquired at different times and with differ-
ent modalities to be combined mto a single image
for display

the abnormality within the lower part of
the motor and sensory strips.

The physician uses a surgery rehearsal
program to simulate surgery on the com-
bined brain model. To assist the physi-
cian, the program displays the brain
model and the overlying skin surfaces
side by side. Using a mouse-controlled
cursor, the physician outlines the abnor-
mal area of the brain on the combined
model. The rehearsal program uses this
tracing to perform a simulated cran-
iotomy. Pictures of the simulated opera-
tion are taken to surgery to guide the
actual procedure. An intraoperative elec-
troencephalogram demonstrates seizure
activity at the site predicted by the medi-
cal images. After resectioning of the
abnormal area, the patient’s seizure
activity ceased [Hu et al. 19891.

INTRODUCTION

The Case Study illustrates the three
basic operations performed in 3D medical
imaging: data collection, 3D data dis-
play, and data analysis. Three-dimen-
sional medical imaging, also called
three-dimensional medical image render-
ing or medical image volume visualiza-
tion, is the process of accurately and
rapidly transforming a surface or volume
description of medical imaging modality
data into individual pixel colors for 3D
data display, Three-dimensional medical
imaging creates a depiction of a single
structure, a select portion of an imaged
volume, or the entire volume on a com-
puter screen. Stereo display, motion
parallax using rotation, perspective,
hidden-surface removal, coordinate
transformation, compositing, trans-

parency, surface shading, andlor
shadowing3 can be used to provide depth

‘Rendering is a general term for the creation of a
depiction of a structure or volume on a computer
screen using a sequence of operations to transform
the structure/volume information from object space
(a data structure in memory) to screen space (the
CRT)
3Coordinate transformation, which consists of
translation, rotation, and scaling, orients the vol-
ume to be displayed Hidden-surface removal en-
sures that only the visible portions of the objects in
the volume are displayed Shading provides depth
cues and enhances image reahsm
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cues and make the rendered image closely
resemble a perceived or photographic im-
age of the structure/volume. (We de-
scribe these operations and their use later
in this paper. ) Three-dimensional medi-
cal imaging presents the remotely sensed
morphological and physiological patient
data in such a way that the physician is
relieved of the chore of mentally recon-
structing and orienting the volume and
instead can concentrate on the practice of
medicine. To achieve this capability, 3D
medical imaging techniques have been
developed to give the user the ability to
view selected portions of the body from
any angle with an appearance of depth to
the image.

The Case Study also points out the
difference between 3D medical imag-
ing and 3D computer graphics. Three-
dimensional medical imaging generates
accurate graphical representations of a
physical volume. The broader field of 3D
computer graphics forms realistic images
from scene descriptions that may or may
not have a physical counterpart. The two
fields share a common challenge in their
attempt to portray a 3D volume within a
2D space and so use many of the same
graphics operations to provide depth
cues. These operations include coordi-
nate transformation, stereo display, mo-
tion parallax using rotation, perspective,
hidden-surface removal, surface shading,
and/or shadows. Three-dimensional med-
ical imaging uses these techniques to
generate credible portrayals of the inte-
rior of patients for disease diagnosis and
surgical planning.

The development of 3D medical imag-
ing techniques has not occurred in
isolation from other fields of medical
imaging. A few examples illustrate this
point. On the image acquisition side, the
recent development and ongoing im-
provement of medical imaging modali-
ties, such as x-ray computed tomography
(CT), ultrasound, PET, single photon
emission computed tomography (SPECT),
and MRI, provide a wide range of image
acquisition capabilities. Barillot et al.

[19881 and Stytz and Frieder [19901 pre-
sent a survey of the operation of these
modalities.

These modalities can be used to acquire
data for accurate diagnosis of bony and
soft tissue diseases and to assess physio-
logical activity without exploratory
surgery. Data archiving, using special-
ized picture archiving and communica-
tion systems (PACS) [Flynn et al. 1983],
is an acknowledged requirement for the
modern radiology department and has led
to the development of techniques for tis-
sue /image registration. The effect of
these related advances is an ever-
increasing need for higher display reso-
lution, increased image rendering speed,
and additional main memory to render
the image data rapidly and precisely.

The requirement for accurate images
arises from the need to formulate a diag-
nosis in the data analysis step. Accuracy
concerns us because the displayed data
must provide trustworthy visual infor-
mation for the physician. There are two
components to display accuracy — data
collection accuracy and 3D medical im-
age rendering accuracy. Data collection
is the radiologist’s arena and deals with
issues concerning the statistical signifi-
cance of collected data, patient dosage,
medical imaging modality operation,
development of new techniques and
modalities for gathering data, and 2D
image reconstruction. Data rendering is-
sues belong to the computer scientist.
They encompass computer graphics, sys-
tem throughput, computer architecture,
image processing, database organization,
numerical computation accuracy, and the
user interface. As attested by the num-
ber of radiologists and physicians in-
volved in researching 3D data display
issues, a knowledge of the physician’s
requirements, as well as the capabilities
and limitations of the modalities, is es-
sential to addressing the questions posed
by the image display process.

The difficulty in meeting the physi-
cian’s need for image accuracy and high
image processing speed arises from the
characteristics of the data produced by
the modalities. Because the modalities
sample space and reconstruct it mathe -
matically, image accuracy is limited to
the imaging modality resolution. The
large amount of data processed, up to
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35MB (megabytes) produced per patient
by a single modality study, hinders rapid
image formation. The challenge posed to
the computer scientist lies in the devel-
opment of techniques for rapid, accurate
manipulation of large quantities of data
to produce images that are useful to a
physician.

There are many computational aspects
to 3D medical imaging. The most promi-
nent ones are the significant (2-35 MB)
quantity of data to be processed (prefer-
ably in real time~), the need for long-
range retention of data, and the need for
manipulation and display of the result-
ing 3D images of complex internal and
external anatomical structures (again
preferably in real time).

Traditionally, when rendering 3D
medical images for disease diagnosis,s
rendering speed has been sacrificed for
reconstructed image accuracy. The first
machines, from the Medical Image Pro-
cessing Group (presently at the Univer-
sity of Pennsylvania), used algorithms
for data management and medical imag-
ing modality data reduction by organ
boundary detection to provide their dis-
plays. Even with a significant reduction
in the quantity of data manipulated, gen-
erating a single series of rotated views of
a single x-ray CT study was an over-
night process [Artzy et al. 1979, 1981].
Initial attempts at achieving interactive
display rates using the raw modality data
relied upon special-purpose multiproces-
sor architectures and hardware-based
algorithm implementations. Although
these special-purpose architectures theo-
retically produce images rapidly, the
drawback to their approach is in the
placement of image rendering algorithms
in hardware. Because 3D medical imag-
ing is a rapidly evolving field, flexible
algorithm implementations are superior

4A real-time image display rate m defined to be
a display rate at or above the flicker-fusion rate
of the human eye, approximately 30 frames per
second.
50ther applications of 3D medical imagmg are dis-
cussed in Jense and Huusmans [1989]

since they facilitate the incorporation of
improvements in 3D medical imaging al-
gorithms into the rendering system. The
comparatively recent advent of high-
power, inexpensive processors with large
address spaces opens the possibility for
using a multiprocessor architecture and
a software-based algorithm implementa-
tion to provide interactive displays
directly from the raw modality data.
This recent approach to 3D medical im-
age rendering foregoes medical imaging
modality data reduction operations,
achieves rapid display rates by distribut-
ing the workload, and attains implemen-
tation flexibility by using software to
realize the rendering algorithms.

Even as researchers approach the goal
of real-time 3D medical image rendering,
they continue to address the perennial
3D medical imaging issues of workload
distribution, data set representation, and
appropriate image rendering algorithms.
Addressing these issues and the peculiar
needs of 3D medical imaging brought
forth the development of the computer
systems that are the subject of the pre-
sent survey. 6 Other surveys of the field
of 3D medical imaging that the reader
may find useful are Barillot et al. [1988],
Farrell and Zappulla [1989], Gordon and
DeLoid [1990a], Herman and Webster
[1983], Ney et al. [1990b], Pizer and
Fuchs [1987b], Robb [19851, and Udupa
[1989]. Fuchs [1989b] presents a brief,
but comprehensive, introduction to
research issues and currently used
techniques in 3D medical imaging.

We organized this article as follows.
Section 1 discusses the unique aspects of
3D medical imaging. Section 2 des-
cribes 3D medical imaging data models,
types of rendering, and coordinate sys-
tems. Section 3 describes 3D medical
image rendering operations. Section 4
discusses eight significant 3D medical
imaging machines. The focus of the de-

6The inclusion of a particular machine does not
constitute an endorsement on the part of the au-
thors, and the omission of a machine does not imply
that it is unsuitable for medical image processing
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scription of each machine is on the inno-
vations and qualities that set the
machine apart from others. The paper

concludes with a brief prognostication
on the future of 3D medical imaging.
The appendixes provide brief descrip-
tions of selected 3D image rendering
algorithms.

1. UNIQUE ASPECTS OF
THREE-DIMENSIONAL MEDICAL IMAGING

There is no one aspect of 3D medical
imaging that distinguishes it from other
graphics processing applications. Rather,
the convergence of several factors makes
this field unique. Two well-known, closely
related factors are data volume and com-
putational cost. The typical medical im-
age contains a large amount of data. In
relation to data volume, consider that
the average CT procedure generates more
than 2 million voxels per patient exami-
nation. MRI, PET, and ultrasound proce-
dures produce similar amounts of data.
The second factor is that the algorithms
used for 3D medical imaging have great
computational cost even at moderate 3D
resolution.

Our survey of the medical imaging lit-
erature disclosed additional factors. First,
there are no underlying mathematical
models that can be applied to medi-
cal image data to simplify it. In medical
imaging, a critical requirement is accu-
rate portrayal of patient data. Physicians
permit only a limited amount of abstrac-
tion from the raw data because they base
their diagnosis upon departures from the
norm, and high-level representations may
reduce, or eliminate, these differences.
Therefore, from both the clinical and
medical imaging viewpoints, models of
organs or organ subsystems are irrele -
vant for image rendering purposes.

Second, the display is not static. Typi-
cally, physicians, technicians, and other
users want to interact with the display to
perform digital dissection and slicing op-

7Dissection provides the illusion of
cutting away overlying layers of tissue

peeling or

erations. Third, for a 3D representation
to provide an increase in clinical useful-
ness over a 2D representation it must be
capable of portraying the scene from all
points of view. The convergence of these
facts sets 3D medical imaging apart from
all other imaging tasks.

A final aspect of 3D medical imaging is
the wide range of operations required to
form a high-quality 3D medical image
accurately and interactively. Typical re -
quired capabilities include viewing un-
derlying tissue, isolating specific organs
within the volume, viewing multiple or-
gans simultaneously, and analyzing data.
At the same time, the physician demands
high quality and rapidly rendered im-
ages with depth cues. Although the algo-
rithms used for these operations are not
unique to 3D medical imaging, their use
further complicates an already computa-
tionally costly effort and so deserve
mention.

2. THREE-DIMENSIONAL MEDICAL IMAGING
COORDINATE SYSTEMS, OBJECT SPACE
DEPICTION MODELS, AND TYPES OF
IMAGE RENDERING

Before examining 3D medical image pro-
cessing machines, it is appropriate to

investigate the techniques used to
manipulate 3D medical image data. This
section presents an overview and class-
ification of the terminology used in the
3D medical imaging environment. The
3D medical imaging environment
includes the low-level data models used
in 3D medical imaging applications, the
coordinate systems, and the graphics op-
erations used to render a 3D image.
Detailed descriptions of the graphics
processing operations and conventions
discussed here and in the following sec-
tion can be found in a standard graphics
text such as Burger and Gillies [19891,
Foley et al. [19901, Rogers [19851, and
Watt [19891.

The section opens with a discussion of
the voxel data model and is followed by a
discussion of the coordinate systems used
in 3D medical imaging. The importance
of the voxel model comes from its use in
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the CT, MRI, SPECT, and PET medical
imaging modalities as well as for
3D medical image rendering. The voxel
model is the assumed input data format
for the three major approaches to medi-
cal image object space modeling de-
scribed in this section: the contour
approach, the surface approach, and the
volume approach. These three object
space modeling techniques provide
the input data to the two major classes
of 3D medical image rendering
techniques—surface and volume render-
ing. We summarize these rendering tech-
niques at the end of this section.

A voxel is the 3D analog of a pixel.
Voxels are identically sized, tightly
packed parallelepipeds formed by divid-
ing object space with sets of planes paral-
lel to each object space axis. Voxels must
be nonoverlapping and small compared
to the features represented within an im-
aged volume. In 3D medical imaging,
each voxel is represented in object space,
image space, and screen space by its three

coordinate values. Because medical
imaging modalities characterize an im-
aged volume based on some physical pa-
rameter, such as x-ray attenuation for
CT, proton density and mobility for MRI,
number of positrons emitted for PET, and
number of y-rays emitted for SPECT, the
value assigned to each voxel is the physi-
cal parameter value for the correspond-
ing volume in the patient. For example,
in the data collected by a CT scan the
value assigned to a voxel corresponds to
the x-ray attenuation within the corre-
sponding volume of the patient. 8 The
higher the resolution of the modality,
the better the modality can characterize
the variation of the physical parameter
within the patient. The lower limit on
the cross section of a voxel is the resolu-
tion of the modality that gathered the
image data. Representative values for the

‘The value is calculated using a process called
computed tomography; a complete discussion of the
issues involved is presented m Herman and Coin
[19801.

dimensions of a voxel in a CT slice are
0.8 mm x 0.8 mm x 1-15 mm.

Figure 1 presents a voxel representa-
tion of a cube-shaped space. Figure 2
presents a notional voxel representation
of a slice of CT data. The figure shows an
idealized patient cross section with a grid
superimposed to indicate the division of
space into voxels, A 2D slice of voxel
data naturally maps into a 2D array.

To represent a volume, a set of 2D
voxel-based arrays is combined, possibly
with interpolation, to form a 3D array
of voxels. The 3D voxel array naturally
maps into a 3D array. Each array ele-
ment corresponds to a voxel in the 3D
digital scene. The array indexes corre-
spond to the voxel coordinates. The value
of an array element is the value of the
corresponding voxel.

Three-dimensional medical imaging
systems commonly use four different

coordinate systems: the patient space
coordinate system, the object space
coordinate system, the image space coor-
dinate system, and the screen space coor-
dinate system. Patient space is the 3D
space defined by an orthogonal coordi-
nate system attached to the patient’s na-
tive bone. The z-axis is parallel to the
patient’s head-to-toe axis, the y-axis is
parallel to the patient’s front-to-back
axis, and the x-axis is parallel to the
patient’s side-to-side axis. Mapping pa-
tient space into object space requires the
sampling and digitization of patient space
using a medical imaging modality.

The 3D coordinate system that defines
and contains the digitized sample of pa-
tient space is object space. The 3D coordi-
nate system that contains the view of the
object space volume desired by the ob-
server is image space. The 2D coordinate
system that presents the visible portion
of image space to the observer is screen
space. Figure 3 shows the relationship
between object and image space, with the
direction of positive rotation about each
axis indicated in the figure.

The object and image space coordinate
systems are related to each other using
geometric transformation operations
[Foley et al. 1990]. The object space coor-
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Figure 1. Voxel representation of a cube in object space
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Figure 2. Voxel representation of a CT slice
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Figure 3. Object and image space coordinate systems.

dinate system, represented by x, y, and
z, is fixed in space and contains a com-
plete or partial description of the volume
as computed by a medical imaging
modality. A partial description can be
the surface of one or more organs of in-
terest, whereas a complete description is
the entire 3D voxel data set, possibly
interpolated, output from a medical
imaging modality. The image space coor-
dinate system, signified by x’, y’, and z’,
contains the volume description obtained
after application of coordinate transfor-
mation matrixes, image Segmentationg
operators, or other volume modification
operations. Image space contains the
view of the volume desired by the ob-
server. The object space representation
remains unchanged as a result of the
operations; changes are evident only in
image space. The screen space coordinate
system, signified by u and v, is the 2D
space that portrays the visible contents
of image space. Shading, shadows, and

‘Segmentation is the process of dividing a volume
into discrete parts. One way to perform segmenta-
tion 1s by thresholding. See Appendix D.

other visual depth cue information is used
in this space to portray the 3D relation-
ships upon a 2D CRT.

To accommodate the unique require-
ments imposed by the 3D medical imag-
ing environment, three major approaches
to portraying an object in a 3D medi-
cal image volume have been developed.
These are the contour, surface, and vol-
ume object space depiction methods, also
called the contour, surface, and volume
data models. Each technique uses a dif-
ferent type of scene element 10 to depict
information within an imaged volume.
We summarize these methods here and
refer the reader to Farrell and Zappulla
[19891 and Udupa [19891 for detailed
surveys of these models.

Contour and surface object space por-
trayal methods provide rapid image ren-
dering by deriving lower dimensional
object space representations for an iso-
lated surface of an organ/object of inter-
est from the complete 3D object space

10Ascene element is a primitive data element that
represents some discrete portion of the volume that
was imaged A scene element M the prlmltive data
element in object space
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array. Accordingly, these methods re -
duce the amount of data manipulated
when forming an image. The data reduc-
tion is obtained at the cost of being able
to provide only one type of rendering,
called surface rendering. These tech-
niques suffer from the requirement for
reprocessing the volume to extract the
surface of the organ/object from the im-
aged volume whenever selecting a differ-
ent organ/object or altering the organ/
object. For example, cutting away part of
the surface of the object using a clipping
plane alters the visible surface of the
object. In this instance, the 3D object
space array must be reprocessed to ex-
tract that portion of the object that is
visible behind the clipping plane. A sur-
vey of machines that perform 3D medical
imaging based on contour and surface
methods can be found in Goldwasser
et al, [1988bl, Volumetric object space
portrayal methods avoid the volume re-
processing penalty by using the 3D object
space array data directly. These methods
pay a render-time computation penalty
due to the large volume of data manipu-
lated when generating an image. Be-
cause volumetric methods use the entire
data set, they support two different types
of rendering: the display of a single sur-
face and the display of multiple surfaces
or composites of surfaces. Note that all
three portrayal methods begin with a 3D

array of voxel data derived from a 3D
medical imaging modality. The differ-
ence between the three lies in the exis-
tence of an intermediate one-dimensional
(ID) or 2D representation of a structure
of interest for contour and surface meth-
ods and the lack of this representation
for volume (3D) methods. Table 1 sum-
marizes the salient characteristics of the
three object space portrayal methods.

Referring back to Figure 2, it contains
an idealized representation of a slice of
medical imaging modality data. The fig-
ure shows a single object within object
space, with a well-defined borde~ and
varying voxel values within the slice. We
use this diagram as the basis for the
following descriptions of the 3D medical
imaging data models.

The contour, lD-primitive, approach
uses sets of lD contours to form a de-
scription of the boundary of an object of
interest within the individual slices that
form a 3D volume. The boundary is rep-
resented in each slice as a sequence
of points connected by directed line
segments. The sequence of points corre-
sponds to the voxels in the object that are
connected and that lie on the border be-
tween the object and the surrounding
material, Before forming the boundary
representation, the desired object contour
must be isolated using a segmentation
operator. Thresholdingll can be used
if the boundary occurs between high-
contrast materials. Otherwise, boundary
detection using automatic or manual
tracking 12 is used for segmentation. Due
to the complexity found in the typical
medical image, automatic methods some-
times require operator assistance to
extract the boundary of an object accu-
rately. Figure 4 contains the object in
Figure 2 represented as a set of contours,
with the heads of the arrows indicating
the direction of traversal around the ob-
ject. The use of this methodology for dis-
play of 3D medical images is described
in Gibson [1989], Seitz and Ruegseger

llThresholding is a process whereby those voxels
that lie within or upon the edge of an organ are
determined based solely upon the value of each
voxel, Typically, the user selects a range of voxel
values that is assumed to lie within the object and
also do not occur outside of the object. The voxels
within the volume are then examined one by one,
with those voxels that fall within the range se-
lected for further processing to depict the surface.
lzTracking is a procedure whereby those voxels
that lie within or upon the edge of an organ are
determined based upon the value at each voxel and
the values of the voxels lying nearby. For manual
tracking, the user defines the surface by moving a
cursor along the border of the object, with the
border defined by high visual contrast between the
object and surrounding material In automatic
tracking, a single seed voxel is specified by the
viewer; then the remainder of the voxels on the
border are located by gradually expanding upon the
set of voxels known to lie on the edge One way of
expanding the set is to select the next voxel in the
edge based upon its adjacency to voxels known to
be on the edge and its similarity in value to voxels
known to be on the edge.
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Table 1. Three-Dimensional Medical Imagmg Object Space Portrayal Methods

Method

Contour Surface Volume

Data primitive
dimension

Object
representation

Type of
rendering
supported

Object selection

Number of
objects
displayed

Representation
flexibility

Object space
memory
requirement

ID 2D 3D

Directed contours of Tiles between in-shce None; voxels used
the object boundary contours or faces of dmectly

object boundary
voxels

Surface Surface Surface or volume

Performed in a
preprocessing” step
using segmentation

One per preprocessing
step

Low; must reprocess
the data for each new
object or change in
object

Lowest

Performed in a
preprocessing step
using segmentation

One per processing
step

Low; must reprocess
the data for each new
object or change in
object

Low

Performed at image-
rendering time using
segmentation

Determined at image-
rendering time

High; all decisions
deferred until image-
rendering display time

High

‘Preprocessing is a term used to indicate the operations that must be performed before the volume, or a
given object within the volume, can be rendered For example, the use of a contour-based model of an
object requu-es extraction of the contours of the object in a preprocessing step before the object can be
rendered.

Figure 4. Contour-based representation of a slice
of medical imaging modality data

[1983], Steiger [1988], Tuomenoksa

[19831, Udupa [19851, and Udupa and
TUY [1983].

Surface, 2D-primitive, approaches to
3D medical imaging use 2D primitives,
usually triangles or polygons, to show
the surface of a selected portion of the
volume. Because the data from a CT,

MRI, PET, SPECT, or ultrasound scan-
ner have gaps between the slices, a
method that approximates the surface
between the slices must be used to repre-
sent the surface. An additional difficulty
faced by this technique and ID primitive
techniques is the separation of the desired
surface from the surrounding modality
data. The two major classes of surface
depiction algorithms are the tiling meth-
ods and the surface-tracking methods.

The goal of tiling techniques [Ayache
1989; Chen et al. 1989b; Fuchs et al.
1977; Lin and Chen 1989; Linn et al,
1988; Shantz 1981; Toennies 1989;
Toennies et al. 1990], also called patch-
ing, is to determine the surface that en-
closes a given set of slice contours, then
represent the surface with a set of 2D
primitives. As a preliminary step, tiling
requires the extraction of the contours of
the object of interest in each slice using
any of the methods for the contour ap-
proach. The extracted contours are then
smoothed, and geometric primitives, typ -
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ically triangles, are fitted to the contours
to approximate the surface of the object
in the interstice space. This approach is
popular because tiled surfaces furnish re-
al istic representations of the objects se-
lected for display, especially when objects
are differentiated with color and. when
multiple light sources are used to illumi-
nate the scene. Because of the data re-
duction inherent in going from the input
data to a tiled surface representation, the
computational cost of displaying the ob-
ject is low. The disadvantages inherent
in this approach are the time required to
extract the surface, the difficult y in per-
forming the tiling (structures can split
and merge between slices), and the re -
quirement for reaccomplishing object
contouring whenever the user selects a
different organ or alters the organ. Fig-
ure 5 contains a tiled depiction of a
portion of the surface defined by three
adjacent slices; the raw data for each
slice is simi lar to that in Figure 2. A
contour description represents each slice;
the inter slice portion of the volume is
delineated by triangles.

Surface-tracking methods [Artzy 1979,
1981; Chine et al. 1988; Ekoale 1989;
Gordon and Udupa 1989; Herman and
Liu 1978, 19’79; Liu 1977; Lorensen and
Cline 1987; Rhodes 1979; Udupa 1982;
Udupa and A~anagadde 1990; Udupa and
Odhner 1990; Udupa et al. 1982; Xu and
Lu 1988] also represent the surface of an
object of interest using 2D primitives. In
this case, the 2D primitive is the face of a
voxel. The object’s surface is represented
by the set of faces of connected voxels
that lie on the surface of the object.
Surface-tracking operations generally be-
gin by interpolating the original image
data to form a new representation of the
volume composed of voxels of equal
length in all three dimensions. The
structure to be examined is isolated by
applying a segmentation operator to the
volume to form a binary 13 representation

131n a binary representation, voxels located within
the object are assigned a value of 1, all other voxels
are set to O

A B c

Figure 5. Tiled representation of a portion of the
surface of three slices of medical imaging modality
data.

of the 3D volume. Surface tracking be-
gins after the user specifies a seed point
in the object. The surface is then
“tracked” by finding the connected vox-
els in the object that lie on the boundary
of the object. Voxel connectivity can be
established using a variety of criteria,
the most common being face connectiv-
ityy, face or edge connectivity, and face,
edge, or vertex connectivity. If the face-
connectivity criterion is used, for exam-
ple, two voxels are adjacent in the object
if any face on one voxel touches any face
on the other. 14 When displaying the sur-
face, the surface display procedure se-
lects only the voxel faces oriented toward
the observer, The highest quality display
procedures shade each visible voxel face
based on an estimation of the surface
norma115 at the center of the face. Figure
6 shows a portion of the surface of three
adjacent slices formed by a surface-
tracking operation. The visible faces of
the cubes are dark, with the faces that
lie on the interior of the object colored
white. Appendix D presents a short de-
scription of three surface-tracking algo-
rithms.

.—
14Edge connectivity requires that the edge of one
voxel touch the edge of the other, vertex connectiv-
ity requires that the vertex of one voxel touch a
vertex of the other,
15The surface normal is the line perpendicular to a
line tangent to a given point on the face,
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A B c

Figure 6. A portion of the surface of three slices of
medical imaging modality data formed using a sur-
face-tracing operation.

The volume, 3D-primitive, -based vol-
ume approach has grown in popularity
due to its ability to compute volume
renderings as well as surface renderings
without performing surface extraction

preprocessing. Volume methods operate
directly, possibly with interpolation,
upon the data output from the medical
imaging modality. Surface extraction

processing, if performed, is deferred until
the transformation of the imaged volume
from object space into image space. 16 As
a result, 3D-primitive-based renderings
can portray the surface of selected or-
gans, as in the ID- and 2D-primitive-
based approaches, or they can provide a
view of the entire contents of the volume.
The drawback to this approach is the
large amount of data processed when
constructing a view of object space. The
commonly used 3D primitives are the
voxel (possibly interpolated to form cubic
voxels) and the octree. (We discuss the
octree data structure later. )

16An exception to this general rule is the use of the
binary volume object space representation In this
case, object space M preprocessed to segment the
volume into an organ of interest and background
This technique offers the capability for interactive
viewing of the inside and outside of the organ
without recomputing vmible surfaces while reduc-
ing the memory requirement for storing the object
space 3D array.

The voxel-based object space volume is
often represented within the machine as
a 3D array, with array access based upon
the object space x, y, and z coordinates.
One method for extracting informa-
tion from the 3D array is back-to-front
access,17 described in Frieder [1985a].
To compute a visible surface render-
ing without segmentation, the algorithm
starts at the deepest voxel in the object
space array and works its way to the
closest voxel, transferring voxel values
from object space to image space as it
proceeds. When it concludes, the algo-
rithm has extracted the visible portions
of all the objects within object space for
display. Because of the computational
cost of this procedure, techniques based
on this algorithm that reduce image ren-
dering time have been developed. These
techniques accelerate processing by re-
ducing the number of data elements ex-
amined and/or by reducing the time
required to access all the data elements.
For examples of these acceleration tech-
niques see Goldwasser and Reynolds
[19871, Reynolds [1985], and Reynolds
et al. [19871. By specifying a segmenta-
tion threshold or threshold window,ls the
technique in Frieder et al. [1985a] can
extract the visible surface of a single
object for display. Later in this paper, we
describe how 3D-primitive-based volume
methods can be used for volume render-
ing. Figure 2 is a voxel-based depiction of
a volume.

Because of the computational expense
incurred when accessing the 3D space
array, several researchers have used the
octree data structure, or a variation of it,
to reduce data access time. The octree is
an eight-ary tree data structure formed
by recursive octant-wise subdivision of
the object space array. Octant volumes
continue to be subdivided until a termi-
nation criterion is satisfied. Two common
termination criterion are the total vol-

17Back.to.front access can be used with ID, 2D, and

3D primitives
‘8A threshold window is a user-defined range of
voxel values specified to separate items of interest,
such as an organ, from the remainder of a volume.
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ume represented by a node and the com-
plexity (homogeneity) of the volume
represented by the node. In the octree,
each node of the tree represents a volume
of space, and each child of a given node
represents an octant within the volume
of the parent node. Each node of the
octree contains a value that corresponds
to the average value of the object space
array across the octant volume repre -
sented by the node. The root node of the
tree represents the entire object space
volume, and leaf nodes correspond to vol-
umes that are homogeneous, or nearly
so. Leaf nodes do not represent identi-
cally sized volumes; instead they repre-
sent object space volumes that satisfy the
termination criteria. For example, if
homogeneity is a criterion, each leaf rep-
resents an object space volume that en-
compasses a set of voxels having the same
value. Intermediate levels of nodes rep-
resent nonhomogeneous octant volumes;
the value for each of these nodes is deter-
mined by volume-weighted averaging the
values of the child nodes.

We classify the octree as a 3D-prim-
itive object space representation because
the nodes of the octree represent volumes
in object space. The octree is not,
however, a pure 3D-primitive-based rep-
resentation because of the voxel classifi-
cation preprocessing performed when
creating the octree data structure. Chen
and Huang [1988] provides an introduc -
tory survey and tutorial on the use of
octrees in medical imaging, Samet [1990]
describes techniques for the creation and
use of octrees for representing objects by
their surfaces. Further work on the for-
mation and use of octrees in medical
imaging is reported in Amans and
Darrier [1985], Ayala et al. [1985],
Carlbom et al. [1985], Chen and
Aggarwal [1986], Gargantini [1982],
Gargantini et al. [1986a, 1986 b],
Glassner [1984, 1988], Jackins and
Tanimoto[1980], Kunii et al. [1985],
Levoy [1988a, 1988b, 1989a, 1989b,
1990a, 1990b], Levoy et al. [1990], Mao
et al. [1987], Meagher [1982a, 1982b,
1985], Samet [1989], Spihari [1981], Stytz
[1989], Tamminen and Samet [1984], Tuy

and Tuy [1984], and Weng and Ahuja

[19871. Note that the preprocessing step
faces the same voxel classification prob-
lems encountered when using lD and 2D
object space representations even though
surfaces are not explicitly extracted.

Using one of the three object space
portrayal methods, a desired object of
interest or the entire volume can be
rendered. The two major approaches to
3D medical image rendering built upon
these three depiction methods are sur-
face rendering and volume rendering. A
surface rendering presents the user with
a display of the surface of a single object.
A volume rendering displays multiple
surfaces or the entire volume and pre-
sents the user with a visualization of the
entire space. Volume rendering uses
3D primitives as the input data type,
whereas a surface rendering can be
computed using lD, 2D, or 3D primitives.

To compute a surface rendering, the
input data must be processed to extract a
desired surface or organ for display.
To compute a surface rendering, voxels
must be deterministically classified
into discrete object-of-interest and
nonobject-of-interest classes (possibly in
a preprocessing step). The resulting ren-
dered image provides a visualization of
the visible surface of a single object
within the 3D space. Note that during
the classification phase, object space must
be examined for qualifying voxels. If a
record of qualifying voxels is preserved,
subsequent renderings of the object’s sur-
face can be made without reaccomplish-
ing voxel classification. Maintaining a
record substantially reduces the render-
ing computational burden because only
the object of interest, rather than all of
object space, must be processed. The use
of a record of qualifying voxels differenti -
ates the surface renderings derived from
the contour (lD) and surface (2D) meth-
ods from the surface renderings derived
from the volume (3D) method.

For illustrative purposes, Figure 7 de-
picts surface renderings of a human skull
computed from 2D (left) and 3D (right)
primitives. These two particular figures
look very similar, and to the lay person,

ACM Computing Surveys, Vol 23, No 4, December 1991



434 “ Stytz et al.

Figure 7. Surface rendering of human skull from 2D primitives (left) and 3D primitives (right) using the
technique described in Udupa and Herman [19901. Reproduced with permission from Udupa and Herman
[19901.

are for all intents and purposes identical,
Two-dimensional-primitive-based render-
ings are, however, commonly crisper in
detail than 3D-m-imitive-based surface
renderings, whic~ can appear fuzzy. The
other differences between the two surface
renderings are the amount of time re -
quired to compute the surface rendering
and the greater volume manipulation
flexibility inherent in the 3D-primitive
approach. The 3-D-primitive approach is
more flexible because all of the data in
the volume is available at rendering
time.

Volume rendering treats voxels as
opaque or semiopaque volumes with the
opacity of each voxel determined by its
value. Typically, the value is assumed to
correlate to the type(s) and amount of
material in the voxel. For each rendition
all the voxels in object space are exam-
ined, making this type of rendering
significantly more computationally ex -
pensive than surface renderings gener-
ated from ID or 2D primitives. The aim

of this type of imaging is to present the
object (s) of interest within the anatomi-
cal context of surrounding tissue.

Currently, there are four major types
of volume rendering: volume rendering
using multiple threshold windows, volu-
metric compositing, max-min display, and
radiographic display. Volume rendering
using multiple threshold windows uses
the threshold windows to extract differ-
ent tissue types from the volume. This
type of volume rendering generates an
image containing multiple opaque object
surfaces. Volumetric compositing, some-
times called compositing, generates an
image containing multiple semiopaque
and/or opaque tissue surfaces in a two-
step process. The first step is determina-
tion of the blend of materials present in
each voxel, possibly using a probabilistic
classification scheme, yielding an opacity
value and a color for the voxel. The sec-
ond step is the combination of the voxel
opacity and color values into a single
representation of light attenuation by the
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Figure 8. Volume rendering of a human head. Three radiation treatment beams encompassing a
treatment region and MRI intensities are superimposed on cut planes in a volume rendering of a patient’s
head. The head with exposed cortex was rendered using 3D primitives generated from 109 MRI slices with
other objects superimposed by hybrid volume-rendering techniques. Photograph courtesy of the University
of North Carolina Departments of Computer Science and Radiation Oncology.

voxels along the viewer’s line of sight
through image space. The resulting ren-
dered image can provide a visualization
of the entire contents of the 3D space or
of several selected materials (such as
bone and skin surfaces) in the space.
We describe volumetric compositing in
greater detail in the next section. Max-
min display, also called angiographic dis-
play, determines the shade at each screen
space pixel using the maximum (or mini-
mum) voxel value encountered along the
path of each ray cast from each screen
space pixel through image space. Radio-
graphic display, also called transmission
display, determines the shade at each
screen space pixel from the weighted sum
of the voxel values encountered along the
path of each ray cast from each screen
space pixel through image space. Except

for changes in lighting and voxel value
to displayed-color mapping, object space
must be completely examined to compute
each type of volume rendering.

The next two figures show different
types of volume renderings. The patient
data in Figure 8 were acquired using an
MRI unit; those in Figure 9 were ac-
quired using a CT. Figure 8 is a volumet-
ric compositing that displays the first
visible patient surface along a ray com-
posited with three radiation treatment
beams. Figure 9 is an example of a vol-
ume rendering that uses multiple thresh-
old windows to display the surface of two
different objects in a volume. At each
pixel in Figure 9, the surface that ap-
pears in the image is the one surface of
the two that is closest to the observer in
image space.
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Figure 9. Volume rendering showing the lungs and spine of a patient. The 3D primitives used in the
rendering were acquired in a 24-slice CT study. Image courtesy of Reality Imaging Corporation, Solon,
Ohio. Images rendered using the Voxel Flinger.

We have adopted a definition for ‘the
surface- and volume-rendering opera-
tions that emphasizes what the user sees
in the rendered image, as in Levoy
[1990b]. A different set of definitions for
these same operations emphasizes the
amount of data processed to compute the
rendering [Udupa 1989; Udupa and
Odhner 1990]. In this other set of
definitions, a surface rendering is any
rendering formed from a contour- or sur-
face-based object space representation. A
volume rendering is any rendering
formed from a volume method object
space representation. The distinction be-
tween the two sets of definitions lies in
the classification of those techniques that
process all of object space but display a
single surface. Both sets of definitions

classify renderings from contour and sur-
face object space portrayal methods as
surface renderings and the renderings of
multiple surfaces using volume methods
as volume renderings. The set of defini-
tions used in this survey, however, clas-
sify a rendering from a volume method
that depicts a single surface as a surface
render ing. The other set of definitions
would classify this same rendering as a
volume rendering.

Whether a surface or a volume render-
ing is computed, an important aspect to
providing a 3D illusion within 2D screen
space is the shading (i. e., coloring) of
each pixel. Shading algorithms assign a
color to a pixel based upon the surface
normal, orientation with respect to light
sources and the observer, lighting, image
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space depth, and type of material por-

trayed by the pixel. We present a more
detailed description of the concepts used,
to perform shading in the next section
and in Appendix E. In this section, we
limit the discussion to a classification
scheme for 3D medical imaging shading
techniques.

We classify 3D medical image shading
techniques based upon the methodology
used to estimate the surface normal.
There are two categories of surface nor-
mal estimation techniques— object space
methods and image space methods.
Object space methods use information
available in object space; image space
methods use information available in im-
age space. Object space surface normal
estimation shading algorithms, as in
Chen et al. [1985], Chuang [1990],
Gourand [1971], Hohne and Bernstein

[19861, and Phong [19751, calculate the
normal for a visible voxel face using the
geometry of the surrounding voxels or
voxel faces or using the gray-scale gradi-
ent (local pixel value gradient) between
the target pixel and its neighboring pix.
els. The object space surface normal esti -
mation does not change due to rotation of
the object. This category of techniques
can reduce image-rendering time but at
the cost of increased time for preprocess-
ing the data. Image space surface normal
estimation shading algorithms, as in
Chen and Sontag [1989], Gordon and
Reynolds [1!383, 1985], and Reynolds
[1985], estimate the normal using the
distance gradient (z’ gradient) between
the target pixel and its neighbors. This
technique requires recomputing the esti-
mated surface normal after each rota-
tion. Appendix F contains a description
of object space surface normal estima-
tion algorithms described in Chen
et al. [1985], Gourand [1971], Hohne and
Bernstein [19861, and Phong [1975], as
well as the image space surface normal
estimation algorithm described in
Gordon and Reynolds [19851.

The contour- and surface-based meth-
ods are suitable for computing surface
renderings of an object of interest,
whereas the volume object space por -

trayal method can be used for surface or
volume rendering. Tiede et al. [1987]
compares the performance of four
different surface-rendering techniques,
Comparisons of surface- and volume-
rendering methods and shading tech
niques are presented in Gordon and
DeLoid [1990b], Lang et al. [19901,
Pommert et al, [1989, 1990], Tiede et al,
[1990], and Udupa and Hung [1990a,
1990b]. Talton et al. [1987] compares the
efficacy of several different volume-
rendering algorithms.

Table 2 illustrates how the concepts
discussed in this section have been im-
plemented in a wide variety of 3D medi-
cal imaging machines. We classify the
3D medical image rendering machines
by object space portrayal method, type of
rendering, type of shading algorithm, ar-
chitecture, and development arena. The
architecture indicates the type of hard-
ware used to execute the algorithms in
the machine. We mention the develop-
ment arena to indicate whether the
machine was designed as a research ex-
periment or for commercial purposes.
References for the machines summarized
in the table and discussed later in this
survey are presented in the body of the
survey.

3. THREE-DIMENSIONAL MEDICAL IMAGING
RENDERING OPERATIONS

This section presents a survey of the
operations commonly performed when
rendering a 3D medical image. Because
additional capabilities are under devel -
opment, these operations are not an all-
inclusive list. Rather, they indicate the
broad range of capabilities desired within
a 3D medical imaging machine.

Adaptive histogram equalization [Pizer
et al. 1984, 1986, 1987, 1990b] is an im-
age enhancement operation used to in-
crease the contrast between a pixel and
its immediate neighbors. For each pixel,
the technique examines the histo~am of
intensities in a region centered on the
pixel and sets the output pixel intensity
according to its rank within its histo-
gram. The technique has been used to
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enhance visual contrast in 2D image
slices and to amplify feature boundary
contrast before performing segmentation
(described below).

Antialiasing [Abram and Westover
1985; Booth et al. 1987; Burger and
Gillies 1989; Cook et al. 1984; Crow 1977,
1981; Dippe and Weld 1985; Foley et al.
1990; Fujimoto and Iwata 1983; Lee and
Redner 1990; Max 1990; Mitchell 1987;
Watt 1989] is an image-rendering opera-
tion that diminishes the appearance of
jagged edges within the rendered image
by eliminating spurious high-frequency
artifacts. Antialiasing accomplishes this
objective by smoothing the edges of ob -
jects in the scene. A common approach to
antialiasing in medical imaging is to in-
crease the resolution of the image during
processing and then resample the data
back to the original resolution for final
display. This technique is referred to as
super sampling.

Supersampling achieves an acceptable
level of antialiasing at low computa-
tional cost. It determines the shade of a
pixel by using multiple probes of image
space per display pixel, The weighted
sum of the values returned by the probes
determines the shade of the pixel. The
rendering system must perform graphics
operations at high resolution
(at least two or more times the resolution
of the final display) and determine the
low-resolution display-pixel values by av-
eraging the high-resolution pixel values.
For example, by calculating the image at
a resolution of 1024 x 1024 pixels and
then displaying it at a resolution of 512 x
512 pixels, four pixel values in the high-
resolution image are averaged into one
pixel in the final display. The averag-
ing blurs the final image, thereby re-
ducing the occurrence of jagged edges
and high-frequency artifacts.

Boundary detection is a method for im-
age segmentation that produces object
boundary information for an object of in-
terest. A boundary detection algorithm
identifies the surface of the organ of in-
terest in the scene and extracts the sur-
face from the remaining portion of the
3D digital scene. This technique could,

for example, be used to extract the skull
in Figure 7 and the spine and lungs in
Figure 9. A popular approach to bound-

ary detection is surface tracking. Surface
tracking locates all the connected surface
voxels in the scene that are in the same
object /organ. An advantage of boundary
detection over image segmentation by
thresholding (see below) is improved iso-
lation of the connected components of the
object within the scene. Boundary detec-
tion accomplishes connected component
extraction implicitly when determining
the object boundary. Because of the diffi-
culties and inaccuracies inherent in
making a binary decision concerning the
presence or absence of a material within
a volume, probabilistic classification
schemes combined with image composit -
ing operations have been developed.
These techniques depict the boundary of
an object fuzzily rather than discretely.
Appendix D presents three algorithms
devised to perform boundary detection by

surface tracking. These are the algo-
rithm proposed by Liu [1977], the
algorithm specified in Artzy et al. [1981],

and the “marching cubes” algorithm
described by Lorensen and Cline [1987]
and Cline et al. [1988].

Clipping, also called data cutout, iso-
lates a portion of a volume for examina-
tion by using one or more clipping planes.
The clipping planes delineate the bound-
ary of the subvolume to be extracted. In
Figure 8, clipping planes were used to
remove the wedge-shaped volume from
the back of the patient’s head to expose
the underlying material. Using the other
operations described in this section, the
extracted subvolume can be manipulated
in the same manner as the whole
volume.

Digital dissection is a procedure used
to cut away portions of overlying mat-
erial to view the material lying un-
derneath it within the context of the
overlying material. For example, if a user
wishes to view a portion of a fractured
skull, this operation would allow the
skull to be viewed along with the skin
and surface of the head surrounding the
fracture. Figure 8 presents an example of
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this technique with its simultaneous de-
piction of the patient’s skin, skull, and
brain. Cutting planes are not commonly
used for this operation. Instead, a graph-
ical icon displayed upon the cathode ray
tube (CRT) indicates the location of
the digital scalpel. The scalpel indicates
where to remove material. The cutting
operation can be accomplished in
the renderer by treating the “cut away”
voxels’ values as transparent, thereby
allowing the underlying materials to be
viewed. This operation is a fine-grain
counterpart of clipping. Instead of re -
moving entire planes of voxels, however,
digital dissection removes areas only one
or two voxels wide.

False color (also called the colored
range method) [Farrell et al. 1984] is an
image enhancement operation used to
differentiate multiple objects displayed
within the scene. False coloring is a two-
step procedure. In the first step, the user
assigns a color value to each range of
voxel values to be visualized. In the sec-
ond step, the renderer classifies and col-
ors individual voxels in image space.
Coloring is accomplished by assigning a
color to a voxel then darkening the in-
tensity of the color according to the im-
age space distance between the voxel and
the observer. After coloring the voxel in
image space, the voxel is projected into
screen space. By making voxels at the
back of the scene darker than those at
the front, the display provides the viewer
with depth cues while simultaneous-
ly differentiating the structures in the
scene.

Geometric transformations, consisting
of scaling, translation, and rotation
[Burger and Gillies 1989; Foley et al.
1990; Rogers 1985], allow the user to
examine the scene from different orienta-
tions and positions. Scene rotation,
scaling, and translation are expressed
relative to the object space x-, y-, and
z-axis. Geometric transformations take a
scene in object space, transform it, and
place the result in image space. Scaling
enlarges or shrinks the rendered image.
Translation moves the rendered volume
within image space. Rotation allows the

user to view portions of the rendered im-
age that would otherwise be invisible and
also enhances the 3D effect in the ren-
dered image. Successive rotations are cu-
mulative in their angular displacement
of objects in the scene relative to their

starting positions. The 3D effect provided
by rotation can be further enhanced by
making a movie of the rotation of the
scene through a sequence of small angles
around one axis [Artzy et al. 1979; Chen
1984b; Robb et al. 1986].

Hidden-surface removal [Burger
and Gillies 1989; Foley et al. 1990;
Frieder et al. 1985a; Fuchs et al. 1979;
Goldwasser and Reynolds 1987; Meagher
1982a, 1982b; Reynolds 1985; Reynolds
et al. 1987; Rogers 1985; Watt 1989; Ap-
pendix A] is one of the most computation-
ally intensive operations in 3D medical
imaging. Hidden-surface removal deter-
mines the surfaces that are visible/in-
visible from a given location in image
space. Hidden-surface removal algo-
rithms fall into the three main types:
scanlinelg based, depth-sort, and z-
buffer. Each type uses the depth, also
called the z’ distance, of each scene ele-
ment that projects to a pixel to determine
if it lies in front of or behind the scene
element currently displayed at the same
pixel, Appendix A provides further infor-
mation and example algorithms.

Histogram equalization [Gonzalez and
Wintz 1987; Hummel 1975; Richards
1986] is an image enhancement opera-
tion that attempts to use the available
brightness levels in a CRT display
equally. Histogram equalization modifies
the contrast in an image by mapping
pixel values in original screen space
to pixel values in modified screen
space based on the distribution of occur-
rences of pixel values. The procedure al-
locates a greater proportion of the gray
scale to the ranges of values with a large
number of screen space pixels than to
ranges with fewer pixels. Histogram
equalization, unlike adaptive histogram

19A scanline is a horizontal line of pixels on a CRT
A scanline M also called a scan.
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equalization, makes gray-scale value as-
signments across the entire image and so
is not sensitive to regional variations in
the displayed image. Let ho(x) be the
histogram function for the value x in the
original image. If there are P pixels in
the image and B brightness values, then
an ideal modified image would have P/B
pixels per brightness value associated
with it. Histogram equalization can not
achieve an ideal modified image in
practice because pixels with the same
brightness value in the original image
histogram are not split between bright -
ness values in the modified image. The
desired modified image brightness value,
y, for a given original image brightness
value, x, is computed by

B–1 ‘
y= /()ho X dx.

P

The integral is found by computing
the cumulative histogram for the image.
Since the y value in the modified image
is constant for a given x in the original
image, a look-up table is used to assign
pixel values in the original image to
pixel values in the modified image. Both
Richards [1986] and Gonzalez and Wintz
[19871 provide further descriptions
of histogram equalization, including
its mathematical basis, as well as gen-
eral information concerning the use of
histograms for image enhancement
processing.

Interpolation [Artzy et al, 19791 con-
verts the sparsely spaced 2D slices formed
by a CT, MRI, SPECT, PET, or ultra-
sound study into a continuous 3D scene.
Because medical imaging modalities
leave unimaged space between adjacent
slices of patient data, interpolation is
used to fill in the space between the
slices. Interstice density values are esti-
mated by computing a linear average of
the density values found in pairs of op-
posing voxels in the original slices. Two
approaches have found widespread
use: nearest-neighbor (zeroeth-order) in-
terpolation and trilinear (first-order)
interpolation. Both techniques superim-
pose a grid of sample points upon the

volume to be rendered. Nearest-neighbor
interpolation estimates the density value
of the interstice voxels using the value of
the closest in-slice voxel. Trilinear inter-
polation estimates the density value for
an interstice voxel by taking a weighted
average of the eight closest in-slice vox -
els. Trilinear interpolation yields images
that are superior to nearest-neighbor
interpolation but at a cost of increased
computation. Raya and Udupa [19901
describes a new approach to interpola-
tion called shape-based interpolation.
This technique is particularly useful
when using 2D (surface) primitives.
Shape-based interpolation uses the in-
slice object boundary to estimate the
interstice object boundary. This tech-
nique does not yield interpolated values
for interstice voxel values but instead
yields the interpolated boundary location
for the object.

Multiplanar reprojection (MPR)
[Herman and Liu 1977; Kramer et al.
1990; Mosher and Hook 1990; Rhodes
et al. 19801 is a procedure for displaying
a single slice of a volume. Multiplanar
reprojection can extract single-slice 2D
views from a volume of medical imaging
modality data at arbitrary, oblique an-
gles to the three main (x, y, z) object
space axes. In general, the procedure
steps along the oblique plane, computing
the possibly interpolated voxel value at
each point on the display plane from the
nearby object space voxel value(s).

Multiplanar display (MPD) is the
simultaneous display of multiple slices of
medical imaging modality data. Three
orthographic views are commonly pro-
vided in an MPD: a sagittal view, an
axial view, and a coronal view. Taking
the z-axis to be the patient’s longest di-
mension and the y-axis to be oriented
along the patient’s front-to-back axis, the
sagittal, axial, and coronal views are de-
fined as follows: An axial view is a view
along the z-axis of 3D medical imaging
modality data that portrays image slices
parallel to the x-y plane. An axial view
is also called a transverse view. A coro-
nal view is a view along the y-axis of 3D
medical imaging modality data that
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reveals image slices parallel to the X–Z

plane. A sagittal view is a view along the

x-axis of 3D medical imaging modality
data that reveals image slices parallel to
the y-z plane.

Projection is an operation that maps
points in an n-dimension coordinate sys-
tem into another coordinate system of
less than n dimensions. In 3D medical
imaging, this operation performs the

mapping from points in image space to

screen coordinates in screen space. There
are two broad classes of projections—
perspective and parallel. A perspective
projection is computed when the distance
from the viewer to the projection plane
(commonly the CRT screen) is finite. This
type of projection varies the size of an

object inversely with its distance in im-
age space from the projection plane. An
object at a greater distance from the

viewer than an identical closer object ap-

pears smaller. A parallel projection, on

the other hand, places the viewer at an
infinite distance from the projection
plane. The size of an object does not vary

with its depth in image space.
There are two broad classes of parallel

projections—orthographic and oblique. In
an ortho~aphic parallel projection, the

direction of projection (the direction from
the projection plane to the viewer) is

parallel to the normal to the projection
plane. In an oblique parallel projec-
tion, the direction of projection is not

parallel to the normal to the projection
plane. For further information see Burger
and Gillies [19891, Foley et al. [19901,
Rogers [19851, and Watt [19891.

Ray tracing [Burger and Gillies 1989;
Foley et al. 1990; Glassner 1989; Rogers
1985; Watt 1989] is an image-rendering
technique that casts rays of infinitesimal

width from a given viewpoint through

a pixel atid on into image space.

The path of the ray and the location of

the objects in the volume determine the

object(s) in the volume encountered by

the ray. The color of the object(s), their

depth, and other shading factors deter-

mine pixel intensity. In addition to per-

forming hidden-surface removal and

shading, ray tracing can be extended to

produce visual effects such as shadows,
reflection, and refraction. zo The addi-
tional effects come at the cost of addi-
tional computations per ray and at the
cost of spawning additional rays at each
ray/surface intersection. Even though
ray tracing is a point-samplingzl tech-

nique, it can perform antialiasing by
spawning several rays at each pixel and
computing a weighted sum of the ray

intensities. The weighted sum of the ray

intensities determines the intensity for
the pixel. Appendix B surveys several
techniques for increasing the speed and
for improving the image quality obtained
with ray tracing.

Segmentation [Ayache et al. 1989;
Back et al. 1989; Chuang and Udupa
1989; Fan et al. 1987; Herman et al.

1987; Shile et al. 1989; Trivedi et al.
1986; Udupa 1982; Udupa et al. 1982] is
any technique that extracts an object or
surface of interest from a scene, For ex-
ample, segmentation can be used to iso-
late the bony portions of a volume from
the surrounding tissue. Both the contour

and surface approaches to scene repre-

sentation use segmentation to isolate

specific features within a volume from

the remainder of the volume. Some type

of image segmentation was used to ex-

tract the skull in figure 7 and the spine

and lungs in Figure 9.

Boundary detection is one approach

to segmentation. Another technique for

image segmentation is thresholding. im-

age segmentation by thresholding locates

the voxels in a scene that have the same

property, that is, meet the threshold

requirement. Extraction of an object in a

medical volume using this technique is

difficult because multiple materials can

be present within the volume of each

voxel. The presence of multiple materials

‘“Reflection is caused by light bouncing off a sur-
face of an object. Refraction is caused by light
bending as It passes through a transparent object,
21point ~amPling is a rendering technique that de-

terrnines the shade of a pixel based upon one probe
of image space. The value returned by the probe
determines the shade of the pixel. This method of
sampling typically results in aliasing.
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causes misclassification of voxels. The
important step in the thresholding pro-
cess is the classification of the elements

of the scene according to criteria that
separate the object(s) of interest from
other elements of the scene. A criterion
commonly used in 3D medical imaging is
the voxel value threshold or window, A
voxel whose value lies within the win-
dow or above the threshold is assumed to
be part of the object; otherwise it is clas-
sified as background. Because objects and
surfaces in a medical image are not
distinct, even the best segmentation op-
erators provide only an approximation,
albeit an accurate one, of the desired
object or surface. Appendix C describes
two techniques for segmentation by
thresh olding along with short
synopses/classifications of other tech-
niques for segmentation. Udupa [19881
discusses several boundary detection and
segmentation by thresholding schemes
and their use in surgical planning.

Shading [Burger and Gillies 1989;
Foley et al. 1990; Rogers 1985; Watt
1989] enhances the 3D appearance of an
image by providing an illusion of depth.
Chen et al. [1984a] provides an overview

of several shading techniques used in the
medical imaging environment. In combi-
nation with gray scale or color and rota-
tion, shading enhances the 3D visual
effect of images rendered in 2D. Figures
7, 8, and 9 illustrate how shading can
enhance the perception of depth in an
image. Shading achieves the depth illu-
sion by varying the color of surfaces
according to their image space depth,
material content, and orientation with
regard to light sources and the viewer.
To shade a scene correctly, a series of
computations based on one or more prop-
erties of each visible object must be per-
formed. These properties are the refrac-
tive properties, the reflective properties,
the distance from the observer, the angle
of incidence between rays from the illu-
minating light source(s) and the surface
of the object, the surface normal of the
object, the type and color of the illumi-
nating light source(s), and the color of
the object. Appendix E describes the in-

teraction of these properties. Appendix F
describes the following shading algo-
rithms: distance shading, normal-based
contextual shading, gradient shading,
gray-scale gradient shading, Gouraud
shading, and Phong shading.

Tissue / image registration [Byrne et al,
1990; Gamboa-Aldeco 1986; Hermand
and Abbott 1989; Hu et al. 1989;
Pelizzariet al. 1989; Schiers et al. 1989;
Toennies et al. 1989; Toennies et al.
1990] is a procedure that allows volume
and/or surface renderings taken of a pa-
tient at different times to be superim-
posed so that the patient axes in each
image coincide. For example, if a patient
had both a CT and a PET scan, it may be
useful to overlay the CT anatomical in-
formation with the PET physiological
information, thereby combining different
information into a single rendered im-
age. Registration can be accomplished by
either marking points on the patient that
are used later to align the images or by
manual, post-hoc alignment of the im-
ages using anatomical landmarks.
Preparation of the patient for registra-
tion allows the acquired data to be
aligned with great accuracy, but it is
impractical to perform the preparation
for every patient. Manual alignment is
not as precise as prepared alignment
because patient axes alignment is merely
approximated. Manual alignment, how-
ever, gives the physician a capability for
ad hoc registration. Developing proce-
dures for accurately performing manual,
ad hoc alignment is an active research
area.

Transparency effects [Foley et al. IggO;

Watt 1989] allow a user to view an ob-

scured object within the context of

an overlying transparent (or semi-

transparent) object, thereby providing a

context for the obscured object in terms

of the overlying transparent structure(s).

For example, one may want to view the

skull through overlying transparent skin,

as shown in Figure 8. In that figure, the

combination of semitransparent treat-

ment beams and the image of the pa-

tient’s head provide an anatomical

context for the location of the beams.
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This process is useful because it permits

visualization of portions of the anatomy

that are inside the patient within the

setting of anatomical landmarks on the

outside of the patient. To achieve a

transparency effect, the rendering sys-

tem uses the formula 1 = tIl + (1 – t) 12,

where O s t s 1, to overlay volume data.

11 is the intensity attributed to a point

on the transparent surface; 12 is the in-

tensity calculated for the point lying on

an opaque surface behind 11, and t is the

transparency factor for ll. Volumetric

compositing uses the transparency con-

cept when forming a visualization of a

medical imaging volume.

True 3D display is a total volume

display method that uses human

vision system physiological depth cues

like movement parallax and binocular

parallax (also called stereo vision) to

cause the perception of depth in a dis-

play. True 3D display techniques can be

used in combination with or instead of

the depth cues provided by traditional

computer graphics techniques (such as

shading, shadows, hidden-surface re-

moval, and perspective). Binocular paral-

lax is a physiological depth cue based

upon the disparity in the image seen by

each eye. Binocular parallax is the

strongest depth cue for the human visual

processing system. Movement parallax is

a strong physiological depth cue elicited

by head movement and the correspond-

ing perceived change in the image. Some

forms of true 3D display (such as the

varifocal mirror and holographic image

techniques) further enhance the depth

illusion by allowing the user to see the

superposition of structures in the volume

and to achieve segmentation of the struc-
tures by moving his or her head. Varifo-
cal mirrors, holograms, several types of

CRT shutters, and several types of stereo

glasses have been used to generate true

311 displays. Techniques for displaying

true 311 images are described in

[Brokenshire 1988; Fuchs 1982a, 1982b;

I+arris 1988; Harris et al. 1986; Hodges

and McAllister 1985; Jaman et al. 1985;

Johnson and Anderson 1982; Lane 1982;

Mills et al. 1984; Pizer et al. 1983; Robb

1987; Reese 1984; Stover 1982; Stover

and Fletcher 1983; Suetens et al. 1987;

Williams et al. 1989; Wixson 1989].

Lipscomb [19891 presents a compara-

tive study of human interaction with

particular 3D display devices.

Volume measurement [Bentley and

Karwoski 1988; Udupa 1985; Walser and

Ackerman 1977] is an operation that es-

timates the volume enclosed by an object

within image space. The volume mea-

surement operation, first described in

Walser and Ackerman [19771, can be ac-

complished by taking the product of the

number of voxels that form the object

with the volume of a single voxel. Typi-

cally, this operation calls for some form

of segmentation to extract the object from

the surrounding material in the scene.

Because segmentation is not a precise

operation, there is a small error in the

computed volume figure. The error is

currently not clinically significant. As

pointed out in Walser and Ackerman

[19771, it is the change in the volume of

an object that provides clinically

relevant information. Even with its asso-

ciated eyror, volume measurement is

valuable because it provides the phy-

sician with the means to accurately

detect the change noninvasively.

Volume of interest (VOI) operation se-

lects a cube-shaped region out of object

space for the purpose of isolating a struc-

ture of interest. This operation is used to

isolate a portion of object space for fur-

ther display and analysis. The primary

benefit of the VOI operation lies in its

reduction of the amount of storage space

and computation required to render an

image.

Volumetric compositing (also called
cornpositing) [Drebin et al. 1988; Duff

1985; Foley et al. 1990; Fuchs et al.

1988c, 1989a, 1989b; Harris et al. 1978;

Heyers et al. 1989; Levoy 1989a, 1990a,

1990b; Levoy et al. 1990; Mosher and

van Hook 1990; Pizer 1989a, 1989b;

Porter and Duff 1984; Watt 1989] is a

methodology for combining several im-

ages to create a new image. Compositing

uses overlay techniques (to effect

hidden-surface removal) andior blending
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(for voxel value mixing) along with opac-

ity values (to specify surfaces) to combine

the images. Figure 8 illustrates this

technique with its composition of the

treatment beams and the image of

the patient’s head.

A composite is assembled using a bi-

nary operator to combine two subimages

into an output image. The input subim -

ages can be either two voxels or a voxel

and an output image from a prior compo-

sition. When performing an overlay, a

comparison of z’ distances along the line

of sight determines the voxel nearest

the viewer; that voxel’s value is output

from the composition. Image blending re-

quires tissue type classification of each

sample point22 in the 3D voxel grid by

its value. The tissue type classification

determines the color and opacity associ-

ated with the voxel. The voxel opacity

determines the contribution of the sam-

ple point to the final image along the

viewer’s line of sight. The a-channe123

stores the opacity value for the voxel. An

a-channel value of 1 signifies a com-

pletely opaque voxel, and a value of O

signifies a completely transparent voxel.

If voxel composition proceeds along the

line of sight in front-to-back order, the

value at the nth stage of the composition

is determined as follows.

Let C,. be the composition color value

from the n – 1 stage, COut be the output

color value, c. be the color value for the

current sample point, and a ~ be the a-

channel value for the current sample

point. Then cOUt a OUt = c,. a,. + C. a ~

(1 – al.), aOU, = ain + a~(l – a,.). The

displayed color, along the line of sight C,

is C = COUt /aOUt.

Three-dimensional medical imaging

systems use one or more of the opera-

tions mentioned above to depict a data

volume accurately. Meeting the 3D med-

‘2 Sample point values are commonly computed us-
ing a trilinear interpolation of the eight neighbor-
ing voxel values.
23The a-channel (alpha channel) is a data structure
used to hold the opacity information needed to
compose the voxel data lying along the viewer’s
line of sight.

ical imaging quality requirements while

performing the medical imaging opera-

tions rapidly are difficult challenges.

In fact, many of the requirements and

operations work at cross purposes, and

achieving one usually requires sacrific-

ing performance in one or more other

areas. For example, one method that can

be used to achieve rapid medical image

volume visualization is the use of tiling

techniques to depict the surface of the

object to be rendered. The use of tiling,

however, requires a lengthy surface ex-

traction processing step that the volume

approach avoids. To date, no single ma-

chine has met all objectives and imple-

mented all the operations, and it is an

open question whether one machine can

meet all the objectives.

4. THREE-DIMENSIONAL MEDICAL IMAGING
MACHINES

This section presents an examination

of the techniques used in previous

3D medical imaging research to solve

the problem of presenting high-quality

2D reconstructions of imaged volumes

at high speed. It describes several

image processing architectures: Farrell’s

Colored-Range Method, Fuchs/Poulton

Pixel-Planes 4 and 5 machines,

Kaufman’s Cube architecture, the Medi-

cal Imaging Processing Group (MIPG)

machine, the Pixar/Vicom Image Com-

puter and Pixar/Vicom 11,24 Reynolds

and Goldwasser’s Voxel Processor ma-

chine, and the Mayo Clinic True 3D

machine and ANALYZE.

These eight 3D medical imaging ma-

chines encompass a wide range of paral-

lelism in their architectures, a wide range

of image-rendering rates, and a wide

number of approaches to object space dis-

play. Three clistinct approaches to

3D medical imaging are, however,

evident: software-encoded algorithms on

24The Pixar Image Computer and Plxar II were
sold to Vicom in the spring of 1990. Vicom 1s a
trademark of Vicom Inc. Pixar is a trademark of
Pixar Inc.
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general-purpose computer systems

(MIPG, Farrell, ANALYZE), graphics ac-

celerators adapted for 3D medical imag-

ing (Pixar/Vicom), and special-purpose

computer systems with hardware encod-

ing of algorithms (Pixel Planes, Voxel

Processor, Cube). The MIPG machines

demonstrate the relevance and feasibil-

ity of constructing 3D medical images

using contour and surface descriptions of

objects in CT data. The Cube and Voxel

Processor machines establish the useful-

ness of innovative memory access meth-

ods for rapid display of 3D medical

images. Farrell’s approach shows the

usefulness of false color images in a 311

medical imaging environment. The

Fuchs/Poulton machines confirm that the

pixel-coloring bottleneck can be over-

come by expending hardware resources

at the pixel level, and that this invest-

ment yields significant throughput re-

turns. The Fuchs/Poulton machines and

the Voxel Processor machine demon-

strate the validity of a rendering pipeline

approach to 3D medical imaging, albeit

using different pipelines. Finally, the

Mayo Clinic work establishes the useful-

ness of performing 3D medical image

rendering with cooperating processes in

their ANALYZE system. These research

machines laid the foundation for the cur-

rent generation of commercial machines

reviewed here and in Stytz and Frieder

[19911. The commercial Pixar/Vicom
machines established that the images

produced using compositing techniques

are applicable to 3D medical imaging.

In the following sections, we character-

ize each of the machines by the overall

machine architecture, the processing

strategy, the data model, the shading

algorithm(s), the antialiasing tech-

nique(s), the hidden-surface removal

algorithm, the performance of the

machine, the supported image resolution,

the level at which the machine exploits

computational parallelism, and the oper-

ational status of the machine (whether it

exists as a proposal, a prototype, an as-

sembled machine undergoing testing, a

fully functional machine, or a marketed

machine). Stytz and Frieder [19911

characterize additional commercial and

research-oriented 3D medical imaging

machines using these same parameters.

Because the objective of this review is to

survey these machines with particular

emphasis placed on their ground-

breaking achievements, we discuss many

but not all of the capabilities provided by

each machine. Because of space limita-

tions, we do not discuss the shading, an-

tialiasing, and hidden-surface removal

technique parameters in depth and refer

the reader to the appendixes and Stytz

and Frieder [19911. For a discussion of

the complete type of capabilities for each

machine, we refer the reader to the bibli-

ographic references for each machine.

We selected the first nine parameters

for examination because they provide in-

sight into the options available when

forming 3D medical images as well as

the effect of various design choices. The

machine architecture describes the inter-

relationships of the hardware and

software components of the 3D medical

imaging machine. Our description of the

architecture concentrates on the major

components of the machine and the

components’ operation. The choice of ma-

chine architecture sets the performance

limits in terms of rendering throughput

and image quality for the 3D medical

imaging machine. The machine architec-

ture also affects the type of data models

that can be used to meet the image

rendering rate design goal.

For example, suppose the machine ar-

chitecture consists of a number of com-

municating processes running on a

single, low-power CPU with CRT display

support for an 8-bit image. The design

goal stresses the need for relatively rapid

image rendering and display rates. These

design constraints indicate selection of a

contour or surface data model, since these

models would help achieve a rapid dis-

play rate because they reduce rendering

time computational cost. In addition, the

shading and antialiasing 3D medical

imaging operations can be simple be-

cause 8 bits per pixel does not support

the display of high-quality medical im-

age volume visualizations. On the other
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hand, if image-rendering rate is not a

prime consideration, then a more compu-

tationally expensive model, such as the

voxel model, can be used.

The processing strategy parameter

sketches the approach adopted to use the

machine architecture to perform 311 med-

ical image-rendering tasks. The strategy

addresses the constraints imposed by the

machine architecture, data model, and

screen resolution in addition to the de-

sired rendered image quality and render-

ing speed. To continue with the example

presented above, recall that minimal

elapsed display and rendering times are

important goals. One possible rendering

time minimization strategy would be the

use of a surface model of the object of

interest with depth shading and no an-

tialiasing to render the image of the ob-

ject. A rapid display rate can be achieved

by rendering a sequence of images in

batch mode and displaying them after all

rendering computations end. Note that

this processing strategy precludes a ca-

pability for rapid interaction with the

rendered image.

The data model parameter indicates

both the amount of preprocessing re-

quired to render the image and the com-

putational cost of rendering the image.

For example, a contour-based description

of an object requires a preprocessing step

to extract the contours but permits rapid

display of the object from various orien-

tations. The drawback of this model is

that any change to the object requires

reaccomplishing the preprocessing step.

On the other hand, a voxel-based descrip-

tion of a volume requires no preprocess-

ing before rendering, but the rendering

procedure is computationally expensive.

The shading, antialiasing, and hidden-

surface removal algorithm parameters

reflect both the image resolution attain-

able by the machine and the computa-

tional cost incurred in rendering the

image. For example, assume that one

machine uses Phong shading and an-

other machine uses depth shading. We

can then infer that the machine using

Phong shading usually produces higher

quality images at greater computa-

tional expense than the one using depth

shading.

The machine performance parameter

specifies the rendered image produc-

tion rate for the 3D medical imaging

machine. The resolution parameter, ex-

pressed in pixels, reflects the image reso-

lution attainable by the machine. Image

resolution is a measure of the fineness of

detail displayed on the CRT. This mea-

sure has two components— CRT resolu-

tion and modality resolution. Modality

resolution is the resolution of the medi-

cal imaging modality used to acquire the

image, typically expressed as the dimen-

sion of a voxel along the x-, y-, and z-axis.

The resolution of the modality used to

acquire the image imposes the absolute

limit on the level of detail that can be

displayed. CRT resolution is the number

of pixels on the CRT, usually expressed

as the number of pixels along the u-axis

and U-axis. For example, a CRT resolu-

tion of 256 x 256 means that the screen

is 256 pixels wide and 256 pixels high.

If the pixels on the CRT have approxi-

mately the same dimension as the face of

a voxel, then increases in CRT resolu-

tion, up to the limit imposed by modality

resolution, result in the display of finer

detail in the rendered image. Because

the user cannot alter modality resolution

at rendering time, in this survey we use

the term resolution when discussing CRT

resolution. To achieve acceptable resolu-

tion, the 3D medical imaging machine’s

resolution should be the same as the

resolution provided by medical imaging

modalities. At the present time, the

typical 3D medical imaging machine

resolution is 256 x 256 pixels. Higher

resolution allows for magnification and

complete display of the rendered image.

The computational parallelism param-

eter indicates the capability of the se-

lected machine architecture to perform

rapid image rendering. Typically, there

are two computational bottlenecks en-

countered when rendering an image:

hidden-surface removal and pixel color-

ing. Parallelism can be used to attack

both of these bottlenecks by permitting

rapid extraction of visible surfaces using
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Image Mainframe Workstation Final
Database Display

Figure 10. Colored-range imaging system architecture,

parallel operation on discrete portions of

the volume and by parallel computation

of pixel values. A typical tradeoff en-

countered in the use of parallelism is the

choice of giving speed or image quality

primacy in the performance goals for the

machine. In the extreme, for a given level

of parallel operation, a parallel process-

ing capability can be used to increase

image-rendering speed while maintain-

ing image quality, or image quality can

be improved while maintaining the

image-rendering rate. Table 3 summa-

rizes the key parameters for each of the

machines.

4.1 Farrell’s Colored-Range Method

The 3D medical imaging machine pro-

posed by Farrell and Zappulla [1989] and

Farrell et al. 1984, 1985, 1986a, 1986b,

19871 takes an approach to 3D medical

image rendering that is different from

the other machines in this survey in two

regards, First, the colored-range method

does not require preprocessing of the

data. Second, it relies upon the use of

color and image rotation to highlight the

3D relationships between organs in the

volume. The machine has a high image-

processing speed but is expensive. The

volume-rendering image-processing sys-

tem consists of a host and a workstation

(Figure 10). The host is an IBM

370/4341. The workstation is an IBM

7350.

A significant problem faced by the de-

signers of the machine was deciding how

to divide the workload between the work-

station and the host. The solution adopted

was to assign the computationally inten-

sive operations, such as 3D rotation and

data smoothing, 25 to the host and assign

the remaining operations, such as oblique

projection, transparency, and color, to the

workstation.

The processing strategy used in the

machine seeks to reduce the computa-

tional load by eliminating or simplifying

the operations required to form a 3D im-

age. The strategy is implemented using

the colored-range method for back-to-

front 3D medical image rendering. The

colored-range methodology does not re -

quire preprocessing of the data and can

rapidly display object space from an arbi-

trary point of view. It emphasizes the 3D

relationships of the constituent parts of

the image by image rotation and the use

of color. The machine performs angular

rotation about an axis by diagonally

painting the image across the screen in

the back-to-front order defined by the de-

sired scene orientation. The system com-

putes the required diagonal offset for

successive 2D frames using x, y tables of

screen coordinates for small rotational

values of up to +400 from a head-on

viewpoint. The machine performs larger

angular rotations by reformatting the

data so that either the +x- or + y-axis

becomes the + z-axis. Segmentation of the

components of the image is accomplished

by specifying a discrete voxel value range

to identify each organ in the image and

then by assigning a different color to

25Data smoothing is the filtering
volume to reduce aliasing effects
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each range. The rendering indicates the

relative depth of the parts of a given

object by varying the color intensity

according to the depth of the part, with

the more distant parts being darker.

The colored-range method has several

advantages in addition to supporting

rapid image rendering. It allows differ-

ent structures to be displayed simultane-

ously through the use of different colors,

and it allows the relative size and posi-

tion of structures to be visualized by

overlaying successive slices. The voxel

data need not be continuous in 3D space,

thereby eliminating the need for data

interpolation to form a continuous 3D

volume. Additionally, the colored-range

method displays accurate 3D images with

just the use of simple logical and arith-

metic functions in the processor.

There is little parallel operation in

Farrell’s machine. On the other hand,

the machine generates images at very

high speeds. Farrell’s image overlay

technique permits 3D images to be pro-

cessed and presented in a matter of 10-15

sec. Farrell’s machine attains this ren-

dering speed by simplifying the computa-

tions involved in representing and

rendering the volume. Volume represen-

tation computations are minimized by

eliminating the preprocessing operations

that derive ID and 2D object representa-

tions and that interpolate voxel values to

form a continuous 3D volume. The ren-

dering computation workload is reduced

by simplification of shading and hidden-

surface removal operations.

4.2 Fuchs / Poulton Pixel-Planes Machines

At the opposite end of the parallelism

scale from Farrell’s Colored-Range

Method is the Fuchs/Poulton Pixel-

Planes machines and associated algo-

rithms, described in Ellsworth et al.

[1990], Fuchs et al. [1977, 1979, 1980,

1983, 1985, 1986, 1988a, 1988b, 1988c,

1989a, 1989cI, (loldfeather [19861, Levoy

[1989 b], Pizer and Fuchs [19871,

and Poulton et al. [1987]. This

series of machines achieves rapid image-

rendering performance by using massive

parallelism to attack the pixel-coloring

bottleneck. The latest machines in the

series are Pixel-Planes 4 (Pxp14) and

Pixel-Planes 5 (Pxp15). We focus the dis-

cussion on Pixel-Planes 5.

The goal of the Pixel-Planes 5 architec-

ture is to increase the pixel display rate

by performing select pixel-level graphics

operations in parallel within a general-

purpose graphics system. To achieve this

goal, the system architecture relies upon

two components— a general-purpose mul-

tiprocessor “front end” and a special-

purpose “smart” frame buffer. The

front end specifies on-screen objects in

pixel-independent terms, and the

“smart” frame buffer converts the pixel-

independent description into a rendered

image.

The Pixel-Planes 4 machine [Fuchs

et al. 1985, 1986; Goldfeather 1986;

Poulton et al. 1987] laid the foundation

for the current Pixel-Planes 5 machine in
its pioneering use of a smart frame buffer
for image generation. The design goal for
this machine was to achieve a rapid
image-rendering ability by providing an
inexpensive computational capability for
each pixel in the frame buffer, hence the
name smart frame buffer. Within the
smart frame buffer are the logic-
enhanced memory chips that provide the
pixel-level image-rendering capability.
The importance of the smart frame buffer
lies in its capability for widening the
pixel-writing/coloring bottleneck by
processing each object in the scene simul-
taneously at all pixels on the screen.

Pixel-Planes 4 accomplishes object dis-
play in three steps. The first step is image
primitive scan conversion. Scan conver-
sion processing determines the pixels that
lie on or inside a specific convex polygon
described using a set of linear expres-
sions. ZG The second step accomplishes

‘6Each edge of a polygon is defined by two vertices,
U1 = ( xl, yl) and V2 = (x2, y2), which are ordered
so the polygon hes to the left of the directed edge
U1U2 The equation of the edge is given by Ax + By

+C=O, where A=y2–yl, B=x2–xl, and
c= x1y2 –X2.Y1,
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visibility determination for the current
primitive relative to primitives computed
previously, Pixel-Planes 4 determines the
visibility of each polygon at the pixel
level by a comparison of z’ values using
data stored in the local pixel memory.
The third step consists of the operations,
such as antialiasing, contrast enhance-
ment, transparency, texturing, and shad-
ing, required to render the image.

The logic-enhanced memory chips per-
form the pixel-oriented tasks, such as
pixel coloring and antialiasing, simulta-
neously at the individual pixel level.
Since pixel-level operations must be
performed on linear expressions,27 the
graphics processor must construct a lin-
ear expression model for each object be-
fore sending the image description to the
smart frame buffer. To develop linear
equations for each object in the display
list, the graphics processor performs
display list traversal,28 viewing transfor-
mation, lighting, and clipping opera-
tions. These four operations yield a
set of colored vertex descriptions2g for
each object. The graphics processor uses
the colored vertex descriptions to derive
the linear equation coefficients sent to
the frame buffer.

Pixel-Planes 5 builds upon the pixel-
level processing foundation laid by Pxp14
but extends it by using Multiple Instruc-
tion, Multiple-Data (MIMD) processors
for display list traversal and a token ring
network for interprocessor communica-
tion. These changes, along with decou-
pling the pixel-processing elements of the
smart frame buffer from the frame buffer
memory and using a virtual pixel ap -

27The linear expressions are of the form Ax + B-Y

+ C, where x and y are the Image space coordi-
nates of the pixel. Linear expressions can be used
to define polygon, sphere, line, and point primitive
objects.
28A display list is a list of the objects within the
object space, which is also the list of the objects to
be displayed Display list traversal is the process of
examining each of the entries in the display list in
the order specified by the list.
‘gVertex descriptions are sent when processing
polygons; individual pixel values are sent when
processing medical images

preach, provide a capability for render-
ing several primitives simultaneously.
Pxp15 evaluates quadratic, instead of
linear, expressions. Figure 11 shows the
architecture for the Pixel-Planes 5
machine.

Pixel-Planes 5 processes primitives one
screen patch (128 x 128 pixels) at a time
in each Renderer unit. It uses multiple
Renderers to provide a multiple primi-
tive processing capability and multiple
Graphics Processors (GP) to sort primi-
tives into different screen patches (bins).
The system dynamically assigns screen
patches to Renderers during processing,
with each GP sending the primitives in
its patches to the appropriate Renderer
in turn. The host workstation is respon-
sible for user interaction support and im-
age database editing. The 32 GP and
MIMD units are used for two purposes.

Each GP manages its assigned Pixel.
PHIGS (a variant of PHIGS +30 designed
for Pixel-Planes) data structures and
sorts its set of primitive objects into bins
that correspond to parts of the screen.
Each of the 8-10 Renderers in the sys-
tem, diagramed in Figure 12, are inde-
pendent SIMD processing units with
local memory descended from the PxP14
chips. Each Renderer chip has 256 pixel-
processing elements and 208 bits of
memory per pixel. Each Renderer oper-
ates on an assigned 128 x 128 pixel patch
of the screen. In concert, the Renderers
can operate on several discrete patches of
the screen simultaneously. The memory
on the board serves as a backing store for
holding pixel color values for the current
patch of screen being processed by the
Renderer. The Renderer memory holds
color, z depth, and other associated pixel
information. The quadratic expression
evaluator on the chip evaluates the
quadratic expression Ax+ By+C+

30PHIGS + (Programmers’ Hierarchical Interac-
tive Graphs System) 1s an extension to the ANSI
graphics committee’s current PHIGS 3D graphics
standard that supports lighting, shading, complex
primitives, and primitive attributes PHIGS tutori-
als are m Cohn [19S61 and Morrissey [19901
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Figure 11. Pixel-Planes 5 architecture (based upon Fuchs 1989b)

DX2 + Exy + Fyz at each pixel using the
A, B, C, D, E, and F coefficients broad-
cast from the GP. The 1280 x 1024 pixel
frame buffer is double buffered to sup-
port the 24 frames/second screen update
rate design goal for Pxp15. A multichan-
nel token ring network interconnects the
individual units of the system. The net-
work can transmit up to eight simultane-
ous messages at 20M words/second. 12

Image rendering commences after an
application on the host workstation
makes changes to the image database
and sends the results of these changes to
the GPs via the network. One GP, desig-
nated the Master GP, has the responsi-
bility for assigning Renderers to portions
of the screen and informing the GPs of
the Renderer assignments. Using the
changes sent from the host, each GP
transforms the primitives assigned to it
and then sorts them into the correct
screen bins according to the virtual
screen patches the primitives intersect,

Pixel-Plane 5 renders a screen patch

by authorizing each GP to broadcast, in
turn, the screen patch bin containing the
primitives and instructions for process-
ing them to the Renderer with the corre-
sponding screen patch assignment. After
a GP completes its broadcast to a Ren-
derer, it notifies the next GP that it may
begin its processing for the patch. The
GP then waits for its next turn to broad-
cast. The final GP to broadcast its bin to
the Renderer informs it that the current
screen patch for the Renderer is com-
plete. The Renderer then moves the pixel
color values for that patch to the backing
store and receives a new patch assign-
ment from the Master GP. After all the
Renderers finish rendering all their as-
signed screen patches, each Renderer
transfers the stored results of the compu-
tations for its
frame buffer.

Pixel-Planes

operations as

assigned patches to the

5 can perform the same
Pxp14, but its use of
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Figure 12. Pixel-Planes 5 Renderer (based upon Fuchs 1989a)

quadratic expression evaluators and its
higher rendering speed provides addi-
tional capabilities. Pixel-Plane 5 per-
forms 3D medical imaging by storing
object space voxels within the backing
store at each Renderer. Medical image
rendering begins with classification and
shading of the 3D array of voxels at the
Renderers using the Gouraud shading
model. Each Renderer retains the result-
ing color and opacity values in its back-
ing store. To compute a rendition, the
GPs trace parallel viewing rays into the
3D array from the viewer’s position. As
each ray progresses, the Renderers trans-
mit requested voxel values to the GPs for
trilinear interpolation and composition
with the current pixel value in the re-
questing GP. After completing its por-
tion of the rendition, each GP transmits
its computed pixel values directly to the
frame buffer for display. Pixel-Plane 5
can render between 1 and 10 frames/sec-
ond, depending upon desired medical
image quality.

Pixel-Planes 5 is a hybrid architec-
ture, having both Single-Instruction,
Multiple-Data (SIMD) and MIMD compo-
nents, with a predicted capability for
rendering 256 x 256 x 256 voxel 3D
medical images at the rate of 1-10
frames/second. As of this writing, Pixel-
Planes 5 is undergoing initial testing and
is not yet fully functional.

4.3 Kaufman’s Cube Architecture

Kaufman designed the Cube machine to
permit real-time computation of volume
and surface renderings of medical images
and geometric objects from 3D primi-
tives. He described the architecture in
Bakalash and Kaufman [19891, Cohen
et al. [19901, Kaufman [1987, 1988a,
1988b, 1988c, 1989], Kaufman and
Bakalash [1985, 1988, 1989a, 1989b,
1990], and Kaufman and Shimony [19861.
The system development plan calls for
the production of a system with a display
resolution of 512 x 512 pixels and a 512
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Figure 13. Kaufman’s Cube machine architecture, Legend: FBP3, 3D
frame buffer processor; GP3, 3D geometry processor; VP3, 3D viewing
processor; FB, frame buffer; VP, video processor (adopted from
Kau88b).

x 512 x 512 voxel capacity. The cur-
rently operational hardware prototype
supports rendering of a 16 x 16 x 16
voxel volume. The software for emulat -
ing the full-scale machine’s functionality
is fully operational. Figure 13 presents a

diagram of the system.
The Cube machine provides a suite of

3D medical image rendering capabilities
that support the generation of shaded
orthographic projections of 313 voxel data.
The architecture makes provision for col-
onizing the output and for selection of
object(s) to be displayed translucently.
The machine achieves real-time image
display by using parallel processing at
two levels. The Cube uses coarse grain
parallel processing to provide user inter-
action with the system while the ma-
chine computes renditions. To accelerate
image rendition, the machine uses fine-
grain parallelism to process an entire
beam31 of voxels simultaneously instead

of examining the voxels along the beam
one at a time. The user can alter color
selection, material translucency, and

—
31A beam of voxels is a row, column, or diagonal
axle of voxels within the scene

volume slicing in real time, thereby al-
lowing for rapid inspection of interior
characteristics of the volume. The Cube
performs shifting, scaling, and rotation
operations by calculating the coordinates
for a voxel based upon the calculated
coordinate position of the closest neigh-
bor voxel previously transformed.

The image processing system consists
of a host and four major components, the
3D Frame Buffer Processor (FBP3), the
Cubic Frame Buffer (CFB), the 3D
Geometry Processor (GP3), and the 3D
Viewing Processor (VP3), which includes
the voxel multiple write bus. 32 The host
manages the user interface. The 3D
Frame Buffer Processor loads the CFB
with 3D voxel-based data representing
icons,33 objects, and medical images and
manipulates the data within the CFB to
perform arbitrary projections of the data
therein. The 3D Geometry Processor is
responsible for scan conversion of 3D
geometric models into voxel representa-

‘2 Based upon the design reported in Gemballa and
Lmdner [1982] for a multiple-write bus,
33Example icons are cursors, synthetic needles, and
scalpels
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tions for storage within the CFB.34 The
CFB is a large, 3D, cubic memory with
sufficient capacity to hold a 512 x 512 x
512 voxel representation of a volume.
Each voxel is represented by 8 bits. To
facilitate rapid retrieval and storage
of an entire beam of voxels, the CFB
uses a skewed-memory scheme. The CFB
skewed-memory organization conceptu-
ally regards storage as a set of n memory

modules instead of as a linear array. All

the voxel values in memory module ii

satisfy the relation k = ( x + y +

z) mod n, where x, y, and z are the
object space coordinates of a voxel. The x
and y coordinates of a voxel determine
the storage location within its assigned
module. This memory organization guar-
antees that for any desired scene orienta-
tion no more than one voxel is fetched
from each module.

When forming an image, the 3D View-
ing Processor retrieves beams of voxels
from the CFB and places them in the
voxel multiple write bus. To meet
the requirement for real-time image gen-
eration, the 3D Viewing Processor simul-
taneously processes all the voxels in a
beam using the voxel multiple write bus.
The voxel selection algorithm used
in the voxel multiple write bus enables it
to select, from a beam of n voxels, the
visible voxel closest to the observer in
log(n) time. The bus implements trans-

parency and clipping planes by disabling

the processors in the clipped region or

containing transparent voxel values be-

fore performing visible voxel determina-

tion. The voxel multiple write bus has n
processors for a scene n voxels deep, or
512 processors for the CFB example cited
previously. To process a 512 x 512 x 512
voxel volume, the 3D Viewing Processor
makes 5122 sequential accesses to the
CFB. After determining the visible voxel,
the 3D Viewing Processor shades the
voxel and sends the value to the frame
buffer.

34For a description of the geometric scan con-
version process see Kaufman [1987, 1988al and
Kaufman and Shimony [19861.

The voxel selection algorithm uses the
location of each voxel along the beam
and its density value to compute the visi-
ble voxel in the beam. To avoid calculat-
ing the location of each voxel on the
beam, each processor in the voxel multi-
ple write bus has an index value. The
selection algorithm regards the index
value for each processor as the depth
coordinate of the voxel it contains. The
lowest index value belongs to the proces-
sor at the back of the beam. When pro-
cessing a beam of voxels, the location of
the clipping plane and any voxel value(s)
considered to be transparent are broad-
cast to all processors on the voxel multi-
ple write bus. If a processor contains a
transparent voxel value or if it lies in the
clipped region, the processor disables
itself during the current round of beam
processing. Each of the remaining pro-
cessors then places its index value on the
Voxel Depth Bus bit by bit, starting with
the most significant bit. In each round of
bit processing, all active processors
simultaneously place their next bit value
on the bus. The bus does an “or” on the
values and retains the largest value as
the current Voxel Depth Bus value. Then
each active processor examines the bit
value on the bus, and if it is not equal to
the processor’s own bit value, the proces-
sor disables itself for the remainder of
the processing of the current beam. One
processor eventually remains, and the 3D
Viewing Processor uses that voxel value
and depth for colonization and shading.

The key elements to the ability of
the Cube architecture to form an ortho-
graphic projection rapidly are the
skewed-memory configuration in the CFB
and the voxel multiple write bus design.
The CFB memory organization supports
simultaneous access to a beam of voxels.
The design of the voxel multiple write
bus enables rapid determination of the
voxel in the beam closest to the observer.
A recent modification to CFB addressing
allows for conflict-free retrieval of voxels
from the CFB when performing
nonorthographic projections. To perform
arbitrary parallel and perspective projec-
tions, three additional 2D buffers were
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added to the machine. This new architec-
ture performs parallel and perspective
projection by retrieving a plane of projec-
tion rays from the CFB and then by us-
ing the additional buffers to align the
plane for conflict-free projection-ray re-
trieval. Every projection ray within each
plane is then analyzed by the voxel mul-
tiple write bus to determine the projec-
tion of that ray. Additional information
on this enhancement appears in
Kaufman and Bakalash [19901.

The Cube machine exploits parallelism
at the beam level, where it processes full
beams simultaneously using the CFB
skewed-memory organization and the
simple logic in the voxel multiple write
bus. The estimated35 Cube machine per-
formance varies depending on the type
of operation it must perform. A 512 x
512 x 512 voxel volume can be rendered
to a 512 x 512 pixel image using ortho-
graphic projection, shading, translu-
cency, and hidden-surface removal in
0.062 sec. Use of the modified CFB ac-
cess scheme results in a 0.16 sec. esti-
mated rendering time for an arbitrary
projection of a 512s voxel volume.

4.4 The Mayo Clinic True Three-Dimensional
Machine and ANALYZE

The Mayo Clinic machine, Harris et al.

[1979, 19861, Hefferman and Robb [1985a,
1985 b], Robb [1985, 1987], Robb and
Barillot [1988, 1989], Robb and Hanson
[1990], and Robb et al. [1986], is the only
machine described in this survey that
provides a true 3D display. The system
performs image-rendering operations in
a workstation without using parallel pro-
cessing. The design objectives of the
system are to provide an environment
suitable for flexible visualization and
analysis of 3D data volumes and to pro-
vide a true 3D display capability. The
system achieves the first objective by us-

35Estimated performance figures are based upon
printed circuit board technology; higher speeds
are anticipated with the VLSI implementation
currently under construction,

ing the cooperating processes in the
ANALYZE 36 system. The True 3D ma-
chine architecture achieves the second
objective by displaying up to 500,000
voxels/sec as a continuous true 3D im-
age. The central concept of the ANA-
LYZE software system is that 3D image
analysis is an editing task in that proper
formatting (editing) of the scene data will
highlight the important 3D relation-
ships. In addition to 3D operations, the
ANALYZE system supports a wide vari-
ety of interactive 2D scene editing, 2D
display, and image analysis options. The
system displays true 3D images using a
varifocal mirror assembly consisting of a
mirror, a loudspeaker, and a CRT. 37 Fig.

ure 14, based upon Robb [1985], presents
a diagram of the True 3D display system.

The True 3D machine’s hardware
and data format were designed to permit
rapid image display. The machine ac-
complishes true 3D display by storing
the rendered data slices in high-speed
memory from where they are output at a
real-time rate to a CRT that projects onto
a varifocal mirror. The key to the high-
speed memory to CRT data transfer rate
is the use of a custom video pipeline
processor to perform intensity transfor-
mations on the voxel data before display.
The four intensity transformation opera-
tions are displaying a voxel value at
maximum CRT intensity, displaying a
voxel value at minimum CRT intensity,
passing the value through unchanged,
and modifying the value using table
look up. A 2-bit field appended to each
voxel value controls the operation of the
pipeline. As each voxel value enters the
pipeline, the pipeline processor uses
the 2-bit field value to determine the
intensity transformation operation to
apply. Once the pipeline finishes proces-

3tiANALYZE for UNIX workstations is avadable
from CEMAX, Inc., 46750 Freemont Blvd., Suite
207, Freemont, California 94538. UNIX 1s a trade-
mark of AT&T Bell Laboratories.
37The loudspeaker is used to vibrate the mirror
synchronously with the CRT display at 30
frames/see
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Figure 14. True 3D machine architecture

sing a voxel value, it forwards the

value to the CRT for immediate display

upon the varifocal mirror.

The ANALYZE 38’39 software system

produces the input image frames for the

True 3D system. ANALYZE is a set of

communicating processes running within

the workstation, with each process de-

signed to perform a different class of op-

erations. In addition to forming true 313

images, ANALYZE processes perform

user interface management, interprocess

communication, 3D object-editing tasks,

and surface and volume rendering, To

facilitate rapid processing of the image,

ANALYZE maintains the entire image

within a shared block of memory. Robb

[Robb and Barillot 1988, 1989; Robb and

Hanson 1990; Robb et al. 1986] discusses

the operation of all the ANALYZE modu-

38This software package runs on standard UNIX
workstations.
~9Another software system that uses multiple, inde-
pendent, cooperating modules to visualize multidi-
mensional medical image data is described in Raya
[1990].

lUS. We summarize their operation here.
Figure 15 depicts the hierarchical rela-
tionships between the ANALYZE
processes.

Image processing begins when the host
workstation uses the TAPE or DISK pro-
cessio to bring an image volume into the
machine and convert the data into
the format required by the machine. The
DISPLAY processes perform manipula-
tion and multiformat display of selected
2D sections within the 3D volume as well
as rendering of 3D transmission and re-
flection displays of the entire data set.
DISPLAY can render projections of the
volume only along one of the three major
axes. The 2D section display process uses
the 3D data set to produce a series of 2D
slices that lie parallel to one of the three
coordinate axes. The 2D section display
process supports windowing, threshold-
ing, smoothing, boundary detection, and
rotation to produce the desired 2D views.

4“Combined into the MOVE processes in Robb and
Barillot [1989] and Robb and Hanson [19901.
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Figure 15. ANALYZE processes in the Mayo Clime True 3D
machine (from Robb et al [1986b].

DISPLAY forms 3D transmission and re-
flection displays by using ray-tracing
techniques to render parallel projections
of the 3D data set. A reflection display,
which provides an image closely resem-
bling a photograph, can be either a 3D
shaded-surface display or a transparency
display. DISPLAY constructs shaded-
surface displays by terminating the ray
as soon as the ray either intersects a
voxel lying within a specified threshold
or exits image space. This is essentially a
technique for surface rendering by
thresholding. DISPLAY computes a
transmission display from either the
brightest voxel value along each ray
(max-min display) or the weighted aver-
age of the voxel values along each ray
that lie within a specified threshold
(radiographic display). DISPLAY gener-
ates radiographic displays by applying
an a-channel-based image composition
technique to a single transparent surface
and an underlying opaque surface within
the volume. DISPLAY uses thresholding
to exclude other surfaces from the final
image. DISPLAY determines the value
returned by a ray by weighting the total

lighting intensity value along the ray by
the composite a-channel value along the
ray. ~l DISPLAY determines the lighting
intensity value along a ray by calculat-
ing the reflection at the transparent sur-
face, the light transmitted through
the surface, and the reflection at the
opaque surface. DISPLAY bases its ci-
channel calculations upon three factors.
These are the orientation of the trans-
parent surface relative to the light source,
a weighting value for a based upon the
orientation, and an assigned maximum
and minimum a-channel range for the
transparent surface.

The OBLIQUE~z process generates and
displays arbitrary oblique views of the

41The formula, from Robb and Bardlott [198S 1, is:
I = Itsp*u + (1– a)*Iopq where a = amin +
( amax – amin)*cos p O. amin and ccmax define the
light transmission coefficient range, o is the angle
between the surface normal and the light source,
and p 1s the distribution coefficient for the a chan-
nel range assigned according to cos 0, p normally
lies m the range 1 s p <4
421ncluded in the DISPLAY processes in Robb and
Barillot [1989] and Robb and Hanson [1990]
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3D volume on the 2D CRT. OBLIQUE
performs many of the same 2D-slice dis-
play functions as DISPLAY but can ren-
der arbitrary oblique projections of
the volume. The process uses nearest-
neighbor interpolation to facilitate rapid
rendering of the 2D display. To help ori-
ent the operator, OBLIQUE presents a
cube-shaped outline of the imaged vol
ume on the CRT, with the current oblique
cutting plane position displayed within
the cube. As the operator changes the
position of the cutting plane, the system
responds with a 2D display of the desired
section, an update to the cutting plane
position within the cube, and a display of
the intersection of the oblique plane with
the sagittal, transverse, and coronal 2D
planes.

The MIRAGE process is the heart of
the True 3D display system. This process
consists of several modules that format
the data, perform arbitrary rotations of
the formatted data, window out selected
voxel values, specify and display oblique
planes through the data, and accomplish
dissolution/dissection.i3 MIRAGE dis-
plays the results of these computations
upon the varifocal mirror as a true 3D
image. Data formatting is a preprocess-
ing operation that reduces the 128 input
image planes down to 27 display frames
and appends a 2-bit field to the voxel
values. MIRAGE uses these 27 rendered
frames to generate the 3B image. The
rendered frames can also be interactively
edited by other modules within iMI-
RAGE. MIRAGE uses the 2-bit field to
perform dissolution, dissection, and win-
dowing operations. MIRAGE performs
digital dissection by setting the voxels in
the region to be removed to black.
MIRAGE accomplishes dissolution simi-
larly, except that it gradually fades vox-
els to black over the course of several
passes instead of setting them to black in
one pass. MIRAGE displays arbitrary
oblique planes using one of two operator-

-—
43Dissolution appears as tissue dissolving, or melt-
ing, away. Dissection appears more as a peeling
away of overlying layers.

selected formats. An oblique plane can
be displayed within the volume either by
selectively “dimming” the voxels around
the desired plane or by superimposing a
sparse, bright cutting plane overthe data.
MIRAGE forms the displays by appropri-
ately reducing or maximizingthe inten-
sity of the affected voxels.

After MIRAGE completes its rendering
operations, it places the resulting data
values into a 27-frame stack within the
high-speed buffer. The high-speed buffer
dumps the stack to the system’s CRT
in back-to-front order synchronously with
the vibration of the varifocal mirror. The
observer sees the rendering in the varifo-
cal mirror. The images appear to be con-
tinuous in all three dimensions, and
the operator can look around foreground
structures by moving his or her head.

The EDIT44 process provides interac-
tive modification of the data in memory
by thresholding and object tracing. The
MANIP (MANIPULATE in Robb and
Barillot [1989] and Robb and Hanson
[1990]) processes support addition, sub-
traction, multiplication, and division of
the voxel values in memory by scalar
values or other data sets. These pro-
cesses can enhance objects in addition to
interpolating, scaling, partitioning, and
masking out all or portions of the vol-
ume. MANIP also provides the capability
for image data set normalization, selec-
tive enhancement of objects within the
image data, edge contrast enhancement,
and “image algebra” functions. After the
MANIP, EDIT, MIRAGE, and/or
DISPLAY processes isolate the region(s)
of interest, the BIOPSY45 processes can
be used to gather values from specific
points and areas within the region.
BIOPSY performs two functions. The first
function is the display of a set of serial
2D slices extracted from the volume at
the orientation set by its server pro-
cesses. The display allows the operator to

44Included in the MANIPULATE processes in Robb
and Barillot [1989] and Robb and Hanson [1990].
451ncluded in the MEASURE processes in Robb and
Barillot [1989] and Robb and Hanson [1990].
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specify subregions to be examined inter-

actively. Within each subregion,

BIOPf5Y’s second function is to perform

point sampling, line sampling, and area

sampling with histogram, mean, and

standard deviation information provided

for the indicated subregion.

The SURFACE*G process is responsi-

ble for identifying and extracting speci-

fied surfaces from the volume. The

process supports interactive isolation of

the surface to be extracted, formation of

a binary volume by thresholding using

an operator-specified threshold window,

and extraction of the binary surface. The

process stores the extracted surface as a

list of voxel faces and can display the

surface on a CRT as a set of contours or

as a shaded 3D volume. The PROJECT47

process creates user-specified projection

images of the volume by altering the

view angle, dissolution range, and dissec-

tion parameters. 48 The MOVIE 49 process

displays the projection sequences.

MOVIE displays provide the operator

with additional information concerning

the composition of the volume by exploit-

ing motion parallax, tissue dissolves, dis-

section effects, and combinations of

these effects.

There is no parallelism in the Mayo

clinic True 3D machine. For true 311

images on the varifocal mirror, the sys-

tem can display up to 27 frames every

second (this rate is required to form the

true 3D image) at a resolution of 128 x

128 pixels. The True 3D machine is fully

operational at the Mayo Clinic as is the

ANALYZE software system. ANALYZE

performance depends upon the worksta-

tion that hosts the software.

461ncluded in the DISPLAY processes in Robb and
Barillot [1989] and Robb and Hanson [1990].
471ncluded m the DISPLAY processes in Robb and
Bardlot [1989] and Robb and Hanson [1990],
48Dissolution range sets the number of projections
performed and the amount of dissolution (fading) to
be applied over the sequence The dissection pa-
rameters specify the starting and ending coordinate
values of the planes to be shced away and the
number of projections to be performed.
4gIncluded in the DISPLAY processes in Robb and
Bardlot [1989] and Robb and Hanson [1990]

4.5 Medical Image Processing Group

Machines

The Medical Image Processing Group
(MIPG) has developed a series of ma-
chines [Artzy 1979; Artzy et al. 1979,
1981; Chen et al. 1984a, 1984b, 1985;
Edholm 1986; Frieder et al. 1985a,
1985b; Herman 1985, 1986; Herman and
Coin 1980; Herman and Liu 1978, 1979;
Herman and Webster 1983; Herman
et al. 1982; Reynolds 1983b] that pro-
duce surface renderings of medical im-
ages. The machines rely upon shading to
provide depth cues. We describe the oper-
ation of 3D98, the last version of the
machines, in this section. The MIPG se-
ries of machines is unique among those
discussed in this survey in that the pri-
mary design objectives are low system
cost with acceptable image quality rather
than rapid image formation. The current
MIPG machine [Raya et al. 1990; Udupa
et al. 1990] adopted these same design
objectives, but this machine provides a
3D medical imaging capability using a
PC-based system. The MIPG machines
achieve their primary design objective by
reducing the amount of data to be manip -
ulated.50 To reduce the data volume, the
MIPG researchers developed many of
the surface-tracking and contour extrac-
tion techniques described elsewhere in
this survey. The MIPG machines use the
cuberille51 data model, a derivative of
the voxel model.

3D98 uses the minicomputer that con-
trols the x-ray CT scanner to perform all
surface-rendering calculations. The
3D98-processing strategy is to reduce the
computational burden by reducing the
rendered data volume. 3D98 implements
this strategy in two stages. First, 3D98
isolates the object of interest early in the
image formation process by applying

50Another system for performing 3D medical image
rendering using a CT scanner processor is outlined
in Dekel”[1987r
51Cuberille—the division of a 3D space into cubes,
much as quadrille is the division of a 2D space mto
squares, using three mutually perpendicular sets of
umformly spaced parallel planes,
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a segmentation operator to the data
volume. The resulting isolated object is
represented in a 3D binary array. The
second portion of the strategy further
reduces the computational burden by us-
ing surface-tracking operations. The out -
put from the surface tracker is a list of
cube faces that lie upon the surface of the
object. When compared to the volume of
data output by the CT scanner, the two-
step preprocessing strategy greatly re -
duces the amount of data to be rendered
and shaded. The segmentation and
surface-tracking functions, however, in-
evitably discard scene information as
they operate. Selection of a new object or
a change to the object of interest requires
reprocessing the entire volume to detect
and render the new desired surface.

The 3D98 image-rendering procedure
has three steps. The first step, interpola-
tion and segmentation, produces a binary
array of cubic voxels from a set of paral-
lelpiped-voxel-based slices. In this step,
3D98 interpolates the voxel values pro-
duced by the CT scanner and extracts the
desired object from the volume. A binary
array holds the output of this step. The
entries in the array that contain ones
correspond to cubes within the object of
interest. The entries in the array that

contain zeros correspond to cubes in
the scene background. The second
step is surface tracking. The input to
this step is the binary array produced in
step one; the output is a list of faces of
cubes. Each face on the list lies on the
border of the object and so separates a
voxel labeled O from a voxel labeled 1.
The faces on the list form a closed con-
nected surface. The surface depicts the
object that contains the cube face identi-
fied by the user as the seed face for the
surface-tracking process. Further details
can be found in Herman and Webster
[1983] and Frieder et al. [1985b]. The
third and final image processing step is
shaded-surface display. The input to this
step is the surface defined in the list
output from step two. The output is a
digital image showing the appearance of
the medical object when viewed from a
user-specified direction.

The 31398 machine produces images
slowly. A single 256 x 256 pixel
image can take 1 –3 minutes to render

and display. There is no parallelism in
the machine. There is one CPU, that
found in the CT scanner, and it performs
all the rendering calculations. The MIPG
3D98 machine is fully operational.

4.6 Pixar / Vicom image Computer and Pixar I
Vicom II

The Pixar/Vicom Image computer 5Z
and the Pixar/Vicom 115s are com-
mercially available, general-purpose
graphics computers. The Pixar/Vicom
machines require a host computer for
nonimage computing functions such as
network access, the program develop-
ment environment for the Chap (Channel
Processor) C compiler and Chap assem-
bler, and the user interface. We drew
the following material from Carpenter
[1984], Catmull [1984], Cook [19841,
Cook et al. [1984, 1987], Drebin
et al. [1988], Levinthal and Porter [1984],
Ney [1990bl, PIXAR [1988a, 1988b,
1988c, 1988d, 1988e]; Porter and Duff
[19841; Robertson [19861; Springer [19861.
We limit the following description and
analysis of these machines to the image
processing algorithms supplied with the
Pixar/Vicom machines. Since the algo-
rithms are software encoded, however,
the user can modify them.

The unique processing requirements of
the motion picture special effects and an-
imation image composition environment
drove the Pixar/Vicom Image computer
and Pixar/Vicom H software and hard-
ware designs. The techniques used in
both Pixar/Vicom machines for render-
ing, antialiasing, image compositing,
rotation, scaling, and shading are de-
scribed in Carpenter [19841, Catmull
[1984], Cook [1984], and Cook et al. [1984,
1987]. The concepts developed in these
papers form the basis of the Pixar/Vicom
approach to 3D medical image rendering.

52Pixar is a trademark of Plxar, Inc.
53Vicom is a trademark of Vlcom, Inc.
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The needs of the image-compositing pro-

cess strongly influenced the data struc-

ture used in both machines. The data

structure, called a pixel, consists of three

12-bit color channels (red, green, and

blue) and the 12-bit transparency (alpha)

channel required for compositing an im-

age. This four-channel format also sup-

ports the display of voxel data. The red,

green, and blue channels hold object

space coordinate values, and the alpha

channe154 holds the voxel value. The de-

signers chose a four-channel data strut-

ture because it permits simultaneous

operation upon the four components of

each pixel by the four-component parallel

processing unit, the Chap. The Chap is

the basic processing unit of the

Pixar/Vicom computer systems.

The two Pixar/Vicom machines are

general-purpose graphics computers that

use a limited amount of special-purpose

hardware. The hardware provides sup-

port for, but not implementation of, conl-

puter graphics algorithms as well as 3D

medical imaging volume and surface-

rendering algorithms. The machines’ de-

sign exploits SIMD parallel processing at

the pixel level to obtain high-speed im-

age generation and allows for system ex-

pandability by using a modular machine

design. Figures 16 and 17 present the

overall design of the two machines.

The basic Pixar/Vicom Image com-

puter system has one Chap, one video

board, one memory controller, and three

8MB (24MB total) memory boards, with

the option of equipping the system

with three 32MB memory boards for

a total of 96MB of memory. The sys-

tem can be expanded to three Chaps.

With three Chaps, up to six 32MB

memory boards can be installed, giving

a maximum of 192MB of memory for the

system.

The basic Pixar/Vicom II system con-

sists of one Chap and one Frame Store

54The a-channel is a data structure used in 3D
medical image compositmg to control the blending
of voxel values as described in Porter and Duff
[1984]

Processor (FSP)55 with 12MB of image

memory. The Pixar/Vicom II can be ex-

panded to two Chaps and three memory

boards. The memory boards can be any

combination of FSP memory, Frame Store

Memory (FSM), and Off-screen Memory

(OSM) 56 boards, Both the PiXar/ViCOm

Image computer and Pixar/Vicom II sys-

tems can support the display of image

frames with 48-bit color and 1280 x 1024

pixel resolution at up to 60 frames/

sec. The Pixar/Vicom II also supports

monochrome image display at 2560 x

2048 pixel resolution.

The Pixar/Vicom machines use the

Sysbus (System bus) to connect to

the host computer’s57 1/0 bus. The Sys-

bus transmits address and data packets

between the host and the Pixar/Vicom

machine. The Sysbus gives the host ac-

cess to the control unit, the address gen-

erator, and memory. The four Chap ALU

processors are tightly coupled to the

Scratchpad image memory. Each Chap

communicates with peripherals or other

Chaps over the Yapbus (Yet Another

Pixar Bus). Chaps communicate with

picture memory using the Pbus

(Processor Access Bus). The Pbus moves

bursts of 16 or 32 pixels between the

Chap and picture memory. The Chap is

55The FSP board contains a video display processor
that generates the analog raster Image and mem-
ory control circuitry that allows Chap and host
memory access m parallel with video display opera-
tions. The memory appears as a linear array of
32 x 32 four-component pixels called tiles
5GThe FSM on the FSP contains 12MB of memory,
and the OSM board contains 48MB of memory.
Neither the FSM nor the OSM contain display
hardware. The memory model used in the OSM M
Identical to that in the FSM, the difference m the
boards being that an image stored in an OSM must
be moved to a FSP board for display whereas an
image stored in an FSM is moved within the same
board to an FSP for display,
57The host can be a Sun 3, Sun 4. Sihcon Graphics
IRIS 3100, Sdicon Graphics 4D, or Digital Equip-
ment Corp. Micro VAX II~Ultrix or VMS Sun M a
trademark of Sun Inc
Sdicon Graphics is a trademark of Silicon
Graphics Inc.
IRIS is a trademark of Silicon Graphics Inc.
MicroVAX 1s a trademark of DEC Inc.
Ultrix is a trademark of DEC Inc
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Figure 16. Pixar/Vicom Image computer block diagram (from
PIX88C)
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Figure 17. Pixar/Vicom II block diagram (from PIXAR 1988c).

responsible for communicating with pe -

ripherals and other computers, receiving

instructions from the host, and perform-

ing image processing operations. The

memory controller handles scheduling

of data transfers between video memory

and the Chaps. The Scratchpad mem-

ory can store up to 16K pixels (16 lK

scan lines) of data for use by the Chap

processor. There are four segments

within the Scratchpad memory, with each

segment used to store one channel of the

pixel word.

The heart of the rendering system

is the Chap, a four-ALU, one-multiplier

machine controlled by an Instruction

Control Unit (ICU). The Chap operates

as a four-operand vector pipeline with a

peak rate of 40 MIPS (10 MIPS/ALU).

The Chap can process two different
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wa Pbus
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Figure 18. Chap programmer’s model (from PIXAR 1988c)

data types: 4-channel, 12-bit/channel in-

teger (the pixel format), and 12-bit single

channel integer. Figure 18 contains a

model of the data paths available between

Chap components and the remainder of

the machine.

A crossbar switch connects the four

ALU elements and the multiplier in the

Chap with the Scratchpad memory. The

switch allows the multiplier and ALUs to

operate in parallel, with the Mbuses used
to load data into the multiplier and the
Abuses used to load data into the ALUs.
The ALUs and multiplier use the Sbus
(Scalar bus) for reading and writing sin-
gle pixel channels. The ICU uses the
Sbus for distributing instructions to the
ALUs, multiplier, and buses. The ICU
also calculates Scratchpad memory ad-
dresses. The address space for ICU pro-
gram memory consists of 64K words of
96 bits each and is completely separate
from Scratchpad memory.

When performing 3D medical imaging,
the machine operates upon volume data
sets comprised of voxels organized into
slices. At the user’s discretion, each voxel
can be classified by its coordinates, color,
opacity, and/or refractive index during
the course of processing the data volume.
Processing begins by classifying the
voxel-based medical image data into ma-
terial percentage volumes composed of
voxels represented by the pixel data
structure. The number of material per-
centage volumes formed depends upon
the number of materials the user wants
to visualize. One material percentage
volume must be formed for each mate-
rial. The Pixar/Vicom system performs
medical image voxel classification using
either user-supplied criteria or a proba-
bilistic classification scheme. The
Pixar/Vicom machines represent each
voxel in a material percentage volume
using the pixel data structure. In a mate-
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rial percentage volume, the amount of a
given material (such as bone, fat, or air)
present in the original data voxel
determines the corresponding pixel’s a-
channel value. The rendering system
generates the composite volume for a
given set of appearance conditions by
forming other pixel-based data structure
representations of the original space,
then composing these representations
into a final image .58

The Pixar/Vicom system performs
volume compositing by combining the a-
channel values for the material percent-
age volumes with the a-channel values
stored in other voxel-based volume repre-
sentations derived from the original voxel
data. These representations are the matte
volume, the color volume, the opacity
volume, the density volume, and the
shaded color volume. The matte, color,
opacity, density, and shading effects de-
sired in the final image determine the
a-channel values in these volumes. The
rendering software combines the a-
channel values from each volume type to
render a single composite view of the
original image space. Matte volumes pro-
vide the capability for passing an arbi-
trary cutting plane or shape through the
volume or for highlighting specific mate-
rial properties in a region. The color and
opacity volumes are themselves compos-
ite volumes formed using material per-
centage volumes and the color and
opacity values assigned to the type of
material in each volume. A two-step
procedure computes the a-channel value
assigned to each pixel data structure in
the color and opacity composite volumes.
First, the rendering system forms prod-
uct volumes by calculating the product of
the a-channel value for each voxel in a

5sLevoy describes a different, ray tracing-based ap-
proach to 3D medical image volume rendering in
Levoy [1988a, 1988b, 1989a, 1989b, 1990a, 1990bl,
Levoy et al. [1990], Plzer et al. [1989a, 1989bl.
Levoy’s technique performs material classification
on a voxel-by-voxel basis as each ray progresses
through the volume and relies upon the use of
an octree and adaptive ray termination to rapidly
render 3D medical images.

material percentage volume and the

color/opacity value assigned to that ma-

terial. One product volume must be

formed for each material percentage vol-

ume. Then for each composite pixel data

structure in the desired color or opacity

volume, the rendering system sums the

corresponding a-channel values of all the

product volumes to compute the compos-

ite pixel data structure’s a-channel

value.

The rendering system extracts bound-

aries between materials by forming a

density volume. The density volume is

a composite volume formed from the sum

of the products of the pixel data strut-

ture’s u-channel voxel values in each

material percentage volume and the cor-

responding assigned material density.

The largest density gradient occurs where

rapid transitions between materials with

different densities occur. The system cal-

culates the gradient vector between each

voxel and its neighbors and stores the

result in two separate volumes—the sur-

face strength volume and the surface

normal volume. The surface strength

volume contains the magnitude of the

density gradient. The surface normal

volume contains the direction of the gra-

dient. The rendering system uses the

surface strength volume to estimate the

amount of surface present in each voxel.

The renderer uses the surface normal

volume in shading calculations.

The rendering system computes the

shaded color volume by compositing

the surface normal volume, the surface

strength volume, the color volume, the

given light position(s) and color(s), and

the viewer position using a surface re-

flectance function. The system also takes

surface scattering and emission into ac-

count when computing shaded-color vol-

ume values. The renderer assumes that

the amount of light emitted from a voxel

is proportional to the amount of lumi-

nous material in the voxel. The system

determines the amount of luminous ma-

terial in a voxel using the material

percentage volumes.

Three-dimensional medical image

rendering begins by forming the shaded-
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color volume. Then, the rendering sys-
tem transforms the shaded-color volume
according to the user inputs; finally, it
resamples the shaded-color volume for
display. All of the above-mentioned vol-
ume types need not be formed for every
image. The rendering system determines
the volumes to compute based upon the
type of data to be viewed and the repre-
sentation desired. The number of vol-
umes computed determines the total time
required to render the final image.

The Pixar/Vicom machines perform
parallel operations at the pixel data
structure level. The number of Chaps in
the machine and the type of processing
performed determine the amount of par-
allelism realized. Since there can be no
more than 3 Chaps in a machine, no
more than 12 pixel data structure level
calculations can be performed simulta-
neously. The high pixel data structure
throughput of the Pixar/Vicom machines
comes from their use of algorithms
designed to use computationally inexpen-
sive calculations at the pixel data struc-
ture level and from specially designed
processors that can quickly process pixel
data structures. The time required to
form a 3D medical image from a 256 x

256 x 256 voxel volume can vary from a
few minutes to an hour. The amount of
time required depends upon the number
of slices in the volume and the number of
different volumes required to be formed
to render the final image. Vicom cur-
rently markets the Pixar/Vicom
machines.

4.7 Reynolds and Goldwasser’s Voxel
Processor Architecture

Reynolds and Goldwasser describe the
Voxel Processor in Goldwasser [1984a,
1984b, 1985, 1986], Goldwasser and
Reynolds [1983, 1987], Goldwasser et al.
1985, 1986, 1988a, 1988b, 1989] and
Reynolds [1983a, 1985]. The Voxel Pro-
cessor machine provides near real-time
2D shaded-surface display while support-
ing volume matting, threshold window
specification, geometric transforma-
tion, and surgical-procedure simulation

operations on a 3D volume. The Voxel
Processor is a special-purpose, dis-
tributed-memory machine whose only ap-
plication is the pipelined processing of
voxel-based 3D medical images. 59 The
machine processes discrete, voxel-based,
subcubes of object space in parallel. Each
subcube is a 64 x 64 x 64 voxel volume
formed by an octantwise recursive subdi-
vision of object space. The machine’s
design allocates one processor to each
subcube, thereby allowing all subcubes
to be rendered simultaneously. Succes-
sive stages of their image-rendering
pipeline merge the subcube-derived 2D
surface renderings in back-to-front order
to form a single image.

The design objective for the Voxel Pro-
cessor is to perform real-time 3D medical
image rendering. The processing strat-
e~ adopted to achieve this goal has two
components. One component is installa-
tion of the image-merging and small
image-generation algorithms in hard-
ware instead of software. This decision
sacrifices implementation flexibility for
processing speed. The other component is
the use of medium-grain parallelism
within the image-rendering pipeline.

There are seven components to the im-
age processing pipeline. These compo-
nents are the host computer, the object
access unit, the object memory system
(64 modules each storing a 64 cube of
voxels), the processing elements (PEs),
the intermediate processors (IPs), the
output processor (OP), and the postpro-
cessor. Figure 19 presents a diagram of
the machine.

The host computer handles object data
acquisition, database management, and
complex object manipulation. The host is
also responsible for generating two
Sequence Control Tables (SCTS). The
processors use the SCTS to control the
back-to-front voxel readout sequence as
decided in Reynolds [1985]. The object
access unit supports object database

69A commercial machine incorporating the parallel
primitives introduced in the Voxel Processor archi-
tecture M described in Goldwasser [1988a]
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Figure 19. Voxel Processor architecture (based upon Goldwasser
and Reynolds [1987].

management by the host and manages

communication between the Voxel Proc-

essor and host. The object memory sys-

tem (Oi?IS) provides the 16MB of RAM

required to hold the 256 x 256 x 256

voxel image. The OMS stores the voxel-

based object data within 64 memory

modules distributed among the 64

processing elements.

The PEs render images from their

64 x 64 x 64 voxel subcubes of the vol-

ume. Each PE has two 128 x 128 pixel

output buffers, a copy of the SCTS, an

input density look-up table, and an arith-

metic processor. During operation, each

PE accesses the data in its own subcube
in back-to-front order. The back-to-front
series of computations on the subcube
stored at the PE yields the 2D subimage
of the volume that is visible given the
current set of user-editing inputs. This
2D image contains the visible voxel val-
ues and their image space z’-distance
values. The PEs place the 2D image into
one of their two output buffers for use by

the 1P.

The next two stages of the pipeline
perform the task of merging the 64 sepa-
rate pictures produced by the PEs into a
single picture that portrays the desired
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portion of the volume. To perform the

merge operation, the eight IPs and the

OP use the SCTS to determine the input

picture position offsets and memory ad-

dresses. Each of the eight IPs merges the

minipictures generated by its set of eight

input PEs into one of its two 256 x 256

pixel output buffers. The OP forms the

final image by merging the contents of

the eight 1P output buffers into a 512 x

512 pixel frame buffer. Once the image is

in the frame buffer, the postprocessor

prepares the image for display. The post-

processor is responsible for shading,

brightness, and pseudocoloring of the fi-

nal image using texture maps and either

distance or gradient shading.

Two critical steps in the operation of

the Voxel Processor are subimage merg-

ing at the IPs and OP and mapping the

voxels from object space to image space

at the PEs. The machine accomplishes

these operations under the control of two

SCTS. Each SCT contains eight entries,

one for each octant of a cube. The host

computer determines the two SCTS based

on the desired orientation of the output

image, sorts the entries in both SGTS

into back-to-front order, then broadcasts

them to the processors in the machine.

SCT1 contains the back-to-front octant

ordering for the desired scene orienta-

tion. The lPs and OP use SCT1 to per-

form the back-to-front merging of the

subirnages output from the PEs and IPs.

The PEs use SCT2 for back-to-front gen-

eration of subimages from their individ-

ual subcubes of the volume.

The Voxel Processor uses parallelism

at two different levels to attack the

surface-rendering throughput bottleneck.

First, within each of the first two stages

of the processor pipeline there is parallel,

independent operation by the PEs and

IPs on disjoint sets of voxels. Second,

each stage of the pipeline operates inde-

pendently due to the dual buffering of

the output from each stage. Since each

stage operates independently on a differ-

ent output frame, at any one time there

are four frames in the pipeline. This de-

gree of parallelism is responsible for the

claimed real-time performance, 25 frames

of 512 x 512 pixels each per second, at-
tained by the Voxel Processor. The Voxel
Processor was only proposed, never built.
The uniprocessor-based Voxelscope 1160
uses slightly modified Voxel Processor
algorithms. Dynamic Digital Displays
sells the Voxelscope II machine.

SUMMARY

The use of 3D techniques for medical
imaging is still controversial. Although
many physicians consider it a major
breakthrough, some prominent ones op-
pose it, mainly because of the processing
assumptions made to create 3D displays.
For example, interpolation is commonly
used, which, in clinical terms, is not pre-
cise but is nevertheless required to
achieve scene continuity. Two broad
issues remain to be addressed: clinical
applicability and clinical utility. Con-
vincing physicians that 3D images have
clinical utility requires continued re -
search into 3D medical imaging architec-
tures that provide improved image
quality at faster rendering rates (ap-
proaching real time) with an easy-to-use
user interface. To establish 3D medical
imaging’s clinical applicability requires
psychophysical studies on large numbers
of patients. These psychophysical studies
have yet to be performed. In addition,
psychophysical studies can help to an-
swer a broader question. What are the
genuine physician and clinical require -
ments for 3D medical imaging? Psy-
chophysical studies may disclose that
computer cycles spent on one aspe@ of
the 3D medical imaging process could be
better spent on another.

In this article we discussed various
solutions to the problems of displaying
medical image data. These solutions
ranged from the general-purpose (e. g.,
the MIPG machine, which uses insight-
ful algorithms on the computer available
in the imaging modality equipment, and
the Mayo Clinic ANALYZE machine) to
the specialized (the Pixel-Planes ma-

6’)Voxelscope II is a trademark of Dynamic Dlgltal
Displays, Inc
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chines, Kaufman’s Cube, and the Voxel
Processor). In all cases, certain tradeoffs
were evident. In particular, we noted that
the general-purpose solutions are either
slow or use expensive equipment,
whereas the special-purpose solutions are
quite powerful but limited to solving only
one problem. Underuse of these special-
purpose machines diminishes their cost
effectiveness.

This situation is not an unexpected one;
as we implied at the beginning of the
article, the field of 3D medical imaging
has special needs. It behooves us to learn
from the attempts discussed here and to
combine these lessons with the state of
current technology. Then, we can move
closer to providing broadly available
general-purpose 3D medical imaging
systems that have the performance and
effectiveness of contemporary special-
purpose systems. Although the presenta-
tion of such solutions should not be
a part of the present survey, we
shall delineate our conclusions and
some research avenues we are currently
pursuing.

First, the special-purpose-hardware
solutions indicated the right approach but
do not go far enough—parallel computa-
tion, on as massive a level as possible
and in a grain amenable to using the
hardware by other tasks. These other
tasks should be of interest to medical
care providers, since these 313 medical
imaging machines have to be situated in
hospitals and clinics at least until ultra-
high-speed communication media are
available. This implies that parallel
machine solutions should be provided by
fairly general-purpose multiprocessor
computers.

Second, the basic data for the display
should be the actual slice data, possibly
with interpolated data added. Additional
processing should only be done when
requested by the user. This is a contro-
versial conclusion. It can be supported
only after the 3D medical imaging com-
munity performs the psychophysical
studies mentioned earlier.

Third, the need for new approaches
to the 3D medical imaging task is still

with us. For the foreseeable future, hard-
ware cannot provide the processing speed
needed to generate photorealistic images
in real time. Gl Insightful algorithms and
concepts that reduce the computation-
al burden are required. This need is es-
pecially critical because the medical
imaging modality community continues
to increase the resolution of their
equipment.

Last, any hardware support necessary
to create a real-time environment should
take the form of coprocessor or special-
purpose display hardware. The coproces-
sor or special-purpose hardware should
be separated relatively cleanly from the
actual general-purpose processor(s). This
separation is present today in some
general-purpose, high-powered commer-
cial graphics machines like the Titan,
Stellar, and AT&T machines referenced
in Table 2.

APPENDIX A: HIDDEN-SURFACE REMOVAL
ALGORITHMS

Hidden-surface removal algorithms fall
into three classes: scanline based, depth
sort, and z-buffer. Scanline-based algo-
rithms have found little application
in 3D medical image processing. This
section describes four hidden-surface re-
moval algorithms: depth-sort, z-buffer,
back to front, and front to back.

A depth-sort algorithm requires sort-
ing the scene elementsGz according to
their distance from the observer’s view-
point, then painting them to the frame
buffer in order of decreasing distance.
See Frieder [1985a] for an example. The
depth-sort algorithm developed by
Newell, Newell, and Sancha illustrates
the major operations. Three steps are
performed after rotating the scene. First,

‘l For a discussion of graphics hardware and its
foreseeable ~erformance hmltations, see England
[19s91 ‘
621n Appendices A-F, the term scene element
is used to signify the basic data element in the
contour (ID), surface (2D), and volume (3D) data
models.
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sort scene elements bythe largest z’-coor-
dinate of each scene element. Second,
resolve conflicts that arise when z’-
extents of scene elements overlap using
the tests described in their paper. Third,
paint the sorted list to the display buffer
in order of decreasing distance. Since the
scene elements nearest the observer are
written last, their values overwrite the
values of the scene elements they ob-
scure. The resulting image displays only
those scene elements visible from the ob-
server’s position.

The z-buffer algorithms use the same
pixel-overwriting strategy used in the
depth-sort algorithm, but they imple-
ment the strategy using the frame buffer
and a z-buffer. The frame buffer stores
pixel intensity values. The z-buffer is a
data structure with the same dimensions
as the frame buffer. The z-buffer stores
the z’-value of the portion of the scene
element mapped to each pixel. Before
rendering the scene, the z-buffer is ini-
tialized with the largest representable
z-value, and the display buffer is initial-
ized to a background value. During ren-
dering, the projection of each scene
element into image space yields a depth
Z(X, y) at screen position (x, y) = (u, u).
If the newly computed value for Z( x, y)
is less than the current value of Z( x, y)
in the z-buffer, then the new Z( x, y) re-
places the old Z( x, y) in the z-buffer, and
the intensity value for the scene element
at Z( x, y) replaces the intensity value at
screen position (x, y).

A third technique for hidden-surface
removal is back-to-front (BTF) readout of
the scene as discussed in Frieder et al.

[1985 al. This algorithm accesses the en-
tire data set in BTF order relative to the
observer. In most circumstances, this
method of access requires sorting the data
set by z’-value before the algorithm can
be used. In the 3D medical imaging
environment, however, sorting is not re-
quired because the array of scene ele-
ments emerges from the scanner in sorted
order. Therefore, the only required work
is reading out the scene elements in cor-
rect BTF order. This algorithm is sim-
pler to implement than the z-buffer

algorithm and requires less memory since
there is no z-buffer to maintain. Note
that the scene elements can be read out
in order of decreasing x’ or y’ or z’ coor-
dinates. The fastest-changing index is
chosen arbitrarily. The algorithm has two
steps. First, rotate all scene elements to
their proper location in image space.
Then, extract the scene elements from
image space in BTF order and paint them
into the frame buffer.

The fourth technique for hidden-surface
removal is front-to-back (FTB) readout of
the scene as discussed in Reynolds et al.
[19871. Front-to-back algorithms operate
in basically the same way as BTF algo-
rithms. There are two differences. First,
the FTB sequence for reading out scene
elements is determined by increasing z’
distance from the observer. Second, once
the algorithm has written a scene ele-
ment value to a point in screen space, no
other scene element value may be writ-
ten to that same point in screen space.

APPENDIX B: RAY TRACING

Ray tracing is a technique for locating
and shading the visible surfaces within a
scene. It operates by following the path
taken by rays of light originating at the
observer through screen space and on
into image space. The interaction of the
light color with the material(s) encoun-
tered by the ray determines the value
assigned to the intersected screen space
pixel. The appeal of ray tracing comes
from its ability to produce “ photorealis -
tic” or “lifelike” images by modeling
complicated reflection/refraction pat-
terns and transparency.

Whitted’s [1980] paper is the seminal
work in ray tracing. It describes a
ray-tracing scheme that incorporates a
shading model into the recursive ray-
castng image-rendering calculations,
thereby producing high-quality, photore-
alistic images. Ray tracing operates by
casting primary rays from screen space
into image space. Whenever a primary
ray intersects a surface, three types of
secondary rays are spawned- shadow
ray(s), a reflection ray, and a refraction
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ray. A ray-casting tree maintains the
parent -child relationship between the
primary ray and all shadow, reflection,
and refraction rays subsequently
spawned from it. Shadow rays determine
if the object surface is in shadow with
respect to each of the light sources. An
object, 8, is in the shadow of another
object with respect to a given light source
if the shadow ray intersects an object
between the surface of object 8 and the
light source. Reflection and refraction
at the object surface are determined by
spawning reflection and refraction rays
at the object surface intersection point.
These two newly spawned rays gather
additional information about the light
arriving at the ray/object intersection
point. Moreover, whenever reflection or
refraction rays intersect other surfaces
they, in turn, spawn new refraction,
reflection, and shadow rays. All primary
and secondary rays continue to traverse
image space until they either intersect
an object or leave the image space vol-
ume. When ray casting terminates
the ray-casting tree is traversed in
reverse depth order. At each tree node a
shading model (Whitted uses Phong’s63)
is applied to determine the intensity of
the ray at the node. The computed inten-
sity is attenuated by the distance be-
tween the parent and current child node
and is used as the input to the intensity
calculations at the parent node as either
reflected or refracted light,

To render antialiased images, Whitted
projects four rays per pixel, one from each
corner. If the values of the four rays are
similar, the pixel intensity is the average
ray value. If the ray values have a wide
variance, the pixel is subdivided into four
quadrants and additional rays cast from
the corners of the new quadrants. Quad-
rant subdivision continues until the new
quadrant corner rays satisfy the mini-
mum variance criteria, whereupon the

‘i3Any other illumination model may be used, such
as the Cook-Torrance model [1982] as long as the
model is based upon geometric optic concepts and
not radiosity.

intensity of the pixel is calculated from

the area-weighted sums of the values for

the quadrants and subquadrants within

the pixel. Whitted recognized the over-

whelming computational expense of the

intersection testing required by the algo

rithm. He accelerated intersection

test processing by enclosing each object

in a regular-shaped bounding volume G4

(a sphere). A ray-bounding volume in-

tersection test determines if the ray

passes close enough to the enclosed object

to warrant a ray-object intersection test.

An object-ray intersection test is per-

formed only if the ray intersects the

bounding volume of the object; otherwise

the ray continues on its journey through

image space. Because it is much simpler

to determine if a ray intersects the

surface of a regularly shaped volume in-

stead of the possibly convoluted surface

of an object, bounding volume intersec-

tion testing pays off in reduced image

rendering time.

Since Whitted’s paper, research on im-

proved methods for ray tracing has con-

centrated on reducing the computational

cost of ray tracing with additional efforts

directed toward improving the photoreal -

ism of the rendered image. Techniques

for reducing ray value computation time

propose using novel data structures

Fujmoto 1986; Glassner 1984, 1988;

[Kaplan 1987], parallel processing [Dippe

and Swenson 1984; Gudmundsson and

Randen 19901, adaptive ray termination

[@son and Keeler 1988], and combina-
tions of these techniques [Levoy 1988a,

1988b, 1989a, 1989b, 1990a, 1990b; Levoy

et al. 1990]. Techniques for improving

image quality are presented in Cook

[1984], Cook et al. [1984], and Carpenter

[1984]. The references cited concerning

aliasing are also relevant to improving

the quality of ray-traced images. We re-

fer the reader to Glassner [19891 for a

more thorough discussion of principles

“A bounding volume is a regularly shaped con-
tainer, such as a cube, sphere, or cone. which is
used to enclose an object within a volume to be
rendered
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and techniques for ray tracing, as well as

for an extensive annotated bibliography
of this field.

APPENDIX C: IMAGE SEGMENTATION BY
THRESHOLDING

Image segmentation by thresholding is a

technique for locating regions in a scene

that have the same property. There are

two steps in the process. First, the scene

elements must be classified according to

some criteria, usually the voxel value.
For example, the user can define a max-

imum voxel value (a threshold) or a

user-defined range of voxel values (a

threshold window) to separate the
object(s) of interest from the remainder
(background) of the scene. Thresholding
assumes that any voxel meeting the cri-
teria for selection, no matter where it

lies, is part of the object. Since there is

no general theory of image segmenta-
tion, we illustrate the process with two

algorithms—a generic algorithm and
Farrell’s algorithm [Farrell et al. 1984,
1985].

Assume a 2D scene composed of pixels
in which there is one object. The values
assigned to the pixels lying within the
bounds of the object fall within a contin-
uous range of numbers, and no pixel out-

side the object has a value within
this range. Scene size and the screen
resolution are identical. The goal of
the procedure is to form a binary scene.

The procedure forms a binary scene by

assigning all the pixels within the object
a value of 1 and all other pixels a value

of O. One way to accomplish this task is

as follows. First, the user indicates a

range of pixel values that encompasses
the range of pixel values for the object.

Second, starting at the upper-left-hand
corner of the scene, determine the binary
scene values for screen pixels as follows:

If a scene pixel has a value within the
range, assign the corresponding screen
pixel a value of 1; otherwise assign the
screen pixel a value of O. Perform this
operation for all the scene pixels. When
the procedure terminates, display the
object on the screen.

Farrell’s technique [Farrell et al. 1984,
19851 is also straightforward. It differen-
tiates the object of interest from the
remainder of the volume by assign-
ing a unique color to the range of voxel

values that specifies an object. This tech-
nique assumes that the object corre-
sponds to a continuous range of values
(i.e., there are no discontinuities in the
window) and that no other objects are

incorrectly assigned the same color.

Because of the noise and low contrast
encountered in medical image data, seg-
mentation by thresholding often does not

produce an accurate portrayal of soft
tissue or bony objects. As a result,
other image segmentation techniques
have been developed to supplement or

replace the thresholding process. In gen-
eral, these techniques make the segmen-
tation decision on a voxel-by-voxel basis
based upon information lying in the

neighborhood of each voxel rather than
upon a single global threshold setting.
These image segmentation techniques
can be classified into a few different ap-
proaches based on the technique(s) used
to improve the segmentation procedure.
There are the algorithms that apply sta-

tistical analysis [Choi et al. 1989; Fan
et al. 1987; Rounds and Sutty 1979], al-

gorithms that use neighborhood-based
(instead of global) thresholds [Doherty
et al. 1986; Tuomenoksa et al. 1983], al-
gorithms that use a combination of
smoothing and edge detection operators
[Ayache et al. 1989; Bomans et al 1990;
Cullip et al. 1990; Nelson et al. 1988;
Pizer et al. 1988, 1990a; Raman et al.

1990], algorithms that use gradients

[Trivedi et al. 19861, algorithms that use
statistical pattern recognition techniques

[Coggins 1990; Low and Coggins 19901,
algorithms that use image pyramids and

stacks [Kalvin and Peleg 1989; Vincken

et al. 1990], algorithms based upon ex-

pert systems and artificial intelligence

techniques [Acharya 1990; Chen et al.

1989a; Cornelius and Fellingham 1990;

Nazif and Levine 1984; Raya 1989a,

1989b, 1990a; Stansfield 1986], and algo-

rithms that are combinations of these

techniques [Gambotto 1986].
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APPENDIX D: SURFACE-TRACKING
ALGORITHMS

This appendix presents three algorithms
that have been used for boundary detec-
tion and surface tracking. These are

the algorithm proposed in Liu [1977], the

algorithm proposed in Artzy et al. [1981],

and the “marching cubes” algorithm

described in both Lorensen and Cline

[19871 and CHine et al. [19881.

Liu’s algorithm extracts a surface from

a volume by exploiting three properties

of an object: contrast between the object

and surrounding material(s), connectiv-

ity, and agreement with a priori knowl-
edge. The algorithm exploits these three
properties, along with the requirement
that at least one and at most two neigh-
bors of every boundary voxel also lie on

the boundary, to determine the boundary
voxels that outline the object. The possi-
ble boundary voxels are considered to lie

along the curves in 3D space that have
high voxel-value gradient values. Bound-
ary detection begins with the user’s se-

lection of an initial boundary voxel. The

seed voxel is then localized based on a

maximum voxel-value gradient criterion.

The next and all subsequent boundary

voxels are located by examining the

neighbors of the current boundary voxel.

The neighbor that lies across the largest

voxel-value gradient and was not previ-

ously identified as a boundary voxel be-

comes the current boundary voxel. If none

of the gradient values at a given bound-

ary voxel exceeds the minimum gradient

value, the algorithm backtracks to the

immediately preceding boundary voxel.

The preceding boundary voxel once again

becomes the current voxel. The algo-

rithm then searches for another bound-

ary voxel from among the set of voxels

around the current voxel. Liu’s algo-

rithm restricts its search to those voxels

not previously considered as a boundary

voxel. If none of the restricted set of

voxels around the current voxel meets

the minimum voxel-value gradient trite-

ria, the algorithm backtracks again. The

algorithm continues backtracking until

it finds a boundary voxel. The search for

the object boundary then resumes from

the newly identified boundary voxel.

Artzy’s algorithm models the surface

of an object as a directed graph and

translates the problem of surface detec-

tion into a problem of tree traversal.

Artzy et al. [1981] in conjunction with

Herman and Webster [1983] prove that,

given directed graph G whose nodes cor-

respond to faces of voxels separating the

object in the scene from background, the

connected subgraphs of G correspond to

surfaces of connected components in the

scene, Therefore, finding a boundary sur-

face corresponds to traversing a sub-

graph of a digraph. A key property of the

digraph is that every node in the digraph

has indegree two and outdegree two. This

characteristic, in conjunction with the

fact that every connected component of

the digraph is strongly connected, sup-

ports two important conclusions. First,

for every node in the graph there is a

binary spanning tree rooted at that node.

Second, the binary spanning tree is a

subgraph for the digraph and it spans

the connected component containing the

given node. This property of the digraph

guarantees that given a single face of a

voxel on the boundary of an object, every

voxel face in the boundary can be found.

Gordon and Udupa [19891 describes an

improvement to this algorithm.

Artzy’s surface detection algorithm

assumes a 3D array representation for

the 3D scene. The object in the scene is

defined to be a connected subset of ele-

ments of the 3D array. First, a binary

volume representation of the object is

formed by segmentation. The one-voxels

in the binary volume representation are

all the voxels that may comprise the ob -

ject of interest, but the object does not

contain all the one-voxels. The algorithm

separates the object- and non-object

exposed one-voxel faces by finding the

connected subset of exposed one-voxel

faces. The algorithm logically constructs

the binary spanning tree as it proceeds

by locating exposed, adjacent one-voxel

faces and adding them to the tree. The

selected faces are the nodes in the t~.ee.

The algorithm never actually builds the
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tree. Instead, it maintains the important

current aspects of the tree’s status using

two lists. These lists are the list of once-

visited nodes and the list of nodes to

be considered.

To start the algorithm, the user speci-

fies a seed voxel. An exposed face of the

seed voxel is the root node of the binary

spanning tree. When the algorithm visits

a node in the binary spanning tree,

the node is made current and is checked

against a list of once-visited nodes. If the

algorithm previously examined the node,

the node is removed from further con-

sideration since it can never be visited

again. If the node has not been previ-

ously examined, it is added to the list of

once-visited nodes. The algorithm then

adds all the exposed one-voxel faces adja-

cent to the current node to the list of

nodes to be considered. Using a first-in

first-out (FIFO) discipline, the next node

to visit is then selected from the list of

nodes to be considered. Then, the algo-

rithm examines the selected node. The

algorithm terminates when the queue of

nodes to be considered is empty.

The third surface-tracking algorithm is

the “marching cubes” algorithm out-

lined in Cline et al. [1988] and Lorensen

and Cline [19871. This technique pro-

cesses the data in a medical image

volume in scanline order, creating a

triangle-tiled model of a constant density

surface as it moves along. The algorithm

has two basic steps. The first step locates

the desired surface within the cube and

defines it with triangles. The second step

calculates the normals to the surface at

each vertex of each triangle in the cube.

The marching cube performs surface
location. It is a logical cube created from
eight adjacent points, four from each of
two adjacent slices of data gathered by a

medical imaging modality. As the first
step in locating the surface, the data
value at each vertex of the cube is exam-
ined. The algorithm assigns a 1 to a

vertex if its value meets or exceeds the
threshold value that defines the object;
otherwise it assigns a value of O. One-
vertices are within or on the surface
of the object; zero-vertices are outside

the surface. This preliminary processing
roughly locates the surface /cube inter-
section, since the surface intersects the
marching cube only along the edges con-
taining a one-vertex and a zero-vertex.
By inspection, the authors determined
that there are 14 unique cases of sur-
face/cube intersection to be considered.
After the algorithm determines the type
of cube/surface intersection, the location
of the intersection along each “marching
cube” edge is calculated. The algorithm
estimates the location of the intersection
using the result of a linear interpolation
of the data values at the cube vertices on
the edge. The point of intersection
on each edge is a vertex of a triangle. For
shading purposes, the algorithm com-
putes the surface normal at each triangle
vertex based on the marching cube ver-
tex gradient values. By taking the cen-
tral difference of the marching cube
vertex gradient values along the edge
containing the triangle vertex, the algo-
rithm estimates the gradient, and so the
surface normal at the enclosed triangle
vertex. This completes processing for the
current location of the cube, so the trian-
gle vertices and vertex normals are out -
put and the cube marches deeper into
object space.

APPENDIX E: SHADING CONCEPTS

Shading is a computationally intensive
process that attempts to depict the
appearance of a rendered object using
an illumination model. The illumina-
tion model depicts the interaction of
different types of light, from possibly
different sources, at different locations,
with the materials in the scene on a
pixel-by-pixel basis. The characterization
must also consider the position of each
material relative to an observer, the po-
sition of each material relative to each
individual light source, and the composi-
tion and light reflection/transmission
characteristics of each material. Illumi-
nation models are based on the concept
that the amount of light reflected from
and transmitted through an object makes
the object visible. The wavelength of the
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incident light in combination with the
surface properties of the object determine
the amount of light absorbed, reflected,
and transmitted by the object, as well as
the color of the object as seen by the
human eye. The interaction of incident
light with the surface of an object can be
characterized using a combination of
wavelengths in the incident light, its
direction, the type of light source (area,
point, or diffuse), the orientation of the
object surface, and the composition of
the surface.

The two broad classes of illumination
models used in computer graphics are
the global and local illumination models.
Global illumination models provide a
higher quality rendering than local mod-
els, albeit at the cost of additional ren-
dering computations. They characterize
the appearance of each object by consid-
ering many parameters for each object. A
partial list of these parameters includes
the surface properties and orientation of
materials, the location, intensity, area,
and color of all the light sources
that shine upon the object, the amount of
light reflected from surrounding objects,
the distance from the light source(s) to
the object, and the observer’s position.
These considerations allow the renderer
to determine the amount of refracted
light transmitted through the object and
the surface specular and diffuse reflec-
tion. Local illumination models need only
compute the diffuse reflection at the
surface of an object. Local illumination
models base their computations on
the surface orientation of the object,
illumination from a single point light
source (possibly in conjunction with
an area light source), and the ob-
server’s position.

The following global illumination
model [Rogers 1985] considers diffuse and
specular reflection as well as refraction
effects to render the surface of the object.
Figure 20 contains a 2D depiction of the
relationships involved.

Diffuse reflection is caused by the
absorption and uniformly distributed
reradiation of light from the illuminated
surface of an object and appears as a

dull, matte surface. Diffuse reflection can
be modeled using Lambert’s cosine law
for reflection from a point light source for
a perfect diffuser:

I= Ilk~cos8 05+ (1)

1 is the reflected intensity, 11 is the
incident light from the point light source,
k ~ (defined over the range O-1) is the
diffuse reflection constant for the reflect -
ing material, and 0 is the angle between
the surface normal and the light direc-
tion. Because of the large computational
cost involved in computing the illumina-
tion for an area light source, area light
sources are usually treated as a constant
term and linearly combined with the
diffuse reflection computed with (1)
yielding

I. is the intensity of the area light
source and k ~ is the diffuse reflection
constant for the reflecting material.
Because the perceived intensity of light
reflected from an object falls off linearly
with the distance between observer
and object, the intensity for the point
light source computed in (2) is linearly
attenuated.

Ilk~cos8
I = I~k. + 050<;.

d+K

(3)

In (3), d is the distance from the light

source to the object surface, and K is an
arbitrary constant.

Specular reflection is the reflection
caused by light bounding off the outer
surface of an object. It has a directional
component and typically appears as a
highlight on the surface of an object. The
empirical formulas described by Phong
[19751 as well as Cook and Torrance
[19821 model this phenomena. The fol-
lowing discussion is based on Phong’s
model, which considers the angle of the
incident light, i, its wavelength, X, the
angle between the reflected ray and the
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line of sight, a, and the spatial distribu-
tion of the incident light to compute the
specular reflectance of an object, 1s:

IS = @(i, A)cos’ a. (4)

The reflectance function, w ( i, h), gives

the ratio of specularly reflected light to

incident light. The Cosn term approxi-
mates the spatial distribution of the

specularly reflected light. Because W( i, h)

is a complex function, it is usually

replaced by an experimentally deter-

mined constant, k~; k~ is selected to yield

a Pleasing appearance. Combining (3)
and (4) yields the desired global
illumination model:

~l(kd COS@+ kscos’ a)
I = Iak?a +

d+K

Os 05:. (5)

There are more accurate, and computa -
tionally intensive, models than the one

described above, For exam~le, Cook. .
and Torrance [1982] describe a more com-

prehensive model that considers the

material properties of each object and

accurately portrays the resulting reduc-

tion in the intensity of reflected light.

Their model also accounts for the block-

ing of ambient light by surrounding ob-

jects and the existence of multiple light

sources of different intensities and

different areas.

Reflection is not the only lighting effect

to be considered. If transparent objects

appear in the scene, refraction effects

must be allowed for. Snell’s law de-
scribes the relationship between the inci-

dent and refracted angles:

qlsin8 = rlz sin f)’. (6)

In (6), ql and qz are the indices of

refraction of the two mediums; 0 is the

incident angle, and 0‘ is the angle of

refraction. To eliminate the effects that

can arise from an image space approach
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to refraction, the refraction computations
are typically performed in object space
using ray tracing. Simple implementa-
tions of transparency effects ignore
refraction and the decrease in light in-
tensity with distance. These implemen-
tations linearly combine, or composite,
the light intensity at an opaque surface,
Iz, with the light intensity at the trans-
parent surface, 11, lying between it and
the observer. Taking t as the trans-

parency factor for 11, the relationship is

I=tll+(l–t)12. (7)

If IZ is transparent, the algorithm is
applied recursively until it encounters an
opaque surface or until it reaches the
edge of the volume. More realistic trans-
parency effects can be achieved by
considering the surface normal when
computing t.

The computational cost incurred when
using a global illumination model miti-
gates against its use for 3D medical im-
age rendering, especially when rapid
image generation is an important consid-
eration. When combined with ray trac-
ing, however, a global illumination model
yields high-quality 3D medical images.

APPENDIX F: SHADING ALGORITHMS

The following discussion provides an
overview of shading algorithms that have
proven useful in the 3D medical imaging
environment. This overview is not all
inclusive but instead provides a repre-
sentative subset of approaches to
the problem. These algorithms present
several different approaches to rend-
ering shaded surfaces. The first four
-1 ,.”av;4 L_. . distance-only, gradient,
g~~y-sc~lti ~. ddient, and normal-based
contextual shading— use local illumina -
tion models. These algorithms do not
consider lighting effects such as refrac-
tion in their calculations but neverthe-
less provide usable 3D medical image
shading at a reasonable cost in time. The
gradient and normal-based contextual
shading algorithms can be used to imple-
ment an approximation to reflection and
are notable for the simplifying assump -

tions they make to compute the local
surface normal. The Gouraud and Phong
algorithms, on the other hand, are com -
putationally intensive and commonly
used when rendered images of the high-
est quality are desired. The Gouraud
model relies on a global illumination
model to provide the light intensity at
each polygon vertex, then uses this value
to compute the light intensity at points
between vertices. Phong takes the nor-
mal computed at each polygon vertex and
interpolates these values along the edges
in the scene, with the final intensity for
each point determined using a global il-
lumination model.

Distance-only, or depth, shading is the
simplest of the six techniques. Depth
shading does not estimate the surface
normal at the shaded points. Depth shad-
ing assigns a shade to a point on a visible
surface based upon a distance criterion.
The criterion can be the distance of the
point from the assumed light source, from
the observer, or from the image space
z’-axis origin. This computational sim-
plicity comes at some cost, however, in
that it tends to obscure surface details.
This technique is not an object space or
image space surface normal estimation
shading algorithm.

Gradient shading [Chen and Sontag
1989; Gordon and Reynolds 1983, 1985;
Reynolds 1985] is an image space surface
normal estimation algorithm. It com-
putes a realistically shaded image at rel-
atively low computational cost. Because
this technique produces high-quality ren-
derings, it is useful in the 3D medical
imaging environment. The key to gradi -
ent shading is its use of the z:gradient.
The z~gradient approximates the amount
of change in the z~dimension between
neighboring entries in the z~buffer.
After determining the z:gradient, the lo-
cal surface normal can be approximated,
and using this, the light intensity at the
surface can be calculated. The algorithm
estimates the surface normal by first
finding the gradient vector Vz = (a z /a U,
dz/tlu, 1). The derivatives az/au and
a z /d v can be estimated using the central
difference, the forward difference, the
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backward difference, or a weighted aver-
age differencing technique. Taking i, j to

be the current location in the z-buffer,
the d z /d u forward difference is: d z / d U,f

= z: – Z:+l. Using the backward differ-
ence, az/au, b = z; – Z;.l. Using the
central difference, dz/dul C = Z;+l – z;_l.
The d z/d u is estimated similarly. The
surface normal, N, is computed using Vz.
N=O.

Gray-scale gradient shading described
in Hohne [1986], is an object space sur-
face normal estimation method. This
technique, like gradient shading, pro-
duces high-quality 3D medical images.
Gray-scale gradient shading uses the
gray-scale gradient between neighboring
voxel values in the z-buffer to approxi-
mate the surface normal. This approach
uses the ratio of materials comprising a
voxel (i. e., the gray-scale voxel value) in
conjunction with the ratios in neighbor-
ing voxels to compute the depth and di-
rection of the surface passing through
the voxel. The gray-scale gradient ap-
proximates the rate of change in the ra-
tio of materials between the voxel and its
neighbors and hence the rate of change
in surface direction. After determining
the gray-scale gradient, the local normal
can be approximated using a differencing
operation; and using this, the light inten-
sity at the surface can be calculated.

Normal-based contextual shading

[Chen et al. 1984a, 19851 is an object
space surface normal estimation method.
This technique calculates the shade for
the visible face of a scene element using
the estimated surface normal for the visi-
ble face. The algorithm estimates the
surface normal from two factors. First, it
uses the orientation of the visible face for
the scene element with respect to the
direction to the light. Secondj the algo-
rithm considers the orientation of the
faces of adjacent scene elements with re-
spect to the direction to the light. These
two factors provide the context for the
face. For each edge of a face to be shaded,
the algorithm classifies the face adjacent
to that edge into one of three possible
orientations, yielding a total of 81 possi-
ble arrangements of adjacent faces. At

each face, the algorithm stores the ar-
rangement around the scene element face
in a neighbor code. Chen et al. [1984a,
19851 describe how the neighbor codes
can be used to approximate the surface
normals for the face of the central scene
element. If a surface-tracking procedure
is performed before the shading opera-
tion, the context for each face can be
determined at little additional computa-
tional cost. When rendering a medical
image, the algorithm can calculate the
shade at each face using the techniques
described in Chen et al. [1984al or any
other local illumination model.

Gouraud [19711 shading attempts to
provide a high-quality rendered image by
calculating the shading value at points
between scene element vertices. We clas-
sify this algorithm as an object space
surface normal estimation technique.
Gouraud shading relies upon the obser-
vation that shade and surface normal
vary in the same manner across a sur-
face. Gouraud’s technique first calculates
the surface normal at a scene element
vertex, then determines the shade at
the vertex. The algorithm computes scene
element vertex normals directly from the
image data. The algorithm then bilin-
early interpolates these vertex shade val-
ues to estimate the shade at points lying
along the scanline connecting the ver-
tices. Since the interpolation only pro-
vides continuity of intensity across scene
element boundaries and not continuity in
change in intensity Mach band effects
are evident in the images shaded with
this algorithm.

Phong shading [Burger and Gillies
1989; Foley et al. 1990; Phong 1975;
Rogers 1985; Watt 19891 lessens the Mach
band effect present in Gouraud shading
at the cost of additional computation.
Phong’s approach to shading interpolates
normal-vectors instead of shading val-
ues. First, the algorithm computes the
scene element vertex normals directly
from the image data. Then, the algo-
rithm computes the surface normal at
each scanline/scene element edge inter-
section point by bilinearly interpolating
the two scene element vertex normal val-
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ues for that edge. Finally, the algorithm
estimates the surface normal at points
along each scanline within the scene ele -
ment. The algorithm computes these
estimates by bilinearly interpolating
the normals computed at the two scan-
line/scene element edge intersection
points for that scanline. Of the six
shading techniques discussed in this
appendix, Phong shading renders the
highest quality images. We classify this
algorithm as an object space surface nor-
mal estimation method.
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