
SURVEY & TUTORIAL SERIES

Multiprocessor Algorithms for
Relational-Database Operators

on Hypercube Systems

Ophir Frieder

George Mason University

E xploiting parallelism in datahase
processing has heen a r e sea rchoa l
since the early 1970s. Originally,

special-purpose architectures were devel-
oped toprovide thecomputational and inputi
output bandwidth nceded for database
proccssing. More recently. many research-
ers have relied on commercial multipro-
cessor and local area networked systems
hysuch vendorsac Sequent,Tandem, RBN,
DEC, and various hypercubc system man-
uf:~cturers to improve database processing
pcrformance.

This tutorial focuses on hypercube inter-
connected architectures as a computation-
al engine for relational-datahase process-
ing. Like otherarchitecturcswithdistrihuted
memory and resources ("shared-nothing"
architectures", hypercube systems can
support the high IiO bandwidth required
for datahase processing. However, unlike
ltie other architectures, hypercubcs are
scalahle to thouqands ofnotleh. For exam-
ple, NCube Corporation currently manu-
factures hypcrcuhcs comprisinp up to 8,192

As databases expand
and applications

become more diverse,
demands on

computational engines
supporting database
processing increase.

With appropriate
algorithms,

commercially available
hypercube systems can

meet the demands.

nodes. These engines can provide large-
scale concurrency for both interquery and
intraquery processing? and are well suited
for such computationally intensive pro-
cessing as protocol verification using da-
tabase t ~ c h n o l o ~ y . ~

Afterreviewing hypercube systems. this
tutorial hrietly highlights scvcral imple-
mentations oflhe many currently available
hypercube systems and comments on their
potential performance in cvalualing rela-
tional database operators. All algorithms
assume that the relevant data are memory
resident.

The hypercube
multicomputer

A hypercubc graph is an n-dimensional
Boolean cube Q, defined as a cross product
of the complete graph K2 and thc (n-1)-
dimensional Boolean cubeQ,_,, wi thQ, =

Kz. In an architecture based on hypercuhe
interconnection, each node is connected

Novcmhcr I990 I ~ O I X ~ L I I~,?IOD!I I ~ O L I ~ I I I ? ' ~ I I I 1111 L 189n 16rr 13

Figure 1. Various hypercube configurations: (a) one-dimensional. (h) two-dimen-
sional, (c) three-dimensional, (d) four-dimensional.

(or adjacent) to each of its n = logz N
neighbors, where N is the number of nodes.
For example. in a four-dimenqional cube
Q4, node 0000 is adjacent to nodes 0001,
0010,0100, and 1000. Figures la through
Id illustrate the communication paths of
one-dimensional (two-node). two-dimen-
sional (four-node), three-dimenqional
(eight-node), and four-dimensional (16-
node) hypercube systems. Note that each
system consists of N = 2" nodes, with n
being the cubical dimension of the system.
We assume that the node address bits are
numbered 0 to n-I. with the leftmost bit
(bit 0) being the most significant. Existing
hypercube machines include Caltech's
Cosmic C~be ,~In te l ' $ iPSCl2. and NCuhe's
NCubeIl 0.

Nodes communicate by sending mes-
sages in packets. Packet size varies, but
protocol imposes a maximum. Packets,
which in database processing contain tu-
ples, can be sent between any two nodes in
the system, possibly being routed through
intermediate nodes. In current hypercube
systems, typical internode communication
times are on the order of microseconds.'

Synchronization among nodes can be
achieved either through hardware support

or strictly through software. In software
synchronization, areceivingnode "blocks"
until amessage arrives. Thus, the arrival of
a message synchronizes the two nodes.
This blocking sendlreceive technique can
be generalized to synchronize all nodes
within the system. Apossible synchroniza-
tion algorithm for hypercube architectures
is based on a message-sending ordering
techniquecalled recurrive halving, which I
will describe in a later section.

Other hypercube systems use global
hardware lines to synchronize the procec-
sors. A global wired-AND or wired-OR
line is connected to a number ofnodes, and
each node has a local input. The zlobal line
value is the logical AND'ing or OR'ing of
the local inputs. Synchronization is main-
tained by monitoring the changes in the
global line value. For example, if a "global
AND" line is used. all nodec maintain their
local input value at false throughout the
execution of their local task. A global line
value of true implies that all nodes t emi -
nated local execution. Similarly, wired-
OR lines can be substitutedfor wired-AYD
lines by reversing the local line values. The
algorithms presented in this article assume
the availability of global synchronization

lines. These lines necd not be supported by
hardware but may be provided logically by
software.

Other scalable "shared-nothing" archi-
tectures include mesh-based multicomput-
ers and ring-based local area networks.
Each hypercube node requires more com-
munication ports than the nodes making up
meshes and rings, hut thc hypercube inter-
connection significantly reduces the max-
imal comtnunications diameter as com-
pared with meshes and rings. The maximal
communications diameter in a hypercubc
comprising N nodes is logzN as compared
with N/2 and JN in similarly sized rings
and meshcs, respectively.

Hypercube
architectures as
database engines

Database processing requires vast 110
and data-access bandwidth and significant
computational resource$. Hypercube sys-
tems provide all three. Ry horizontally
partitioning relations (see sidebar on pp.
16-17), across a parallel 110 structure like
the disk-per-node 110 subsystem in the
Intel iPSCR, a relation can be read or
written in parallel, if appropriate synchro-
nization primitives are available. Thus.
currently available hypercube systems can
remedy the known 110 bottleneck of data-
base processing.

The degree of 110 parallelism depends
on the partitioning scheme and the data
values relevant to the query. Common
horizontal partitioning techniques include
random, round-robin, hash-based, range-
based, and user-specified distribution of
tuples across the sites. Both the hash-based
and the range-basedpartitioning approaches
allocate the tuples according to the hashed
or actual value of a set of specified attributes.
A round-robin partitioning schemeevenly
distributes the tuples across the sites.

The Gamma Projecth is a hypercube da-
tabase engine initially developed for a
ring-based multicomputer. The system
currently runs on an lntel iPSCI2 hyper-
cube comprising 32 80386-based nodes
with adiskdrive pernode. Gamma exploits
the available parallel 110 capability by
horizontally partitioning the relations
across the disk drives. The relational-
database operator algorithms presented
in this tutorial differ from those devel-
oped forthe Gamma project7 in that they
are not independent from interconnection

14 COMPUTER

topology, and henceareactually optimized
for the hypercube interconnection topolo-
gy.

Database performance is enhanced
whenever the variance in the data distribu-
tion across the various processing sites is
low. Poorly distributedrelations result from
individual database operators that favor a
particular value, for example, a selection.
Independent of the data organization, data
skew islikely to resultduring theprocessing
of some userqueries. For example, consider
the pathological case of a 50-processor
system on which a population database is
partitioned according to states: A range-
based horizontal partitioning scheme based
on the STATEattribute isused, resulting in
each processor accessing data for only a
single state. A query interested in infor-
mation about only the state of Michigan
yields data at only a single processor.
Without redistributing the data, 49 of 50
processors remain idle for the duration of
the query.

Dynamicdata redistribution (on-the-fly
data reorganization) preceding each multi-
scan operator in a query tree has been
proposed toguarantee anear-even workload
across the processors. A multiscan opera-
ror is any operator in which the processing
of an individual tuple involves comparing
its attribute value(s) against other tuples.
For example, the Select is not a multiscan
operator since the relevance of the tuple is
independent of any other tuples. However,
both the Join and Project are multiscan
operators because the relevance of each
tupledepends on the values of other tuples:
unique value in the case of Project, and a
similarvalue in the otherjoining relation in
the case of Join (see sidebar).

Baru and Frieder8 have demonstrated the
reduction in time resulting from executing
a nested-loop Join on a hypercube instead
of a special-purpose, bus-based architec-
ture. The study also demonstrated that data
redistribution on a hypercube system as
part of the Join can be achieved with low
overhead. A 16-node hypercube system
using dynamic dataredistribution achieved
roughly a 15- to 80-percent reduction in
the processing times of various Join com-
putations. The exact savings depended on
the degree of skew in the data distribution.

As databases expand in size and appli-
cations using databases become more di-
verse, the computational engines support-
ing database processing must likewise
continue to improve. Currently, hyper-
cube systems comprising more than 8,000
processors are available commercially.

Figure 2. A~grega t ion example.

Thus, for at least the nearfuture, hypercube
systems meet the computational demands
of database processing.

Hypercube database
algorithms: Uniscan
operations

A query tree is a partially ordered se-
quence of operators initiating at the leaves,
with the result of the query obtained on
termination of root execution. The output
relation of the child operator is the input
relation of the parent operator. The rela-
tions accessed by the leaf nodes are called
base relations and typically are physically
stored in the database. All computed rela-
tions, except for the final output, are called
intermediate relations.

The relational operators can be viewed
as being in one of two categories: uniscan
and multiscan operators. Both Join and
Project are examples of a multiscan oper-
ators since each tuple, in turn, is compared
against a set of tuples. However, both Se-
lect and the aggregation operators are
uniscan operators because the processing
of each tuple is independent of the pro-
cessing of any other tuple.

T h e Select operator. In optimized
query trees, the Select operators are typi-
cally located near the leaf levels of the
query tree. Thus, in a selection on a hori-
zontally partitioned relation, it is common
to assume a uniform distribution of tuples
across the nodes. As Select is a uniscan

operator, each tuple can be processed inde-
pendently. Hence, computing a Select in
parallel requires each node to read its res-
ident tuple set and, for each tuple read,
compare the tuple attribute value against
the desired value. If the node detects a
match, it keeps the tuple.

Aggregation operators. Scalar aggre-
gation operators are an extension to the
relational algebraand include suchuniscan
operators as Max, Min, Count, and Aver-
age. In parallel systems, aggregation is
generally performed in two phases. In the
first phase, each node computes its local
aggregate value. Tuples are accessed as
described for the Select operator. In the
second phase, the global aggregate value
is computed by combining all the local
values at the final destination or target
node.

On a hypercube the global aggregation
phase, phase 2, takes n steps and is based
on a common technique called recursive
halving. As the communications diameter
of the hypercube is n, n steps represent the
minimal number of steps required for the
scalar aggregation, since relevant data can
reside on any node in the cube. In the kth step,
k = 0 ton-l ,nodes whoseleftmost kaddress
bits equal the lcftmost k bits of the target
address receive the intermediate aggregate
value from the nodes that differ in address
from the target in the kth bit.

Figure 2 illustrates an eight-node cube
where node 5 (101) is the target node.
Target node designation is specified in the
query. In step a (k = 0). each of the nodes 0
(000). 1 (001). 2 (01 0), and 3 (01 I) sends
its value to nodes4 (100). 5 (101). 6 (I lo),
and 7 (1 1 I) , respectively. The receiving
nodes. indicated with the letter a, compute
the new aggregate values. These new val-
ues are used in the second step, step b (k =
I) , where nodes 6 (1 10) and 7 (1 11) send
their values to nodes 4 (100) and 5 (101),
respectively. Receiving nodes are marked
by the letter b. Once again, the receiving
nodes compute the new values. Finally, in
step c (k = 2), node 4 (100) sends its value
to node 5 (101), the target node marked by
the letter c, which computes the final re-
sult.

Sometimes the user may wish to aggre-
gate values by categories. For example, in
apopulationdatabase fortheunited States,
a user may want the average age of the
population in each state. In such cases, the
aggregation is performed by repartitioning
the data according to attribute values (cat-

(Continued on p. 18)

November 1990 15

Relational database primitives and nomenclature

Many database-management systems are available to-
day. A majority of the most recently developed systems are
based on the relational-database model, in which the oper-
ators available to the user operate on relational structures.
4n attribute is any symbol from a finite set f = {A,, Al, AP,
..., A,}. A relation !R on the set f is a subset of the Carte-
sian product of dom (A,) x dom (A,) x dom (A2) x ... x dam
(A,), where dom (A,) is the domain of A,. R[A, A, A, ... A,,]
represents on the set {A,. A,. AP. ..., A,} and is referred
to as the schema of 3. In R[A, A, A2 ... A,], each column A,
is called an attribute of R, and is denoted as R.Ai. Each row
of R, namely a tuple, is designated by <a,, a,, as. a,,>,
where a, t dom (A,). The value of attribute A; of tuple x E R
is denoted as HAi]. Similarly, if tuple x E R, then x[W] is the
value of the attributes of attribute set W in tuple x.

For illustration, assume the relations shown in Table A.
Relation EHW has three attributes - EHW.Employee-No.,
EHW.Height, and EHW.Weight - while relation EA has
only two attributes - EA.Employee-No. and EA.Age. Each
relation consists of 16 tuples.

Three of the more common operators in the relational
model include the Select, Project, and Join. These three
operators are formally defined as follows:

Select - The selection on R[XYZ], denoted as C T A = ~ (R), is
defined by

where A is an attribute of R

Project -The projection on R[XYZ], denoted as nA (R), is
defined by

where A is a set of attributes of R.

Join - The Join of two relations R[XYZ] and S[VWX], de-
noted as

R[XYZ] 1x1 S[VWX], is defined by
R[XYZ] 1x1 S[VWX] = { X I x[VWX]
E S and x[XYZ] E R},

where V, W, X, Y, and Z are a disjoint set of attributes. If no
common joining attributes exists, the Join of R and S, is the
Cartesian product of R and S.

Using the above relations,

List all the employees who are 72 inches tall.

E72W [Employee-No. Height Weight]
= CTEHW ~ ~ i ~ h t = 72 (EHW) =

Selecton example:

Employee-No. Height Weight
101 72 195
303 72 180
801 72 187

Table A. Sample relations EHW and EA.

Employee-No. Height Weight / Employee-No. Age 1
Employee Height and

Weight Relation (EHW)

umerate all unique heights of the employees.
.,3i [Height] = nE,w,,,,,h, (EHW) =

Employee Age
Relation (EA)

Projection example:

Height
62
64
67
68
69
70
71
72
73
74

Find the weight and age of all the employees who are
72 inches tall.

E72W [Employee-No. Height Weight] 1x1 EA
[Employee-No. Age] =

A Join example:

Employee-No. Height Weight Age
101 72 195 3 1
303 72 180 34
801 72 187 55

In the project operator, only one <72> tuple exists. That is, the
duplicate <72> tuples generated were eliminated.

A common extension to the relational database is the aggrega-
tion operation. The operator, denoted by aggfN(R), computes a
global aggregate function on attribute set X of the relation R. Ex-

," COMPUTER

am1
clut
exa
ic

~ l e s of an aggregate function, fix), in-
i e Sum, Max, Min, and Average. For
mple, the total sum of the EHW.Height

Note that the above is not equivalent to
the sum of x~,B(P) ,

Additional operators such as Theta-Join,
Union, Difference, and Renaming have
also been incorporated in many existing
database-management systems. For a
complete treatise on the relational-data-
base model, see D. Maier, The Theory of
Relational Databases (Computer Science
Press. Rockville. Md., 1983).

Database Partitioning

In distributed and parallel database sys-
tems, two common relation-distribution
schemes are horizontal and vertical parti-
tioning. A relation RIA. A, A, ... A,] is hor-
izontally partitioned across multiple sites
S, , 0 5 i 5 k, denoted H,,,[A, . A,], 0 5
i 5 k, if x E H,,RI A, AI A? .. ~~1 + x E R[AO
HI A2 ... A,] and U, (HI.,[A, A~ A ~ . . A,]) =
RIA, A, A, ... A,]. Informally, the tuples of
R are partitioned so each site contains a
possibly empty subset of the tuples of the
original relation. A relation R[A,, Al, A2,
..., A,] is vertically partitioned across mul-
tiple sites S,, 0 5 i S k, denoted Vi,RIX,I, 0 5
i 5 k, if (A,. A,. A2, A,} 3 XI, nx, (R) =

V,,R~X~I~ and VO,R[X,I 1x1 V,,R[X,~ 1x1 ... 1x1
VkR(XkI = RIAo A, A2 ... A,]. Simply stated,
vertical partitioning distributes the relation
by attributes so each site contains a num-
ber of attributes from the base relation.
The Join of the partial relations at the indi-
vidual sites yields the original relation:
The Join composition is lossless.

The data-partitioning scheme signifi-
cantly affects the total query-processing
time. If an application requires that at
each site only tuples whose attribute val-
ues fall within a specified range are
present, but that the entire contents of the
resident tuples be available, then horizon-
tal partitioning should be used. Horizontal-
ly partitioning the relation reduces the vol-
ume of data that must be processed at
each site without incurring any interpro-
cessor communication. If vertical partition-
ing is used, additional Joins would be re-
quired to obtain the nonresident attribute
values. The additional Joins result in both
added interprocessor communication and
increased computation.

If an application requires at each site
only a subset of the tuple's attributes.
then vertical partitioning should be used.
Vertical partitioning of the relation reduces
the volume of resident data and makes

unnecessary the projection of the desired
attributes from the original relation. Hori-
zontal partitioning requires a projection on
the union of all the local data sets and re-
sults in additional interprocess communi-
cation.

To see the advantages of each relation-
partitioning scheme, assume that a com-
pany has an Employee-No., Height,
Weight (EHW) database as in Table A
and that it has one geographically distant
division. Further assume that the employ-
ee numbers of all employees at site 1
range from 100 to 499, whereas all em-
ployees at site 2 have employee numbers
ranging from 500 to 899. As all the infor-
mation concerning each employee is re-
quired at the employee's local site, hori-

zontal and not vertical partitioning of the
EHW relation is appropriate. Table B
shows a logical horizontal partitioning of
the EHW.

Now consider the hypothetical situation
that at each site there are freight eleva-
tors with maximum weight limitations and
storage rooms with low ceilings. For each
employee, only weight or height, respec-
tively, is needed to determine whether he
or she can join the people or cargo al-
ready in the elevator or enter the room. In
this case, each local database should be
vertically partitioned, as shown inTable C.

This simple example demonstrates that
a composition of both horizontal and verti-
cal partitioning can reduce the processing
demands.

1 Employee-No. Height Weight 1 Employee-No. Height Weight (
101 72 195 531 64 125

Table 6. A logical horizontal partitioning of the EHW.

Table C. A logical vertical partitioning of the horizontal partitioning of EHW.

Hl,EHW[Ernployee_No. Helght Weight]

V1 ,HI .EHW[Employee_No. Heght Weight]

Hz.~~w[~rnployee No. Helght Weight]

Employee-No
101
106
11 5
210
21 1
301
302
303
304
454

Height
72
69
70
64
74
68
71
72
70
62

V1 !H2 .~~~[~mployee-~o. Height Weight]

Employee-No. Height
531 64
640 73
801 72
802 71
803 73
804 67

V 2 ~ H 1 . ~ ~ ~ [~ m p l o y e e ~ ~ o . Height Weight]

Employee-No
101
106
115
21 0
21 1
301
302
303
304
454

Weight
195
141
182
108
185
172
201
180
165
180

V 2 ! H 2 . ~ ~ ~ (~ m p l o y e e - ~ o . Height Weight]

Employee-No. Weight
531 125
640 21 2
801 187
802 198
803 170
804 21 0

November 1990

Figure 3. Database partitioning for a multiprocessor .loin example.

Figure 4. Broadcast-based Join result.

egories), with each node computing thc
aggregate for the rcsident categories. I dis-
cuss data redistribution according to at-
tribute values in later sections.

Multiscan database
operators

Multiprocessor implementations of the
multiscan database operators can be clas-
sified into two main categories: broadcast-
based and bucket-based. The first catego-
ry, broadcaqt-based, requires that each node,
in turn, broadcast its portion of the smaller

rclation, R I (in the case of a two-relation
operator), or the relation at hand (unirela-
tional operator), to all the system nodes.
All nodes receive the broadcast message
(tuple set) and perform the appropriate
local computation. which involves the res-
ident tuples and the received packet.

Bucket-based solutions include imple-
mentations that rely on sorting and/or
hashing techniques. (Numerous extensions
and modifications to the basic bucket ap-
proach described here appear in the liter-
a t ~ r e . ' . ~ . ~ ~) We characterize any operator-
processing approach as bucket-based if the
approach partitions all the data elements
involved in the operation into buckets ac-

cording to their attribute values. Each buckct
corresponds to a range of attribute values,
and only tuples consisting of attribute val-
ues within the given range reside in the
bucket.

This approach has an advantage over the
broadcast-based approach: Only tuples that
are likely to match are compared with one
another. However, this approach suffers
from the need to repartition both relations
for amultirelational operator. Furthermore,
when one relation is significantly larger
than the other, the communication re-
quirements of the bucket approach result in
greater processing time than a broadcast-
based Join. The time involved in partitioning
both relations instead of only the smaller
relation is greater than the savings ob-
tained by eliminating redundant compari-
sons.

An example illustrates both approaches.
Consider a Join of two relations P and T on
at~ributeB, R[ABCD] =P[ABC] IxlT[BD],
on a three-node multiprocessor where the
relations are partitioned as shown in Figure
3. In the figure, P is shown as the top
relation. Node I contains four tuples, two
of P and two of T. Node 2 contains two P
tuples and two T tuples, while node 3 has
only three T tuples. Clearly the P relation
consists of fewer tuples; hence, we refer to
it as the smaller relation.

A broadcast-based Join algorithm pro-
ceeds as follows. Since P is the smaller
relation, each node in turn broadcasts each
tuple of P to all other nodes. Thus, node 1
will broadcast < I , 6 ,4> and <4,9,2>, node
2 will broadcast <2,6,4> and <3,4,1>, and
node 3 will not broadcast any tuples. End-
of-tuple transmission is indicated by a de-
fault-value broadcast. All nodes monitor
the transmission and compute the local
Join of the broadcasted tuple value and
their local T tuples. Figure 4 illustrates the
resulting relation.

Continuing with the example, initially
the maximal possible joining attrihute(s)
range is computed. This range consists of
actual attribute values and not necessarily
the domain of the joining attribute(s). For
example, the range of B of the "combined"
relation,R, is 1 to9,designatedattr-ran(R.B)
= [1,9]. However, dom(B) may comprise a
much greater range, say the set of natural
numbers. A tighter bound on maximal attr-
ran(R.R) is the intersection of the regions
attr-ran(P.B) = [4,9] and attr-ran(T.B) =
[1.7], namely maximal attr-ran(B) = [4,7].

Once the attr-ran[R.B] is computed, the
corresponding disjoint attribute range is
assigned toeach processor. Assigningeach
processor an attribute range is accomplished

18 COMPUTER

either statically or dynamically. In a sys-
tem using static partitioning, the range
attr-ran(B) is partitionedequally across the
processors. Such a partitioning scheme re-
sults in a skewed processor workload
whenever the distribution of attribute val-
ues is biased.

h dynamic partitioning scheme nullifies
the effects of a skewed tuple distribution.
Randomly sampling a small number of the
joining tuples as part of the previous oper-
ation provides a crude histogram of the
data distribution and hence of the proces-
sor workload distribution. Using this in-
formation. the range attr-ran(R.B) is parti-
tioned to yield a near-optimal workload
partitioning of the Join processing across
the processors. However, likc all dynamic
load-balancing algorithms, dynamic sam-
pling introduces some overhead. The pre-
cise observed reduction in processing time
depends on the skewness of the data and
various machine-specific parameters, for
example. communications overhead.

The example presented here uses static
partitioning. Nodes 1.2, and 3 are assigned
B attribute value ranges 4-5, 6, and 7,
respectively. All tuples of both relations
are redistributed on the basis of their B
attribute value to reside in the proper buck-
et. When the redistribution terminates, all
processors compute the local Join of their
P and T tuples. Figure 5 illustrates the
resulting tuple distribution for the bucket
Join method. Comparison with Figure 4
shows that both schemes produce the iden-
tical relation; however, the relation-parti-
tioning differs.

The Join operator:
A broadcast-based
solution

Because broadcast-based solutions re-
duce communication costs (transmit less
data) at the expcnse of redundant compar-
isons, cnsuring full processor use is vital.
Baru and FriederX describc a three-stage,
broadcast-based Join that guarantees a
nearly even processor workload. First, a
dynamic data-redistribution algorithm re-
ferred to as halancing ensures an even dis-
trihution of input tuples. Incorporating the
balancing step results in a minimal in-
crease incommunication costs but roughly
a 35-percent reduction in the overall Join
procesing time. Once they are evenly dis-
tributed, the tuples are sorted.

In the second stage, the Relation Com-
paction and Replication (RCR) stage repli-

Figure 5. Bucket-hased Join result.

cates the smaller relation R, , originally
stored in a cube of dimension n, so it is
replicated in each of the two equal-sized,
dimension n-1, logical-cube partitions of
the original cube. This primitive's goal is
to increase the number of tuples from R,
stored at each node until the volume of R I
tuples present at each node is the size of
one packet, or until R I has been fully rep-
licated at eachnode. It ensures thatpackets
used in the cycling phase are as full as
possible, and that the packet-formation
overhead per tuple is minimized for the
cycling primitive.

Finally, the cycling primitive sends the
tuples of the smaller relation around in a
ring. Local Joins of the resident tuples and
the pipelined circulated relation are per-
formed simultaneously at each node. Often
the design of each node incorporates dual
buffers, so the broadcast of packet i+l can
overlap the local computation of packet i .

Assuming multiple independent com-
munications processors, the balancing of
two relations simultaneously proceeds as
follows. Initially, the local tuple counts of
the relations R I and R2 are computed.
During each step j (0 < j 2 n-l), the nodes
whose addresses differ in the jth bit ex-
change their local-relation R , tuple count.
The node with the greaternumber of tuples
(if any) then sends the difference of the
average tuple count and itsown tuple count
of tuples to its paired neighbor. Simulta-
neously. the nodes whose addresses differ
in the ((j+l) mod n)th bit balance R2. The
local tuple counts for R I and for R2 are
then recomputed, and the next step is
initiated. After n steps. all nodes contain
roughly the same number of R, and R,
tuples. A more complex halancing algo-
rithm that incorporates the sending-node

number can guarantee a difference of one
tuple per node, per relation. Once balanc-
ing is complete, both relations are sorted
locally.

Figure 6 provides a simplified pseudo-
code description of the single-relation bal-
ancing algorithm. Several instructions re-
quire explanation. The send(addr, data)
and receive(addr, data) send or receive
from nodes whose address is addr the
tuples designated by the set da ta .
Rotate-right(num, count) rotates num's
binary representation rount bits to the right.
Similarly the rotate-left(nltm, count) in-
struction in the RCR primitive (Figure 7)
rotates thenurn's binary representation count
bits to the left. For example, using a four-
bit representation of 1 (OOOI), rotate-left
(1, 1) = 2, rotate-right (1, 1) = 8, and
rotate-left (1, 2) = rotate-right (1, 2) = 4.
Finally, Global AND (GAND) is the global
synchronization line value obtained by
AND'ing all the local synchronization line
values. The ABS, XOR, and CElL instruc-
tions are the mathematical absolute value,
exclusive OR, and ceiling functions, re-
spectively. The node address bits are num-
bered 0 to n-1.

The second stage of the broadcast Join,
relation compaction and replication, pro-
ceeds as follows. Initially the local tuple
count of the smaller relation, say R I , is
computed. During each step j (0 5 j 5 n-I),
the nodes whose addresses differ in the jth
bitexchange their local R, tuplecount. RCR
is possible ifthe combinedvolume (inbytes)
of R, tuples in each pairing of nodes does
not exceed the maximal size of a single
packet. When possible. all nodes transmit
theirtuples to their paired neighbors. While
maintaining a sorted order, the local and
received tuples are merged, and the ncw

November I990 19

begin (RELATION COMPACTION REPLICATION 1

{ Re1 nodes of
Q,, LL8L.z I"-.,m2 , 8Lr,.LaLLut., x,UJ.lber of
no(is halved.
Re on is reached.

P R b u t r l ~ t u PUNL 1 IUNb:
FIRST (k) Function that moves the first I. tuples

of a prespecified relation to a
stated buffer (send-set)

itwisc Exclusive OR of k and j
lobal AND'ing of all local

foe.'. IrJAND)
1oc

otate-left (k, j) R ~ inary representation
its to the left

L node (X)

bXbCU I IVN: Relatlon d~str~buted across all
..,.Aa" :.

EXECUTION
TERMINAT11 of the relation, each

'er a disjoint Q,,~iicmrion)
GAND,,, := t
iteration := 0

SYNCH(GA

Wh egin

{ Intorm nelghhor ot own count ,
f. l R (X, rotate-left (1, iteration)),

own-count):

f-receive (XOR(X, rotate-left (1, iteration)),

eighbur-count);

(0 tion 1 replication is possible]
' (own-count + neighbor-count) >
TAX-TUPLES-IN-PACKET
len GAND,,,, := false;

S

i f GANU then begin (step is possible 1

n)) ,

I C C C I Y C (AUK(A, rolalt. !ell (I . rer ration)).

ltcrat~on := ~reratlon + I :

end
end (I

begin CLE 1

. . . relation p:
1 11;- ,

irtitioned
~a..l:,.*+:"*

across the
> +ha -..- { Generate a routlng table that ylelds a retlex

Gra
fror

lted y code in
n the RCR

les requirc
plication c

:d for the
:ontinues I

later stage
until pack,

:, cycling.
et limitatit

each of th
: step.

, that resu

UT:

CPUT:

Cube d

Reflexi

- . .

INP imension

ive Gray c

(dimensic

,ode routir

~n-cube)

~g table

[OR (k, j)
lYNCH (C

Sen(0 J := U;
Sen(1 1 := 1 ;
curr num nodes := 2:

"I""' ,\
otate the 1

o f k , J h ~sion-cube do begir For 2 to dimer

nodes x 2:

. .

INF

PRI -. ..

'UT:

O R TO

ocal addrc

. . ..

:ss of the

For i := (c u r l - ~ ~ u ~ ~ ~ _ ~ ~ o d e s / 2)
cum-num

j := j + 2;
Send-Array [i 1 :=

+ curr-nurn-no
end;

copies
itioned o\

Send-An
des / 2;

end:
end; { GENERA TE CYCL

ile GAND I and (iter

. .

Figure 8. Cycle-generation pseudocc

n

if compac

AND);

send (X(
tuple-!

---. :... ,

3R(X, roc
ict):
"A", "

tuple-set
own-cou

end

:=tuple-;
nt := own.

set u rece
-count + I

ive-set;
receive-s

2 I

ACTION

end (stc
(while 1

TELATIO

.p possihlt

IN COMP

Figure 7. Pseudocode for relation compaction replication. Figure 9. Initial data distribution.

November 1990

Figure 10. Broadcast-based Join (balancing: (a) step 1. (b) ~ t e p 2, and (c) step 3).
(d) represents the RCR stage.

whosc n-jth address bit is0 keepsl and send logical buckets a through b, inclusive, into
S2. Similarly, nodes whosc n7jth address bit send-set.
is 1 keep S? and send S, . A11 nodes receive After n pairing steps, each node contains
the sent tuples and merge them with those only tuples whose joining attributes fall
kept tuples. Sorted order is maintained. within a dis,joint subrange of the joining
The GET-BUCKET(& b) primitive places dumain. Once both relations are rcdistrib-

Figure 11. Final distribution of broad-
cast Join.

uted, the local Join computation proceeds
in parallel at each node.

Figurc 12 shows a pseudocode descrip-
tion of the bucket data redistribution for a
single relation. As with the balancingoper-
ation. both relations can be redistributed in
parallel, with theone relationusinglinkjat
step j, while the second uses link (j+l) mod
n at step j. In this algorithm. however, ei-
ther the portion of the algorithm that qe-
lects the buckets to exchange during each
node-pairing step or the attrihute-range-
to-bucket-number assignment must be
modified in the code that simultaneously
repartitions the second relation. Also, in
both the balancing and the bucket redistri-
hution algorithms, simultaneous redistri-
bution of both relations does not require
separate links. If the two relations can be
separated erficiently. both relations can be
routed together on the same link. However,
given independent communications pro-
cessors and buffers, the use of multiple
links generally reduces the data-transfer
time. (Omiecinski and Tien describe a
similar repartitioning algorithm that uses
hashing to redistribute the relation^.'^)

With the example in Figure 8, using a
bucket Join algorithm that simultaneously
redistributes both relations resulls in the
following: In each or the three steps, a
maximum of 5,4, and 3 tuples, respective-
ly, are routed in any internode communica-

22 COMPlJTER

..,... ,Tote the significant difference be-
tween the maximal tuple transfer in the
partitioning algorithm compared with the
ruplc-balancing algorithm. Figure 13 shows
the result relationof the Join computation.
As required, both Join approaches result in
the same relation; however, the final distri-
bution varies.

Characterizing
performance
potential

L l l i

las

Herr, I present experimental timings
obtained from a portable hypercuhe-based
database system. The systcm implementa-
tion issues are beyond the scope of this
tutorial but can he found in an upcoming
publication." Thc cvaluuliun focuses on
only the two Join approaches presented
here and incll~des a comparison of thc tim-
i n y obtaincd when [he bala~lcing step in
the broadcast Join is omitted. Only timings
forthe Join operator are providcd since Ihc
processing lime uT llir Join greatly exceeds
that of other colnmon relational operators,
making i t the rnn?prrratinnal pcrlorrnance
bottlcncck in database processing.

I emphasize compritational to differenti-
ate between the 110 and CPU demands
associated with database processing. The
parallel 110 demands are commonly han-
dled through parallelization of the Select
operator, because the Select operators typ-
ically precede all other datahase operators
in optimized query trccs. Nu interproces-
sor communication exists in the Select op-
erator, so performance measurements are
not provided.

The timings presented were obtained us-
ing macros developed at Argonnc National
Laboratories" s x e c u l i ~ ~ g on all Encore
Multimax running the Umax 4.2 operating
system. These macros provided a lully
portablc, sirnuluted, distributed-memory
environment, allowing for syrrem pona-
hility and independcnccfromthc hardware
lirniln(ions uf a particularvendor. The abil-
ity to vary hardware parameterq comes at
rhe expenqe of simulative uverhead. Al-
~huugh the assumed hypercube architec-
ture was simulated, all the datahase algo-
rithms actually cxccutcd as lhuugll they
uit.rt. ru r~r~ i~ lg on an actual hypercube. The
Multimax configuration consisted of 16
processors, cnabling each lupical hyper-
cube node to execute on a dedicarrd node
in the Mnltimax. As the total systcm mcm-
ory compriscd I28 Mbyles, the entire data-
base was memory resident.

for

Figurc 12. Ruckct-bused pnrtitioning pseudocode.

aegln (BULK ,

distributes data by attributets) values. Each bucket has a nonoverlapping
 set of the global attribute domain. The union of the attribute value range

ill the buckets is the global domain. Assumed is that all local tuples are
?ady partitioned into local buckets and must only he rollred to the
7rnpriate processor.

PREDEFINED FUNCTIONS:

GET BUCKET (k , j) Function that ~uoves all the tuples assigned
to buckets k through j inclusive to
a stated buffcr (send-set)

AUK (k. 11 Bitwise Exclusive OR of k and j
rotate-right (k, j) Rotate the binary representation of k? j bits

to the right
rr~rrpr (Y, buckets) Mark the correspotiding bucket for each

tuple in h~~t - fe r Y and move to the
appruprialc mcmury localiu~r

PUT: I.ocal addras of the node (X)

IOR TO EXECUTION: Relation randomly distributed across nodes

:ECU'I'IUN TERMINATION: Tuples dis~ribuled uL.rtrhs uodes according
to attribute value)

It : = 0 ;
t : = N - I:

. j := O to n - I do bcgin

(Select buckets to send 1
if Xlj] = O then begin

send-set := GET-BUCKET ((first + last + 1)/2, last);
last := ([irst + last - I)/2:

end
else begin

send set := GET-Rl!CKTj.T (f i r ~ t , (first + last - I)/Z):
first := (first + last + l)l2:

end
end

aend (XOR(X. rotate-right (1. j+l)). send set):
receive (XOR(X , rotate-rieht (1 , j+l)), reccivc-set);

[Place received tuples into appropriate loci
merge (receive-set, l o r o l - h ~ r r k r t . ~):

end fol- 1
end { IIII(:I<ET 1

11 bins

Novcmbcr 1990 23

\ I I:)

(a)

stead, a synthetic database that better illus-
trates the bchavior of the precented ap-
proaches was constructed.

Thedatabase comprisedrelations of four
different sizes: IK, IOK, IOOK, 1Mtuples.
Each tuple had 24 bytes. Relations were
randomly generated using a uniform-at-
tribute value distribution. The tuples of
each relation were horizontally partitioned
across the nodes using either a uniform
(marked as "ur~iform" on the graph) or a
bimodal skewed distribution (marked as
"skewed" on thc graph).

Rcsults [or multiple-size Jnins are prc-
sented: 10Kx 10K (uniform), IOOKx IOOK
(uniform), 10OK x lOOK (skewed), 1OK x
l0DK (uniform), 1 K x l M (uniform), and
IK x 1 M (skewed). Each Join algorithm
was run on four diffcrenl hypercube con-
figurations: two, four, eight, and 16nndes.
By definition, the smallest hypcrcube is of
dimension 1, so single-node runs are not
included in the timing presentation.

In general, the hroadeast-based Juin, as
compared with a bucket-based Join. reduc-
es thc required co~nmunication at the cx-
pense of redundant computatiun. Redun-
dant comparisons in the broadcast Join
result fro111 the unnecessary comparison of
every tuple in the smallcr rclalion, R , ,
against all tuplcs in the larger relation. R2.
In the bucket-based Join, each tuplc in R2
is compared with only the rclcvanLportion
of R1. In terms of communication require-
ments, unlike the bucket Join where both
relations must be redistributed, the com-
munication dcmands of the broadcast Join

1 require that only R I be routed. Thus, when

Figure 13. Dncket-hased Join cxnmple: (a) step 1, (h) vtep 2, and (c) step 3. Part
(d) represents the f i n d result (burket).

The emulative overhead significantly paring the. two presented .loin approaches.
affects the actual timingsohscrvcd in terrns Because we are intcrcstcd only in seeing
of absolute time. Hence, these timings the similarities and differences hetween
should not be used for comparison against these Join approaches, runs of a standuk~rd
~ [l r e r systems, but nnly as a tool lur corn- benchmark data sct arc not presented. In-

R I andRZare comparablc in size, the bucket
Join is bcttcr. However. if the difference in
the comtnunication timeq for the two Join
approaches is significant (RI is much
smaller than R2), the broadcast Join is het-
ter. The precise si7e disparity is based un
the degree of data skcw and various system
parameters.

The timing results rummarizcd in Fig-
ures 14a through 14r coincide with size
disparity intuition. The scalability of thc
bucket Join exceeds that of the broadcast
Join whcn the relations are comparahle in
s i ~ e (Figures 14a-c), and the broadcast
Join is superior whcn thc rtlatior~s differ in
size (Fipurcs 14c-f).

The graphs also show the pcrfomancz
obtained when thc balancir~g step is not
performed us past of the broadcast .loin.
When the tuples are i~nifnrmly distributed
acrosq the nodes. thc overhead of balanc-
ing is negligible, but the rerl~lction in
processing time resulting from the b a l a ~ ~ c -
ing step is also negligible (Figures 14a, h,

24 COMPUTER

Figure 14. Experimental timing results.

November 1990

-
~cessing (uniform: 10K x IOK) Join processing (uniform: 100K x 100K)

30

3 - o No balance o No balance
o Broadcast o Broadcast

6-

0 -

5 -

0.6 I ' I ~ I I '
0 4

0 1 ' 1 ' 1 ' 1 7 '
8 12 16 20 0 4 8 12 16 20

Number of processors Number of processors

(a) (b)

Join processing (skewed 100K x 100K) Join processing (uniform: 10K x IOOK)
I 12

o No balance
o Broadcast o No baknce
A Bucket o Broadcast

-
0

I - 20
E
F

4 -
I -

2 -

0 I ' I ' I ' I '
4

0
0

1 1 1 7 1 ' 1 '
8 12 16 20 0 4 8 12 16 20

Number of processors Number of processors

(c) (d)

Join processing (uniform: 1 K x 1M)
Join processing (skewed: 1K x l M)

o No balance
n Broadcast
a Bucket

0

01

E .
F

70 -

50 -

30 -

10
20 1

0 10 20

130

110-

90 -

-
0 a,

2 70-

E
F

50 -

30 -

10
0

Number of processors Number of processors
(e) (D

o No balance
0 Broadcast
A Bucket

1 1 1 ' 1 ' 1 7
4 8 12 16

Bucket 1 m
I
Figure 15. Theta-Join example.

begin (Bucket-Based Less-Than Theta-Join I

(Redistributes data of the smaller relation according to attribute(s) values
for a LESS-THAN Theta-Join.

PREDEFINED FUNCTIONS:
XOR (k, j) Ritwise Exclusive OR of k and j
rotate-right (k, j) Rotate the binary representation of k, j bits to the right

INPUT: Local address of the node (X)
An array indicating the lower bound of each bucket of

the larger relation (bounds)
An ordered set comprising all the tuples of the smaller

relation that are resident at the node (tuples).
tuples [i].atlribute is the joining attribute value of
tuple i.

PRIOR TO
EXECUTION: Larger relation distributed according to attribute values

Smaller relation randomly distributed

EXECUTION
TERMINATION: Tuples distributed as required by Theta-Join 1

first := 0:
last := N - I ;
for j := 0 to n - 1 do begin

send-set := 0 ;
num-tuples := I tuples I :
if Xu] = 0 then begin

for i := 1 to num-tuples do begin
send-set := send-set u tuplcs [i];
if tuples [il.attributc r bounds [(first + last + I) 121 then

tuples := tuples - tuples[i];
cnd I for I

last := (first + last - 1)/2;
end [then 1

else begin
for i := 1 to num-tuples do

if tuples [i].attribute <bounds [(first + last + 1) / 21 then
send-set := send-set u tuples [i];

first := (first + last + 1)/2;
end (else 1

send (XOR(X, rotate-right (1, j+l)), send-set);
receive (XOR(X, rotate-right (1, j+l)), receive-set);
tuples := tuples u receive-set:

end I for)
end (Bucket-Based Less-Than Theta-Join I

lgure 16. Theta-Join data-redistribution pseudocode.

d, and e). In fact, if the original tuple
distributionis exactly even across the nodes,
balancing will increase the total process-
ing time. The observed minimal perfor-
mance improvement results from the exist-
ence of some variance, albeit low, in the
number of tuples resident at each node.
However, as the variance of the tuple dis-
tribution increases (Figures 14b and 0, the
savings resulting from balancing become
substantial. Thus, at least when faced with
a skewed distribution of tuples across the
nodes, the balancing step should be incor-
porated as part of the broadcast Join. All
the results show that in a database system
both Join algorithms should be implement-
ed. The system shouldchoose the approach
to employ. depending on the input data set.

The Project operator

Similar to an aggregation operator,com-
puting a Project operator (amultiscan, uni-
relational operator) involves two stages:
local and global duplicate-tuple elimina-
tion. The first stage is local tuple climina-
tion. Traditionally, local elimination re-
quires each processor to son its resident
tuples and remove the duplicates. The
qecond stage eliminates internode dupli-
cates. As the communication requirements
01" the Project operator are a subset of the
Join, either a broadcast or an attribute-
partition scheme is possible.

If broadcasting is used, data replication
is unnecessary because Project is a unire-
lational operator. Hence, instead of RCR.
only relation compaction is required. That
is, in each node pairing, the projected rela-
tion is compacted to only a single node, as
in the aggregation algorithm. A1 each com-
paction, localduplicates areremoved. Once
rclation compaction terminates, the cycling
primitive is applied. In cycling, a copy of
the compactcd, projected relation is circu-
lated. All nodes compare simultaneously
their tuple set against the circulated tuples.
If a duplicate is found, the local node num-
ber is compared with the node number
generating the circulated tuple set. The
local tuple is eliminated if the local node
number is smaller.

A bucket-based Project implementation
is nearly identical to a bucket-based Join
algorithm. As in the Join. the domain is
partitioned across the processors and the
tuples are routed to the appropriate proces-
sor. To reduce the data routed, after each of
the n steps, local duplicate elimination is
performed. Thus, duplicates are eliminat-
ed as soon as possible.

1 COMPUTER

Additional operators

Common set operators such as Union,
Intcrscction, and Difference are typically
incorporated into database systems. These
multiscan operators can bc implemented
using the data-redistribution algorithms
previously described. For example, the
union of relations R[XYZ] and S[XYZl,
written T[XYZ] = R[XYZ] u S[XYZl, can
be implemented by defining the new rela-
tion TIXYZ] as all thc tuples oT R and all
the tuples of S , and then eliminating the
duplicates in T, as in the Project operator.

TheIntersectionofR[XYZ] and S[XYZ],
T[XYZ] = R[XYZ] n S[XYZl, is the Join
of the two relations in which only those
tuples that match in all the attributes are
kept,namely R . X = S . X , R . Y = S . X , a n d
R.Z = S.Z. Finally, the difference of R and
S, TrXYZ] = R[XYZl- S[XYZ], is com-
puted as a Join where only those tuples of
R that do not join with any tuples in S arc
maintained.

Another popular operator that includes
the Join described above as a special case
is the Theta-Join. The Theta-Join of rela-
tions R[X] and S[Y], where X n Y = 0, A
s X , B ~ Y , a n d 0 ~ [= ,# ,< ,< ,> , tJ ,
written R[A 8 B]S, is defined as T[XY] =
{I I y E R, .- E S, such that ![A] 0 z[B], 1. =
.r[X], and z = . r lY]) . Modifying a broad-
cast-bascd Join algorithm to encompass all
the Theta-comparators requires only that
the local equality comparison prcscntly
madc at each node be replaced by the ap-
propriate Theta-comparator.

Because aTheta-Join may rcquirc tuples
in an attribute range to be compared against
tuples in a set of attribute ranges, altering a
bucket-based Join algorithm to support
Theta-comparators requires not only rhat
the local equality comparator be replaced
by the appropriate Theta-comparator but
that the actual tuple-redistribution algo-
rithm be changed to support comparisons
between an attribute range and multiple
other attribute ranges.

Consider a Theta-Join where thc com-
parator operator is Less Than. Relations
R[ABC] and S[DE] are joined so R[B <
DIS. Then, all the R tuples that map to
bucket 2 based on the B attribute must be
compared against all the S tuples that map
to buckets 2 through N inclusive based on
the D attribute, as illustrated in Figure 15.

The algorithm proceeds as follows. Ini-
tially, relation S is partitioned according to
attribute values using the algorithm in Fig-
ure 12. Then, using the same bucket rang-
es, relation R is partitioned into buckets so

all tuples in hucket i (I < i < N) are routed
to those processors rhat contain buckets jii
< j $ N) of relation S. Figurc 16 shows a
pseudocode description of an algorithm
that achieves the necessary bucket-hased
Theta-Join data routing. In contrast to the
algoritlitn in Figure 12, where no addition-
al copy of the data is generated, here mul-
tiple copies of thc data assigned to the
lower numbered buckets are produced, re-
sulting in a vast volume of internode data
transfer. Algorithms for the remaining
Theta-Join comparators likewise result in
a vast replication of data.

perator implementation is crucial,
but fully exploiting multiproces-
sors in database processing in-

volve\ numerous additional database con-
cerns not discussed in this tutorial. Such
topics as data placement, execution-site
selection, query optimization, security, and
recovery must be addressed before large-
scale (thousands of processors) multipro-
cessor database systems become an alter-
native to high-performance mainframe
solutions for very large databases and com-
plex database-based applications.

Acknowledgment

This work was partially performed whilc I
wa\ at Rellcore usingthe computational resources
of the Syracuse University Northeast Parallel
Architccturcs Center (NPAC), which is funded
by DARPAIRADC contract #F306002-XX-C-
003 1 .

I wish lo thank Paul Jackson. Mark Segal.
Brucc Shrivcr. and the anonymow referrrs.
whose input vasllp improved this article.

References
I . M. Stonebraker,"TheCasefor Shared Noth-

ing," Dafu En,?.. Vol. 9. No. 1, Mar. 1986.

2. 0. Frieder and C.K. Baru, "Query Schedul-
ingand SiteSelection AlgorithmsforaCube-
Connected Multicomputer System." Prnc.
IEEE Eighrh I n f ' l Cnnf Di~frihrired Com-
pritin S?srcms, June 1988, CS Press. Los
Alamitos.Calif.,OrderNo. 865,pp. 94-10],

3. 0. Frieder and G.E. Herman, "Protocol Ver-
ification Using Database Technology,"lEEE
.I. Selccnd Arcar in Comm., Vol. 7 , No. 3.
Apr. 1989. pp. 324-334.

NEW
RELEASE

from IEEE COMPUTER
SOCIETY PRESS

I

The Test Access And
Boundary-Scan

Architecture
This tutorial discusses approaches to
design-for-testability between comput-
ers and companies and explains its con-
nection to IEEE Standard 1149.1. It be-
ginsby describing thecircumstances that
lead to thedevelopment of the standard,
introduces boundary-scan techniques,
and provides solutions to problems that
are faced by this technology. Other key
topics include: the structure of a typical
board test program, testing and diagno-
sis of test logic, testing of boards, silicon
implementation and related costs, inter-
facing to scan design, and applications
to system debugging and emulation.

399 poxes. Srpternbpr 1990. Hnrdbound.

lllustmtionc. ISBN 0-8786-90i0-4.

I I Cntnlo,~ No. 2070.

List $55.00 Member $44.00

To order your copy call--
1 -800-CS-BOOKS

IEEE COMPUTER SOCIETY I
THE INSTlNTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC. I I

November 1990

4. C. Seits. "Thr Cosmic Cube," Con~nr. ACM.
Vol. 28. No. I . Jan. 1'18.5. pp. 22-33.

5 . 1V.C. Athas and C.1.. Seitz, "Multicomput-
ers: Message-PasGng Concurrent Comput-
ers," Comprrrcr, Vol. 21, No. 8, Aug. 1988,
pp. 9-24.

6. D.J. DeWitt et al., "The Gamma Database
Machine Project," IEEE Trans. Know~ierl~r
ondData En,?., Vol. 2, No. I . Mar. 1990. pp.
44-62.

7. D. Schneider and D. DeWitt, "A Perfor-
mance Evaluation of Four Parallel Join Al-
gorithms in a Shared-Sothing Multiproces-
sor Environment," Proc. ACM SICMOD
Conf, ACM. New York, May 1989, pp.
110-121.

8. C.K. Baru, and 0. Fr~eder, "Database Oper-
ations In a Cube-Connected Multicomputer
Sy9tem." IEEE Trans Computers, Vol. 38.
No. 6, June 1989, pp 920-927.

9 . C.K. Raru et al., "A Comparison of Join
Algorithms for Hypercubes," Proc. Forrrrh
H?.percuhc Conf,SIAM.Philadelphia, 1989.

10. E. Omiecinski and E. Tien, "A Hash-Based
Join Algorithm for a Cube-Connected Par-
allel Computer," Infirmarion Processirrp
Letrers, Vol. 30, No. 5 , Mar. 1989, pp. 269-
275.

11. 0. Frieder. "A Database-Driven, Parallel
Protocol Verification System Prototype,"
George Mason Univ., Dept. of Computer
ScienceTech. Repon,TR-10-90,Oct. 1990.
Submitted for publication.

12. E. Lusk et al., Portable Proprams for Par-
allcl Processorr, Holt, Reinehart and Win-
ston. Inc.. 1987.

in Database Mar,hincs and Knon.lr<l,~r Rase
Mnchin@.c, M. Kitsuregawa and H. Tanaka. cds..
Kluwer t\cademicPuhlishers, Boston. 1988,pp.
41.5.428.

Frieder, 0.. Darahasr Pmrr.\sing nrr a Crihr-
Conr~ectrtlMultir.omprrtrr, doctoral dissertation,
L:niv. of Michigan, Ann Arbor, Mich., 19x7.

Frieder. 0.. and P. Jack\on, "On the Design,
Implementation. and Evaluation of a Portahle
Parallel Darabase System," Proc. IEEElnr'ICor~f:
Daraha.~e.s. Prrrullfl r3rclrifcrrrrrcs, onrl Their
Applications. CS Press, Lo\ Alamitos, Calif..
Order No. 2035. Mar. 1990. pp. 516-518.

Frieder. 0.. "Fault Tolerance on :i Hypercuhe: A
Datahase Application," to be published in .I. of
S?st~nrs arid Sofrw.are. Nov. 1990.

Kishe, N.. D. Tal, and Q. Li, "A Sequenced
Hypercube Topolopy for a Ma\sively Parallel
Datahase Computer." Proc. Srcnrrrl Syrnp.
Frontic~rs ofMo.csi~,rlv Pnrall~lContpr~ration. CS
Press, Lor Alamitos.Calif..Order No. 892.Oct.
1988. pp. 521-524.

Gamma (ring-based LAN)

DeWitt. D.J..et al.. "Gamma-A High Perfor-
mance Dataflow Database Machine."Proc. Co~!f.
V ~ r y Lar-,qe Dora Rases. 19 86.

DeWitt, D.J., et al.. "A Single-User Evaluation
of the Gamma Database Machine," in Dufrrh(rsc
Macirines and Kriou.lcd~e R o c Mar~trinrs. M.
Kitsuregawa and H. Tanaka, eds., Kluwer Aca-
demic Publishers. Boston. 1988. pp. 370-386.

Rubba (hypercube interconnection used for
routing only)

Boral. H.. "Parallelism in Bubba." Proc. IEEE
First Inf'l S?n!p, or! Darahase.~ in Parallcl ar!d
Disfrihurcd S?.rfenr.s. CS Press, Los Alamitos.
Calif., Order No. 893. Dec. 1988. pp, 68-71,

Experiment Results." Memorandum Report 6 173.
Naval Rese;lrch Laboratory, 19XX.

Orac le (da tabase sof tware f o r NCube's
NCube-2 hypercube)

Oracle ,for rhc NCrrhc 2 - 7Eelrrrnlo,~v OI,PI--
I.~FM.. DOC. No. 50333.0789, Oracle, 1989.

Teradata DRCilOlZ (a customized intcrcon-
nection network)

DBCI1012 Drrru Rusr Conrl,ritrr Sactrnr Munrr-
a/. Doc. No. CIO-0001-Ol, Teradata, 19x5.

Database machine textbooks and tutorials

Boral. H., and P. Faudemay, Dutuho.\~~ Mu-
cl~ines, Lecture Notes in Computer Science.
Springer-Verlag. New York, 1989.

Hurson. A.R., L.L. Miller. and S.H. Paksad.
PorollelArclrirecrrrrc.s,forDaraha.sr S?stems. CS
Press. Los Alamitos, Calif., Order No. 838,
19x9.

Kitsuregawa. M., and 1t.Tanaka.eds.. Darnhoe
Mur.hifrrs a n 0 Know~/rdge I3a.s~ Machines.
Kluwer Academic Publishers, Boston, 1988.

Ozkarahan, E., Dafabascs Machines and Data-
~ O A P Mu,!rr~ement, Prentice Hall. Englewood
Cliffs, N.J., 1986.

Sood, A.K.. and A.H. Qureshi, Daruhu.sr Mo-
c/rirics: Mndrprn Trends urrd Applications.
Springer-Verlag, Heidelherg, Germany, 1986.

Su, S.. Dorohosc Cnmprrters: Principles. Arclri-
rer.trirr.s. urid Tc,chniqrres, McGraw-Hill. New
York, 19x8.

Copeland, G., et al., "Data Placement in Bub-
Further reading b ~ , - P ~ (I C . ACM s i c M o n Conf:, ACM, New

York. 1988. pp. 99-108.

The following list merely highlights some of
the more recent parallel database effr~rts. and is Smith. M., et al., "An Experiment on Response
notmeantto beexhaustive. Foradditional back- Time Scalability in Bubha." Proc. Sirrlr Irif'l
groundandearlierresearch,referto the database Works/rop on Darahase Machines, 19x9.
machine textbooks listed in the last section he-

Tandem (fault-tolerant hus-based) Architec-
tu re O p h ~ r Frieder I \ .I faculty member of the Com-

D L I ~ C I SCICIICC Den.~rtment at G e o r ~ e Mason

Hypercube-based algorithms

Arild, B.. W. Baugsto, and ,J.F. Greipsland.
"Parallel Sorting Methorl, for Large Data Vol-
umes on allypercube Database Computer," Prr~c.
Sisih Inr'l Urork.~hop or1 Darahasc, Marhincs,
1989.

Tandem Datahase Group. "Nonstop SQL. A
Distributed, High-Perforo~nnce, High-Avail-
ability Implementation of SQL," Prnc. Srrond
Inr'l U'ork.shop lli,q/r Pe~;f i~rnra~icr Trarisar,fion
S?stcrns, 1987.

Tandem Performance Group. "A Renchmark of

~n lver \ i ty . From i987 to 1990. he w;is a niem-
her of technical staft in the Applied Research
Area of Bell Communications Research. His
research interests include parallel and distribut-
ed architectures, database systems, operating
systems. and medical imag~ng architectures.

Frieder received his BSc (1984) in computer
arid rnmm~lnirations scienceand his MSc (1985) .. ~~~~ ~~ ~~~~ ~- ~ ~ . .

B ~ ~ ~ , c.K., et "loin on a cube: .na lys i s , Non'top SQL On lhe DehitCreditTranaac'ion3" and PhU (1987) in computer science arid engi-
Simulation, and Implementation." in Database Prflc. ACM SICMOD Cor!f., ACM. New York. neering. a l l from the university o f ~ i c h i g a n . H~
Machines and Knon,lcdsr Rncc Markines, M. 19X8' pp' 337-341. is a memher of Phi Beta Kappa and the IEEE
Kitsuregawa and H. Tanaka, eds., Kluwer Aca- Cnmputer Society.

demic Publishers. Boston. 19x8. pp. 61-74. RRN Butterfly
Frieder can he reached at the Department of

Bratbergaenpen, K., "Algebra Operations on a Rosenau. T.J. and S. JaJodia. "Basic Datahase Computer Science, George Mason University,
Parallel Computer: Performance Evaluation." Operations on the Butterfly Parallel Processor: FairPax, VA 22030-4444.

28 COMPUTER

