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E xploiting parallelism in datahase 
processing has heen a r e sea rchoa l  
since the early 1970s. Originally, 

special-purpose architectures were devel- 
oped toprovide thecomputational and inputi 
output bandwidth nceded for database 
proccssing. More recently. many research- 
ers have relied on commercial multipro- 
cessor and local area networked systems 
hysuch vendorsac Sequent,Tandem, RBN, 
DEC, and various hypercubc system man- 
uf:~cturers to improve database processing 
pcrformance. 

This tutorial focuses on hypercube inter- 
connected architectures as a computation- 
al engine for relational-datahase process- 
ing. Like otherarchitecturcswithdistrihuted 
memory and resources ("shared-nothing" 
architectures", hypercube systems can 
support the high IiO bandwidth required 
for datahase processing. However, unlike 
ltie other architectures, hypercubcs are 
scalahle to thouqands ofnotleh. For exam- 
ple, NCube Corporation currently manu- 
factures hypcrcuhcs comprisinp up to 8,192 

As databases expand 
and applications 

become more diverse, 
demands on 

computational engines 
supporting database 
processing increase. 

With appropriate 
algorithms, 

commercially available 
hypercube systems can 

meet the demands. 

nodes. These engines can provide large- 
scale concurrency for both interquery and 
intraquery processing? and are well suited 
for such computationally intensive pro- 
cessing as protocol verification using da- 
tabase t ~ c h n o l o ~ y . ~  

Afterreviewing hypercube systems. this 
tutorial hrietly highlights scvcral imple- 
mentations oflhe many currently available 
hypercube systems and comments on their 
potential performance in cvalualing rela- 
tional database operators. All algorithms 
assume that the relevant data are memory 
resident. 

The hypercube 
multicomputer 

A hypercubc graph is an n-dimensional 
Boolean cube Q, defined as a cross product 
of the complete graph K2 and thc (n-1)- 
dimensional Boolean cubeQ,_,,  wi thQ,  = 

Kz. In  an architecture based on hypercuhe 
interconnection, each node is connected 
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Figure 1. Various hypercube configurations: (a) one-dimensional. (h) two-dimen- 
sional, (c )  three-dimensional, (d) four-dimensional. 

(or adjacent) to each of its n = logz N 
neighbors, where N is the number of nodes. 
For example. in a four-dimenqional cube 
Q4, node 0000 is adjacent to nodes 0001, 
0010,0100, and 1000. Figures la through 
Id illustrate the communication paths of 
one-dimensional (two-node). two-dimen- 
sional (four-node), three-dimenqional 
(eight-node), and four-dimensional (16- 
node) hypercube systems. Note that each 
system consists of N = 2" nodes, with n 
being the cubical dimension of the system. 
We assume that the node address bits are 
numbered 0 to n-I. with the leftmost bit 
(bit 0) being the most significant. Existing 
hypercube machines include Caltech's 
Cosmic C~be ,~In te l ' $  iPSCl2. and NCuhe's 
NCubeIl 0. 

Nodes communicate by sending mes- 
sages in packets. Packet size varies, but 
protocol imposes a maximum. Packets, 
which in database processing contain tu- 
ples, can be sent between any two nodes in 
the system, possibly being routed through 
intermediate nodes. In current hypercube 
systems, typical internode communication 
times are on the order of microseconds.' 

Synchronization among nodes can be 
achieved either through hardware support 

or strictly through software. In software 
synchronization, areceivingnode "blocks" 
until amessage arrives. Thus, the arrival of 
a message synchronizes the two nodes. 
This blocking sendlreceive technique can 
be generalized to synchronize all nodes 
within the system. Apossible synchroniza- 
tion algorithm for hypercube architectures 
is based on a message-sending ordering 
techniquecalled recurrive halving, which I 
will describe in a later section. 

Other hypercube systems use global 
hardware lines to synchronize the procec- 
sors. A global wired-AND or wired-OR 
line is connected to a number ofnodes, and 
each node has a local input. The zlobal line 
value is the logical AND'ing or OR'ing of 
the local inputs. Synchronization is main- 
tained by monitoring the changes in the 
global line value. For example, if a "global 
AND" line is used. all nodec maintain their 
local input value at false throughout the 
execution of their local task. A global line 
value of true implies that all nodes t emi -  
nated local execution. Similarly, wired- 
OR lines can be substitutedfor wired-AYD 
lines by reversing the local line values. The 
algorithms presented in this article assume 
the availability of global synchronization 

lines. These lines necd not be supported by 
hardware but may be provided logically by 
software. 

Other scalable "shared-nothing" archi- 
tectures include mesh-based multicomput- 
ers and ring-based local area networks. 
Each hypercube node requires more com- 
munication ports than the nodes making up 
meshes and rings, hut thc hypercube inter- 
connection significantly reduces the max- 
imal comtnunications diameter as com- 
pared with meshes and rings. The maximal 
communications diameter in a hypercubc 
comprising N nodes is logzN as compared 
with N/2 and JN in similarly sized rings 
and meshcs, respectively. 

Hypercube 
architectures as 
database engines 

Database processing requires vast 110 
and data-access bandwidth and significant 
computational resource$. Hypercube sys- 
tems provide all three. Ry horizontally 
partitioning relations (see sidebar on pp. 
16-17), across a parallel 110 structure like 
the disk-per-node 110 subsystem in the 
Intel iPSCR, a relation can be read or 
written in parallel, if appropriate synchro- 
nization primitives are available. Thus. 
currently available hypercube systems can 
remedy the known 110 bottleneck of data- 
base processing. 

The degree of 110 parallelism depends 
on the partitioning scheme and the data 
values relevant to the query. Common 
horizontal partitioning techniques include 
random, round-robin, hash-based, range- 
based, and user-specified distribution of 
tuples across the sites. Both the hash-based 
and the range-basedpartitioning approaches 
allocate the tuples according to the hashed 
or actual value of a set of specified attributes. 
A round-robin partitioning schemeevenly 
distributes the tuples across the sites. 

The Gamma Projecth is a hypercube da- 
tabase engine initially developed for a 
ring-based multicomputer. The system 
currently runs on an lntel iPSCI2 hyper- 
cube comprising 32 80386-based nodes 
with adiskdrive pernode. Gamma exploits 
the available parallel 110 capability by 
horizontally partitioning the relations 
across the disk drives. The relational- 
database operator algorithms presented 
in this tutorial differ from those devel- 
oped forthe Gamma project7 in that they 
are not independent from interconnection 
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topology, and henceareactually optimized 
for the hypercube interconnection topolo- 
gy. 

Database performance is enhanced 
whenever the variance in the data distribu- 
tion across the various processing sites is 
low. Poorly distributedrelations result from 
individual database operators that favor a 
particular value, for example, a selection. 
Independent of the data organization, data 
skew islikely to resultduring theprocessing 
of some userqueries. For example, consider 
the pathological case of a 50-processor 
system on which a population database is 
partitioned according to states: A range- 
based horizontal partitioning scheme based 
on the STATEattribute isused, resulting in 
each processor accessing data for only a 
single state. A query interested in infor- 
mation about only the state of Michigan 
yields data at only a single processor. 
Without redistributing the data, 49 of 50 
processors remain idle for the duration of 
the query. 

Dynamicdata redistribution (on-the-fly 
data reorganization) preceding each multi- 
scan operator in a query tree has been 
proposed toguarantee anear-even workload 
across the processors. A multiscan opera- 
ror is any operator in which the processing 
of an individual tuple involves comparing 
its attribute value(s) against other tuples. 
For example, the Select is not a multiscan 
operator since the relevance of the tuple is 
independent of any other tuples. However, 
both the Join and Project are multiscan 
operators because the relevance of each 
tupledepends on the values of other tuples: 
unique value in the case of Project, and a 
similarvalue in the otherjoining relation in 
the case of Join (see sidebar). 

Baru and Frieder8 have demonstrated the 
reduction in time resulting from executing 
a nested-loop Join on a hypercube instead 
of a special-purpose, bus-based architec- 
ture. The study also demonstrated that data 
redistribution on a hypercube system as 
part of the Join can be achieved with low 
overhead. A 16-node hypercube system 
using dynamic dataredistribution achieved 
roughly a 15- to 80-percent reduction in 
the processing times of various Join com- 
putations. The exact savings depended on 
the degree of skew in the data distribution. 

As databases expand in size and appli- 
cations using databases become more di- 
verse, the computational engines support- 
ing database processing must likewise 
continue to improve. Currently, hyper- 
cube systems comprising more than 8,000 
processors are available commercially. 

Figure 2. A~grega t ion  example. 

Thus, for at least the nearfuture, hypercube 
systems meet the computational demands 
of database processing. 

Hypercube database 
algorithms: Uniscan 
operations 

A query tree is a partially ordered se- 
quence of operators initiating at the leaves, 
with the result of the query obtained on 
termination of root execution. The output 
relation of the child operator is the input 
relation of the parent operator. The rela- 
tions accessed by the leaf nodes are called 
base relations and typically are physically 
stored in the database. All computed rela- 
tions, except for the final output, are called 
intermediate relations. 

The relational operators can be viewed 
as being in one of two categories: uniscan 
and multiscan operators. Both Join and 
Project are examples of a multiscan oper- 
ators since each tuple, in turn, is compared 
against a set of tuples. However, both Se- 
lect and the aggregation operators are 
uniscan operators because the processing 
of each tuple is independent of the pro- 
cessing of any other tuple. 

T h e  Select operator.  In optimized 
query trees, the Select operators are typi- 
cally located near the leaf levels of the 
query tree. Thus, in a selection on a hori- 
zontally partitioned relation, it is common 
to assume a uniform distribution of tuples 
across the nodes. As Select is a uniscan 

operator, each tuple can be processed inde- 
pendently. Hence, computing a Select in 
parallel requires each node to read its res- 
ident tuple set and, for each tuple read, 
compare the tuple attribute value against 
the desired value. If the node detects a 
match, it keeps the tuple. 

Aggregation operators. Scalar aggre- 
gation operators are an extension to the 
relational algebraand include suchuniscan 
operators as Max, Min, Count, and Aver- 
age. In parallel systems, aggregation is 
generally performed in two phases. In the 
first phase, each node computes its local 
aggregate value. Tuples are accessed as 
described for the Select operator. In the 
second phase, the global aggregate value 
is computed by combining all the local 
values at the final destination or target 
node. 

On a hypercube the global aggregation 
phase, phase 2, takes n steps and is based 
on a common technique called recursive 
halving. As the communications diameter 
of the hypercube is n, n steps represent the 
minimal number of steps required for the 
scalar aggregation, since relevant data can 
reside on any node in the cube. In the kth step, 
k =  0 ton-l ,nodes whoseleftmost kaddress 
bits equal the lcftmost k  bits of the target 
address receive the intermediate aggregate 
value from the nodes that differ in address 
from the target in the kth bit. 

Figure 2 illustrates an eight-node cube 
where node 5 (101) is the target node. 
Target node designation is specified in the 
query. In step a ( k  = 0). each of the nodes 0 
(000). 1 (001). 2 (01 0), and 3 (01 I) sends 
its value to nodes4 (100). 5 (101). 6 ( I  lo), 
and 7 ( 1  1 I) ,  respectively. The receiving 
nodes. indicated with the letter a, compute 
the new aggregate values. These new val- 
ues are used in the second step, step b (k = 
I ) ,  where nodes 6 (1  10) and 7 (1 11) send 
their values to nodes 4 (100) and 5 (101), 
respectively. Receiving nodes are marked 
by the letter b. Once again, the receiving 
nodes compute the new values. Finally, in 
step c (k = 2), node 4 (100) sends its value 
to node 5 (101), the target node marked by 
the letter c, which computes the final re- 
sult. 

Sometimes the user may wish to aggre- 
gate values by categories. For example, in 
apopulationdatabase fortheunited States, 
a user may want the average age of the 
population in each state. In such cases, the 
aggregation is performed by repartitioning 
the data according to attribute values (cat- 

(Continued on p. 18) 
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Relational database primitives and nomenclature 

Many database-management systems are available to- 
day. A majority of the most recently developed systems are 
based on the relational-database model, in which the oper- 
ators available to the user operate on relational structures. 
4n attribute is any symbol from a finite set f = {A,, Al, AP, 
..., A,}. A relation !R on the set f is a subset of the Carte- 
sian product of dom (A,) x dom (A,) x dom (A2) x ... x dam 
(A,), where dom (A,) is the domain of A,. R[A, A, A, ... A,,] 
represents on the set {A,. A,. AP. ..., A,} and is referred 
to as the schema of 3.  In R[A, A, A2 ... A,], each column A, 
is called an attribute of R, and is denoted as R.Ai. Each row 
of R, namely a tuple, is designated by <a,, a,, as. .... a,,>, 
where a, t dom (A,). The value of attribute A; of tuple x E R 
is denoted as HAi]. Similarly, if tuple x E R, then x[W] is the 
value of the attributes of attribute set W in tuple x. 

For illustration, assume the relations shown in Table A. 
Relation EHW has three attributes - EHW.Employee-No., 
EHW.Height, and EHW.Weight - while relation EA has 
only two attributes - EA.Employee-No. and EA.Age. Each 
relation consists of 16 tuples. 

Three of the more common operators in the relational 
model include the Select, Project, and Join. These three 
operators are formally defined as follows: 

Select - The selection on R[XYZ], denoted as C T A = ~  (R), is 
defined by 

where A is an attribute of R 

Project -The projection on R[XYZ], denoted as nA (R), is 
defined by 

where A is a set of attributes of R. 

Join - The Join of two relations R[XYZ] and S[VWX], de- 
noted as 

R[XYZ] 1x1 S[VWX], is defined by 
R[XYZ] 1x1 S[VWX] = { X  I x[VWX] 
E S and x[XYZ] E R}, 

where V, W, X, Y, and Z are a disjoint set of attributes. If no 
common joining attributes exists, the Join of R and S, is the 
Cartesian product of R and S. 

Using the above relations, 

List all the employees who are 72 inches tall. 

E72W [Employee-No. Height Weight] 
= CTEHW ~ ~ i ~ h t  = 72 (EHW) = 

Selecton example: 

Employee-No. Height Weight 
101 72 195 
303 72 180 
801 72 187 

Table A. Sample relations EHW and EA. 

Employee-No. Height Weight / Employee-No. Age 1 
Employee Height and 

Weight Relation (EHW) 

umerate all unique heights of the employees. 
.,3i [Height] = nE,w,,,,,h, (EHW) = 

Employee Age 
Relation (EA) 

Projection example: 

Height 
62 
64 
67 
68 
69 
70 
71 
72 
73 
74 

Find the weight and age of all the employees who are 
72 inches tall. 

E72W [Employee-No. Height Weight] 1x1 EA 
[Employee-No. Age] = 

A Join example: 

Employee-No. Height Weight Age 
101 72 195 3 1 
303 72 180 34 
801 72 187 55 

In the project operator, only one <72> tuple exists. That is, the 
duplicate <72> tuples generated were eliminated. 

A common extension to the relational database is the aggrega- 
tion operation. The operator, denoted by aggfN(R), computes a 
global aggregate function on attribute set X of the relation R. Ex- 
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ic  

~ l e s  of an aggregate function, fix), in- 
i e  Sum, Max, Min, and Average. For 
mple, the total sum of the EHW.Height 

Note that the above is not equivalent to 
the sum of x~,B(P) ,  

Additional operators such as Theta-Join, 
Union, Difference, and Renaming have 
also been incorporated in many existing 
database-management systems. For a 
complete treatise on the relational-data- 
base model, see D. Maier, The Theory of 
Relational Databases (Computer Science 
Press. Rockville. Md., 1983). 

Database Partitioning 

In distributed and parallel database sys- 
tems, two common relation-distribution 
schemes are horizontal and vertical parti- 
tioning. A relation RIA. A, A, ... A,] is hor- 
izontally partitioned across multiple sites 
S, , 0 5 i 5 k, denoted H,,,[A, . A,], 0 5 
i 5 k, if x E H,,RI A, AI A? .. ~~1 + x E R[ AO 
HI A2 ... A,] and U, (HI.,[ A, A~ A ~ . .  A,]) = 
RIA, A, A, ... A,]. Informally, the tuples of 
R are partitioned so each site contains a 
possibly empty subset of the tuples of the 
original relation. A relation R[A,, Al, A2, 
..., A,] is vertically partitioned across mul- 
tiple sites S,, 0 5 i S k, denoted Vi,RIX,I, 0 5 
i 5 k, if (A,. A,. A2, .... A,} 3 XI, nx, (R) = 

V,,R~X~I~ and VO,R[X,I 1x1 V,,R[X,~ 1x1 ... 1x1 
VkR(XkI = RIAo A, A2 ... A,]. Simply stated, 
vertical partitioning distributes the relation 
by attributes so each site contains a num- 
ber of attributes from the base relation. 
The Join of the partial relations at the indi- 
vidual sites yields the original relation: 
The Join composition is lossless. 

The data-partitioning scheme signifi- 
cantly affects the total query-processing 
time. If an application requires that at 
each site only tuples whose attribute val- 
ues fall within a specified range are 
present, but that the entire contents of the 
resident tuples be available, then horizon- 
tal partitioning should be used. Horizontal- 
ly partitioning the relation reduces the vol- 
ume of data that must be processed at 
each site without incurring any interpro- 
cessor communication. If vertical partition- 
ing is used, additional Joins would be re- 
quired to obtain the nonresident attribute 
values. The additional Joins result in both 
added interprocessor communication and 
increased computation. 

If an application requires at each site 
only a subset of the tuple's attributes. 
then vertical partitioning should be used. 
Vertical partitioning of the relation reduces 
the volume of resident data and makes 

unnecessary the projection of the desired 
attributes from the original relation. Hori- 
zontal partitioning requires a projection on 
the union of all the local data sets and re- 
sults in additional interprocess communi- 
cation. 

To see the advantages of each relation- 
partitioning scheme, assume that a com- 
pany has an Employee-No., Height, 
Weight (EHW) database as in Table A 
and that it has one geographically distant 
division. Further assume that the employ- 
ee numbers of all employees at site 1 
range from 100 to 499, whereas all em- 
ployees at site 2 have employee numbers 
ranging from 500 to 899. As all the infor- 
mation concerning each employee is re- 
quired at the employee's local site, hori- 

zontal and not vertical partitioning of the 
EHW relation is appropriate. Table B 
shows a logical horizontal partitioning of 
the EHW. 

Now consider the hypothetical situation 
that at each site there are freight eleva- 
tors with maximum weight limitations and 
storage rooms with low ceilings. For each 
employee, only weight or height, respec- 
tively, is needed to determine whether he 
or she can join the people or cargo al- 
ready in the elevator or enter the room. In 
this case, each local database should be 
vertically partitioned, as shown inTable C. 

This simple example demonstrates that 
a composition of both horizontal and verti- 
cal partitioning can reduce the processing 
demands. 

1 Employee-No. Height Weight 1 Employee-No. Height Weight ( 
101 72 195 531 64 125 

Table 6.  A logical horizontal partitioning of the EHW. 

Table C. A logical vertical partitioning of the horizontal partitioning of EHW. 

Hl,EHW[Ernployee_No. Helght Weight] 

V1 ,HI .EHW[Employee_No. Heght Weight] 

Hz.~~w[~rnployee No. Helght Weight] 

Employee-No 
101 
106 
11 5 
210 
21 1 
301 
302 
303 
304 
454 

Height 
72 
69 
70 
64 
74 
68 
71 
72 
70 
62 

V1 !H2 .~~~[~mployee-~o.  Height Weight] 

Employee-No. Height 
531 64 
640 73 
801 72 
802 71 
803 73 
804 67 

V 2 ~ H 1 . ~ ~ ~ [ ~ m p l o y e e ~ ~ o .  Height Weight] 

Employee-No 
101 
106 
115 
21 0 
21 1 
301 
302 
303 
304 
454 

Weight 
195 
141 
182 
108 
185 
172 
201 
180 
165 
180 

V 2 ! H 2 . ~ ~ ~ ( ~ m p l o y e e - ~ o .  Height Weight] 

Employee-No. Weight 
531 125 
640 21 2 
801 187 
802 198 
803 170 
804 21 0 
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Figure 3. Database partitioning for a multiprocessor .loin example. 

Figure 4. Broadcast-based Join result. 

egories), with each node computing thc 
aggregate for the rcsident categories. I dis- 
cuss data redistribution according to at- 
tribute values in later sections. 

Multiscan database 
operators 

Multiprocessor implementations of the 
multiscan database operators can be clas- 
sified into two main categories: broadcast- 
based and bucket-based. The first catego- 
ry, broadcaqt-based, requires that each node, 
in turn, broadcast its portion of the smaller 

rclation, R I  (in the case of a two-relation 
operator), or the relation at hand (unirela- 
tional operator), to all the system nodes. 
All nodes receive the broadcast message 
(tuple set) and perform the appropriate 
local computation. which involves the res- 
ident tuples and the received packet. 

Bucket-based solutions include imple- 
mentations that rely on sorting and/or 
hashing techniques. (Numerous extensions 
and modifications to the basic bucket ap- 
proach described here appear in the liter- 
a t ~ r e . ' . ~ . ~ ~ )  We characterize any operator- 
processing approach as bucket-based if the 
approach partitions all the data elements 
involved in the operation into buckets ac- 

cording to their attribute values. Each buckct 
corresponds to a range of attribute values, 
and only tuples consisting of attribute val- 
ues within the given range reside in the 
bucket. 

This approach has an advantage over the 
broadcast-based approach: Only tuples that 
are likely to match are compared with one 
another. However, this approach suffers 
from the need to repartition both relations 
for amultirelational operator. Furthermore, 
when one relation is significantly larger 
than the other, the communication re- 
quirements of the bucket approach result in 
greater processing time than a broadcast- 
based Join. The time involved in partitioning 
both relations instead of only the smaller 
relation is greater than the savings ob- 
tained by eliminating redundant compari- 
sons. 

An example illustrates both approaches. 
Consider a Join of two relations P and T on 
at~ributeB, R[ABCD] =P[ABC] IxlT[BD], 
on a three-node multiprocessor where the 
relations are partitioned as shown in Figure 
3. In the figure, P is shown as the top 
relation. Node I contains four tuples, two 
of P and two of T. Node 2 contains two P 
tuples and two T tuples, while node 3 has 
only three T tuples. Clearly the P relation 
consists of fewer tuples; hence, we refer to 
it as the smaller relation. 

A broadcast-based Join algorithm pro- 
ceeds as follows. Since P is the smaller 
relation, each node in turn broadcasts each 
tuple of P to all other nodes. Thus, node 1 
will broadcast < I ,  6 ,4> and <4,9,2>, node 
2 will broadcast <2,6,4> and <3,4,1>, and 
node 3 will not broadcast any tuples. End- 
of-tuple transmission is indicated by a de- 
fault-value broadcast. All nodes monitor 
the transmission and compute the local 
Join of the broadcasted tuple value and 
their local T tuples. Figure 4 illustrates the 
resulting relation. 

Continuing with the example, initially 
the maximal possible joining attrihute(s) 
range is computed. This range consists of 
actual attribute values and not necessarily 
the domain of the joining attribute(s). For 
example, the range of B of the "combined" 
relation,R, is 1 to9,designatedattr-ran(R.B) 
= [1,9]. However, dom(B) may comprise a 
much greater range, say the set of natural 
numbers. A tighter bound on maximal attr- 
ran(R.R) is the intersection of the regions 
attr-ran(P.B) = [4,9] and attr-ran(T.B) = 
[1.7], namely maximal attr-ran(B) = [4,7]. 

Once the attr-ran[R.B] is computed, the 
corresponding disjoint attribute range is 
assigned toeach processor. Assigningeach 
processor an attribute range is accomplished 
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either statically or dynamically. In a sys- 
tem using static partitioning, the range 
attr-ran(B) is partitionedequally across the 
processors. Such a partitioning scheme re- 
sults in a skewed processor workload 
whenever the distribution of attribute val- 
ues is biased. 

h dynamic partitioning scheme nullifies 
the effects of a skewed tuple distribution. 
Randomly sampling a small number of the 
joining tuples as part of the previous oper- 
ation provides a crude histogram of the 
data distribution and hence of the proces- 
sor workload distribution. Using this in- 
formation. the range attr-ran(R.B) is parti- 
tioned to yield a near-optimal workload 
partitioning of the Join processing across 
the processors. However, likc all dynamic 
load-balancing algorithms, dynamic sam- 
pling introduces some overhead. The pre- 
cise observed reduction in processing time 
depends on the skewness of the data and 
various machine-specific parameters, for 
example. communications overhead. 

The example presented here uses static 
partitioning. Nodes 1.2, and 3 are assigned 
B attribute value ranges 4-5, 6, and 7, 
respectively. All tuples of both relations 
are redistributed on the basis of their B 
attribute value to reside in the proper buck- 
et. When the redistribution terminates, all 
processors compute the local Join of their 
P and T tuples. Figure 5 illustrates the 
resulting tuple distribution for the bucket 
Join method. Comparison with Figure 4 
shows that both schemes produce the iden- 
tical relation; however, the relation-parti- 
tioning differs. 

The Join operator: 
A broadcast-based 
solution 

Because broadcast-based solutions re- 
duce communication costs (transmit less 
data) at the expcnse of redundant compar- 
isons, cnsuring full processor use is vital. 
Baru and FriederX describc a three-stage, 
broadcast-based Join that guarantees a 
nearly even processor workload. First, a 
dynamic data-redistribution algorithm re- 
ferred to as halancing ensures an even dis- 
trihution of input tuples. Incorporating the 
balancing step results in a minimal in- 
crease incommunication costs but roughly 
a 35-percent reduction in the overall Join 
procesing time. Once they are evenly dis- 
tributed, the tuples are sorted. 

In the second stage, the Relation Com- 
paction and Replication (RCR) stage repli- 

Figure 5. Bucket-hased Join result. 

cates the smaller relation R, ,  originally 
stored in a cube of dimension n, so it is 
replicated in each of the two equal-sized, 
dimension n-1, logical-cube partitions of 
the original cube. This primitive's goal is 
to increase the number of tuples from R, 
stored at each node until the volume of R I  
tuples present at each node is the size of 
one packet, or until R I  has been fully rep- 
licated at eachnode. It ensures thatpackets 
used in the cycling phase are as full as 
possible, and that the packet-formation 
overhead per tuple is minimized for the 
cycling primitive. 

Finally, the cycling primitive sends the 
tuples of the smaller relation around in a 
ring. Local Joins of the resident tuples and 
the pipelined circulated relation are per- 
formed simultaneously at each node. Often 
the design of each node incorporates dual 
buffers, so the broadcast of packet i+l can 
overlap the local computation of packet i .  

Assuming multiple independent com- 
munications processors, the balancing of 
two relations simultaneously proceeds as 
follows. Initially, the local tuple counts of 
the relations R I  and R2 are computed. 
During each step j (0 < j 2 n-l), the nodes 
whose addresses differ in the jth bit ex- 
change their local-relation R ,  tuple count. 
The node with the greaternumber of tuples 
(if any) then sends the difference of the 
average tuple count and itsown tuple count 
of tuples to its paired neighbor. Simulta- 
neously. the nodes whose addresses differ 
in the ((j+l) mod n)th bit balance R2. The 
local tuple counts for R I  and for R2 are 
then recomputed, and the next step is 
initiated. After n steps. all nodes contain 
roughly the same number of R,  and R, 
tuples. A more complex halancing algo- 
rithm that incorporates the sending-node 

number can guarantee a difference of one 
tuple per node, per relation. Once balanc- 
ing is complete, both relations are sorted 
locally. 

Figure 6 provides a simplified pseudo- 
code description of the single-relation bal- 
ancing algorithm. Several instructions re- 
quire explanation. The send(addr, data) 
and receive(addr, data) send or receive 
from nodes whose address is addr the 
tuples designated by the set da ta .  
Rotate-right(num, count) rotates num's 
binary representation rount bits to the right. 
Similarly the rotate-left(nltm, count) in- 
struction in the RCR primitive (Figure 7) 
rotates thenurn's binary representation count 
bits to the left. For example, using a four- 
bit representation of 1 (OOOI), rotate-left 
(1, 1) = 2, rotate-right (1, 1) = 8, and 
rotate-left (1, 2) = rotate-right (1, 2) = 4. 
Finally, Global AND (GAND) is the global 
synchronization line value obtained by 
AND'ing all the local synchronization line 
values. The ABS, XOR, and CElL instruc- 
tions are the mathematical absolute value, 
exclusive OR, and ceiling functions, re- 
spectively. The node address bits are num- 
bered 0 to n-1. 

The second stage of the broadcast Join, 
relation compaction and replication, pro- 
ceeds as follows. Initially the local tuple 
count of the smaller relation, say R I ,  is 
computed. During each step j (0 5 j 5 n-I), 
the nodes whose addresses differ in the jth 
bitexchange their local R, tuplecount. RCR 
is possible ifthe combinedvolume (inbytes) 
of R,  tuples in each pairing of nodes does 
not exceed the maximal size of a single 
packet. When possible. all nodes transmit 
theirtuples to their paired neighbors. While 
maintaining a sorted order, the local and 
received tuples are merged, and the ncw 
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begin ( RELATION COMPACTION REPLICATION 1 

{ Re1 nodes of 
Q,, LL8L.z I"-.,m2 , 8Lr,.LaLLut., x,UJ.lber of 
no( is halved. 
Re on is reached. 

P R b u t r l ~ t u  PUNL 1 IUNb: 
FIRST ( k ) Function that moves the first I. tuples 

of a prespecified relation to a 
stated buffer (send-set) 

itwisc Exclusive OR of k and j 
lobal AND'ing of all local 

foe.'. IrJAND ) 
1oc 

otate-left (k, j) R ~ inary  representation 
its to the left 

L node (X) 

bXbCU I IVN: Relatlon d~str~buted across all 
..,.Aa" :. 

EXECUTION 
TERMINAT11 of the relation, each 

'er a disjoint Q,,~iicmrion ) 
GAND,,, := t 
iteration := 0 

SYNCH( GA 

Wh egin 

{ Intorm nelghhor ot own count , 
f. l R (  X, rotate-left ( 1, iteration ) ), 

own-count ): 

f-receive ( XOR( X, rotate-left ( 1, iteration ) ), 

eighbur-count ); 

( 0  tion 1 replication is possible ] 
' (own-count + neighbor-count) > 
TAX-TUPLES-IN-PACKET 
len GAND,,,, := false; 

S 

i f  GANU then begin ( step is possible 1 

n ) ) ,  

I C C C I Y C  ( AUK( A, rolalt. !ell ( I .   rer ration ) ). 
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end 
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Figure 7. Pseudocode for relation compaction replication. Figure 9. Initial data  distribution. 

November 1990 



Figure 10. Broadcast-based Join (balancing: (a) step 1. (b) ~ t e p  2, and (c) step 3). 
(d) represents the RCR stage. 

whosc n-jth address bit is0 keepsl and send logical buckets a through b, inclusive, into 
S2. Similarly, nodes whosc n7jth address bit send-set. 
is 1 keep S? and send S, .  A11 nodes receive After n pairing steps, each node contains 
the sent tuples and merge them with those only tuples whose joining attributes fall 
kept tuples. Sorted order is maintained. within a dis,joint subrange of the joining 
The GET-BUCKET(& b) primitive places dumain. Once both relations are rcdistrib- 

Figure 11. Final distribution of broad- 
cast Join. 

uted, the local Join computation proceeds 
in parallel at each node. 

Figurc 12 shows a pseudocode descrip- 
tion of the bucket data redistribution for a 
single relation. As with the balancingoper- 
ation. both relations can be redistributed in 
parallel, with theone relationusinglinkjat 
step j, while the second uses link (j+l) mod 
n at step j. In this algorithm. however, ei- 
ther the portion of the algorithm that qe- 
lects the buckets to exchange during each 
node-pairing step or the attrihute-range- 
to-bucket-number assignment must be 
modified in the code that simultaneously 
repartitions the second relation. Also, in 
both the balancing and the bucket redistri- 
hution algorithms, simultaneous redistri- 
bution of both relations does not require 
separate links. If the two relations can be 
separated erficiently. both relations can be 
routed together on the same link. However, 
given independent communications pro- 
cessors and buffers, the use of multiple 
links generally reduces the data-transfer 
time. (Omiecinski and Tien describe a 
similar repartitioning algorithm that uses 
hashing to redistribute the  relation^.'^) 

With the example in Figure 8, using a 
bucket Join algorithm that simultaneously 
redistributes both relations resulls in the 
following: In each or the three steps, a 
maximum of 5,4, and 3 tuples, respective- 
ly, are routed in any internode communica- 
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..,... ,Tote the significant difference be- 
tween the maximal tuple transfer in the 
partitioning algorithm compared with the 
ruplc-balancing algorithm. Figure 13 shows 
the result relationof the Join computation. 
As required, both Join approaches result in 
the same relation; however, the final distri- 
bution varies. 

Characterizing 
performance 
potential 

L l l i  

las 

Herr, I present experimental timings 
obtained from a portable hypercuhe-based 
database system. The systcm implementa- 
tion issues are beyond the scope of this 
tutorial but can he found in an upcoming 
publication." Thc cvaluuliun focuses on 
only the two Join approaches presented 
here and incll~des a comparison of thc tim- 
i n y  obtaincd when [he bala~lcing step in 
the broadcast Join is omitted. Only timings 
forthe Join operator are providcd since Ihc 
processing lime uT llir Join greatly exceeds 
that of other colnmon relational operators, 
making i t  the rnn?prrratinnal pcrlorrnance 
bottlcncck in database processing. 

I emphasize compritational to differenti- 
ate between the 110 and CPU demands 
associated with database processing. The 
parallel 110 demands are commonly han- 
dled through parallelization of the Select 
operator, because the Select operators typ- 
ically precede all other datahase operators 
in optimized query trccs. Nu interproces- 
sor communication exists in the Select op- 
erator, so performance measurements are 
not provided. 

The timings presented were obtained us- 
ing macros developed at Argonnc National 
Laboratories" s x e c u l i ~ ~ g  on all Encore 
Multimax running the Umax 4.2 operating 
system. These macros provided a lully 
portablc, sirnuluted, distributed-memory 
environment, allowing for syrrem pona- 
hility and independcnccfromthc hardware 
lirniln(ions uf a particularvendor. The abil- 
ity to vary hardware parameterq comes at 
rhe expenqe of simulative uverhead. Al- 
~huugh the assumed hypercube architec- 
ture was simulated, all the datahase algo- 
rithms actually cxccutcd as lhuugll they 
uit.rt. ru r~r~ i~ lg  on an actual hypercube. The 
Multimax configuration consisted of 16 
processors, cnabling each lupical hyper- 
cube node to execute on a dedicarrd node 
in the Mnltimax. As the total systcm mcm- 
ory compriscd I28 Mbyles, the entire data- 
base was memory resident. 

for 

Figurc 12. Ruckct-bused pnrtitioning pseudocode. 

aegln ( BULK , 

distributes data by attributets) values. Each bucket has a nonoverlapping 
 set of the global attribute domain. The union of the attribute value range 

ill the buckets is the global domain. Assumed is that all local tuples are 
?ady partitioned into local buckets and must only he rollred to the 
7rnpriate processor. 

PREDEFINED FUNCTIONS: 

GET BUCKET (k , j) Function that ~uoves all the tuples assigned 
to buckets k through j inclusive to 
a stated buffcr (send-set) 

AUK (k. 11 Bitwise Exclusive OR of k and j 
rotate-right (k, j) Rotate the binary representation of k? j bits 

to the right 
rr~rrpr ( Y, buckets ) Mark the correspotiding bucket for each 

tuple in h~~t - fe r  Y and move to the 
appruprialc mcmury localiu~r 

PUT: I.ocal addras  of the node ( X )  

IOR TO EXECUTION: Relation randomly distributed across nodes 

:ECU'I'IUN TERMINATION: Tuples dis~ribuled uL.rtrhs uodes according 
to attribute value ) 

It : = 0 ;  
t : = N -  I: 

. j := O to n - I do bcgin 

( Select buckets to send 1 
if Xlj] = O then begin 

send-set := GET-BUCKET ( (first + last + 1)/2, last ); 
last := ([irst + last - I)/2: 

end 
else begin 

send set := GET-Rl!CKTj.T ( f i r ~ t ,  (first + last - I)/Z ): 
first := (first + last + l)l2: 

end 
end 

aend ( XOR( X. rotate-right ( 1. j+l ) ). send set ): 
receive ( XOR( X ,  rotate-rieht ( 1 ,  j+l ) ), reccivc-set ); 

[ Place received tuples into appropriate loci 
merge ( receive-set, l o r o l - h ~ r r k r t . ~  ): 

end fol- 1 
end { IIII(:I<ET 1 

11 bins 
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\ I  I:) 

(a) 

stead, a synthetic database that better illus- 
trates the bchavior of the precented ap- 
proaches was constructed. 

Thedatabase comprisedrelations of four 
different sizes: IK, IOK, IOOK, 1Mtuples. 
Each tuple had 24 bytes. Relations were 
randomly generated using a uniform-at- 
tribute value distribution. The tuples of 
each relation were horizontally partitioned 
across the nodes using either a uniform 
(marked as "ur~iform" on the graph) or a 
bimodal skewed distribution (marked as 
"skewed" on thc graph). 

Rcsults [or multiple-size Jnins are prc- 
sented: 10Kx 10K (uniform), IOOKx IOOK 
(uniform), 10OK x lOOK (skewed), 1OK x 
l0DK (uniform), 1 K x l M  (uniform), and 
IK x 1 M (skewed). Each Join algorithm 
was run on four diffcrenl hypercube con- 
figurations: two, four, eight, and 16nndes. 
By definition, the smallest hypcrcube is of 
dimension 1, so single-node runs are not 
included in the timing presentation. 

In general, the hroadeast-based Juin, as 
compared with a bucket-based Join. reduc- 
es thc required co~nmunication at the cx- 
pense of redundant computatiun. Redun- 
dant comparisons in the broadcast Join 
result fro111 the unnecessary comparison of 
every tuple in the smallcr rclalion, R , ,  
against all tuplcs in the larger relation. R2. 
In the bucket-based Join, each tuplc in R2 
is compared with only the rclcvanLportion 
of R1. In terms of communication require- 
ments, unlike the bucket Join where both 
relations must be redistributed, the com- 
munication dcmands of the broadcast Join 

1 require that only R I  be routed. Thus, when 

Figure 13. Dncket-hased Join cxnmple: (a) step 1, (h) vtep 2, and (c) step 3. Part 
(d) represents the f i n d  result (burket). 

The emulative overhead significantly paring the. two presented .loin approaches. 
affects the actual timingsohscrvcd in terrns Because we are intcrcstcd only in seeing 
of absolute time. Hence, these timings the similarities and differences hetween 
should not be used for comparison against these Join approaches, runs of a standuk~rd 
~ [ l r e r  systems, but nnly as a tool lur corn- benchmark data sct arc not presented. In- 

R I  andRZare comparablc in size, the bucket 
Join is bcttcr. However. if the difference in 
the comtnunication timeq for the two Join 
approaches is significant (RI  is much 
smaller than R2), the broadcast Join is het- 
ter. The precise si7e disparity is based un 
the degree of data skcw and various system 
parameters. 

The timing results rummarizcd in Fig- 
ures 14a through 14r coincide with size 
disparity intuition. The scalability of thc 
bucket Join exceeds that of the broadcast 
Join whcn the relations are comparahle in 
s i ~ e  (Figures 14a-c), and the broadcast 
Join is superior whcn thc rtlatior~s differ in 
size (Fipurcs 14c-f). 

The graphs also show the pcrfomancz 
obtained when thc balancir~g step is not 
performed us past of the broadcast .loin. 
When the tuples are i~nifnrmly distributed 
acrosq the nodes. thc overhead of balanc- 
ing is negligible, but the rerl~lction in 
processing time resulting from the b a l a ~ ~ c -  
ing step is also negligible (Figures 14a, h, 
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Figure 14. Experimental timing results. 
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Bucket 1 m 
I 
Figure 15. Theta-Join example. 

begin ( Bucket-Based Less-Than Theta-Join I 

( Redistributes data of the smaller relation according to attribute(s) values 
for a LESS-THAN Theta-Join. 

PREDEFINED FUNCTIONS: 
XOR (k, j) Ritwise Exclusive OR of k and j 
rotate-right (k, j) Rotate the binary representation of k, j bits to the right 

INPUT: Local address of the node (X) 
An array indicating the lower bound of each bucket of 

the larger relation (bounds) 
An ordered set comprising all the tuples of the smaller 

relation that are resident at the node (tuples). 
tuples [i].atlribute is the joining attribute value of 
tuple i. 

PRIOR TO 
EXECUTION: Larger relation distributed according to attribute values 

Smaller relation randomly distributed 

EXECUTION 
TERMINATION: Tuples distributed as required by Theta-Join 1 

first := 0: 
last := N - I ;  
for j := 0 to n - 1 do begin 

send-set := 0 ; 
num-tuples := I tuples I :  
if Xu] = 0 then begin 

for i := 1 to num-tuples do begin 
send-set := send-set u tuplcs [i]; 
if tuples [il.attributc r bounds [(first + last + I) 121 then 

tuples := tuples - tuples[i]; 
cnd I for I 

last := (first + last - 1)/2; 
end [ then 1 

else begin 
for i := 1 to num-tuples do 

if tuples [i].attribute <bounds [(first + last + 1) / 21 then 
send-set := send-set u tuples [i]; 

first := (first + last + 1 )/2; 
end ( else 1 

send ( XOR( X, rotate-right ( 1, j+l ) ), send-set ); 
receive ( XOR( X, rotate-right ( 1, j+l ) ), receive-set ); 
tuples := tuples u receive-set: 

end I for ) 
end ( Bucket-Based Less-Than Theta-Join I 

lgure 16. Theta-Join data-redistribution pseudocode. 

d, and e). In fact, if the original tuple 
distributionis exactly even across the nodes, 
balancing will increase the total process- 
ing time. The observed minimal perfor- 
mance improvement results from the exist- 
ence of some variance, albeit low, in the 
number of tuples resident at each node. 
However, as the variance of the tuple dis- 
tribution increases (Figures 14b and 0, the 
savings resulting from balancing become 
substantial. Thus, at least when faced with 
a skewed distribution of tuples across the 
nodes, the balancing step should be incor- 
porated as part of the broadcast Join. All 
the results show that in a database system 
both Join algorithms should be implement- 
ed. The system shouldchoose the approach 
to employ. depending on the input data set. 

The Project operator 

Similar to an aggregation operator,com- 
puting a Project operator (amultiscan, uni- 
relational operator) involves two stages: 
local and global duplicate-tuple elimina- 
tion. The first stage is local tuple climina- 
tion. Traditionally, local elimination re- 
quires each processor to son its resident 
tuples and remove the duplicates. The 
qecond stage eliminates internode dupli- 
cates. As the communication requirements 
01" the Project operator are a subset of the 
Join, either a broadcast or an attribute- 
partition scheme is possible. 

If broadcasting is used, data replication 
is unnecessary because Project is a unire- 
lational operator. Hence, instead of RCR. 
only relation compaction is required. That 
is, in each node pairing, the projected rela- 
tion is compacted to only a single node, as 
in the aggregation algorithm. A1 each com- 
paction, localduplicates areremoved. Once 
rclation compaction terminates, the cycling 
primitive is applied. In cycling, a copy of 
the compactcd, projected relation is circu- 
lated. All nodes compare simultaneously 
their tuple set against the circulated tuples. 
If a duplicate is found, the local node num- 
ber is compared with the node number 
generating the circulated tuple set. The 
local tuple is eliminated if the local node 
number is smaller. 

A bucket-based Project implementation 
is nearly identical to a bucket-based Join 
algorithm. As in the Join. the domain is 
partitioned across the processors and the 
tuples are routed to the appropriate proces- 
sor. To reduce the data routed, after each of 
the n steps, local duplicate elimination is 
performed. Thus, duplicates are eliminat- 
ed as soon as possible. 
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Additional operators 

Common set operators such as Union, 
Intcrscction, and Difference are typically 
incorporated into database systems. These 
multiscan operators can bc implemented 
using the data-redistribution algorithms 
previously described. For example, the 
union of relations R[XYZ] and S[XYZl, 
written T[XYZ] = R[XYZ] u S[XYZl, can 
be implemented by defining the new rela- 
tion TIXYZ] as all thc tuples oT R and all 
the tuples of S ,  and then eliminating the 
duplicates in T, as in the Project operator. 

TheIntersectionofR[XYZ] and S[XYZ], 
T[XYZ] = R[XYZ] n S[XYZl, is the Join 
of the two relations in which only those 
tuples that match in all the attributes are 
kept,namely R . X = S . X , R . Y  = S . X , a n d  
R.Z = S.Z. Finally, the difference of R and 
S, TrXYZ] = R[XYZl- S[XYZ], is com- 
puted as a Join where only those tuples of 
R that do not join with any tuples in S arc 
maintained. 

Another popular operator that includes 
the Join described above as a special case 
is the Theta-Join. The Theta-Join of rela- 
tions R[X] and S[Y], where X n Y = 0, A 
s X , B ~ Y , a n d 0 ~  [= ,# ,< ,< ,> , tJ ,  
written R[A 8 B]S, is defined as T[XY] = 
{I I y E R, .- E S, such that ![A] 0 z[B], 1. = 
.r[X], and z = . r lY]) .  Modifying a broad- 
cast-bascd Join algorithm to encompass all 
the Theta-comparators requires only that 
the local equality comparison prcscntly 
madc at each node be replaced by the ap- 
propriate Theta-comparator. 

Because aTheta-Join may rcquirc tuples 
in an attribute range to be compared against 
tuples in a set of attribute ranges, altering a 
bucket-based Join algorithm to support 
Theta-comparators requires not only rhat 
the local equality comparator be replaced 
by the appropriate Theta-comparator but 
that the actual tuple-redistribution algo- 
rithm be changed to support comparisons 
between an attribute range and multiple 
other attribute ranges. 

Consider a Theta-Join where thc com- 
parator operator is Less Than. Relations 
R[ABC] and S[DE] are joined so R[B < 
DIS. Then, all the R tuples that map to 
bucket 2 based on the B attribute must be 
compared against all the S tuples that map 
to buckets 2 through N inclusive based on 
the D attribute, as illustrated in Figure 15. 

The algorithm proceeds as follows. Ini- 
tially, relation S is partitioned according to 
attribute values using the algorithm in Fig- 
ure 12. Then, using the same bucket rang- 
es, relation R is partitioned into buckets so  

all tuples in hucket i ( I  < i < N )  are routed 
to those processors rhat contain buckets jii  
< j $ N )  of relation S. Figurc 16 shows a 
pseudocode description of an algorithm 
that achieves the necessary bucket-hased 
Theta-Join data routing. In contrast to the 
algoritlitn in Figure 12, where no addition- 
al copy of the data is generated, here mul- 
tiple copies of thc data assigned to the 
lower numbered buckets are produced, re- 
sulting in a vast volume of internode data 
transfer. Algorithms for the remaining 
Theta-Join comparators likewise result in 
a vast replication of data. 

perator implementation is crucial, 
but fully exploiting multiproces- 
sors in database processing in- 

volve\ numerous additional database con- 
cerns not discussed in this tutorial. Such 
topics as data placement, execution-site 
selection, query optimization, security, and 
recovery must be addressed before large- 
scale (thousands of processors) multipro- 
cessor database systems become an alter- 
native to high-performance mainframe 
solutions for very large databases and com- 
plex database-based applications. 
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The Test Access And 
Boundary-Scan 

Architecture 
This tutorial discusses approaches to 
design-for-testability between comput- 
ers and companies and explains its con- 
nection to IEEE Standard 1149.1. It be- 
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