
SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE. VOL. 1. 59-79 (1989)

Dynamic Program Updating: A Software
Maintenance Technique for Minimizing
Software Downtime

M. E. SEGAL

EECS Department
University of Michigan
Ann Arbor. MI 48/09, U.S.A.

0 . FRIEDER
Bell Comm~~nicarir~nr Research
445 South Streel
Morristown, hrJ 07960, U . S . A .

SUMMARY

When a new version of a sonware system is created, the current version of the system must be shut
down while the new version is installed, resulting in software 'downtime'. There are application
domains where such downtime is undesirahle if not wholly unacceptable. A dynamic program
updating system replaces, o r updates, a computer program with a new version while the program
continues to run. A dynamic program updating system for programs written in conventional
procedural languages such as Pascal and C is described. The proposed system updates programs
without causing substantial performance degradation and requires minimal user intervention to
initiate the update. A fully functional prototype updating system is presented and a sample program,
namely an internet packet router called the 'Packet Pumper', is updated. The performance of the
updating system and the Packet Pumper is discussed.

KEY WORDS Dynamic program updating Dynamic code replacement Distributed systems Software
downtime

Software maintenance research has traditionally addressed the question 'What can
researchers, softwarc engineers, programmers and managers do to make programs more
adaptable to the changing environments in which they must exist?' Adaptability (and thus
maintainability) encompasses many issues including good initial program design, well-
written program code, powerful development and maintenance tools, adequate document-
ation, and supportive management to encourage proper use of these resources. One
question that has not been given substantial attention in the software maintenance
literature is 'Having used the available software maintenance tools to enhance a program,

' 'Environment' encompasses both the tasks that the program must perform and the interactions with other
(possibly rcal-world) entities.

104~550W89/01005~21$10.50
0 1989 bg John Wiley & Sons, Ltd.

Received 16 January 19%
Revised 14 March 1989

60 M E. SEGAL AND 0. FRIEDER

how can a program be introduced into an environment' without disturbing that
environment?' In many cases, this can be accomplished by merely terminating the old
version of the program and starting the new version. Unfortunately, there are programs
where halting the old version and loading the new version is unacceptable, primarily due
to the high cost of such an operation. This cost can manifest itself in lost revenue (for
example, airline rescrvation systems and telephone switching systems) or in danger to
human life (for example, nuclear reactor control, computerized life support and air traffic
control). The ability to dynamica[ly update a program, i.e. load a new version of a
program without stopping the currently running version, could alleviate these costs in
many cases.

A scalable, distributed, dynamic program updating system is presented and evaluated.
The described system updates a running computer program written in a standard
procedural programming language such as Pascal or C, without substantial degradation
in the performance of the program being updated. The updating system presented provides
mechanisms for ensuring consistency during the update. The system executes on most
modern computer architectures and does not require special-purpose hardware. Assumed
is that programs are written using a top-down design methodology with appropriate
encapsulation of abstract objects contained in the program.

The remainder of this paper is organized as follows. In Section 1. a brief summary of
previous work in this area is provided. Section 2 reviews the various aspects of the
updating system initially described in Segal (1988). The types of programs that can be
updated using the proposed system, and the criteria used for performing the update are
described. Section 3 discusses an example scenario from the computer networking domain
where the use of a dynamic updating system is bcncficial: changing the routeing algorithms
of an internet packet router. Scction 4 overviews a prototype updating system that was
constructed to test the ideas presented in this paper and demonstratcs how it would be
used to update a hypothetical packet router called the 'Packet Pumper'. Packet Pumper
performance during the update is discussed in Section 5, and concluding remarks are
presented in Section 6.

1. RELATED WORK
The problem of replacing portions of computer programs without stopping them has been
examined in the literature by several different researchers. The previous work can be
classified into three main categories, as discussed below. Hardware-based approaches
attack the problem by providing a redundant CPU and peripherals to be configured with
a new version of the program while the old one continues to run (Rey, 1986; Schell.
1971). When the program is updated, the old system is physically disabled while the new
one is enabled. This approach has the advantage of providing hardware fault-tolerance,
but it does so at a substantial cost.

Software-based service-oriented approaches attack the problem by imposing a server/
client relationship on the programs they can update (Bloom, 1983; Bodwin, 1987). In
such an approach, a number of clients request a service from a server via some well-
defined mechanism such as an operating system primitive or a remote procedure call
(Birrell, 1984) if the clients and servers are distributed as in Bloom (1983). A server may
be updated by temporarily disabling its services and then installing a new server. Although

DYNAMIC PROGRAM UPDATING 6 1

this approach will work in a distributed system, it will only work with software systems
that observe a serverlclient relationship.

Finally, software-based procedure-oriented approaches attack the problem by replacing
individual procedures as the program executes. In such an approach, when all of the 'old'
procedures have been replaced by all of the 'new' procedures, the program has been
updated. This class of updating system is related in some respects to dynamic type
replacement systems such as Fabry (1976). In a type replacement system. the routines
providing access to abstract data types are replaced while the program using them
continues to run. Although this type of system allows abstract data type implementation
to be changed between versions of a program, it does not address the more general issues
of code restructuring. The DMERT (Yacobellis, 1983) and DAS operating systems
(Goullon, 1978) both provide mechanisms for replacing the individual procedures that
comprise a program. Both systems only address the case where the specifications
(parameters and return values) of the procedures being updated have not changed and
are thus limited to those particular cirumstances. The DYMOS System (Lee, 1983) is a
complete dynamic updating system. It provides editors. compilers and a shell to facilitate
updating a computer program written in the StarMod language (Cook, 1980). DYMOS
will work in a tightly-coupled multiprocessor but does not scale well to a distributed
system since it rcquires a complicated locking protocol for every procedure invocation
regardless of whether or not an update is actually being performed.

2. OVERVIEW OF A DYNAMIC PROGRAM UPDATING SYSTEM
This research has adopted replacing components of a program at the level of individual
procedures (Frieder, 1989; Segal, 1988). A program is updated by loading the new version
of the program and replacing each old procedure with its corresponding new procedure.
Various facilities are provided to ensure that the program remains consistent during the
update (described in Section 2.4).

2.1. Basic concepts and algorithms

Replacing an old version of a procedure with a new version can be expressed in terms
of binding concepts. As a program executes and is updated, the overall function of the
program is not changed. Furthermore, the spec$cation of the program's procedures (i.e.
the operation that each procedure is supposed to perform) is not likely to (but may)
change between versions while the procedures' imp[ementations (i.e. how each procedure
performs the operation) may change. Thus, at any point in time, a procedure's specification
is bound to a particular implementation. When a program is updated, the binding of each
procedure is changed from its old implementation to its new implementation.

Under the updating system, newer versions of the program can be loaded without
affecting the current version's execution. Once the new version has been loaded, the
update may be initiated. The update is initiated by a user invoking an update command.
The update command interrupts the running program and cxamines the current state of
the run-time stack. Based on this information and the list of all the procedures that each
procedure can call (generated by the language compiler). the updating system calculates
when each procedure may be updated. Updating a procedure involves changing its binding

62 M. E. SEGAL AND 0. FRIEDER

from the current implementation to the new implementation. When all the procedures
have been bound to their new implementation, the program updating is complete.

2.2. Syntactic criteria for updating a procedure

Updating a procedure is based upon the active state of the procedure, where active is
defined as follows:

Let a program n consist of a set of procedures P , , ..., P,.

Define rI,,(t)={procedures Pi€ n I Pi's activation record is on the run-time stack at
time t}

Let 6(Pi) denote the dependency function of procedure Pi, which is defined as the set
of all procedures that Pi may call.

Define F*(P,)={procedures Q I QE6(Pi) or QES(G*(P,))}

A procedure Pi is active iff PiEll,,(t) or 6*(PineW) n n,,(t) # 0 where P,new is the new
version of procedure Pi.

Informally, a procedure P, is active if and only if it is on the run-time stack or its new
version can directly (6(P,ncW)) or indirectly (S*(P,ncW)) call a procedure that is already on
the run-time stack. This definition of active procedure will be expanded in Section 2.4
to encompass semantic dependencies as well.

A procedure P that has not changed between versions should be updatedZ when the
update is first initiated. Alternatively, a procedure Q that has changed between versions
may be updated only when it is not active. Since an inactive old procedure cannot become
active (as it will have already been converted to a new procedure), examination of the
update status need occur only whenever the run-time stack contains less elements than
it did when the update was initiated. Thus, checking the size of the run-time stack after
the return of each procedure call determines the availability of additional procedures to
update.

2.3. Justification for the updating criteria

Given the above definitions, examples of programs where the updating system would
not work well can be contrived. Fortunately, if the stated programming requirements are
followed, such programs should not occur in many cases. It is assumed that programs are
written in a top-down manner (Brooks, 1975; Dahl, 1972; Wirth, 1971). In general, thc
higher-level procedures, which specify the algorithms of the program, will not change
between versions. O n the other hand, the lower-level procedures, which describe many
of the details used to implement the algorithms. will he more likely to change. The
granularity of the procedures (how many statements are in a procedure relative to other
procedures) and the depth of the calling tree (the number of calling levels between the
'main' procedure and other procedures) affect updating system performance. If a procedure

In this case, the procedure is not actually replaced but is instead flagged as being 'new' since its old and new
versions are the same.

DYNAMIC PROGRAM UPDATING 63

in a program contains many statements andlor is executing much of the time, that
procedure will take longer to update."

Also assumed is that data shared by several different procedures, which include global
variables, are accessed via abstract data types (ADTs) (Aho, 1983). By centralizing
shared-data access, updating the procedure(s) that implement an ADT causes all the
procedures that use the A D T to simultaneously get its new version. If a non-updated
procedure has made a local copy of some of the ADT's data, they will be correctly
mapped to the correct implementation when they are saved in the ADT (Section 2.5).

2.4. Semantic dependencies

The updating criteria described thus far are designed to take syntactic dependencies
into account. Syntactic dependencies are the relationships between procedures in the
program that can be ascertained from the program's syntax. Even if the above coding
conventions are followed, it is possible to write programs containing semantic dependencies.
A semantic dependency is a relationship between procedures that is not detectable from
the program's syntax (i.e. two procedures work together to perform some task but do
not reference any of the same entities). The updating system deals with semantic
dependencies by using information supplied by the programmer. Semantic dependencies
are formally stated as follows:

Let 6,,(Pi) = {procedures Q I must be inactive and concurrently updated
(if Q has changed) with P i) .

A procedure Pi can only be updated when it is inactive and all procedures Q E 6*,,(P,)
are also inactive. This allows the programmer to specify procedures that must be updated
concurrently, thus allowing semantic dependencies to be accommodated. The updating
system updates all procedures Q E 6*,,(Pi) atomically.

2.5. Maintaining consistency during an update

During the updating process, procedural bindings can be changed such that it is possible
for an old procedure to call a new procedure. If the calling sequences and return codes
of the procedure in question have not changed between versions, there is no problem.
If, however, the new procedure expects different parameters to those that the old
procedure is supplying, the parameters must be mapped from the old calling sequence to
the new calling scqucnce. For example, if the old version of procedure sort expects an
array of integers to sort and the new version expects an array of real numbers, the data
must be properly converted before calling the new version of sort. Furthermore, because
the old program is not aware of the new version of sort, any parameter mapping and
procedure invocation must be transparent to the old program. In the described system,
an interprocedure performs this task. An interprocedure is called by the old version of a

' In the extreme case, the program consists of a single, large procedure. Under these circumstances, the
program cannot he updated since the procedure will he active for the duration of the program's execution.

64 M. E. SEGAL AND 0. FRIEDER

procedure (with the old parameter format). After the interprocedure maps the parameters
with which it is called to the corresponding new format, it invokes the new procedure.
Similarly, mapper procedures (rnprocedures) are used to map local static data within a
procedure from the format used in the old version of the program to that used in the
new version. Mprocedures can also bc used to initialize data structures in the new version
of a program based on the state information accumulated in the old version. When used
in this manner, mprocedures map state information (but not necessarily data) across
versions of the program. For further details, see Frieder (1989) and Segal (1988).

3. INTRODUCTION TO THE PACKET PUMPER
As a sample program that could benefit from a dynamic program updating system,
consider the Packet Pumper. At its highest level of abstraction, the Packet Pumper is
essentially an internet packet router. The Pumper reads a packet from one of its network
interfaces, examines the packet's header to determine its destination address. determines
how to get it to the destination, and send4 the packet to another network interface. The
network interface to which the packet is sent is connected to the network where the
packet is destined. Thus, the system 'pumps' packets from several sources to sevcral
destinations based on some routcing algorithm. The behaviour of the Packet Pumper is
characterized by this routeing algorithm. The updating system is used to alter the system's
behaviour by changing the routeing algorithms between versions of the Pumper. Three
different versions of the Packet Pumper are presented. The evolution of the Packet
Pumper between these versions closely parallels the evolution that has occurred in the
United States' Department of Defense (DOD) Internet (ARPAnet) over the past 15
years.

3.4.1. Packet Pumper structure
The fundamental data structure of the Packet Pumper is the packet. Every packet

consists of a header and zero or more data bytes. All routeing decisions are based on
the addressing information found in packet headers. Every header contains a four-byte
source and destination addresses for that particular packet. Thus, there can be a total of
2'* (about four billion) devices on the network. Dividing this 2'?-device space into useful
subspaces is the responsibility of the Packet Pumper. Typically, the subspaces approximate
the administrative domains which own the networks that the Packet Pumpers interconnect.
Routeing is based on the interpretation of the bit fields comprising the 32-bit source and
destination addresses.

All three versions of the Packet Pumper use variants of the same high-level algorithm.
This algorithm may be expressed as follows:

whi le true d o begin
get-packet (pkt, source-interface};
rc : = route-packet (pkt,destinterface);
if rc = PKT-OK then

putpacke t (pkt.destinterface);
end;

DYNAMIC PROGRAM UPDATING 65

The g e t p a c k e t routine reads the next available packet from a network interface. This
packet is passed to route-packet, which places the correct interface of this packet's
destination network into destinterface. Finally, putpacket transmits the packet to this
interface.

For illustrative purposes, the details of g e t p a c k e t and pu tpacke t are not important
since they are never updated. The route-packet procedure requires some explanation,
however. Route-packet is called with a packet and a destination interface variable.
Route-packet examines the packet header and extracts its source and destination
addresses. From this information, route-packet selects the network interface that will get
the packet closer to its destination. This value is placed into dest interface and
route-packet returns with the value PKT-OK. If route-packet does not know how to
route the packet with which it was called, it returns an error value.

3.2. Packet Pumper evolution
Table 1 summarizes the various features of each version of the Packet Pumper.
Version 1 of the Packet Pumper uses a straightforward packet addressing and routeing

algorithm: the first byte of the destination address is treated as a network number. The
Packet Pumper uses this network number to determine the correct interface to route the
packet. One drawback to this addressing scheme is that it partitions the address space
into 256 networks of approximately 16 million nodes. Allowing only 256 different networks
limits future expandability. Also, relatively few organizations own 16 million devices that
are networked together.

To ameliorate this situation, version 2 of the Packet Pumper uses from one to three
bytes to designate a network number, with the remaining bytes used to designate a device
within a nctwork. In this scheme, the first address byte is divided into three non-
overlapping ranges. The first range of values designates a one-byte nctwork address (Class
A network), the second range denotes a two-byte network address (Class B network),
and the third range denotes three-byte network addresses (Class C network). This
addressing scheme allows the network address space to be tailored to different types of
networking environments with varying numbers of computers. Another advantage of this
approach is that the owner of a Class A network can logically partition it into a number
of Class B or C subnetworks. One disadvantage to this approach is that it does not allow
dynamic rerouteing of packets due to transient conditions on the network (overloaded
Packet Pumpers or Pumper downtime).

Table 1. Summary of Packet Pumper features

Version Main addressing features Problems

1 One byte net address, three byte node Too few networks each containing too
address many nodes

2 One, two or three byte network Does not allow dynamic rerouteing of
addresses with variable numbers of packets due to congestion or Pumper
nodes per network downtime

3 Dynamic routeing and default routes Must support both control and data
packets

66 M. E. SEGAL AND 0. FRIEDER

Version 3 of the Packet Pumper allows special control packets to be passed to other
Packet Pumpers. These control packets instruct a Packet Pumper to use a different
routeing algorithm. This allows quick adaption to changing network conditions. Routes
may be both added and deleted. Version 3 also supports the concept of default routes.
A default route is a network to which a Packet Pumper sends a packet if it does not
know how to get a packet to its destination. As with other dynamic routes, a default
route can he added or deleted when necessary. For this version to function properly, the
Packet Pumper must be modified to process both control and data packek4

3.3. Code required to update the Packet Pumper
In a simplified implementation of versions 1 and 2 of the Packet Pumper, the route-packet
procedure is coded as a set of if statements as shown below.

function route-packet (Packet-t pkt, integer inter) returns integer;
begin

ne tnumber : = g e t n e t n u m b e r (pkt);

if n e t n u m b e r < 17 then begin
inter := 1 ;
return (PKT-OK);

end

if netnurnber >= 17 and n e t n u m b e r < 43 then
begin

inter := 2;
return (PKT-OK);

end

if n e t n u m b e r >= 43 and netnurnber < 159 then
begin

inter := 3;
return (PKT-OK);

end

if n e t n u m b e r >= 159 then
return (NETWORKUNREACHABLE);

end;

Since there are a small number interfaces per Packet Pumper (three in this example),
the code shown above is a simple and effective way of performing the routeing. To
calculate a network number for each packet, route-packet calls the g e t n e t n u m b e r

' We assume that there is a field reserved in the packet header for 'future expansion', 'packet type', or 'packet
version'. Good d'esign dictates that space be reserved for future uselsystem expansion. For example, most
modern CPU architectures reserve opcodes, addresses, and other objects for the 'future use' of the CPU
designers This was also done in the ARPAnet. TMSunOS is a trademark of Sun Microsystems, Inc. TMUnix
is a trademark of AT&T Bell Laboratories.

DYNAMIC PROGRAM UPDATING 67

procedure. When we update from version 1 to version 2, the only procedures that must
be replaced are route-packet and g e t n e t n u m b e r . Since neither of these procedures'
calling conventions change between versions, nor do they use any internal static data, no
interprocedurcs or mprocedures are required for this update. In version 2, g e t n e t n u m b e r
will be modified to calculate the correct (version 2) network number and additional if
statements will be added to the route-packet code to allow packets to be routed to the
additional networks.

Updating from version 2 to version 3 requires non-trivial changes to the Packet Pumper
code. The code that implements the algorithm given in Section 3.1 must be modified to
account for both control and data. This revised algorithm is shown below.

while true do begin
getpacke t (pkt.source-interface);
case pkt.type of

p k t t d a t a : do-route-xmit (pkt.
source-interface);

pkt-t- add-rt: do-route-add(pkt);

pkt tdel-r t : do-route-del (pkt);
end;

end;

The algorithm examines the type of each packet and dispatches the packet to an
appropriate routine for further processing. Each of the do-route-xxx procedures shown
above eventually calls route-packet. Route-packet has been modified to accommodate
dynamic routeing. The version 3 route-packet manages an internal routeing table data
structure which is used to make routeing decisions. As a result of this increased
functionality route-packet now takes an additional parameter. The new parameter tells
route-packet whether it is calculating a route or performing routeing table maintenance.

To maintain consistency between version 2 and version 3, an interprocedure and an
mprocedure are required. The interprocedure maps route-packet calls made by version 2
procedures to the correct calling conventions of the version 3 route-packet. The
interprocedure's code looks like:

interprocedure route-packet (Packe t t pkt,
integer interface)

returns integer;
begin

command : = ROUTE-FIND;

switch- calling-domain-to-version-3;
rc : = route~packet(pkt,interface.command);
switch~caIIing~domain~to~version_2;
return (rc);

end;

68 M. E . SEGAL AND 0. FRIEDER

This interprocedure loads the third parameter of the version 3 route-packet with a
value that makes sense in the version 2 domain, calls the operating systemlupdating
system to call the version 3 routine from the version 2 interprocedure, performs the call,
resets the calling domain, and returns the route-packet return code. This interprocedure
correctly maintains the version 2 route-packet semantics in the domain of version 3.

When the version 3 Packet Pumper starts up, no packets can be routed since the
routeing table is initially empty. If starting from scratch, this would be fine but version
2 already has a hard-coded routeing table. To make the update transparent, the version
2 routeing table must somehow be coded into version 3 before the version 3 route-packet
is executed. Achieving this transparency can be accomplished using an mprocedure. This
mprocedure merely calls the version 3 route-packet routine in specifying the 'add-route'
operation. This is done once per route coded in version 2. When all version 2 routes
have been added to the version 3 route-packet, version 2 procedures calling route-packet
via the interprocedure will behave correctly.

3.4. Packet Pumper summary
An overview of the behaviour of each version of the Packet Pumper has been provided.

The evolution of each version to the subsequent version represents a logical progression
to increasing complexity and functionality. Although the actual program is simplified, the
logical migration from one version to the next is the same as has occurred in the Internet.
Thus, this example represents a realistic scenario of program evolution. Furthermore,
shutting down a single packet router impacts connectivity and performance across the
entire network. Hence, having the ability to update packet router software without
shutting down the packet router is an important step in increasing network availability
and reliability.

4. UPDATING THE PACKET PUMPER

Prior to discussing the Packet Pumper directly, a brief overview of the prototype is
provided. For further details, see Frieder (1989).

4.1. The prototype updating system
A prototype updating system has been constructed to validate and benchmark the

updating system architecture. The prototype executes on Sun Microsystems computers
running SunOSTM (Sun, 1986) (a BSD 4.3-compatible UnixTM system) and consists of
several major components. The primary user interface to the prototype is called the
Updating Shell (ush or 'u-shell'). The ush reads commands typed from the user's terminal
and, based on the type of command, performs some local action or interacts with other
components of the updating system if necessary. The ush is capable of dynamically loading
and linking5 user programs to be updated.

This feature is not available in standard BSD Unix. It was implemented in the prototype using the standard
Unix linker (Id) and our own loading system.

DYNAMIC PROGRAM UPDATING 69

User programs are not executed in the same address space as the ush, but rather in
the address space of a separate component of the updating system called the Program
Update Processor ('pup). When a user program is loaded by the ush, it is downloaded
into the pup. The pup and the ush communicate with each other via internet domain
sockets (Sun, 1985), and thus need not reside on the same physical computer system.
The pup and ush do not interact directly with the sockets but through a communication
abstraction reminiscent of remote procedure calls. This communications subsystem allows
messages representing commands to the pup and ush to be interchanged without regard
to the idiosyncrasies of sockets. Block data transfers as well as asynchronous message
notification are also supported. TCP port management and ushlpup connection control
are also provided but are not discussed here.

Table 2 lists the commands available in the ush. These commands are demonstrated
in Section 4.2.

4.2. Updating the Packet Pumper
When the ush is started, the following is displayed:

citi% ush
Updating System Shell version 0.0 (compiled on Sep 26/88 at 01 :04)

running under SunOS version 4.0 on host citi

Table 2. Ush commands

Command Function

com[puter?]
con[nectl
echo
help
help topic
host
load
proc[eduresl
procs
progrraml
qu[itl
run
solurcel
stat[usl
up[datel
uncon[nect]

ctrl-D
! crnd

make sure the computer still works
connect to a pup
echo message on pup and ush
repeat this d~splay
detailed help on 'topic'
select name of current host
link and load a verson of a program
display verslon information on all procedures
display verslon information on all procedures
select name of current program
end updat~ng shell session
run a loaded program
read and execute commands from a file
display status of current pup
begin an update operation
break connection with a pup

end updating shell session
shell escape

70 M. E. SEGAL AND 0. FRIEDER

When the pup is started, the following is displayed:

citi% pup x
program update processor version 0.0 (compiled on Sep 26188 at
01 :04)

running under SunOS version 4.0 for program x

To connect the shell started above to the pup, the ush must be given a symbolic name
of a program and told which host on the network is running a pup for the desired
program. The program name corresponds to the name of the program supplied on the
pup (x in the example above). I f no host i s specified in the connect command, the ush
assumes that the pup resides on the same host as the ush. The ush and the pup need not
reside on the same physical comptuer.

> prog x
The current program is now x
> con
Connected to pup for program x on host citi
Pup for program x on host citi is new
>

Once the connection has been established, programs may be loaded and run. To load
version 1 of the Packet Pumper, the following i s performed:

> load 1 pktl.delta pkt1.0
Load sequence begins. . .

extracted updatable procedures from delta file pkt l .delta
program x has 7 updatable procedures
program x's procedures registered with pup name service on

host citi
delta* computed for 7 procedures in x:

program object code image requires 15824 bytes
program loading at address Ox26a18 in pup x's address space

on host citi
program linking complete
loaded VMC segment descriptor table into citi's VMC

DYNAMIC PROGRAM UPDATING 71

copying code to pup complete

no interprocedures loaded for version 1

no mprocedures loaded for version 1

Version 1 of program x loaded successfully
>

This display i s printed with full debugging compiled into the ush. The ti table (Section
2.2) printout has been shrunk for the purpose of this example.

Once the program has been loaded, i t may be run immediately or additional versions
of the Packet Pumper can be loaded. Loading version 2 now results in:

> load 2 pkt2.delta pkt2.0
Load sequence begins . . .

extracted updatable procedures from delta file pkt2.delta
program x has 7 updatable procedures
program x's procedures registered with pup name service on

host citi
delta" computed for 7 procedures in x:

delta table printout eliminated for clarity

program object code image requires 15944 bytes
program loading at address Ox2a7f8 in pup x's address space

on host citi
program linking complete
loaded VMC segment descriptor table into citi's VMC

................ copying code to pup complete

iproc object code image requires 560 bytes
iproc loading at address Ox2e648 in pup x's address space on

host citi
iproc linking complete
copying code to pup . complete

mproc object code image requires 144 bytes
mproc loading at address Ox2e888 in pup x's address space on

host citi
mproc linking complete
copying code to pup . complete

Version 2 of program x loaded successfully
Version 1 interprocedures loaded successfully
Version 1 mprocedures loaded successfully
>

72 M. E. SEGAL AND 0. FRIEDER

Alternatively, a new version of the program while the current version is executing can
be loaded. Suppose instead that version I of the program was run. This is accomplished
by:

> run
Program x is now running
>

When the ush is given the run command, version 1 of the current program is executed.
On the pup, we see the following if debugging is enabled:

pup: INTERRUPT! (pup state: 0) received command R U N
Execution begins a t address Ox26a18 . . .

packet: type 0x01 addr [0x0aObOcOd.0x040203041 intf [0x00,0x01] 0
packet: type 0x01 addr [Ox12345678,0~9abcdefO] intf [Ox09,0x03] 0
packet: type 0x01 addr [Ox22334478,0~9a01 defO1 intf 10x09.0~03] 16
packet: type 0x01 addr [0x22334478,0x9867defOl intf [OxO9,BAD*l 16
packet: type 0x01 addr [0x01001234.0x02000091] intf [0x02.0x01] 16
packet: type 0x01 addr IOxl2345678.0x23bcdef01 intf [Ox03,0xOOI 16
packet: type 0x02 addr [Ox01 001 234.0x02000091] intf [Ox02,0x01~ 1 6

The INTERRUPT message signifies that the pup has received a R U N command from
the ush. This causes version I of the currently loaded program to begin executing. The
messages prefaced by packet: are output from the Packet Pumper used for debugging
and performance analysis. These messages are read as follows. The type is the packet
type. The bracketed addr pair is the hexadecimal source and destination network address
of the packet being routed. The bracketed intf pair represents the source and destination
network interface numbers of the packet being routed. If there is no route to a given
network, BAD* is placed in the destination network interface field. Finally, the number
at the end of the line represents the amount of task CPU time that has been expended
by the Packet Pumper. This is used for performance analysis.

For example, the first packet of this screen dump is of type 1 (data packetIh and came
from network address OxOaObOcOd and is destined for network address 0x04020304. The
packet arrived at the Packet Pumpcr on network interface O and was sent out on network
interface 1. The Packet Pumper continues to read and pump packets in cycles. Source
address OxOaObOcOd signifies the beginning of the cycle of packets. The cyle repeats to
demonstrate the behaviour of the system in different versions of the Pumper.

After some period of time, suppose an update of the Packet Pumper to version 2 was
desired. On the ush side:

> update pkt2.changes
Update of program x from version 1 to version 2 begins

2 procedures have changed between versions:
-route-packet

"In version 1 and 2 of the Packet Pumper, the type field is unused and ignored. Version 3 interprets the type
field as a routeing command.

DYNAMIC PROGRAM UPDATING 73

-getnetnumber
program x runtime stack backtrace:

-do-route
-main2

warped 5 unchanged procedures into version space 2
computed inactive procedures:

-route-packet
-getnetnumber

warped 2 changed procedures into version space 2
Program x updated to version 2 successfully
>

The parameter pkt2.changes i s a filename which contains the list of procedures that have
changed between versions. This information was prepared by the programmer who wrote
version 2 of the Packet Pumper. After the update command i s given, the results on the
pup side (with debugging enabled) are shown below:

packet: type 0x01 addr [Oxl23456?8,0x9abcdef01 intf [Ox09,0x03] 320
packet: type 0x01 addr [0x22334478.0x9a01def0] intf [Ox09,0x03] 320

packet: type 0x01 addr [Ox01 001 234.0x02000091 I intf [0x02,0x01] 480
packet: type 0x03 addr [Ox01001 234,0x020000911 intf [0x02,0x01] 480
pup: INTERRUPT! (pup state: 2) received command UPDATE

pup: UPDATE dispatcher received command GET-RTS
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATe dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-HRVN
pup: UPDATE dispatcher received command EOF

packet: type 0x03 addr [0x01001234,0x02000091] intf [Ox02,BADX] 500
packet: type 0x01 addr [Ox223344?8,0~9867defO] intf [OxO9, BADx] 500

packet: type 0x07 addr [Oxl2345678,0x9abcdef0] intf [Ox09,Ox04] 560
packet: type 0x01 addr [0x223344?8.0x9a01defOl intf [Ox09,0x03] 580

The lines preceded with pup: are the debugging output of the pup interacting with the
ush to perform the update. They correspond to the ush's view of the update operation.
The GET-RTS command sends a snapshot of the Pumper's run-time stack to the ush, the
SET-SDTE command manipulates the segment descriptor tables of the pup's virtual

71 M . E. SEGAL AND 0. FRIEDER

memory controller. This is how procedures are bound into the new version's space.
Finally, SET-HRVN sets the pup's notion of the highest running version number. Due to
the simplicity of this update, it could complete in a single pass.

After the update is completed, some packcts that may have been routeable before may
have different destinations (or none at all) due to the fact we are now using a different
algorithm. For example, the first two and last two packets on the above screen dump are
sent to the same interface before the update, and to different interfaces afterwards.
Looking closely at the network numbers of the packets' destinations, we see that before
the update, both packets were bound for network number Ox9a. After the update,
however, the first packet is sent to network Ox9abc while the second packet is sent to
network Ox9aO1. The destination network interface numbers are indeed sending the
packets to (the correct) different network interfaces.

T o update version 2 to version 3 of Packet Pumper, assuming version 3 is already
loaded the following command is typed:

> update pkt3.changes
Update of program x from version 2 to version 3 begins

2 procedures have changed between versions:
-do-route
-route-packet

program x runtime stack backtrace:
-do-route
-main2

warped 5 unchanged procedures into version space 3
computed inactive procedures:

-route-packet
warped 1 changed procedures into version space 3
enabled procedure return interrupts

Program x update initiated successfully
>

s o m e time passes . . .
"""Program x updated to version 3 successfully***

This time the update behaved differently than before. Because there were active
procedures, the update could not complete when initiated. Since a procedure is only
updated when it is nor active, the updating of procedure do-route is delayed. Until all
of the procedures have been updated, each time a procedure invocation terminates, the
ush is notified. The ush determines if active procedures are now inactive and, if so,
updates them. This is done asynchronously within the ush and is normally undetectable
to the user. After all procedures have been updated, the pup asynchronously notifies the
ush, which outputs a message similar to the one shown above.

The update shown above (on thc pup side):

packet: type 0x01 addr [Ox22334478,0~9867defO] intf [OxOS,BAD*] 740
packet: type 0x01 addr [Ox01 001 234,0x02000091] intf [Ox02,BAD*l 740
packet: type 0x01 addr 10x1 2345678,0~23bcdefOI intf [0x03,0x00] 740

pup: INTERRUPT! (pup state: 2) received command UPDATE

DYNAMIC PROGRAM UPDATING -.

pup: UPDATE dispatcher received command GET-RTS
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-HRVN
pup: UPDATE dispatcher received command EI-POP
pup: UPDATE dispatcher received command EOF

packet: type 0x02 addr [Ox01 001 234,0x02000091] intf IOx02,BAD"I
pup: PROCEDURE INVOCATION TERMINATED!
pup: UPDATE dispatcher received command GET-RTS
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command SET-SDTE
pup: UPDATE dispatcher received command Dl-POP
pup: UPDATE dispatcher received command EOF

route : type 0x02 route network 0x9867 via intf 0x08 added
route : type 0x02 route network Ox0 via intf 0x06 added
packet: type 0x01 addr [Ox22334478,0~9867defO] intf [Ox09,0x08]
packet: type 0x01 addr (0x01001234.0x020000911 intf [Ox02,0x061
route : type 0x02 route network 0x2 via intf 0x07 added
packet: type 0x01 addr [0x01001234,0x02000091] intf [Ox02,0x07]
route : type 0x03 route to network 0x2 deleted

packet: type 0x01 addr [Ox01 001 234,0x02000091 j intf [Ox02,0x06]
route : type 0x03 route to network 0x2 nonexistent
packet: type 0x01 addr [Ox22334478,0~9867defOl intf [Ox09,0x08]
packet: type 0x01 addr [0x22334478,0x0067defOl intf [Ox04,0x06]
route : type 0x03 route to network 0x9867 deleted
packet: type 0x01 addr [Ox22334478,0~9867defO1 intf (0x09.0x061
packet: type 0x01 addr [Oxl2344129,0x99294017] intf [Ox07,0x06]
route : type 0x03 route to network Ox0 deleted
packet: type 0x01 addr [0x22334478.0x0067defO] intf [Ox04,BAD]
packet: type 0x01 addr 10x1 23441 29.0~992940171 intf [Ox07,BAD*I
route : type 0x03 route to network Ox0 nonexistent
packet: type 0x01 addr [0x22334478,0x0067defOl intf [OxO4,BAD*I

The first block of pup updating commands looks similar to the first update with one
exception. Before returning control to the Packet Pumper, the pup executes the El-POP
command. This causes the pup to enable interrupts each time a procedure is popped from
the run-time stack. This continues until the update is finished. After the first block of
updating commands has completed, the packet that was being processed is completed
and is printed out. Notice that because this packet was processed before the new version
of the Pumper was installed, it is still interpreting the packet by version 2 rules (i.e.
ignoring packet type). When this packet has been printed out, the pup takes a procedure
termination interrupt. In this case, the do-route procedure has terminated and we continue
with the update. After do-route has been updated, the pup executes the Dl-POP

76 M . E. SEGAL AND O. FRIEDER

command, which disables the procedure pop interrupts. The update is now complete.
On the very next packet, the new version is running. The packet is a route add

command (type 2) and a new route is successfully added. After this has been performed,
another route (the default route) is added and two packets that were unsuccessfully
pumped before the update can now be successfully routed since the packet pumper now
knows (courtesy of the route add packets and dynamic routeing) how to do it. As can
be seen later in the output shown above, routes can also be deleted and, as expected,
packets can no longer be routed to non-reachable networks.

5. PERFORMANCE OF THE UPDATING SYSTEM
To measure the performance penalty during an update, the prototype updating system
and the Packet Pumper were instrumented to produce timing information that can be
analysed with other tools. The pup contains a number of performance meters which may
be read and written. One of these meters keeps track of the amount of task CPU time
that the pup (and loaded programs) expend. Internally. this time is based on the Unix
task CPU time of the pup process. By observing the amount of useful work performed
(i.e. number of packets routed) over time, we can obtain a reasonable approximation of
the Packet Pumper's overall performancc. By examining the time interval(s) where the
update(s) occur, we can calculate the cost of performing the update.

The precision of the CPU time meter is a direct function of the precision of the internal
Unix process timing routines. The prototype updating system currently runs on Sun 3
and Sun 4 systems running SunOS 4.0. Both Sun systems time processes in units called
'ticks'. On the Sun 3, one 'tick' equals 1150 second of CPU time, while on the Sun 4.
one 'tick' equals Ill00 second. Thus. the CPU use can be measured to the nearest I s 2 0
ms of task CPU time. Although this granularity is somewhat coarse, it is sufficient to
obtain prototype performance data.

T o approximate the performance of each version of the Packet Pumper before
performing any updates, each version ran zcveral times on a lightly loaded Sun 31280
computer. Based on 15 runs of the same data set for each version, version 1 of the Packet
Pumper pumps at 7.26 pktslCPU tick, version 2 at 7.67 pkts1CPU tick, and version 3 at
5.40 pktslCPU tick. The performance of versions 1 and 2 are roughly comparable while
version 3 runs somewhat slower due to the increased complexity of its routeing algorithm.

To determine the performance degradation during a complete update. all three versions
of the Packet Pumper were loaded and ran version 1. At a random time an update to
version 2, and later to version 3 was issued. This test was performed 5 times. As stated
earlier. the update from version 1 to version 2 is straightforward; only one procedure
changed between vcrsions. In all runs of the test, this update occurred in no more than
one clock tick (i.e. no more than 20ms on the Sun 31280) but because the program was
updated at different points in its execution, there is some variation7 in the exact timc
between runs.

Updating from version 2 to version 3 is more complex due to the state information
that must be retained from version 2. Recall that version 3 maintains the routeing
information (that was previously represented by the version 2 routeing code) in a table

'The Unix clock also contributes to this variation somewhat. Auxiliary experiments showed that this effcct
was not significant when the Sun 31280 was idlc.

DYNAMIC PROGRAM UPDATING 77

Taak CPU T h e (m)

Figi~rc I . Nrdrrther of p o r k ~ r . ~ pl t~nped over rime

Task CPU Tim (m)

F ; ~ I I ~ P 2. Packer rare over rime

78 M. E. SEGAL AND 0. FRIEDER

that is changed based on routeing packets. Thus, an mprocedure must perform this
mapping. This takes the largest portion of the updating time. In all runs, the update
occurred in no more than 4 clock ticks (i.e. no more than 80ms on the Sun 31280) to
fully complete. The variation between runs is due to the factors discussed above.

Two graphs illustrating the performance of the Packet Pumper over a single complete
run are shown below. This data model the behaviour of the Pumper. We define the
Pumping Function P(t) :

P(t) = the number of packets pumped after 1 ms of task CPU time has been expended
by the Packet Pumper (and pup)

Figure 1 shows P(t) plotted over the execution lifetime (in task CPU time) of the Packet
Pumper.
Because the timing data is based on discrete samples at 20 ms intervals, Figure 1 is
plotted as a bar graph. At each 20 ms interval, the total number of packets that have
been pumped thus far is shown. The vl->v2 notation denotes when the update from
version 1 to version 2 occurred. The version 2 to version 3 update (denoted v2->v3) is
shown with two arrows. The left arrow indicates the time that the update began and the
right arrow denotes when the update was completed.

A related measure of Packet Pumper performance is how the pumping rate changes
over this time interval. Mathematically, this relationship may be expressed as dP(t)!dt.
Since the time intervals are discrete quantities, dP(f)ldt may be approximated as the
number of packets pumped during a given time interval. This is shown below in Figure
2 for the same Packet Pumper run as in Figure 1.

Let dP(t,)ldf denote the minimum and dP(t,)ldt denote the maximum packet rate for
the run (excluding when an update is in progress), then

where dP(t,,)ldf denotes the packet rate during either update. Thus, the updates are
consistent with the performance of the Packet Pumper in its standard operating mode.
Notice that the performance degradations due to updating are no worse then the variations
in performance due to variations in the data set.

6. CONCLUSIONS
A method of dynamically updating computer programs. an example program that uses
the system, and a prototype version of the updating system are described. The sample
program, the Packet Pumper, makes packet routeing decisions for a computcr network
gateway for a hypothetical network. Using the updating system, each version of the
Packet Pumper was updated to its subsequent version. Furthermore, the cost of the
updating system, in terms of performance degradation during an update, was evaluated
and shown to be minimal, making the updating system an attractive environment for
applications that must be continuously running. As computer systems become more
complcx, methods of reducing software downtime during software maintenance will
become increasingly important.

DYNAMIC PROGRAM UPDATING 79

Acknowledgements
We wish to thank Bruce Schatz and the other reviewers for both their technical and stylistic
comments. We especially wish to thank Mel Colter for his invaluable assistance. His help is greatly
appreciated. This research is supported by the University of Michigan Center for Information
Technology Integration, 2901 Hubhard Ave., Ann Arhor, MI 48105, U.S.A.

References
Aho, A. V., Hopcroft, J . E. and Ullman. J. D. (1983) Data Structures and Algorithms, Addison-

Wesley Publishing Company, Reading, Mass.
Birrell, A. and Nelson, B. (1984) 'Implementing remote procedure calls'. ACM Transactions on

Comprtter Systems, 2(1), 39-59.
Bloom, T. (1983) Dynamic Module Replacement in a Dirtrihuted Programming System. PhD

Dissertation, MIT.
Bodwin, J. (1987) Personal communication regarding the internals of the Michigan Terminal System.
Brooks, F. P., Jr. (1975) The Mythical Man-Month, Addison-Wesley Publishing Company. Reading.

Mass.
Cook. R. P. (1980) 'StarMod-a language for distributed programming, l E E E Trans. Software

Engineering, SE-6(6), 563-571.
Dahl. 0. J. , Dijkstra. E. W. and Hoare, C. A. R. (1972) Structrtred Prograntming, Academic

Press, London and New York.
Fahry. R. (1976) How to Design a Svstem in which Mod~tles cun be Changed on the Fly, in Proc.

Second International Conference on Software Engineering, IEEE. October, pp. 47W76.
Frieder, 0. and Segal, M. (1989) 'On dynamically updating a computer program: from concept to

prototype', Journol of Systems and Software, under revision.
Goullon, H., Isle, R. and Lohr. K. (1978) 'Dynamic restructuring in an experimental operating

system', IEEE Trans. Software Engineering. SE-4(4), 298-307.
Lee, 1. (1983) DYMOS: A Dynanlic Modification Sysrem,'PhD Dissertation, University of Wisconsin.
Rey, R. F. (ed) (1986) Engineering and Operations in the BrN System (second edition). AT&T

Bell Laboratories. Murray Hill. NJ.
Schell. R. (1971) 'Dynamic reconfiguration in a modular computer system', Tech. Rep. TR-86,

MIT Laboratory for Computer Science.
Segal. M. and Frieder, 0. (1988) Dynamic Progrum Updating in a Disrrihutrd Cotnprtter S.y.~tenl

in Proc. IEEE Conference on Software Maintenance. October. DD. 198-203.
Sun (1985) 'Interprocess communication primer'. Networking the Sun Workstation, Sun

Microsvstems. Inc.. Mountain View. CA. Anril. . -~ -. - r ~ ~~~

Sun (198;) ~ ' n i ; lntr&ce Refcrmce Manrtal, Sun Microsystems. Inc., Mountain View. CA.
Wirth. N. (1971) 'Program development by stepwise refinement'. CACM 14(4). 221-227,
Yacobellis, R. H.. Miller, J . H.. Niedfeldt. B. G. and Weber. S. S. (1983) .The 3B20D processor

& DMERT operating system: field administration subsystem'. The Bell Systenl Technical Jolrrnal.
62(1), 323-339.

