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Numerous distributed operating  systems  have  been proposed  in the  liieran~e.  come  of which have  developed into
commercial systems. Unfonunatety,  the  educational arena  haq  not kept up-to-date with these  developmenu.
Currently, linle  educational emphasis has fccusscd  on experimental distributed operating systems. Furthermore.
only a few systems have keen  developed as  a tool  to reach distributed systems. and those  that  were,  arc basically
skeieron  sysrems.  and not complcle.  DUNIX is a fully operal~onal,  complete, distributed  operating syslcm.  The
DUNIX kemcl  is intcnfionelly  small, mcdulx,  and rimplz.  thus  is easily underhlrxx  and modified.  A pnwnful
interactive kernel  debugger available in DLINIX.  enables audenL<  tn  easily observe  and mtiify  the systun.  Thus.
exprrmenfnkm  wlh an actual system is possible.  A sample scssian  that illusuales  the sahent  feswcs of
DUNIX, in kxn~ of iabonlnry  cxperimcn(atlon  i?  pwenkd.

1.  INTRODUCTION

The study of operating systems has been part of the core
computer science curriculum for many years. A typical un-
dergraduate  operating systems course consists of classroom
lectures on operating systems principles as well as laboratory
assignments to reinforce the lecture material. An operating
systems course can also be taught by using a real operating
system to illustrate important concepts and to provide a basis
for laboratory assignments. Kot  only does the real operating
system allow the student to see how individual concepts are
combined to form a cohesive unit, but this approach also
gives the student a hands-on learning tool. Unfortunately,
most production-quality operating systems are far too large
and complex to be understood by  a student  in a one-term
course.  To address this problem,  two different approaches
were taken. In the tirst approach 1131,  a book describing a
complete operating system (LINIXTM  Version 6) was writ-
ten. Thus, the students could better understand the operating
system source code. However, as no kernel experimentation
tools were developed, debugging the code developed by the
student was very difficult. The second approach lead to the
development of a number of smaller operating systems,
whose main purpose is to illustrate operating systems
principles to students 13, 5. 201. The  primary disadvantage
of these “toy” operating systems is that many issues that are
encountered  in the design of real  operating systems are often
ignored.

Teaching n contemporary operating systems course is
even more challenging as the field continues 10 evolve. In
particular, as the uniprocessor  timesharing systems of yes-
terday are replaced with today’s distributed  operating sys-

teaching tool for operating systems courses. DUNE  con-
tains  most of the functionality found in typical distributed
operating systems, but is organized in a highly modular
fashion to hide implementation derails and make the source
code more understandable. DUNIX also has many features
which can be exploited to aid in teaching an operating sys-
terns  course with a significant laboratory component.

The remainder of this paper is organized as follows. In
Section 2, an overview of the DUNIX environment and the
DUNIX kernel structure is presented. The structure of a
DUNIX-based  distributed operating system laboratory is
described in Section 3. Section 4 contains a sample DUNIX
session that illustrates how DUNIX might be used in a
classroom setting. Concluding remarks are presented in
Section 5.

2 + THE DUNIX OPERATING SYSTEM

The DUNIX operating system [I 1,121, a UNIX  deriva-
tive,  is a fully operadonal,  complete distributed operating
system in production use at BeIlcore.  DUNIX provides
users with the illusion that only a single machine exists,
when in reality numerous machines comprise the system.
DUNIX provides the features of a “standard” non-dis-
tributed operating system while masking the computer
boundaries.

terns, finding a sample distributed operating system to use in
conjunction with a course may present certain problems. As
with their non-distributed counterpans,  a distributed operat-
ing system used in a course must avoid overwhelming the
student with details, but should have sufficient functionality
to illustrate important operating systems  concepts and their
m~plementation.

In this paper, we describe how an existing distributed
operating system. DUNIX, can be used  as a hands-on

A typical DVNIX environment is shown in Figure 1. As
shown, multiple machines are interconnected via a packet
switched network. Each machine is fully configured and
consist of its own local peripherals.  To provide high avail-
ability, disks can be shared’ between the individual ma-
ch ines .

The DLJNTX  system is by no means unique. Many other
distributed operating systems have been developed, e.g.,
Amoeba [14,  151, the V System [4],  DEMOS 121.  Crystal
171,  Aegis 19,  IO],  the CHORUS system [l]. the Cambridge
Distributed Computing System 1161. Accent 1171, Mach
1181. Clouds 161,  and LOCUS [21].  All of these arc/were
used daily in research environments; in some cases, they arc

TM LWfX  is a trademark of AT&T &II  Laboratories

lAlthough  the disks are  dual-ported. a given disk is physically
connected 10  a single computer at a  given time. If that compwx  breaks,
the  disk  may be switched to another machine by the system operator.
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also available as commercial products. For an excellent sur-
vey of distributed operating systems, the reader is referred to
[19].  Although these systems are widely publicized, there
have been no published accounts of using these systems as
educational tools.

2 .1 Global Structure of the DUNIX System

In DUNIX, each computer  has i ts  own copy of  the ker-
nel. All local kernels cooperate to create the illusion of a sin-
gle UNLX  machine. Each computer is fully autonomous and
every kernel is equivalent and operates in the same manner.
Note many distributed systems, like those employing the
client/server model, do not follow this principle. Further-
more, in DUNIX a set of cooperating kernels resemble a
single independent kernel in that no distinction is made re-
garding the locality of an operation. Supporting such a
structure simplifies the dehugging of the system since de-
hugging a distributed systems requires only the debugging
an individual kernel on a single machine.

The DUNIX kernel is small, modular, and relatively low
in complexity as compared to other complete operating sys-
tems such as Berkeley 4.x UNIX. The kernel is divided into
modules that only interact with other modules through their
calling interface. This allows a programmer (or a student) to
concentrate on one aspect of the system without worrying
about side effects between modules or implementation details
of modules not being studied.

The structure of the kernel follows Dijkstra’s  concept of
software levels [8].  The system is composed of levels of
abstractions where any level can only depend on lower
levels. Figure 2 shows this structure. The kernel is com-
posed of  three main components:  the  lower  kerne l ,  rhe  upper
kerneI,  and the switch. Each of these components is active
only when a process is running within that component, The
same process may run in any component.

All objects (tiles, devices, etc.) reside at exactly a single
computer. There is no remote caching of objects’ states, and
read ahead and write behind of files are confined within the
computer having the file. The system is procedure call ori-
ented. When a process wishes to perform an operation on an
object, it does not send a message to a server, but instead
expands to the computer where the object is located, and
performs the operation itself.

The lower kernel maintains local objects. It provides ab-
stract operations on these objects, and is responsible for the
integrity of the objects. The upper  kernel maintains the con-
text of the processes, i.e., the user ID, the file creation
mask. the binding of open file-descriptors to lower level
names, etc.

U S E R L E V E L

Figure 2. The structure of the DUNIX system

The upper and lower kernels are not concerned with
networking and communications protocol issues; only the
switch is cognizant of the peculiarities of the network. The
switch transfers the activity of a process from the upper ker-
nel of one computer to the lower kernel of another computer
(which could be the same computer).

The upper and lower kernels do not distinguish a remote
operation from a local one, while the switch does not know
the semantics of the activity it is transferring, e.g., it does
not distinguish between killing a process and creating a file.
Most services are provided to the upper kernel via the
switch, except for CPU cycles and address-space manage-
ment. These services are directly provided by the the local
lower kernel.

2.2 Naming of System-wide Objects

A system-wide object is an object residing in one com-
puter and of potential interest to processes in other comput-
ers. In DUNIX, system-wide objects have universal names.
While a process is in the upper kernel, it may hold or store
only the universal names of the object(s) of interest. It may
access the objects only via these names. Universal names are
not reused. A universal name has the following attributes:

* Fixed size bit-string, the size depending on the type
of the object.

l Location independence (utilized in process migra-
tion).

- Context independence, namely, if two processes
each have a universal name and these names are bit-
wise equal, then both names refer to the same object.
This attribute is important when forking one process
to two.

The DUNTX universal device names are equivalent to
standard UNIX device numbers. These names are 16-hits
wide and encode, among other details, the ID of the com-
puter having the device. Naming of files is more elaborate,
since unlike devices, their lifespan is relatively brief. Uni-
versal file names refer only to active files, i.e., tiles whose
representations reside in the primary memory file table. The
64bit  name contains the following details:

* Unique identifier (the same unique identifier is
recorded in the tile representation)

- ID of the computer having the tile
* Index into the primary memory file table, and a

unique identifier.
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2.3 Softwnre Statist ics

The size of a DUNTX  kernel depends on the assortment
of I/Q devices the kernel drives. Consider a modest DVNIX
kernel with a minimal set of device drivers. Such a kernel
has device drivers for disks and RS232 lines, but does not
support TCPflP.  This kernel would contain approxhnately
17.4002  lines of source code. Include files which are in-
serted  within several other source files by the compiler
(xxxx.h  files) arc counted only once. Comment and blarlk
lines compose roughly 30%: of the total counr.  ‘I’hc  17,400
lines of the are pnnitinned  as follows:

* An Ethernet-based switch (1,800  lines)
The lipper  kernel (2,800  lines)l

- The lower  kernel (I 2,800 lines)

By connecting the  RS232 console ports of each crash
computer to the production system, a crash computer may be
halted and restarted, new kernels may be downloaded into it,
etc., all without any physical access to either machine. Thus.
a crash computer may be manipulated from a user logged
into the production system in the same manner that it could if
a user wz?  physically located al the  computer’s console. The
console line is also used  by the  dcbuggcr  to communicate
with the  user.

Finally, a DUNIX sysrcm can be configured such that
the critical segments of the filesystem  are write protected  via
hardware and/or software. As  a minimal file system is rela-
lively large (-20 Mbytes),  reloading it whenever a computer
crashes 1s a lengthy and hothersome process. Since any ex-
perimenration  requires a controlled environment. it is vital
that for every newly configured kernel, the lile system will
always start  out in the same state, Since experimental ker-
nels crash very often and can easily corrupt the filesystem,
supportingrcad-only filesystems  is essential.

3.2. Laboratory Organizntion

In an ideal systems laboratory, a DUNIX system would

Because the lower kernel is responsible for accessing the
vatinns  devices, the disparity in Gze  between  the upper and
lower kernel hecomes  even larger  in R richly-configured
system containing a large assOmnent  of I/Q devices.

3. A DISTRIBUTED OPERATING SYSTEM
ISDlIt:A’I‘IC)N  I,AlK~HATORY

3.1. Why USC  DUNIX?

be conftgtmxi in Iht:  production system/crash computers  re-
lationship  descrihcd above. Students are provided with a set
of “hare” slave machines which are used as Leash computers.
With these machines, students  can cxperimcnt  with all as-
peels of oucwtine systems  includinc (:F’ll rchedolina. exe-
&tine  privileged’in~rnlctinns  and  w%ing  device driv&  that
directly access devices connechd to them.

Two earlier operating systems have heen  used as teach-
ing tools, namely, MINIX  1201  and XINU ISI.  Roth
systems have an advantage over DUNIX  in that they are
accompzanicd  by a textbook and execute on a wide variety  of
machines. Since there is currently no text accompanying,
DUNIX can only be used as a tool in an advanced dis-
tributcd  operating systems iahornrov  course.

For labvratury courses, DUNIX has numerous advan-
tages over these two systems.  The first is that DUNIX is
truly a distributed system. Second, unlike XINU,  it is a
production-quality operating sysrem  rhnt  comains copy-on-
write memory management, process migration, device
drivers, and most notably, a powerful debugger which en-
ablcs the  user to view the  behavior of the internals of the
kernel. A DIJNTX  system alto has extensive user-level
software including software development tools, TCP/IP,  a
mail system, a text furmatter,  print spooler, and the X Win-
dew’;  systemw

Third, DUNIX supports system partitioning. i.e., the
physical machines on the same network can  be configured
into indcpcndcnt disjoint systems. Due  to the  singlo  machine
illnsinn  ;tnd the symmetry  in the mode of operation, each
disjoint system.  even if consisting of only a single machine.
rcsembl~~  the  global systrrn.  Thus, the debugging of the
system  is simphficd.

For example, by modifying the  CPU and disk schedul-
ing routines, a student  can alter the  performance of the sys.
tern.  possibly introducing new nchedulinc priorities. N&v
process migration policies can be studied. Var$ng  the swap
space, cache strategies, and file system orgamzotion  are all
experiments that  can be performed. The appropriate subset
of experiments are  left to the discretion ofthe insmxror.

By,givin&  every srudent  in the class an account on the
producnon  (master) DUNlX system and each team of (2-3)
students a time allotment on a subset of the crash  computers,
a team can build kernels on the production system and test
them on a LTash  svstcm.  As shown in Figure 3, atndenrs  sir-
uated  at any tern&J  can develop their software on the pro-
duction  system (which would normally be more a powerful
system than the crash computers) and then download the
software onto a crash computer. In the  figure. the six physi-
Cal computers arc pnnitioned  into 4 logical systems (sysrems
0. I, 2, J):  2 comparers  used  ns  a single production system
(sysid-O),  2.  computers configured ar a single crash system
(sysid=l’).  and two addition:d crash computers  (sysld=2,
sysid=3).  Reconfiguring the  logical system?  can he done by
a surtabiy  privileged user  x a rcrminnl;  no hardware rccon-
figuration is necessary.

Fourth,  in DUNIX  a sllhset  of the cnmprners  are used
for software development and other non-experimental pro-
gramming tasks.  This subset of computers is designated as
the  producrion  xyxtem.  The remaining computers are  desig-
nnfed  rrnsh cnmputer.~.  A crash computer  is used  to test  new
kernels or other utilities. Recnnsc  no  production work IS
done on a crxh computer. Inormal  users ,are not affected
during testing.

?n comparison. an cquivslcnr  Bcrkclcy 4.2 UNIX  kernel consists of_...I_______._.,..  I.. “C ‘yx) ,,,,  es.
trodcmark  of MIT.

4. EXPERIMENTATION WITH DUNIX

The  DUNlX  kernel debugger  both ttaces specified event
as well as provides an interactive environment to anitlyze  a
running system. In the intcmotive  mode, the  kernel is halted
and the sratc  of kemcl can hc csamined.  In the. trace  mode.
the  system  continues IO cxecnre, however. events selected by
the urer are traced. Thus, a user can witness the various
activities associated with a particular system  call. Conse-
uuentlv,  the  UUKIX  kcmcl dchueeer  can he nred  nor nnlv
as an & 10 kernel dehngging,  hut:i\so as a visualization t&l
to illustrate the hchavior of a kernel. Ry  observing the  sys-
tern  trace and the  performance counters, a user can readily
appreciale how changes  in algorithms or kcmcl pmamcters
affects  system hehovinr.
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As some bugs are time dependent, trace output may hide
some of these errors. However, without the tracing, detect-
ing and correcting the errors is difficult. To remedy this
problem, the DUNIX  debugger can log the output m an m-
temal  circular buffer for display at a later time. Furthermore,
as writing to a user terminal dramatically increases the pro-
cessing time, infrequent errors are not easily reproduced
without suppressed printing.

To illustrate the potential of exploiting DUNM as an ed-
ucational tool, a sample session using the DUNIX debugger
is provided. In general, all user commands are highlighted
in bold-face type. Control A (*A)  transfers control from
the user level to the debugger. In the interactive mode, the
kernel activity is suspended, hence the its state is easily ex-
amined. Issuing a quit command (q).  restarts the execution
of the kernel. The “dunix#  ” and “!  ” are the user level and
debugger prompts, respectively.

A session begins by compiling a new kernel on the pro-
duction system (mirage) via the make command. Once
compiled, the new kernel is sent over the console line to the
crash computer. As seen below, downloading the newly
compiled kernel from the production system to the crash
computer(s) is achieved via typing a user command (dl) and
does not require physical access to either system. As other
researchers [7] have observed, requiring physical access to
the crash computer to download a new kernel is a
considerable deterrent to the use of the system. In this ex-
ample, the kernel symbol table is also downloaded. This
enables the debugger to install breakpoints and to produce a
symbolic printout of the calling stack.

Once the kernel is loaded, the production system gener-
ates a virtual connection between the user terminal and the
console line of the crash computer. Starting from the

“VAX750”  output, all remaining output presented is gener-
ated by the crash system, and user input is processed directly
by the crash computer.

dev.o  c1ock.a  conso1e.a  dewnemo  cxec.o filea  fsvolumc.o  fmark.0
fnme.o pnamc.o pin1f.a  proc.o proch.o psig.a  hot&a  rymdef.o
sysynco  sysca,,.a LCXLO  tty.a  dewmo  hp.0  mba.a db.o uba.o
conf.o exw.o  p1ty.o  nu1l.o  UP  ci.o t11.0  msa.o dd.o  ld1200.0
mi.o bi.o  migrste.o Dadboc.o  Dbrcalt.0  Debgn.o  Dm0.0 Dkemel.0
miragu  d13m-S
Downloading dlmix; 171OO8(tcxt)+32768(data)=203776  bytes

+25388b  of svmbols

VAX%0
Symbol  table: 534  func t ions .  23657  by tes
6291K  bytes of memory (X6W)
kernel  page-table at CD800 = BOAFCACQ
maxkmem  = 12582912, endkmem=l1618816

As the newly downloaded kernel comes to life, several
system parameters may be set. Usually the default parame-
ters are sufficient. In the example below, no modificattons
to the default values are made with the exception of the sys-
tem id value (sysid 3). Initially the kernel probes the
hardware to determine which devices are available (auto-
configuration) and than resets to user level under single user
mode. The dunix # prompt is produced by the single user
shell.

MBA0  B,  F28CGO
DH in  “BAO at  0760420 + DM at  0771100
F’I-N:  26 uys
DELMA(DELUA)  i n  UBAO  at0774510
F”,I,60M  on dkO0.  “is  MBAOiO  read -.I,
‘“,l,60M  ,,n dkO1.  via MBAO/l
‘MIL  ic  cw~n_*n.*.  ,r!dA1K  h”,l

dk3Oa  mounted an /
dWOd  mounred  a n
1082K(keme1)+5209K(usr)  = 6291K(lofal  “Wm)
Machine #3
dunixW

As faulty kernels are likely to corrupt the file system,
DUNIX may be used with a write-protected file system.
This protection is provided either via software and/or  hard-
ware. In the example below, an unsuccessful attempt is
made to write onto a read only disk partition. To provide a
writeable partition, a clean, temporary disk partition is cm-
ated  (mktmp).
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/dev/dk3Oa  on I (R.O.)
dunir#  mktmp
mkfs  /dev/gdkle  7wO
told  - 7 w o  blocks
inodes  -  280 blocks
free-list step  = 3
InO””  -p  ,dev,gdkle  hmp
en&l
dunirlt  df

FREE  TOTAL %FREE
l702K  194S6K 8 %

idevldk3Oa  on / (R.O.)
/dev/dk3le  on ,tmp
dunixlt  c d  ltmp

F R E E  TOTAL  %FREE
l702K  l9456K  8%
6 8 7 7 K  7168K  9 5 %

Providing an experimental environment requires suffi-
cient on-line help, otherwise experimentation becomes more
of a library search and not a “playful experience”. DUNIX
provides such support via the ? command. Simply typing a
question mark in the debugger mode prints all the debugger
options. A question mark followed by an option name pro-
vides a detailed description of the option. Commands are
executed once. Variables are integer values and can read-
ily be examined and modified. A flag is activated by typing
its name, either with or without a + sign and is cancelled by
typing - flag name. Flags are usually used to invoke
traces at specific events. For example, the csw flag traces
context switches.

&X:  SC.  fssc.  fSC.  ex. sig. ewe.  bexit swp.  CSW, devinik  ST, FILTER,
badname.  macheck.  yellall.  pelt,  scsa.  inmrg,  ioct.4. cln,  tnu,  “baspace,
=xcom. hptr.  hpen, tsn.  tserr.  tstream.  t”tr.  own. mrunsg. n,saer.  Iderr.
~O~OUL  luopb.  nohkeeper,  delua,  mig .  rl.  12. 0. t4.  15.  16. ~7.  18.
VARIABLES: here. rdev.  rbac.  srdev.  memdev. maindev.  conspeed.  sysid,
aclock.  xpipe, wcpu.  mvcomed.  ldmaxt.  intm.  maxdil.  vl. m&o,  migcyc.
COMMANDS:menu,?,help,q,flg,~e~,pl,c~,playb.~~~.l~,~2f,b~~~~k~h~~~k,
s.mem.rr.lly.p,proc.mini.file.bi,nmi.hPsL,mbart,msast.vol.pbok.port.
teat.scg,pgt.ckpt,prdeu,~~~,~~~~,~t~.cmtr,cp”,~~y~.~~~~ll,dl.d2.d3,hey,
echo.nccho.errt,tsst,t”st
I4

Understanding the execution of a kernel requires the ca-
pability of tracing individual events. In the example below,
all system calls are traced for the execution of the Is com-
mand. As shown, both the successful and failed system
calls are printed with the appropriate indication of status. All
system calls, except fork, result in two statement being
printed; once at the start and once at the return of the execu-
tion of the call. The fork system call results in three state-
ments, once at the start, once upon the return of the child
fork, and once upon the return  of the parent fork system call.

! ?rxrc
exec -  lrece  s”ccessfull  exe&
! +c*ec

-csh[2339]  exec:  Is
! Psc

syscall exec(Xd2eO=“,bi,W.Xda7O.Xde24)  by I$[23391  RETURNWG 0
syscall fork0  by -csh[355] RETURNING X923=2339
rywall  wait()  by -csh[355]

syscall time()  by I$73393
syscdl time0 by Is123391  RmURNING  X245bc8eS=@9994981
syscall  ioctl(l.X7408,X7fTfcad6)  by ls[2339]

syseall  ic-xWX7408.X7fflcad6)  by Is123391  RETURNING 0
syscall brk(X6fJc)  hy k[Z339,
syscall hk(X6Ek)  by IQ3391  RETURNING 0
syscall stat(X4114=“.“,X7fffca90)  by ls[2339]

sysc=U  star(X4lf4=“:‘.X7fffca90)  by ls(2339] RETURNING 0
syrcall  open(X4lf4=“.“.0)  by ,s[2339,

SYScall  apen(X4lf4=“.“,0)  by 1~12339)  RETURNING 3
syscall read(3.X74oO.X4CO)  by Is,23391
syscall  read(3.X74oO.X4Do) by ls[2339] RETURNrNG  X80.128
ryscall  read(3.X74LW.X400) by Is,23391
wscsll read(3.X74W.X400)  by Is123391  RETURNING 0
syscall close(3) by Is[2339j

SYrcaU  closeO)  by ls[23391  REl-URMNG  0
syscdl wke(l.X5Sc4.9)  by I$?3391

NEW-f  syscall write(l,X55c4.9)  by Is123391  RETURNING 9
i l e

syscall exit(O) by IsI23391
Vrcell weir0  by -csh[355] REVJRNlNG  X923=2339
syscall  wilc(l.X7fffc968.7)  by -csh(355]

dunid  sywall mite(lX7Nfc968.7) by -csh[355] RETURNING 7
syscall iocW3,X7412.X7fffcae4)  by -csh[355]
syscall ioc0(3.X7412.X7fffcae4)  by -ah[355]  Rb-rUwG  0
syscdl iocd(3.X741l.X7fffcaea)  by -csh[355]

SYSCall  iocW3.X741 lX7fffcaea)  by -csh[355] RET”RjW.,C  0
syscall read(3.X7fffcalc,Xc7)  by csh[355]

Disk I/O can be traced. Disk partition dk30a  contains
the /etc/passwd  tile. hence only READS  are required. The
READ and WRITE  output related to disk partition dk3le
results from the kernel initially reading the current (dot) di-
rectory prior to writing the password tile in that directory.
As shown, each disk request produces two output state-
ments. The tint is for the queueing and the second is for the
processing of the request. Note that failed system calls are
also specifically axed  in this example.

I -csw
! ?,sc
fsc trace  failed system-calls
!fSC
19
dunix# cp  Ino-,Ile
FAILU) sysceall  open(X7fffcb77=“~o-lile”,O)  by cp[675]  [ENOENT]
cp: CaImDI  open  *a-lile
dunixY  “A
! ?hprr
hpu  -Trace HP I/O
! hprr
!P
dunire cp  lshlpnswd
dk30a: queue  read of block 643 (req@Ldacb)
dk30a: READ. blk=643=1542=<4.R.6>.
dk3Oa:  queue mad of block 984 (,eq@L6acf4)
dk3Oa:  READ,  blk=984=2224=<6,9,16>.
dk30a:  queue  reed  of blak 1314 (req@L6ad7c)
dk3Oa:  READ, blk=l314=2R84=<9,0.4>,
d!c30a:  queue read of block 1335 (reqQL6aeM)
dk30a: READ,  blk=l335=2926=<9,1,14>.
dk3le:  queue read of block 282 (req@L&&)
dk3le:  READ,  blk=282=160564=cS01.7.20>.
dk30a:  queue read of block 4221 (req@L&fl4)
dk30a: READ,  blk=,227=8710=<27,2,6,.
FAILU) syscall  stat(Xla98=“./lpasswd”.X7fff~~9~)  b y  cp[739]

IENOEWI
dk3le: queue read  of block 8 (,eq@L&f9c)
dk3le:  READ,  blk=8=160016=dW.O.16>,
tile:  queue write of block 282 (req@WaeSe)
dWle:  WRITE. bIk=282=160564=<501,7.20>.
dk3Oa:  queue read of block 4802 (req@L6b024)
dk3O.x  READ.  blk=4R02=9860=<30,8,4>.
dk30a:  queue read of block 4805 (req@L6bl34)
dk30a: READ,  blk=4805=9866.<30,8.10>.
“ A !  -hptr
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Rreakpoiits  can be set at entry  and exit of any procedure
of the kernel. For example, the pathZfnm  procedure
translates a logical name to a binary name. As shown, a
breakpoint is set at the entry and exit of the path2fnm
function. The calling stack display command (s)  displays
the calling sequence that resulted in an invocation of
oathlfnm.  The +s 1 option lists the values of all local
&iables  on the top of the’calling  stack.

! IS
RESOURCES:
USER-MEMORY: 98Ol(fxee]  + 13S[cachc]  + 193tusedl  = 10132[ratiI  * 512
bytes
SECODARY-MEW  644[frcr]  + O[“wd, = 6@to(all*  31744 b”%s

!I
dunixd  ir  irrctpasswd

sysca”  c~ec(XdZc0=“ibinns~,X~fi4~~4)  by -csh[RO31
R.P. Path2fnm(53984=Xd2e0,  0.  2147472324=X7Rfd3c4)

[in file  fsymbol.1

B P. pnih2fnm(539R4=XdZeO.  0.  -1I47472324=X,,ffd3r4).  renlming  1
[in file  frymtml  1

! ?S

R P. pathZfnm(S39R4=XdZcO.  0.  2147472324=X7fffdWws).  rrtuming  1
,in  f,lC  fsymtnl.]

erccc?(53984=XdZeO.  SX772=Xc594.  58580-Xc4d4) [in  file  excc.1
syscall()  [in  file  ryrcall.1
!-+5  I
R.P.  palh2fnm(53984=Xd2eO.  0. 2!47472324=X7fffd3c4),  reWning  1

[in me  fsymtml.1
fnp=2147472324=X7fffd3d  path(P)=53984=Xd2cO  mode(p)=0
f~p(p)=2,47472324=X7fffd3c4  rv=-l d,q=2l47472212=X7fffd354
cnk=l8524M)t75=Xhch9622f  copy=L17760  nc=7  me=-1  cnc=7
,,,yer&  ub,=4  Vb,2=2,47472324=X7fftd3~4  hookno=L3194

fzL2dOf4  t=Lzc55c  St=2
! P

syscdl  elcc(XdZc0=“‘lbinnr”,X=3~,X~4)  by l.WlSl  RETURNING 0
sysca,,  sla~(X7fff~b77=“/~I~/P~s~~d’~~X7FITLaaO)  by IsIX

A.,?  PalliZfnm(2147470199=X7fff~h77,  0, ‘2,474724M=X71ffdOc)
,in  mc  fqTdd]

!9

R.P.  psrh2fnm(2147410199=X7fffch77.  0.  21474?2444=X7fffd43c),
rctuming  I

[in file fsymh0l.l
‘q

syseal,  star(X7fffcb77=“/elc/p~~~~d~,X7fffcaaO)  b y  Is18031
RElURNING  0
ictcipasrwd
dunid  “A ! -b  *
! .Jrsr

The handling of scarce resources is of primary concern
in operating systems. A common error is not reclaiming un-
used resources or to keep them locked unnecessarily. The
debugger provides a mechanism for checking the state of the
system resources. As shown below, prior to executing the
echo YXYXX  > mytile command, only 6 active files are
used in the system. While executing the echo command, 7
active files are found.

.
bytes
SECODARCMEM: M-l,frrr]  + Ojurcd,  = Mditota!]  l 31744 bytes
PRM1:_^^.I  . .̂ ’ 9~paurc~+3[u~ait:+O[fcnlr]+Ojhi~arrel=3WOlulu11

‘tO[0”~]+2xx[frcc]:. .̂. . ^̂ .̂

Lii(i,lrCe,+ULnmt

=lZ[loadcdj
RLES: 293[fr~e]+7juscd,+,~,,oikcd,i,,,~,~arrcj=.~,ia,~inralj
FMARKS:  297[1ree]+3[uscd]+O[waitl  = 30(l/rolall
RUF: 297[frce]+O.̂̂  ^

If the user is interested in additional details concerning
only file usage, that is also possible. For example, by step-
ping through a file write while examining the system file
table, the creation of a new file entry (Sll#61)  is observed.

!P
dunix#  e c h o  .cx.rxx  5  myfife

~yrcall  crrat(XeShR=“myi,lc“.Xlb6)  by -c<h[8671
! ?Jilr
file  [a]  - Print lhc  fiic-Iable
! fife
Fiie~bhlc:Fi,e~,uhlc:
S,G40,  ,;  dcv=0,4,“2.  modc=040?5S(FTDlR),  coun1=3,  lcount=l.S,G40,  ,;  dcv=0,4,“2.  modc=040?5S(FTDlR),  coun1=3,  lcount=l.
flgrFAC17VEflgrFAC17VE^. ,.. .̂ .. î ’Shif,:  . . . . dcv=0,4,05,  mndc=,N0777(FTDIR),  mu”,=,.  ,wu”W,  fig=-.“---‘--.y  co””  ,=,, ,~lmW,  “g=

..,SW5:  nu,,;  dcv=O,4,02,  modc=020h6h(FTCtlR~,  counti,.  Icounl=l, fig=1.  k”““l=l,  fig=
LoSlM6:  consok?:  de,,--OldlO?,  moilc=O?OMX~iFTCHK).  count=i.  Icounr=l.nmt=i.  Ic”““r4.
fig=
Sitii37:  unp;  dcv=“,4,02,  mode=01075Sf~IR),  count-l, Icount=?.  fig=
Sltr155:  imp :  dav=O,4206.  n,odc=0.10777(FTl)lK).  count=3,  Irount=l,
llg-FACIWE
! P

syscall  creai(Xc5bE=“mynle”.Xibhi  by  -crh(S671  RETURNING 5
!,ilc
File-tahlc:
S,,#O.  j; dew014102.  modc=040755iFT”,R),  count=3, Icount-1,
flg=FAC”VE
Slit,,:  _.,;  dev=“,4,05,  ,nodc=Q40777(fTDiR).  co”nr=,, ,r”““t=l.  flS=
SltdS:  ml,; dcv=,,,di”2.  mode=OZOb66WTCHR,.  counl=l,  icount=,,  fl8=
Sltkh:  consolel;  dcv=Ol?lO?,  moilc=i)?00M)i~CRR), countrl.  Icnunt=l,
fig=
SW37:  tmp;  dcvz014102,  modczO4OiSS(FmlR).  monr=l.  Icount=t,  fly=
Sltk55:  mp: dcv:0,4?06.  mode-030777rFTDIR),  count-l, Icounl=l.

flg=FThlODtFACTIVF.
ShY4,:  my,i,c:  dev=0,4?“6.  modc=OI~M3(RaEG).  count-,. ,count=l,

“&TMoD+FRMoMFACTIVE

Similarly, examining the process table during an exec
system call execution illustrates the transformation of the
csh[XY9]  execution to that of the ps[XPY]  execution. The
trailing number is the process id.
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None of the above examples have dealt with  the dis-
tributed  asuects  of DUNIX. In the accomoanvina  screen

syscall  exec(Xd2e0=‘lbi~~“.Xe67c.X~4)  bv  -csblSW.
! ?pr*e
pm  [index/painlcr  [count]] display process
! prar
Procerrer:

1
display, a ;ser  examines the implementatio;  oithG;hange
file mode (chmod) system call. The top right hand window
displays the source code. The source code consists of two
routines: chmod and chmodl. The chmod system call ini-
tiate with first routine which executes on the local computer.

hkcewri0l.  ooid=O.  tN0.  &#OfL4b8781.  SWAlT  <DEMON>
mke&r[l].‘&id=O,  t&O.  slt#illAk&i,  wiring for work  <I
ranjill.  pptd=U.  LtyO.  rl!#Z~l~hadfl1,  waiting for WORK <DE
rari,3,,  ppid=O.  11~0.  rliffl[iiibbfcl.  waiting far WORK <DEI
rari[4],  ppid=O.  nyO.  rl~#4[Ldhd?Xl.  waiting for  WORK GE
rari[S], ppid=O,  fty0.  sltXS[lAbeS4j,  wailing  for  WURK  <DE
himnnZl6I. ppid-0.  1~0,  slI%[LJbfS@l.  waiving  for work cl
hitman  171. ppid=O,  tlyO.  stl#7llAcOacl.  waiting for work <L
licialdI81.  ppid=O,  ltyll,  rlt#X[L4cld%].  waiting for work <DE
inil[??l].  ppid=O.  t~yO21430(1.  slt#Yjldc304I.  SWAtT.  don
-c<h[3551,  ppid=323.  1tyO214300.  slt#lOlLac43Ol.  VRDY.
4$3YY].  ppid=355,  tlyO214300.  sli#Il[L4c5Sc]. RUU.  d o
14

rymll  exec(Xd2eO-“lbin,ps”,Xe67c,Xe4.,4)  by ps,SYY,  R

hirccpcrKJ1.  p~id=O,  tty0.  sllM)[L4bS78].  SWA,-f  <DEMON,
mkcc~nlll.  ulrid=O.  rtv0,  sltWliL4b9s41.  w&inn  for work <DEMON,

MON>taxil21.  ppid$  lty0.  ail#Z[l~thntifl].  whiting  for-WORK  <DE
mxil?].  ppid:O.  t1y0,  sh#illlhbfc], wait ing for  WORK <DE.MOM
taril‘ll.  ppid=O.  nyo.  sll#4[tAMzX]. wailing for WORK  <DEhfON>
taxiIS].  ppid=O.  try0.  sllUS[LlbeS4j.  wailing for WORK <DE
hitman?[hI.  ppid-0,  ttyO.  slt#6[LtbfROl,  wailing  for w o r k  -z[
hiimanl[71.  ppid-0.  rty0.  slt#7IldcOac].  naiing  for work <L
herald@].  ppid=O.  try0.  ~lt#Xjl+tcldS].  wai6ng  for work <DE
inillSZ31.  ppid=(l.  ttyO2143(KI.  sl1#Y[L4c304].  SWAIT,  doin
-cshj.iSS].  ppid=323,  rtyO214300.  ~li#lO/Wc43O/.  SWAIT,
fsJ8991,  ppid=355.  tiy0214300,  cii#tt[Lsc5Jc~,  P””  ‘-.-

lb  TT STAT TtME COMMAND

The sample session ends by sending a thank you mes-
sage to a colleague in Syracuse University, Syracuse New
York while tracing only the exec system calls. As seen the
smtp command is executed, the message is sent and the
connection is terminated.

dwirff  ! ?e.rec
excc - (TTE  suecesrfull  exe.3
! CXC.2
fq

(machines 2 and 3) are totally independent from the remain-
ing three machines, thus are not represented in the perfor-
mance meters.

323 c3  I 0.14 inii  3 II
duninX  noi1 Fritde~lop.cir.$yr.rdu

SYYC3R 0.14  ps
-csh[12511  exec:  mai l  Friede@rop.cir.syr.edu

dunix#
S u b j e c t :  lrlconrc  fo Euromicro
Gideon,

DEMON>
hION>
M O M
MO%
MON>
)EMON>
)EMON>
MOM
,g wait.
3oing  lark,
mg  exec.

.ETURNING  0

The second routine, invoked by the chmod routine, exe-
cutes  on the machine containing the desired file. In the ex-
ample presented, two files  arc modified. The larger window
on the left-hand-side illustmtes  that all activity is local for the
local file. Also shown in the larger window is the local ac-
tivity  needed for the remote file. The remote activity is per-
formed on the remote machine (machine 2).  shown in the
lower, smaller window on the right-hand-side. Note that the
actual code is identical regardless of where the file is sim-
ated:  local or remote. The three “CPU load” windows are
monitoring the production system The two crash computers

Modifying performance related algorithms, e.g. CPU
and disk scheduling, necessitates the capability of viewing
the performance of the system. As shown below, such ca-
pability exists in DUNIX. The dhg  command invokes the
debugger from the user level. Thus the dhg cmtr; cp
/etc/hosts  .; dbg  mtr command results in the clearing of
the system meters and the displaying of the performance in-
valved  in copying /etc/hosts  to the dot directory.

dunin#  1 ?rnrr
cmlr - Clear all  meters
! emrr
mu Display meters
!P
dunir# dbg  rmtr;  cp lerclhosts  .: d b g  mtr
# 8.5  sec.
Ir CPU: 4woidle(3.6s)  + o9ousr(O.ns)  + 57%syr(4.8s)  I 100%tola1(8,5s)
il 63%syslo(?.Os)  +  lt’%sy~hi(O.%)  +  26%sysim(t,2s) = tOOBsyr(4,Ss)
#  X30  iyicalls  (47/c),  524 Con-SW  (62/s).  0 swapin  (t/Ss)
# “SPT  i/n:  4 1  IKby  r e a d  (JXK/s).  4 1  IKhy  write  (4RKis).  tO24Ohy  exec
flK/S)
# cache: 1889 calls = 950 rd + 532 rdwr + 407  wr;  maxdir,y=77.
minfree=218
tl  -cache: 755 Vo = 412 rd  + 3 r.f.w. + 340 WI.  75 dirty;  398 rd.abead(39S
“XXI)
It  MBA: 75R  interrupts  f9S/sec)
4  HIV: 410  tms(4Sis).  22 pos(J/s).  419K  byter(49lUs).  0 reuier
# X8%hury(?a)  + 124Fidlc  = 57sbflowcl46por+2liabwai1+1246id,~  = ,ooW
# lIPI- 34s  lms(40/r),  9 por(l/r).  353K  byte%(41Kh).  0 r&es
# 69%hury(5sj  + 3l%idlc  = 40Rflo~+ZZposRiYuwail+31  R,d,e  = 1,x,%
dWl,Xd

Y o u  ,z,e  ,,OY  par,  0,  the  mail em,np~  in Euromim,.
Ani,  Opkir.  and M a r k .
VmYr
dumrfi send[13471  excc:  sh s /usrfiib/snxp/smtpqer  ‘to

shji3791  exec:  crh -f /usrflib/amtp/smrpln  to
crh[ldlll  exec:  valueof  SMTP-QUEUE
csh[l443]  excc:  mktemp  Tmpt37Y
csh[  14751  cxcc: cat
cshjIS07j  cxcc:  I n  Tmp1379a 1002
csh[1539]  FTCC:  rm  Tmp1379.
crh11571  I excc:  cp  ldevinull  1002,err
ah116671  exec:  smrp  top.cis.syr.edu  mo, Fried
csh[17311  ace:  c a t  lfX)?..,og
eshj17631  exec:  rm  1002.log
csh[17YS]  erec: rm  -f lOOZ.nr  1002.~
csh[lR27]  cxec:  rm  -f ,002

5.  SUMMARY

The study of operating systems is a fundamental compo-
nent of current undergraduate computer science syllabi.
Traditionally, operaring systems education consists of read-
ing textbooks and research papers, coding relatively small,
model operating system, possibly only some of individual
components of the system, and participating in various
classroom discussions. We believe that in addition to the
traditional teach approach, experimentation with an actual
syrtem  is necessary. Specifically, traditional teaching ap-
proxhes  introduce the student to the fundamentals of oper-
sting  systems, but to obtain deep insight to the intricacies of
systems, experimentation is required.

This paper focussed  on the exploitation of DUNIX, a
complete, modular, distributed operating system, as a
teaching tool for experimental operating systems laboratory.
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DUNIX is chosen from  among  the numerottr  avatlahie  dis-DUNIX is chosen from  amnne the numerottr  avatlahie  dis-
aibuted systems due to the nuherous  features that aid in ed-aibuted systems due to the numerous  features that aid in ed-
ucation that DUNIX incorporates. Some of these featuresucation that DUNIX incorporates. Some of these features
include, a powctful  debugger. supporting a write-prutectedinclude, a powctful  debugger. supporting a write-prutected
filesystcm, kernel downloading capabilities that do not re-filesystcm, kernel downloading capabilities that do not re-
quire physical access to  the hardware, etc.. The advantagesquire physical access to  the hardware, etc.. The advantages
provided by these fe.atwes  werr discussed. A sample scs-provided by these fe.atwes  werr discussed. A sample scs-
sion  using DUNIX was presented.sion  using DUNIX was presented.

If a dceu  insight into the inter-workinrs of a distributedIf a dceu  insight into the inter-workinrs of a distributed 1111
system is d&red,  experimentation with an actual system is
heneticial. This paper presenred  is possible  system to use  as
a teaching tml that can provide the desired invght.


