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Numerous distributed operating] systems| havel been proposed in the literature] some of which have developed into
commercial  systems. Un[onunamlyj the educational arenal hasd not kept upfo-date with thesel developments)
Curently, little educational emphasis has focussed on experimental distributed operaing systems. Furthermore.
only a few systems have heen developed as a ool to reach distributed systems. and thosel thal were, arc basically
skeleton systems) and not compictcl DUNIX is a fully operational, complete, distributed operating system, The
DUNIX kernel is intentionally small, modular, and simple, thus is easily understood and modified. A powerful]
interactive kernel debugger available in DUNIX] enables students to easily observel and modify the system. Thus.
experimentation with an actual system is possible] A sample sessior that illustrates the salientl features| of
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DUNIX, in termd of laboratony| experimentation| is presented.

1. INTRODUCTION

The study of operating Sysems has been pat of the core
computer science curriculum for many yeas A typicd un-
dergraduate operating systems course consists of classroom
lectures on operating systems principles as well as laboratory
assignments to reinforce the lecture material. An operating
systems course can also be taught by using areal operating
system to illustrate important concepts and to provide a basis
for laboratory assignments. Not only does the real operating
system dlow the student to see how individua concepts are
combined to form a cohesive unit, but this approach also
gives the student a hands-on learning tool. Unfortunately,
most production-quality operating systems are far too large
and complex to be understood by| a studend in a one-term
course! To address this problem| two different approaches
were taken. In the tirst approach [13], a book describing a
complete operating system (UNIX™] Version 6) was writ-
ten. Thus, the students could better understand the operating
sysem source code. However, a no kernel experimentation
tools were developed, debugging the code developed by the
student was very difficult. The second approach lead to the
development of a number of smaller operating systems,
whose main purpose is to illustrate operating systems
principles to students [3, 5] 20]] The primary disadvantage
of these “toy” operating Systems is that many issues that are
encountered in the design of real operating systems are often
ignored.

Teaching a contemporary operating systems course IS
even more challenging as the field continues to evolve. In
particular, as the uniprocessor| timesharing systems of yes
terday are replaced with today’s distributed operating sys-
terns, finding a sample distributed operating system to use” in
conjunction with a course may present certan problems. As
with their non-distributed counterparts| a distributed operat{
ing system used in a course must avoid overwhelming the
student with details, but should have sufficient functionality
to illustrate important operating Systems concepts and their
implementation|

In this paper, we describe how an existing distributed
operating system. DUNIX, can be used as a hands-on

™ UNIX is a trademark of AT&T Bell Laboratories

teaching tool for operating systems courses. DUNIX| con-
tains most of the functionality found in typical distributed
operating Systems, but is organized in a highly modular
fashion to hide implementation derailsand make the source
code more understandable. DUNIX also has many features
which can be exploited to aid in teaching an operating Sysq
tems course with a significant laboratory ~component.

The remainder of this paper is organized as follows. In
Section 2, an overview of the DUNIX environment and the
DUNIX kernel structure is presented. The structure of a
DUNIX-based distributed operating system laboratory is
described in Section 3. Section 4 contains a sample DUNIX
session that illustrates how DUNIX might be used in a
%Cas_sroorsn setting. Concluding remarks are presented in

tion 5.

2 . THE DUNIX OPERATING SYSTEM

~ The DUNIX operating system [11,121, a UNIX deriva-
tive] is a fully operational,| complete distributed operating
system in production use at Bellcore] DUNIX provides
users with the illusion that only a single machine exists,
when in reality numerous machines comprise the system.
DUNIX provides the features of a “standard” non-dis-
tributed operating system while masking the computer
boundaries.

A typical DVNIX environment is shown in Figurell As
shown, multiple machines are interconnected via a packet
switched network. Each machine is fully configured and
consist of its own local peripherals| To provide high avail
ar?ility, disks can be shared’ between the individual ma-
chines.

The DUNIX sysem is by no means unique. Many other
distributed operating systems have been developed, e.g.,
Amoeba [14]15]] the V System [4]] DEMOS [2]J Crystal
[7]] Aegis[9]10]] the CHORUS system [1], the Cambridge
Distributed Computing System [16]] Accent [17]] Mach
[18]] Clouds [6]] and LOCUS [21}] All of these arc/were
used daily in research environments; in some cases, they arc

1 Although| the disks are dual-ported. a given disk is physically
connected 10 a single computer at a given time. If that computer| breaks)
the disd may be switched to another machine by the system operator.
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Figure 1. The DUNIX Hardware Base

aso available as commercial products. For an excellent sur-
vey of distributed operating systems, the reader is referred to
[19]] Although these systems are widely publicized, there
have been no published accounts of using these systems as
educational  tools.

2.1 Global Structure of the DUNIX System

In DUNIX, each computer has its own copy of the ker-
nel. All local kernels cooperate to create the illusion of a sin-
gle UNIXI machine. Each computer is fully autonomous and
every kernel is equivalent and operates in the same manner.
Note many distributed systems, like those employing the
client/server model, do not follow this principle. Further-
more, in DUNIX a set of cooperating kernels resemble a
single independent kernel in that no distinction is made re-
garding the locality of an operation. Supporting such a
structure simplifies the dehugging of the system since de-
hugging a distributed systems requires only the debugging
an individual kernel on asingle machine.

The DUNIX kernd is smal, modular, and relatively low
in complexity as compared to other complete operating Sys
tems such as Berkeley 4.x UNIX. The kernel is divided into
modules that only interact with other modules through their
calling interface. This allows a programmer (or a student) to
concentrate on one aspect of the system without worrying
about Sde effects between modules or implementation details
of modules not being studied.

The structure of the kernel follows Dijkstra'q concept of
software levels [8]] The system is composed of levels of
abstractions where any level can only depend on lower
levels. Figure 2 shows this structure. The kernel is com-
posed of three main components: the lower kernel, the uppen
kernel] and the switch. Each of these components is active
only when a process is running within that component, The
same process may fun in any component.

All objects (tiles, devices, etc.) reside at exactly asingle
computer. There is no remote caching of objects states, and
read ahead and write behind of files are confined within the
computer having the file. The system is procedure call ori-
ented. When a process wishes to perform an operation on an
object, it does not send a message to a server, but instead
expands to the computer where the object is located, and
peforms the operation  itself.

The lower kemel mantains local objects. It provides ab-
dtract operations on these objects, and Is responsible for the
integrity of the objects. The wupper kemel maintains the con-
text of the processes, i.e., the user ID, the file creation
mask. the binding of open file-descriptors to lower level
names, etc.

USER LEVEL
U PP ER K E R'N E L
SWITCH SWITCH [ switcH
LOWER KERNEL
CPU & MEMORY

LOWER KERNEL LOWER KERMEL
nelwork

CPU & MEMORY I CPU & MEMORY ]

puckel switching

Figure 2. The structure OF the DUNIX system

The upper and lower kernels are not concerned with
networking and communications protocol issues; only the
switch is cognizant of the peculiarities of the network. The
switch transfers the activity of a process from the upper ker-
nel of one computer to the lower kemnel of another computer
(which could be the same computer).

The upper and lower kernels do not distinguish a remote
operation from alocal one, while the switch does not know
the semantics of the activity it is transferring, e.g., it does
not distinguish between killing a process and creating afile.
Most services are provided to the upper kernel via the
switch, except for CPU cycles and address-space manage-
ment. These services are directly provided by the the local
lower kernel.

2.2 Naming of System-wide Objects

A system-wide object is an object residing in one com-
puter and of potentiad interest to processes in other comput-
ers. In DUNIX, system-wide objects have universal names.
While a processisin the upper kernel, it may hold or store
only the universal names of the object(s) of interest. It may
access the objects only via these names. Universd names are
not reused. A universd name has the following attributes:

v Fixed size hit-string, the size depending on the type
of the object.

« Location independence (utilized in process migra-
tion).

+ Context independence, namely, if two processes
each have a universa name and these names are bitd
wise equal, then both names refer to the same object.
This attribute is important when forking one process
to two.

The DUNTX universal device names are equivalent to
standard UNIX device numbers. These names are 16-hits
wide and encode, among other details, the 1D of the com-
puter having the device. Naming of files is more elaborate,
since unlike devices, their lifespan is relatively brief. Uni-
versa file names refer only to active files, i.e., tiles whose
representations reside in the primay memory file table. The
64-bit name contains the following details:

+ Unique identifier (the same unique identifier is
recorded in the tile representation)
+ ID of the computer having the tile

+ Index into the primary memory file table, and a
unique  identifier.
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2.3 Software Statistics

The size of aDUNIX kernel depends on the assortment
of I/O devices the kernel drives. Consider a modest DVNIX
kernel with a minimal set of device drivers. Such a kernel
has device drivers for disks and R5232] lines, but does not
support TCP/IP. This kernel would contain approximately|
17.4004 lines of source code. Include files which arel in-
serted within several other source files by the compiler
{xxxx.H files)j arc counted only once. Comment and blank
lines compose roughly 30)7%l of the total count. The 17,400
lines of the are partirioned as follows:

« An Ethernet-based switch (1,800 lines)
«  The upper kerne (2.800! lines)
+  Thelowed kernell (] 2,800 lines)

Because the lower kemel is responsible for accessing the
various devices, the disparity in sizel hetweenl the upper and
lower kernel becomes| even larger] in a richly-configured
system containing alarge assortment of I/0 devices!

3. A DISTRIBUTED OPERATING SYSTEM
EDUCATION LABORATORVY

3.1. Why Usc DUNIX?

Two earlier operating systems have heen used as teach
ing tools, namely, MINIX [20] and XINU [51] Bath
systems have an advantage over DUNIX in that they are
accompanied by a textbook and execute on a wide variely of
machines. Since there is currently no text accompanying,
DUNIX can only be used as a tool in an advanced dis-
tributed operating systems [laboratory course.

For laboratory courses, DUNIX has numerous advan-
tagey over these two systems| The first is that DUNIX is
truly a distributed system. Second, unlike XINU| it is a
production-quality operating systemy thad contains COpy-on-
write memory management, process migration, device
drivers, and most notably, a powerful debugger which en-
ablcs thel user to viewl thel behavior of the internals of the
kernel. A DUNIX] system alsd had extensive user-level
software including software development tools, TCP/IP] a
mail system, atext formatter] print spooler, and the X Win-
dows System™,

Third, DUNIX supports system partitioning. i.e., the
physical machines on the same network can be configured
into indcpendent digjoint systems. Dugdl to thd single machine
illusior and the symmetry] in the mode of operation, each
digoint system, even if consisting of only a single machine.
resembled the global system. Thus, the debugging of the
system is simplified|

Fourth] in DUNIX a subsed of the computery are used
for software development and other non-experimental pro-
gramming| tasks] This subset of computers is designated as
thd productior| sysiem. The remaining computers are desig
nated erash computers. A crash computen isused to test new
kernels or other utilities. Recause na production work s
done on a crasll computer. normal users are not affected
during testing.

2In comparispn. an equivaleny| Berkcley 4.2 UNIX kemel consists of
approvamately 49 0000 il es)
M X Windows is a trademark of MIT.

By connecting thel RS232| console ports of each crash
computer to the production system, a crash computer may be
halted and restarted, new kernels may be downloaded into it,
ec, all without any physical access to either machine. Thus.
a crash computer may be manipulated from a user logged
into the production system in the same manner that it could if
a user was physically located ai the computer's console. The
console line is also uscd by thel debugger to communicate
with thel user.

Finally, aDUNIX sysrcm can be configured such that
the critical segments of the filesystem| are write protected| via
hardware and/or software. Ad aminimal file system is rela-
tively] large (~20 Mbyies)| reloading it whenever a computer
crashes 15 alengthy and hothersome process. Since any ex-
perimentation| requires a controlled environment. it is vital
that for every newly configured kernel, the file system will
always startl out in the same state, Since experimental ker-
nels crash very often and can easily corrupt the filesystem,
supporting read-only| filesystems id essentiall

3.2. Laboratory Organization|

In an ideal systems laboratory, a DUNIX system would
be configured| in thel production system/crash computers| re-
lationship| described above. Students are provided with a set
of “harg’ dave machines which are used as crashl computers.
With these machines, studentd can experimeni with all as-
pects of operatingl svstems including CP1 scheduling. exe-
cuting| privileged instmcl{nn;r;m:l writing device driverd that
directly access devices connected to them.

For example, by modifying thel CPU and disk schedul-
ing routines, astudent can alter the performance] of the sys-
tem, possibly introducing new scheduling| priorities. Newl
process migration policies can be studied. Varying the sma?
space, cache strategies, and file system organization are a
experiments that can be %erformed. The apJ)ropriate subset
of experiments are left to the discretion of the instructor)

By giving every student in the class an account on the
production| (master) DUNIX! system and each team of (2-3)
students a time alotment on a subset of the crash computers,
ateam can build kernels on the production system and tesil
them on acrash system. As shown in Figure 3, students Sir-
uated at any terminal can develop their software on the pro-
ductionl sKstem (which would normally be more a powerful
system than the crash computers) and then download the
software onto a crash computer. In thel figure. the six physi
Cd computers arc partitioned into 4 logica systems (systerns|
011, 2, 3){ 2 computery used ag a single] production system
(sysid=()), 2l computers configured as a single crash system
(sysid=1)] and two additional crash compuiers (sysid=2|
sysid=3). Reconfiguring thel logical systems can he done by
a suitably| privileged user ar a terminal{ no hardware recon
figuration is necessary|

4. EXPERIMENTATION WITH DUNIX

The DUNIX| kerndl dehugger both traces specified event
as well as provides an interactive environment to analyze|
running system. In the interactivel mode, the kernel is halted
and the statel of kernel can he examined. In the. rracet mode.
the system continues o execute, however. events selected by
the user are traced. Thus, a user can witness the various
activities associated with a particular svstem call. Conse
quently] the DUNIX] kernel debugger can he used nor mhlr
as an aid o kernel debugging | but alsa asa visudization tool
to illustrate the behavior of akernel. By observing th sys-
ter trace and thd performance counters, a user can readilyl
appreciate] how changey in agorithms or kernel parameters|
affects system hehavior.
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Figure 3. Laboratory Configuration

As some bugs are time dependent, trace output may hide
some of these errors. However, without the tracing, detect-
ing and correcting the errors is difficult. To remedy this
problem, the DUNIXI debugger can Io? the output m an in4
ternal circular buffer for display a a Taer time. Furthermore,
aswriting to auser terminal dramatically increases the pro-
cessing time, infrequent errors are not easily reproduced
without  suppressed  printing.

To illudrate the potentid of exploiting DUNM as an ed-
ucationd tool, asample session using the DUNIX debugger
is provided. In generd, dl user commands are highlighted
in bold-face type. Control A (*A) transfers control from
the user leve to the d . In the interactive mode, the
kerndl activity is suspended, hencethe its Sate is easily ex-
amined. Issuing a quit command (q), restarts the execution
(%fbahe kerndl. The "dunix# eIand "I are the user level and

goer  prompts,  respectively.

A session beginsby oomplyling anew kerng on the pro-
duction system (mirage) viathe make command. Once
compiled, the new kernel Is sent over the consolelineto the
crash .comEuter. As seen below, downloading the newl
compiled kernel from the production system o the cr
computer(s) is achieved viatyping auser command (d) and
does not require physical accessto either system. As other
researchers 7] have observed, requiring physical access to
the crash computer to download a new kernd is a
consderable deterrent to the use of the system. In this ex-
ample, the kernel symbol table is also downloaded. This
endbles the debugger to indtdl breskpoints and to produce a
symbolic printout of the caling stack.

Oncethe kerndl isloaded, the production system gener-
atesavirtual connection between the user termina and the
conole line of the crash computer. Starting from the

"VAX750" output, dl remaining output presented is gener-
aed by the crash system, and user input is processed directly
by the crash computer.

mirage> make

cc-g-¢ cachec A

Id o dunix -T 80000000 assembly.o procass.o swilchas.o cache.o

dev.d clock.d console.d devmem.o exec.o file.o fsvolume.ol fmark.ol

fname.o pname.o printf.o proc.o proch.of psig.o hotel.ol symdef.o

sysync.o| syscall (exLol tty.o deuna.c hp.o mbad dh.ol ubad

conf.o exos.d puy.d nulld .0 cid o msa.o ddo 1d1200.0

nmi.ol bi.o migrate.o Dadhoc.ol Dbreak.o Debger.d Dmir.o Dkemel.ol

mirage>| di 3 -§

Downloading dunix; 171008(text)+32768(data)=203776 pytes
+25388bl of symbols

ron: tune AB <cr> 1o exit.

VAXTS

Symboll table 534 functions. 23657 bytes

6291 K bytes of memory (X6 )]

kernel page-table at CD800 = BOAFCAN|

maxkmem = 12582912, endkmem=11618816

boot-arg = FF

As the newly downloaded kernd comes to life, severd
system parameters may be set. Usually the default parame-
ters are sufficient. In the example below, no modifications
to the defallt vaues are made with the exception of the S%S'
tem id value (sysid 3). Initialy the kerne probes the
hardware to determine which devices are available (auto|
configuration) and than resets to user level under single user
gg?e The dunix # prompt is produced by the single user

READY...! ?var

var - print the kernel-debugger variables

| var

heres 0 - This machine ID

rdev= 0102 - root device

rhase= 128 - base of root device

srdev= 0105 - super-root device

memdev= 0203 - swapping device .
maindev= 0224 - device having the main-block (don't change minor#)
sysid= 0 - systems with different ID will not communicate
| sysid 3

1

UBAD at F30000

MBAN a1 F2R000

DH il “BAOat 0760420 + DM a1 0771100

PTTY1 26 ttyg

DEUNA(DELUA) in UBA(Q at0774510

FUJI160M on dk00, via MBAO/ read sy

FUI160M on dk01, via MBAD/I

dkOLR i8 swap-area; 20443K hytiss

dk304d mounted an |

dic30d mounted a n

1082K (kernel)+5209K (ust) = 6291K(totall mem)
Machine &3

dunix#

As faulty kernels are likely to corrupt the file system,
DUNIX may be used with a write-protected file system.
This protection is provided either via software and/or hard-
ware  In the example below, an unsuccessful attempt is
made to write onto aread only disk partition. To provide a
writeable partition, aclean, temporary disk partition iscre
ated (mktmp).
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dunix# ep /letc/passwd new-file
cp: cannol create new-file - Read-only file system
dunix# df

FREE TOTALl %FREE
Jdev/dk30a on / (R.O) 1702K1 19456K1 8 %
dunix# mkimp
mkfs /dev/gdkle 7000
total . 7wo blocks
inodes - 280 blocks
free-list siep = 3
mountl -p /dev/gdkle| imp
endif

dunix#t df

FREE TOTAL %FREE
fdevidk30al on / (R.O.) 1702K  19456K 8%
idev/dk3lel on fump| 6877K TI168K 95%
dunix#t ¢ d_ftmp|

Providing an experimental environment requires suffi-
cient online help, otherwise experimentation becomes more
of alibrary search and not a*“playful experience”. DUNIX
provides such support viathe ? command. Simply typing a
question mark in the debugger mode prints al the debugger
options. A question mark followed by an option name pro-
vides a detailed description of the option. Commands are
executed once. Variables are integer values and can read-
ily be examined and modified. A flag is activated by typing
its name, either with or without a + sign and is cancelled by
typing = flag name. Flags are usualy used to invoke
traces at specific events. For example, the csw flag traces
context  switches.

dunix# A4l

FLAGS! s, fssc, fsc, ex, sig. exee, bexit swp, cswy devinit| ST, FILTER,
badname] macheck] yellall] pfli] scalll inmsg| ioctal] cin) rw, ubaspace]
excom, hptr| hperr, istr) tserr| Lstream,) tutr, msatr, msamsg, msaer, lderr
notout, loopb| nohkeeper| delual mig. 11 12. B3] @] 5. 5] 17, 8]
VARIABLES: here. rdev, rbase, srdev] memdev| maindev) conspeed, sysid
sclock] xpipe] wepu, invcomed, ldmaxt, interr, maxdill v1| migio] migcve,
COMMANDS:menu,?,help,q,flg,var,pt,ct,playb,ssc,ls, a2f,b,mark, hmark |
§,mem,rs,ity,p,proc,mini, file,bi,nmi,hpst,mbast,msast,vol, pbook, port|
text,seg,.pgt,ckpt,prdeu, tre,netm, mtr,cmir,cpu,msys,mscall,d1,d2,d3, hey,
'echo.ncchn.exsl.lsst.msll .
4

syscall time()] by 1s]2339]]
syscall time() by 15[2339] RETURNING X245bc8e5=6099949811
syscall joctl(1,X7408 X 7(ffcads) by 1s[2339]
syscall ioctl(1,X7408,X7({fcad6) by 15[2339] RETURNING 0
syscall brk(X6f9¢)| hy 15[2339]
syscall brk(X6fc]| by 15[2339] RETURNING 0
syscall stat(X41f4="." X7fffca%0) by 1s[2339]
syscall star(X41f4="" X7fffca90)| by 1s[2339] RETURNING 0
syscall open(X41f4="",0 by 1s[2339]
syscall open(X41f4=".",0)| by 1s[2339] RETURNING 3
syscall read(3,X7400,X400) by 1s[2339]
syscall read(3,X7400,X400) by 15[2339] RETURNING| X80.128
syscall read(3,X7400,X400) by s[2339]
syscall read(3,X7400.X4001 by 15[2339] RETURNING 0
syscall close(3) by 1s[2339]
syscall close(3) by 1s[2339] RETURNING| 0
syscall write(1,X55¢4,9] by 1s[2339]
bIIEW-f syscall write(1,X55¢4,9)] by 1s[2339] RETURNING 9
e

syscall exit(0) by 1s(2339]
syscall wait(] by -csh[355] RETURNINGI X923=2339
syscall write(1,X7f[c968,7) by -csh[355]

dunix# syscall mite(IX7Nfc968.7) by .csh{335] RETURNING 7
syscall ioctl(3,X7412 X 7fffcaed) by -¢csh[355
syscall ioctl(3,X7412,X7fffcaed) by -csh[355] RETURNING 0
syscall joctl(3,X7411,X7iffcaea)l by -csh[355]
syscall ioctl(3, X741 1.XTfffcaca)| by .cshgjsjl RETURNING| 0
syscall read(3, X 7fffcale Xc7) by -csh[355]

Disk I/Ol can be traced. Disk partition dk30al contains
the /etc/passwd tile. hence only READ4 are required. The
READ and WRITH output related to disk partition dk31el
results from the kernel initially reading the current (dot) di-
rectory prior to writing the password tile in that directory.
As shown, each disk request produces two output state-
ments. Thetint isfor the queueing and the second is for the
processing of the request. Note that failed system calls are
dso specificaly traced in this example.

Understanding the execution of akernel requires the ca-
pability of tracing individual events. In the example below,
al system calls are traced for the execution of the Is com-
mand. As shown, both the successful and failed system
cals are printed with the appropriate indication of status. All
system calls, except fork, result in two statement being
printed; once a the stat and once a the return of the execu-
tion of the call. The fork system call resultsin three state-
ments, once at the start, once upon the return of the child
fork, and once upon the return of the parent fork system call.

| 2exec

exed - tracel successfull exec's

| +exed

dunix# echo XXX > NEW-file

dunix# Is
~csh[2339] execs 1s

! ?5d

sc - trace system-calls

| s¢

!
syscall exec(Xd2el="/bin/ls" Xda70,Xde24) by Is[2339] RETURNINGI 0
syscall fork()l by -csh{355] RETURNING X923=2339
syscall wait() by -csh[355]

l=csm
! Pfse
fsc trace failed system-calls

!fsd
|

dunix# cp /no-fild

FAILEDI  syscall open(X7fffcb77="no-file",0) by cp[675] [ENOENT]
cp: cannot open| fno-file

dunixi AA

! Phpt

hpt -Trace HP [/O

Vhpid

'q

dunix#fl ¢p lete/passwd]

dk30a: queve read of block 643 (reg(@L6achc)
dk30a: READ. blk=643=1542=<4 8 6>]
dk30a] queue read of block 984 (req(@L6aci4)]
dk30a: READ, blk=984=2224=<6,9,16>,
dk30a] queue read of block 1314 (req@L6ad7c)|
dk¥0al READ, blk=1314=2884=<004>)
dk30a: queue read of block 1335 (req(@L6ae(M)|
dk30a: READ, blk=1335=2926=<9,1,14>]
dk3lel queue read of block 282 (req(@ Léaefc)
di3led READ, blk=282=160564=<501,7,20>,
dk30a] queue read of block 4221 (reg@L6af14)
dk30a1 READ, blk=4227=8710=<272.6>.

FAILEDI syscall smt(Xl393:"J!passwd".X?ﬂ!’ca‘)c)l b y cp[739
[ENOENT]

dk3led queue read of block 8 (req@ L6afYc)
dk3le: READ, blk=8=160016=<500,0,16>,
dk31ed queue write of block 282 (req(@L6aefic)
dk3led WRITE. blk=282=160564=<501,7,20>,
dk30a: queue read of block 4802 (req@L6b024)
dk3Da: READ. blk=4802=9860=<30,8 45|
dk30a: queue read of block 4805 (reqi@L6h134)
dk30a: READ, blk=4805=9866=<130,8,10>]
“Al -hptd
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Breakpoints| can be st a entry| and exit of any procedure
of the kernd. For example, the path2fnm| procedure
trandates a logical name to a binary name. As shown, a
breskpoint is set at the entry and exit of the path2fnm|
function. The calling stack display command (s) displays
the calling sequence that resulted in an invocation of
pnth‘lfnsrn. The +s 1 ontion lists the vaues of al loca
variablesl on the top of the calling steck.

dunix#

dumx# AA ! Pfsse

fusc - trace file-system system-calls

| fss5¢

I?b

b [function [ex]] - Install (entry & exit) break-point at ‘function’
l! b pathifnm

dunix s letcipasswd
syscall exec(Xd2eD="/bin/ls", Xe364, Xeddd)] b¥ -csh[803]
R.P. path2fnm(53984=Xd2e0] 0, 2147472324=X7fffd3c4)
[in fild fsymbol.]

g P| path2fnm(53984=Xd2e0] 0l 2147472324=X7{ffd3c4), returning| 1
[in file fsymbol |

0
s [count] - Display the 'count’ upper stack-irames
l's

B Pl path2fnm(53984=Xd2e(] 01 2147472324=X7f{{d3c4)| retumning 1
[in fild fsymbol.]

exece?(53984=Xd2el, 58772=Xe594, 58580=Xeddd) [in fild exec.]

fy‘s?aili() [in file syscall]

L+,

B.P] path2fum(53984=Xd2e0, 0. 2147472324=XT(ffd3c4), returning 1
[in fsymbol.]
fp=2147472324=X7fffd3cd path(p)=53984=Xd 1511 mode(p)=(|
fnp(p)=2147472324=X7{ffd3cd| rv=-1 dnp:-—-lld?d‘.'ﬂll:x?(ffdﬁq
cnk=1852400175=X6e6962201 copy=L1776(] nc=7 me=-1 enc=1
myerr=0] wbl=4 trbl2=2147472324=X7fffd3c4 hookno=L13194
f=L2d0f 1=LA4cS5d s=21

]
syscall exec(Xd2e0="/bin/ls" Xe364,Xeda4) by 15{803] RETURNING 0
syscall stat(X7iffch77="fetc/passwd" X Tfffcaal) by Is[803]
R.P. path2fnm(2147470199=X7{ffct77, 0, 2147472444=X7fffd43c)
[in fild fsymbol.]

'q

B.P. path2fam(2147470199=X7{{fcb77| 0| 2147472444=X7{ffd43c),
retumning |

[in file fsymbol.]
[}

RETURNING 0
fetc/passwd
dunix# “A! b ¥
! -fssq

The handling of scarce resourcesiis of primary concern
in operating systems. A common error is not reclaiming un-
used resources or to K them |ocked unnecessarily. The
debugger provides a ism for checking the date of the
system resources. AS shown below, prior to executing the
echo xxxxx > myfild command, only 6 active files are
used in the system. While executing the echo command, 7
active files are found.

dunix# ~A! 7sse i
ssc [ J+/-]ssc [syscall] - trace/trace& stop/untrace the given syscall
| 455¢ creat
‘e
dunix# eche xxxxx > myfile

syscall creat(Xd9f8="myfile", X 1b6) by -¢sh[1027]

Lra
RESOURCES:
USER-MEMORY: 9&01[free] + 138[cache]| + 193[used]| = 10132[total] * 512

bytes
SECODARY-MEM: 644[free] + Ofused] = 644{total] *| 31744 bytes
PROC:
288[free}+ 1 [run]+9[pause]+2[wait]+0] fetus]+0f bizarre]=300{total]
=12[loaded]+0[out]+288free}:
FILES: 294[free]+6[ used|+0[ locked | +0{ bizarre]=300(total ]
FMARKS: 298[free]+2[used]+0{wait] = 300 1otal]

RUF: 297(free]+0[1/0]+0[lock]+3{used]=300{ 1otal]
TEXTS: 138]free}+2[used}+10[cached]+0[ bizarre] = 150[total]
TCP: Ports: Ofused]+50]free]=50{total];

!
syscall creat(Xd9f8="myfile",X1b6) by -csh[1027] RETURNING 3
lrs

RESOURCES:

UOBR-MGHIORY: 7001 [five] + 130[vmwden] + 303 [weed] 10139 [101a]) * S17

bytes| )
SECODARY-MEM: 644[free] + Ofused] = 644[1otal] « 31744 Dytes]
PROC:
288(free j+UTun}+0[ pause]+3[wait]+0 fetus]+0[ bizarre}=300{1otal]
=12loaded]+0fout]+288] frec]! )
FILES! 293[free)+ T[used]+0[locked] +0[bizarre]=300]1otal|
FMARKS] 297(free]+3[used]+0[wait] = 300{twtal]

BUF: 297[free] +0[1/O]+0[lock]+3[used]=300] total]
TEXTS " 138|Iree]+2]used)+10]cached]+0fbizarre] = 150{10ial]
TCP: Ports: Ofused]+50free)=50[total};

!
dunix# rm myfile
dunix# P

If the user is interested in additiond details concerning
only file usage, that is also ble. For example, by step-

ping through a file write while examining the system file
table, the creation of anew file entry (Sit#61) is observed.

qsyscalli stat{X7[ffcb77="fetc/passwd " XT{ffcaal) p y 1s[803]

| 4ss¢ creat

]

dunix# e cho xxxzx > myfile _
syscal] creat(XeShi="myfile" X1b6) by -csh[867)

1 2fild]

file [a] « Print the file-table
! fild

File-table]

SKE0: [ dev=014102, mode=040755(FTDIR})| count=3, Icount=1]
Ng=FA

Su#1d . . . . ‘dev=014105] mode40777(FTDIR))Jcounnt=1 ) lcount=1] Ng=
SIt#S: nullf dev=014102, mode=020666(FTCHR), count]|1. lcount=1.. g
§]t#6: consoled] dev=014102] mode=020000(FTCHR), couni=1} icount=1,
flg=

SI#371 tmp] dev=014102] mode=040755(FTDIR), count-|, leount=1] flg4
SIHSS] imp: dev=014206] mode=04077T1(FTDIR), count=3, lcount=1]
flg=FACTIVE|

syscall creat{XeSb8="myfile”. X1b6) by -csh[867] RETURNING 5
L fil
Fi{e:‘abhi
Sitho: H dev=014102, mode=040755(FTDIR), count=3] lcount=l,
Ag=FACTIVH
Sit#l: ..q dev=014105, mode=04077H(FTDIR),| count=1, lcount=1] fig=
SIt#S: nulli dev=014102, mode=020666(FTCHR), count=1] leount=1] figs|
Siths! console3! dev=014102] mode=020000(FTCHR)| count=1] lcount=1]
flg
Sit#37: tmpy dev=014102, mode=040755(FTDIR}| count=1] Jcount=1, flg
SIt55] tmpy dev=014206] mode=04077T(FTDIR), count-l, lcount=1]
Ng=FTMOD+FACTIVE|
Sit61: myfile; dev=014206] mode=0100644(FTREG) count=1] lcount=1]
flg=FTMOD+FRMOD+FACTIVE

g

Similarly, examining the process table during an exec
system call execution illustrates the transformation of the
¢sh[899] execution to that of the PS[899] execution. The
trailing number is the process id.
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dunix# AAl +55¢ exec
g

ps

syscall exec(Xd2e0="/bin/ps" Xe67c,Xedd4) byl -cshi§99 1
| prod
proq [index/pointer] [count]] display process
lproq
Processesd
hkeeper[01 poid=01 try0] sIHO[LABSTS]) SWAIT| <DEMON>
mbkeeper[1], ppu}:(}] :ty-:!! slt#1[LAb0ad], waiting for work <IDEMON>
taxif2]| ppid=0] ty0, s1#2]L4bad0]| waiting for WORK <DE MON>!
taxil3 1] ppid=0, tty0] sli#3[LAbbic]] waiting far WORK <DEIM O M
taxil4}] ppid=0, uy0] shi#d|Laba2a]| waiting for WORK <DHMON:|
taxif3], ppid=0, try0, si#5[LAbe54], waiting for WORK <DEMON>
hitman2[6], ppid=0] uy0] slt#6[L4bIR0}| waiting| for work <IDEMONsI
hitman 171. ppid=0] uy0, slt#7[L4cOac]| waiting for work <IDEMON>|
herald[8], ppid=0] uy0, Slt#H[IAcldEIJ waiting for work <DE MON3|
init{323], ppid=0] tty0214300] slt#9[L4c304]] SWAIT. doing waitl
-csh[3551] ppid=323] uy0214300] sh#10[{L4c430]] URDY doing fork.
-csh{899]] ppid=355] ty0214300, slt#11{LAc5S5¢c], RUNI d omg exec,

syscall exec(Xd2e0="/bin/ps",Xe67¢,Xedd4) by ps[899] REETURNING 0
! proc
Processes:
hkeeper[0]] ppid=0] ty0] sh#O[LAb8T8]] SWATT| <DEMON,
mkeeper{1]] ppid=0. tiy0] slh1[L4b9ad}] waiting for work <DEMON>
taxi[2], ppid=0] uy0, sit2([14bado]| wm’tinxjl for WORKl <DEMON
taxil 3]| ppid=0, uy0, sl#3[LAbbfc], waiting for WORK «DEMON:
taxif4], ppid=0] wy0] slt#d[L4bd28]] wailing for WORK <DEMON:>
taxi[5]] ppid=0] uyl)] shi#5[Labe54], wailing for WORK «<DEMON>
hitman2{6}) ppid=0] ty0] si#6[LADIRO], waiting for WOk <DEMON>
hitmani{7]] ppid=0] tty0] slt#7[L4cOac]| waiting for work <DEMON>
herald[8], ppid=0] tty(, sii#8[1.4c1dR]| waiting for work <DEMON>
init[323]] ppid=0] wy0214300] slt#%{L4c304]] SWAIT, doinlg wait.
-csh[355], ppid=323] 1ty0214300] slt#10[L4c430]| SWAIT. doing wait.
ps|899|| ppid=335, uy0214300] sltl1[L4c55¢], RUN doing exec,
1

lg
]’Ilj TT STAT TIME COMMAND
33 A | 0.14 inid 311
899c¢3R 014 ps

dunixil

Modifying performance relaed agorithms, eg. CPU
and disk scheduling, necessitates the capability of viewing
the performance of the system. As shown below, such ca-
pability exists in DUNIX. The dbg command invokes the
debugger from the user level. Thus the dhg cmtr; cp
Jete/hostsl ,; dbg mtr command results in the clearing of
the system meters and the displaying of the performance in-
volved in copying /etc/hostd to the dot directory.

None of the above examples have dedt withl the dis
tributed aspectst of DUNIX. In the accompanying s
display, a user examines the implementation of the change|
file mode (chmod) system call. The top right hand window
displays the source code. The source code consists of two
routines: chmod and chmodl. The chmod system cal ini-
tiate with first routine which executes on the local computer.
The second routine, invoked by the chmod routine, exe-
cutes on the machine containing the desired file. In the ex-
ample presented, two files arc modified. The larger window
on the left-hand-side illustrates that al activity is loca for the
local file. Also shown in the larger window is the local ac-
tivity needed for the remote file. The remote activity is perq
formed on the remote machine (machine 2)] shown in the
lower, smaller window on the right-hand-side. Note that the
actual code is identical regardless of where the file is situ-l
ated] local or remote. The three “CPU load” windows are
monitoring the production system The two crash computers
(machines 2 and 3) are totdly independent from the remain-
ing three machines, thus are not represented in the perfor-
mance meters.

The sample session ends by sending a thank you mes-
sgeto a colleague in Syracuse University, Syracuse New
Y ork while tracing only the exec system calls. As seen the
smtp command is executed, the message is sent and the
connection is  terminated.

dunixd ! *cmitr

cmird « Clear all meterd
! Pamer

mu Display metersl

q

dunix# dbg| emtr cp fetc/hosrd . d b g men

# 8.5 sec)

i CPU: 42%idle(3.65) + 0%ust(0.0s) + 57%sys(4.8s)| = 100%10tal(8.55)

i 63%syslo(3.0s) + 11%syshi(0.5s) + 26%sysint(1.2s) = 100%sys(d4.8s)
# 830 syscalls (97/s), 524 con-sw (62/s), 0 swapin| (1/8s)
# user 1/0: 41 1Kby read (48K/s)| 41 [Kby| writel (48K/s)| 10240by| exec
(1K/s)
# cache: 1889 calls = 950 rd + 532 rdwr + 407 wr; maxdirty=77]
minfree=218

il -cache: 755 ifd = 412 rd + 3 r.f.w. + 340 wr; 75 dirty| 398 rd-ahead(394]
used)

# MBA: 758l interrupts| (95/sec)

# HPOY 4100 trns(48/s), 22 pos(3/s)] 419K bytes(49K/s), O retried

i BE%busy(7s) + 12%idld = 57%fow+4%pos+28F wait+1 2%idle] = 100%
HHPH 345 ms(40/s)] 9 pos(1/s), 353K bytes(41Kis)| O retried

A 69%busy(3s) + 31%idld = 40%flow+2%epos+27%wait+3 | %eidlel = 100%
dunix#l

dunixhl ! Zexec
exec - tracel suceessfulll exec's
lexed
!
dunix# mail  Frieder@top.cis.syr.edu
«¢sh[1251] exec1 mail Frieder@1op.cis.syr.edy
Subject: Welcome to Euromicro
Gideon,
Y o u ara mow part of the mail example il Euromicrol
Ami, Ophir] andl Mark.
ADEOT

dunixl  send[1347] execs sh -a Jusr/lib/smip/smipaer] 'to
sh{1379] exec: crh -f jusrflib/smtp/smtpger| to
csh{1411] exec: valueof SMTP_QUEUE
csh[1443] exec: mktemp Tmpl379
cshi] 1475] exec: cat
csh[1507] exec: In Tmp13794 1002
csh[1539] exec: rm Tmp1379a
csh[1571 | execa ¢y /dev/null 1002.enl
csh[1667] execa smip Wp.cis.syr.edu root Fried
esh{1731] execa cat 1002.1og
esh[1763] exec: rm 1002.Jog
csh[1795] exec: rm -f 1002.err 1002.d
csh{1827] execa m -f 1002

5. SUMMARY

The study of operating systems is a fundamentd compoq
nent of current undergraduate computer science syllabi.
Traditionally, operaring systems education consists of read
ing textbooks and research papers, coding relatively small,
model operating system, possibly only some of individual
components of the system, and participating in various
classroom discussions. We believe that in addition to the
traditional teach approach, experimentation with an actual
syster| is necessary. Specifically, traditional teaching apq
proaches| introduce the student to the fundamentals of oper
ating] systems, but to obtain deep insight to the intricacies o?
systems,  experimentation  is  required.

This paper focussed on the exploitation of DUNIX, a
complete, modular, distributed operating system, as a
teaching tool for experimental operating systems laboratory.
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DUNIX is chosen froml among the numerous available dis4
tributed systems due to the numerous features that aid in ed-
ucation that DUNIX incorporates. Somel of these features
include, a powerful debugger. supporting & write-protected
filesystem, kernel downloading capabilities that do not re-
quire dp ec}/swal access I0 the hardware, etc.. The advantages
provi by these featured were discussed. A sample ses-
sion using DUNIX was presented.

If adeed insight into the inter-workings of a distributed
system is desired | experimentation with an actual systemis
heneticial. This paper presented j possible system to use as
a teaching tooll that can provide the desired insight]
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