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Abstract — The idea of using a phone as a remote control for 
household devices is not new. However, new digital 
technologies such as Voice-over-IP and signaling protocols 
such as SIP enable new methods of integrating the user 
interface of a phone with the digital IP infrastructure being 
deployed in the home. We developed and deployed the Key 
Press Markup Language and SIP Event Package (KPML) to 
address the need for a signaling-layer protocol for 
transmitting user stimulus from low-power, consumer devices 
such as IP phones to control household consumer devices.+ 
Index Terms — Home automation, remote control, tele-
control, telephony.  

I. INTRODUCTION 

Many prior efforts describe the use of a phone as a remote 
control for household appliances. In such a system, the user 
presses buttons on the telephone keypad to send commands to 
a remotely controlled device. Most sSuch systems require 
establishing a voice path to carry Dual-Tone Multi-Frequency 
(DTMF) signals between a remote telephone and the device. 
These prior remote control efforts, however, require the 
consumer to introduce additional special-purpose, locally 
resident devices, which complicate and increase the cost of 
deployment. A primary novelty of our approach is the 
elimination of the need for additional, local devices via the 
development and deployment of a unified Key Press Markup 
Language and SIP Event Package (KPML) to address the need 
for a signaling-layer protocol for transmitting user stimulus 
from low-power, consumer devices such as IP phones to 
control household consumer devices. 

Many prior systems enable users to remotely control 
devices remotely, such as household appliances, office 
equipment, or equipment at unmanned locations, via non-
telephony signaling mechanisms, such as e-mail or short-
message service (SMS). Others use a telephone, but require 
the consumer to install specialized hardware. Our approach 
enables any 12-key telephone, anywhere in the world, to 
control household devices. 

Yamamoto, et al., [1] describe, amongst other things, a tele-
control interface unit. This unit, which attaches to the 
described key system, translates touch-tone commands entered 
into a phone to the JEMA Home Appliance protocol standard. 
Wong [2] describes a purpose-built interface unit that appears 
to the phone network as a telephone, but presents a touch-
tone-based user interface to allow a remote phone to control a 
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set of switched power supply outlets. They introduce the 
concept of a local phone, which does not require user 
authentication by virtue of being locally connected. Koyuncu 
[3] describes effectively the same system, but one that uses a 
PC card as a telephone network interface. 

Other work has leveraged the reality that the modern home 
network has TCP/IP and Bluetooth connectivity. For example, 
Kanma, et al. [4] describe a system where they introduce a 
Java application that uses the Bluetooth transceiver in a 
cellular phone to send and receive control commands from 
Bluetooth-linked home devices. 

There are a few drawbacks with the current state-of-the-art. 
This is particularly true for home appliances that have digital, 
TCP/IP connectivity. 

First, as previously stated, all of these schemes require the 
consumer to install some sort of local hardware. For example, 
the phone-based controllers require phone-line terminating 
customer premises equipment. Many of the network-based 
schemes require customer premises gateways. 

Another problem is the treatment of local versus remote 
phones. For most of the home-based phone controllers, all 
phones look remote. That is, they use the same authentication 
scheme and in-band transmission of dual-tone multi-frequency 
(DTMF) tones. This has a number of implications. First of all, 
even if the phone and appliance are both TCP/IP-enabled, the 
phone must use its DTMF generators, and the appliance (or 
gateway/controller) must use its DTMF receivers to receive 
commands. This means that the methods do not leverage the 
inherent location-independence and authentication 
mechanisms present in the TCP/IP suite. 

Schulzrinne, et al. [5] describe a Bluetooth, SIP, location-
aware set of devices. Likewise, as described in Kanma, et al. 
[4], one could construct a rich client, using HTML or WML. 
However, that assumes a device with a non-trivial display and 
the processing power to do the rendering. Clearly, such an 
interface would not work over a plain-old telephone service 
device, which only has DTMF tone generators and a 12- or 
16-key keypad for user input. 

Even though a phone might be able to send digits as H.245 
UserInputIndication (a signaling packet that indicates a DTMF 
key entered) [6], such messages are on a per-key-press basis, 
which wastes network resources and precious processing 
resources at the phone. 

II.  HOME REAL-TIME MULTIMEDIA NETWORK 
In Fig. 1, we show a typical home real-time multimedia 

network. The various elements are a controller, a SIP Phone, 
gateways for traditional phones, and the appliances being 
under controlled. 
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Figure 1 - Home Network 

A SIP Phone [7] is a physical phone that includes the 
circuitry for digitizing, compressing, and packetizing voice or 
video. The SIP Phone also includes a SIP stack and a user 
interface. The SIP Phone includes at least the familiar 12-
button keypad of the traditional phone. It may include a small 
display and additional keys. Throughout we do not consider 
intelligent devices, as they approach the display and user 
interaction qualities of a PC. For example, the cellular phone 
described by Kanma, et al. [4] has a sophisticated display and 
can run Java applications. Likewise, we do not expect the 
device to support UPnP, such as the sophisticated devices 
described by Verhoeven and Dees [8]. These devices are far 
beyond the capabilities of a traditional telephone. 

One can connect a traditional phone to the IP network 
through a media gateway or integrated access device (IAD). 
The media gateway acts as a bridge from the traditional phone 
network to the IP network. IADs (and some media gateways) 
appear to the phone to be the phone network. For example, 
they provide dial tone and collect digits for formulating a 
connection request (dialed number). 

The IAD is a consumer device. The media gateway can be 
either a consumer device in the home serving one or a small 
number of telephones or it can be carrier equipment serving 
hundreds or thousands of telephone lines. Either way, the 
gateway or IAD translates PSTN signaling to SIP and the 
bearer (voice) path to RTP [9]. 

 An interesting feature of using SIP is that traditional 
phones connected locally to an IAD or remotely through the 
public telephone network appear the same to the network. 

The function of the controller is to receive commands from 
the telephone and translate them into the appropriate appliance 
control commands.  

In the prior art for using a telephone as a remote control, 
one establishes a full-duplex media connection between the 
telephone and the controller. This allows the controller to 
detect the user signaling, which in this case are in-band DTMF 
tones. 

One can extend the model to the digital world. In VoIP, the 
bearer channel, where the actual media (e.g., voice) traverses 
the network, uses the real-time protocol, or RTP. RTP can 
transport the actual tones for DTMF. In addition, in VoIP, one 
can send named tones [10] over the bearer channel in RTP. 
Using named tones, the phone can send a packet indicating the 
user has pressed the “1” key, rather than, or in addition to, 

transmitting the DTMF for the “1” key, which happens to be 
697 Hz + 1209 Hz [11]. For historical reasons, such named 
tone packets are called RFC 2833 packets. 

One might consider RFC 2833 packets to be signaling, 
rather than media. However, RFC 2833 packets have a number 
of drawbacks when used for signaling. First, the packets 
physically travel in the bearer stream. This means that any 
application that has interest in the signaling must be in the 
bearer path. In the analog world, this was not a problem, as the 
only way to detect DTMF was to establish a bearer-channel 
connection to the phone, usually over the public telephone 
network. However, it is an excessive burden to place on an 
application to have to terminate and interpret the bearer 
channel if all it is looking for is key press user input. 

A second drawback of using RFC 2833 is that RTP, the 
transport RFC 2833 uses, is not a reliable delivery mechanism. 
RTP trades off reliable delivery for real-time stream delivery, 
where it is more important that the packets come at regular (or 
predictable) intervals, even if that means dropping a packet. 

 Whereas this is an acceptable trade-off for the delivery of 
multimedia streams, it is not acceptable for the delivery of 
signaling. 

In our system, we make only a signaling connection 
between the SIP Phone or gateway and the controller. This has 
a number of advantages. First, the controller does not need 
expensive tone detection circuitry. Second, the SIP Phone 
directly tells the controller the exact key pressed, rather than 
translating the key press into another format for the controller 
to decode. Third, the controller only needs a signaling stack 
(SIP in this case); it does not require a media stack (such as 
RTP). Fourth, if the user is dialing up remotely, and a service 
provider hosts the media gateway, only the signaling need 
traverse the access network. Given tThe typical rate  of 
packets for signaling areis on the order of 1about one packet 
per /second. and  tThe typical rate of ppackets for voice media 
areare on the order of 50about fifty packets per second, this is 
a significant savings. Fifth, there are well-known problems 
with establishing media connections through a network 
address translator[12], or NAT, which most residential 
network gateways are. For example, many signaling protocols, 
including SIP, insert the IP address of the media endpoint into 
some signaling messages. However, a NAT silently changes 
the endpoint’s IP address, making the address in the signaling 
incorrect. Transmitting the user input in the signaling layer 
eliminates these problems. 

III. KPML 

SIP Phones and gateways use the KPML protocol [13] to 
transmit key presses in the signaling layer. KPML combines a 
markup, the Key Press Stimulus Markup Language, with the 
SIP SUBSCRIBE / NOTIFY protocol. The following is a brief 
overview of KPML. 

There are three primary goals of KPML. The first is to 
present a compact, application-level representation to reduce 
the processing burden of application clients. This is 
particularly important for consumer electronic devices. The 
second is to reduce the number of messages required to 
transfer application-level state. The third is to reduce network 
traffic and reduce the application processing burden by 
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sending messages only to applications interested in a given 
user input pattern. 

Applications send subscription messages to a device. The 
subscription message for each application identifies a pattern 
of user input for the device to notify the application is to be 
notified of. 

 KPML uses the SIP SUBSCRIBE/NOTIFY mechanism 
[14]. This mechanism provides a means for handling multiple, 
independent requests.  

The device monitors input from the user to identify the 
occurrence of the patterns identified in the subscription 
messages. When the pattern occurs, the device notifies the 
corresponding application. The device only notifies the 
particular application that provided the subscription message, 
conserving processing and communications resources. 

Subscription messages can also contain tags associated with 
patterns. When the device detects a match and reports it to the 
application, the device also returns the tag, enabling the 
application to easily determine easily exactly what response to 
the input is appropriate without needing to maintain a large 
amount of internal state information. 

Some applications care to continuously monitor the stream 
continuously for a particular pattern. However, other 
applications look for only a single occurrence of a particular 
pattern, at which time the application is finishesd monitoring 
or may register a different set of patterns. The first type of 
request is referred to as a "persistent" request, whereas the 
second type is termed a "one-shot" request. KPML provides 
for the requesting application to specify the nature (persistent 
or one-shot) of the request. 

Indicating the nature of the request in the subscription 
reduces the protocol overhead for terminating the subscription. 
For many interactions, the subscription termination messages 
may be a significant portion of the overall number of 
messages and bytes transferred. 

In Fig. 2, we illustrate a sample KPML request. Here the 
key sequence *1 indicates a command for the PC and *2 
indicates a command for the oven. The trailing * indicates to 
turn the appliance on whereas # indicates to turn the appliance 
off. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-
request" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xsi:schemaLocation="urn:ietf:params:xml:ns:kpml-
request kpml-request.xsd" 
 version="1.0"> 
 <pattern> 
  <regex tag="PCOn">*1*</regex> 
  <regex tag="PCOff">*1#</regex> 
  <regex tag="OvenOn">*2*</regex> 
  <regex tag="OvenOff">*2#</regex> 
 </pattern> 
</kpml-request> 

Figure 2 - KPML Request 

By using a tag, one can abstract the control program from 
the actual interface. That is, rather than having code looking 
for the string “*1*”, the code looks for the tag “PCOn”. This 

makes it easier to introduce new modalities, such as HTML on 
a PDA, with only minor changes to the control program. 

Note the SIP Phone will only notify the controller when the 
user enters a matching pattern. This is useful if multiple 
applications are looking for different patterns. 

IV. LOCAL AND REMOTE OPERATION 
The concept of having different user interfaces depending 

on the physical location of the phone is not new. For example, 
Wong’s controller [2] had a switch that enabled a user with a 
locally-connected phone to bypass entering a pass code. The 
idea was that if your phone was connected “in the home”, the 
fact of physical access was enough to authenticate the user. 

Most controllers use a password challenge. That is, when 
the remote user calls the controller, the controller prompts the 
user to enter a series of digits to indicate the caller is really the 
homeowner. 

We can improve upon this distinction of who is an 
authorized user. In the traditional phone system, all we can do 
is detect a directly connected phone (with a non-public 
interface, as in Yamamoto, et al. [1]) or require the pass code. 
In the digital SIP network, we can leverage modern, digital 
security methods[15]. One example of such methods is X.509 
certificates for TLS [16]. 

With a pre-loaded X.509 certificate, the user’s SIP phone 
can automatically authenticate itself with the network. This 
method does not necessarily require the user to enter a pass 
code (although one can require this for added security). 

A novel feature is that now, rather than having 
authentication based on physical connectivity, we achieve 
authentication is achieved with distributed cryptographic 
algorithms. This means that the user can take their phone with 
them when they travel, and the phone itself is their 
authentication token, rather than a digit string. 

Likewise, if the user uses, for example, a remote soft phone, 
they can enter a considerably richer and longer password for a 
digest authentication [17]. This retains the ability of a user to 
use a public phone, yet have the benefit of a streamlined (and 
much more secure) authentication mechanism. 

V. PROTOCOL COMPARISON 

We implemented KPML in a network IP gateway [18], and 
others are implementing it in a SIP Phone and circuit switched 
network media gateway. Significant bandwidth and packet 
reduction occurred. In addition, much simpler controllers that 
do not need bearer channel circuitry were constructed. 
Moreover, KPML enables one to build low power consumer 
SIP Phones to be built that do not require elaborate browsers 
or displays. At the same time, the KPML application model 
makes it easier to build controllers that offer both DTMF 
interfaces to phones and rich, graphical user interfaces to PCs 
and PDAs. 

As an example of the efficiencies of KPML, we look 
atconsider a typical remote home control scenario. In this 
scenario, we wish to control the power to a local PC through a 
switched outlet power controller. The purpose is to remotely 
power-on (and off) the PC before accessing it over the 
Internet. 
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In the call flow, the user connects to the controller, hears a 
voice prompt asking for a pass code (if the device is nothas no 
authenticationed), and then hears a prompt asking which outlet 
number to turn on or off. The pass code is eight digits and the 
user enters four commands before hanging up. 

In the following analysis, we consider the approach of 
detecting tones in-band as compared to the KPML approach. 

Note that the traditional approach of dialing in to an analog 
controller over the PSTN is functionally equivalent to using 
in-band tones. This is because the SIP gateway function is 
simply translating the analog phone signals into the digital 
domain. Likewise, if the call is already in the VoIP domain, 
but the tones are still in-band, a network IP gateway performs 
the tone detection and injection of the KPML messages into 
the SIP signaling path. 

A. Detailed Call Flow 
In Fig. 3, we illustrate shows the general call flow. 
 First there is a call from a gateway to the controller. In this 

case,Here the user calls their controller. This can occur by 
translations from a dialed number. In this case, the user dials a 
number, like 800 555 1212, which routes over the PSTN to the 
gateway, which then maps the number to the SIP address of 
the controller. Instead of calling over the PSTN, the user could 
connect directly to the controller from a SIP phone by entering 
the Request-URI (address) of the controller. Likewise, an IAD 
can do the mapping from a number to the controller Request-
URI. In this example, the Request-URI is 
“sip:controller@user.example.com”. 

Since the call flows are identical for each of the access 
cases, namely via a gateway, an IAD, or a SIP phone, we use 
the term gateway to represent all of these scenarios, including 
other call establishment procedures and devices known in the 
art. Details of the session establishment protocol are in the SIP 
specification, RFC 3261 [19]. 

 
Figure 3 - Call Flow 

In all scenarios, one establishes the session with the SIP 
handshake in messages (301), (302), and (303). The 
handshake establishes the session by exchanging and 
negotiating capabilities. 

The controller then prompts the user by streaming the 
prompt requesting the caller for a pass code (304). The user 
enters the pass code digits (305). Upon correct entry of the 
pass code, the controller streams a command tone (306), after 
which the caller enters the command digits (307). The 
controller emits a confirmation tone (308). The cycle of 
command digits and confirmation tones can repeat, until the 
caller hangs up the phone. At this point the phone or gateway 
sends a disconnect message (309), which the controller 
acknowledges (310). 

B. Named Tones 
For the named tones case, the digit signaling (305) from 

Fig. 3 becomes expanded by the redundancy protocol of RFC 
2833. The RFC 2833 redundancy protocol is to repeat a given 
digit, piggy-backed on a new digit, for some number of digits, 
usually 5. The gateway sends the redundant digits in the same 
packet with new digits, saving the packet overhead for the 
digits. If the caller does not enter a new digit within the repeat 
period, the gateway emits a packet with the remaining 
redundant digits. 

Note that this is an example of “reliability by hope.” RFC 
2833 assumes there is a loss of connectivity for no more than 
the redundancy period. The redundancy period is the time 
period from when the gateway sends the first copy of the digit 
to the last redundant copy. RFC 2833 “hopes” that the network 
will deliver at least one copy of the digit during the 
redundancy period. Besides being inefficient, in that the 
gateway sends many more packets than necessary, the 
redundancy scheme does not provide a reliable digit delivery 
mechanism. 

In Fig. 4, we shows the flow for the pass code digits. A 
similar expansion occurs for the command digits. 

 Steps (401), (402), and (403) in Fig. 4 are the SIP session 
establishment protocol, INVITE, 200 OK, and ACK, 
respectively. 

 In step (404), the controller streams the pass code prompt 
to the gateway. 

The user enters the first digit, which the gateway encodes as 
a RFC 2833 named tone packet (405). The user enters the 
second digit, which the gateway encodes as a RFC 2833 
named tone packet, with a redundant copy of the first digit 
(406). The gateway encodes and sends the user’s subsequent 
digits in steps (407) through (417). 

C. KPML 
In Fig. 5, we shows the entire call flow for this scenario 

using KPML. 
 Steps (501), (502), and (503) in Fig. 5 are the SIP session 

establishment protocol, INVITE, 200 OK, and ACK, 
respectively. 

The controller subscribes for the tone detection events 
(504), which the controller gateway acknowledges (505) and 
sends an instant notification (506), which the gateway 
controller acknowledges (507). 
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Figure 4 - Named Tones Call Flow Extract 

 
The controller then streams the pass code prompt to the 

gateway (508). The user enters the digits, and the gateway 
sends the collected digits to the controller (509) which the 
controller acknowledges (510). 

The controller streams the command tone to the gateway 
(511). In response, the user enters the command, which the 
gateway sends to the controller (512) and the controller 
acknowledges (513). This cycle completes three more times 
(512514) through (523522). After the next confirmation tone 
(523), , at which point the user hangs up (524) and the 
controller acknowledges the disconnect (525). 

 The gateway then informs the controller of the subscription 
termination due to the user hanging up (526) which the 
controller acknowledges (527). 

VI. NETWORK UTILIZATION 

We set out to compare the efficiencies of using various digit 
signaling schemes, including pure in-band transmission of 
DTMF tones (G.711), sending named tones (RFC 2833), and 
using KPML. 

In-band transmission is simply where the gateway converts 
the analog signals into a continuous stream of G.711 RTP 
packets. RFC 2833 sends media packets during prompt 
playing, but sends only named tone packets (RFC 2833) and 
redundancy packets in the media stream when the caller enters 
digits. KPML sends media packets during prompt playing, but 
sends only KPML events (and handshakes) in the signaling 
stream when the caller enters digits. 

To determine what the associated cost is, if any, to use a 
reliable protocol in the signaling channel (KPML), as opposed 
to sending signaling in the media channel (G.711 and RFC 
2833), we conducted an experimental study. 

A. G.711 
The pass code prompt is 2140ms long. 
G.711 places 20ms of audio into a 238 byte RTP packet. 

The 238 byte figure includes 160 bytes for the audio payload, 
as well as the RTP, UDP, IP, and Ethernet headers. Thus, the 
pass code prompt uses (2140ms) / (20ms/packet) = 107 
packets. At 238 bytes per packet, the prompt uses 25,466 
bytes. 

The command (306) and confirmation (308) tones are 
400ms each, or 20 G.711 20ms packets using 4,760 bytes. 

 

 
Figure 5 - Entire KPML Call Flow 

There is a system processing delay of 500ms after the 
controller receives the command, before sending each 
confirmation tone. 

VI. NETWORK UTILIZATION 
We set out to compare the efficiencies of using various digit 

signaling schemes, including pure in-band transmission of 
DTMF tones (G.711), sending named tones (RFC 2833), and 
using KPML. 
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In-band transmission is simply where the gateway converts 
the analog signals into a continuous stream of G.711 RTP 
packets. RFC 2833 sends media packets during prompt 
playing, but sends only named tone packets (RFC 2833) and 
redundancy packets in the media stream when the caller enters 
digits. KPML sends media packets during prompt playing, but 
sends only KPML events (and handshakes) in the signaling 
stream when the caller enters digits. 

We were looking to see what the cost, if any, there is to use 
a reliable protocol in the signaling channel (KPML) as 
opposed to sending signaling in the media channel (G.711 and 
RFC 2833). 

A. G.711 
The pass code prompt is 2140ms long. 
G.711 places 20ms of audio into a 238 byte RTP packet. 

The 238 byte figure includes 160 bytes for the audio payload, 
as well as the RTP, UDP, IP, and Ethernet headers. Thus, the 
pass code prompt uses (2140ms) / (20ms/packet) = 107 
packets. At 238 bytes per packet, the prompt uses 25,466 
bytes. 

The command (306) and confirmation (308) tones are 
400ms each, or 20 G.711 20ms packets using 4,760 bytes. 

There is a system processing delay of 500ms after the 
controller receives the command, before sending each 
confirmation tone. 

Summing up these times, we find the total transaction time 
for the scenario examined in Protocol Comparison above is 
2140ms for the prompt, 3380ms for the pass code entry, 
400ms for the confirmation tone, 1350ms for the command 
entry, 500ms of system processing time, and 400ms for the 
command confirmation tone. This results in a grand total of 
6480ms8170ms. For the scenarios where the gateway and 
controller continuously transmit G.711, the 8170ms 
transaction time represents the transmission of 409 packets 
and 97,342 bytes in each direction. 

Note that TCP, IP, and Ethernet headers add 40 bytes to a 
TCP packet. 

B. RFC 2833  
In Table 1, we enumerate shows the packet and byte counts 

for the message and RTP exchanges for the long transaction 
described in Protocol Comparison, using RFC 2833 for 
signaling transport. The numbers in the “#” column refer to 
the message number. Numbers past 417 are message number 
from the exchange that occur after the dialog depicted in Fig. 
4. 

In Fig. 4, the messages labeled “RFC 2833 n” means a 
message with n digits in it. For example, message (407), 
labeled “RFC 2833 3”, has three digits in it, the third user-
entered digit, the first redundant copy of the second digit, and 
the second redundant copy of the first digit. 

 
 
 
 
 

TABLE 1 – LONG RFC2833 TRANSACTION 

# Msg. Len. w/TCP Bytes I/O 
Pkts. 

In 
Pkts. 
Out 

401 INVITE 586 626 626 I 1 0 
402 OK 608 648 648 O 0 1 
403 ACK 194 234 234 I 1 0 
404 PC Prompt 25466 0 25466 O 0 107 
405 RFC 2833 1 86  86 I 1 0 
406 RFC 2833 2 95  95 I 1 0 
407 RFC 2833 3 103  103 I 1 0 
408 RFC 2833 4 111  111 I 1 0 
409 RFC 2833 5 119  119 I 1 0 
410 RFC 2833 6 127  127 I 1 0 
411 RFC 2833 6 127  127 I 1 0 
412 RFC 2833 6 127  127 I 1 0 
413 RFC 2833 5 119  119 I 1 0 
414 RFC 2833 4 111  111 I 1 0 
415 RFC 2833 3 103  103 I 1 0 
416 RFC 2833 2 95  95 I 1 0 
417 RFC 2833 1 86  86 I 1 0 
418 Cmd Tone 4760  4760 O 0 20 
419 RFC 2833 1 86  86 I 1 0 
420 RFC 2833 2 95  95 I 1 0 
421 RFC 2833 3 103  103 I 1 0 
422 RFC 2833 3 103  103 I 1 0 
423 RFC 2833 3 103  103 I 1 0 
424 RFC 2833 3 103  103 I 1 0 
425 RFC 2833 2 95  95 I 1 0 
426 RFC 2833 1 86  86 I 1 0 
427 Conf Tone 4760  4760 O 0 20 
428 RFC 2833 1 86  86 I 1 0 
429 RFC 2833 2 95  95 I 1 0 
430 RFC 2833 3 103  103 I 1 0 
431 RFC 2833 3 103  103 I 1 0 
432 RFC 2833 3 103  103 I 1 0 
433 RFC 2833 3 103  103 I 1 0 
434 RFC 2833 2 95  95 I 1 0 
435 RFC 2833 1 86  86 I 1 0 
436 Conf Tone 4760  4760 O 0 20 
437 RFC 2833 1 86  86 I 1 0 
438 RFC 2833 2 95  95 I 1 0 
439 RFC 2833 3 103  103 I 1 0 
440 RFC 2833 3 103  103 I 1 0 
441 RFC 2833 3 103  103 I 1 0 
442 RFC 2833 3 103  103 I 1 0 
443 RFC 2833 2 95  95 I 1 0 
444 RFC 2833 1 86  86 I 1 0 
445 Conf Tone 4760  4760 O 0 20 
446 RFC 2833 1 86  86 I 1 0 
447 RFC 2833 2 95  95 I 1 0 
448 RFC 2833 3 103  103 I 1 0 
449 RFC 2833 3 103  103 I 1 0 
450 RFC 2833 3 103  103 I 1 0 
451 RFC 2833 3 103  103 I 1 0 
452 RFC 2833 2 95  95 I 1 0 
453 RFC 2833 1 86  86 I 1 0 
454 Conf Tone 4760  4760 O 0 20 
455 BYE 192 232 232 I 1 0 
456 OK 223 263 263 O 0 1 

 Total In 5,597 
Total 

Out 50,177 
Total 
Pkts. 48 209 

 

C. KPML 
In Table 2, we enumerate the packet and byte counts for the 

message and RTP exchanges for the long transaction 
described in Protocol Comparison, using KPML for signaling 
transport. The numbers in the “#” column indicate the 
message number from Fig. 5. 

 

C. KPML 
Table 2 shows the packet and byte counts for the message 

and RTP exchanges for the long transaction described in 
Protocol Comparison, using KPML for signaling transport. 
The numbers in the “#” column indicate the message number 
from Fig. 5. 
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TABLE 2 – LONG KPML TRANSACTION 

# Msg. Len. w/TCP Bytes I/O 
Pkts. 

In 
Pkts. 
Out 

501 INVITE 586 626 626 I 1 0 
502 OK 488 528 528 O 0 1 
503 ACK 192 232 232 I 1 0 
504 SUBSCRIBE 851 891 891 O 0 1 
505 OK 257 297 297 I 1 0 
506 NOTIFY 285 325 325 I 1 0 
507 OK 239 279 279 O 0 1 
508 PC Prompt 25466 0 25466 O 0 107 
509 NOTIFY 619 659 659 I 1 0 
510 OK 239 279 279 O 0 1 
511 Cmd Tone 4760  4760 O 0 20 
512 NOTIFY 619 659 659 I 1 0 
513 OK 239 279 279 O 0 1 
514 Conf Tone 4760  4760 O 0 20 
515 NOTIFY 619 659 659 I 1 0 
516 OK 239 279 279 O 0 1 
517 Conf Tone 4760  4760 O 0 20 
518 NOTIFY 619 659 659 I 1 0 
519 OK 239 279 279 O 0 1 
520 Conf Tone 4760  4760 O 0 20 
521 NOTIFY 619 659 659 I 1 0 
522 OK 239 279 279 O 0 1 
523 Conf Tone 4760  4760 O 0 20 
524 BYE 192 232 232 I 1 0 
525 OK 223 263 263 O 0 1 
526 NOTIFY 276 316 316 I 1 0 
527 OK 239 279 279 O 0 1 

 Total In 5,323 
Total 

Out 52,901 
Total 
Pkts. 11 217 

 

VII. ANALYSIS 

We examined the message flows and bandwidth usage of 
various representative methods of transmitting signaling 
information from a user with a plain old telephone. Namely, 
we examined sending DTMF tones from the telephone, 
through a gateway, to a controller (the G.711 case); sending 
packets that are representative of the DTMF tones (the named 
tones or RFC 2833 case); and using a signaling-level protocol 
(the KPML case). 

Using signaling instead of the actual digital waveforms for 
transporting the user input clearly is a benefit to network 
resources consumption. Both the named tones without G.711 
and KPML have more than an order of magnitude fewer 
inbound bytes and inbound packets than the continuous RTP 
stream (DTMF). In Table 3, shows a comparison of we 
compare the results. 

TABLE 3 - SUMMARY 
Protocol Inbound 

Bytes 
Outbound 

Bytes 
Inbound 
Packets 

Outbound 
Packets 

DTMF 97,342 97,342 409 409 
RFC 2833 5,597 50,177 48 209 
KPML 5,323  52,901  11  217 

 
The prompts dominate the outbound byte count, is 

dominated by the prompts, but only having to send packets 
when actually playing a prompt clearly is advantageous. 

Examining Table 3, we find that the byte counts for KPML 
and RFC 2833 are on the same order of magnitude. We see 
that RFC 2833 uses approximately 5% fewer outbound bytes 
and packets than KPML. However, it uses approximately 5% 
more inbound bytes and over four times the packets than 
KPML. 

Most important, RFC 2833 does not have the protocol 
property of reliable delivery. Moreover, the KPML model 
enables stateless servers, which the named tone model does 
not. KPML provides the properties of an easier-to-program 
model and reliable delivery at only a small premium over RFC 
2833. 

 In addition, the more digits captured and interpreted by 
KPML, the smaller the difference in network utilization 
becomes on the outbound side. KPML has a more pronounced 
benefit when considering, whereas the difference in network 
utilization on the inbound side becomes more pronounced in 
favor of KPML.  

The programming flexibility of KPML over RFC 2833 is an 
important feature. Consider how the program logic at the 
controller changes when one goes from eight-digit pass codes 
to four-digit pass codes. In the RFC 2833 case, one must 
modify the program logic at the controller to expect a different 
number of digits. In the KPML case, one only needs to modify 
the KPML markup. For either four or eight digit pass codes, 
the controller receives a NOTIFY with the “pw” tag, 
informing the controller that the digits represent a valid pass 
code. This logic is much simpler than having to parse out each 
and every digit individually. 

VIII. CONCLUSIONS 
This paperWe described a new environment, KPML, . This 

environment makes it possible towhich easily and efficiently 
controls devices in the home environment remotely, without 
the need for specialized hardware in the home devices. This 
environment imposes no requirements for complex line 
sharing or specialized control hardware. The ubiquitous plain 
old telephone with a 12-digit keypad is all that one needs to 
control the home devices. 

We have shown how KPML provides an efficient, reliable 
protocol for the remote control of consumer devices using 
plain old telephones with 12-digit keypads using Internet 
transport technologies. More importantly, KPML enables 
device developers to create dynamic user interfaces, which are 
much easier to create and maintain. 

Further contributions not explored in this paper include the 
ability of the protocol KPML approach to allow multiple 
devices to simultaneously get input from a single controlling 
device, how KPML maps to the web model of application 
development, and enhancements that reducereduce the number 
of SIP messages for single, stand-alone user interface 
interactions. 
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