
E. W. Burger and O. Frieder: A Novel System for Remote Control of Household Devices Using Digital IP Phones

Manuscript received February 6, 2006 0098 3063/06/$20.00 © 2006 IEEE

575

A Novel System for Remote Control of Household Devices
Using Digital IP Phones

Eric William Burger, Senior Member, IEEE and Ophir Frieder, Fellow, IEEE

Abstract — The idea of using a phone as a remote control for
household devices is not new. However, new digital
technologies such as Voice-over-IP and signaling protocols
such as SIP enable new methods of integrating the user
interface of a phone with the digital IP infrastructure being
deployed in the home. We developed and deployed the Key
Press Markup Language and SIP Event Package (KPML) to
address the need for a signaling-layer protocol for
transmitting user stimulus from low-power, consumer devices
such as IP phones to control household consumer devices.+
Index Terms — Home automation, remote control, tele-
control, telephony.

I. INTRODUCTION

Many prior efforts describe the use of a phone as a remote
control for household appliances. In such a system, the user
presses buttons on the telephone keypad to send commands to
a remotely controlled device. Most sSuch systems require
establishing a voice path to carry Dual-Tone Multi-Frequency
(DTMF) signals between a remote telephone and the device.
These prior remote control efforts, however, require the
consumer to introduce additional special-purpose, locally
resident devices, which complicate and increase the cost of
deployment. A primary novelty of our approach is the
elimination of the need for additional, local devices via the
development and deployment of a unified Key Press Markup
Language and SIP Event Package (KPML) to address the need
for a signaling-layer protocol for transmitting user stimulus
from low-power, consumer devices such as IP phones to
control household consumer devices.

Many prior systems enable users to remotely control
devices remotely, such as household appliances, office
equipment, or equipment at unmanned locations, via non-
telephony signaling mechanisms, such as e-mail or short-
message service (SMS). Others use a telephone, but require
the consumer to install specialized hardware. Our approach
enables any 12-key telephone, anywhere in the world, to
control household devices.

Yamamoto, et al., [1] describe, amongst other things, a tele-
control interface unit. This unit, which attaches to the
described key system, translates touch-tone commands entered
into a phone to the JEMA Home Appliance protocol standard.
Wong [2] describes a purpose-built interface unit that appears
to the phone network as a telephone, but presents a touch-
tone-based user interface to allow a remote phone to control a

+E. W. Burger is with Brooktrout Technology, Inc., Salem, NH 03079
USA. (e-mail: eburger@brooktrout.com)

 O. Frieder is with the Illinois Institute of Technology, Chicago, IL 60616
USA (e-mail: ophir@ir.iit.edu)

set of switched power supply outlets. They introduce the
concept of a local phone, which does not require user
authentication by virtue of being locally connected. Koyuncu
[3] describes effectively the same system, but one that uses a
PC card as a telephone network interface.

Other work has leveraged the reality that the modern home
network has TCP/IP and Bluetooth connectivity. For example,
Kanma, et al. [4] describe a system where they introduce a
Java application that uses the Bluetooth transceiver in a
cellular phone to send and receive control commands from
Bluetooth-linked home devices.

There are a few drawbacks with the current state-of-the-art.
This is particularly true for home appliances that have digital,
TCP/IP connectivity.

First, as previously stated, all of these schemes require the
consumer to install some sort of local hardware. For example,
the phone-based controllers require phone-line terminating
customer premises equipment. Many of the network-based
schemes require customer premises gateways.

Another problem is the treatment of local versus remote
phones. For most of the home-based phone controllers, all
phones look remote. That is, they use the same authentication
scheme and in-band transmission of dual-tone multi-frequency
(DTMF) tones. This has a number of implications. First of all,
even if the phone and appliance are both TCP/IP-enabled, the
phone must use its DTMF generators, and the appliance (or
gateway/controller) must use its DTMF receivers to receive
commands. This means that the methods do not leverage the
inherent location-independence and authentication
mechanisms present in the TCP/IP suite.

Schulzrinne, et al. [5] describe a Bluetooth, SIP, location-
aware set of devices. Likewise, as described in Kanma, et al.
[4], one could construct a rich client, using HTML or WML.
However, that assumes a device with a non-trivial display and
the processing power to do the rendering. Clearly, such an
interface would not work over a plain-old telephone service
device, which only has DTMF tone generators and a 12- or
16-key keypad for user input.

Even though a phone might be able to send digits as H.245
UserInputIndication (a signaling packet that indicates a DTMF
key entered) [6], such messages are on a per-key-press basis,
which wastes network resources and precious processing
resources at the phone.

II. HOME REAL-TIME MULTIMEDIA NETWORK
In Fig. 1, we show a typical home real-time multimedia

network. The various elements are a controller, a SIP Phone,
gateways for traditional phones, and the appliances being
under controlled.

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 576

Figure 1 - Home Network

A SIP Phone [7] is a physical phone that includes the
circuitry for digitizing, compressing, and packetizing voice or
video. The SIP Phone also includes a SIP stack and a user
interface. The SIP Phone includes at least the familiar 12-
button keypad of the traditional phone. It may include a small
display and additional keys. Throughout we do not consider
intelligent devices, as they approach the display and user
interaction qualities of a PC. For example, the cellular phone
described by Kanma, et al. [4] has a sophisticated display and
can run Java applications. Likewise, we do not expect the
device to support UPnP, such as the sophisticated devices
described by Verhoeven and Dees [8]. These devices are far
beyond the capabilities of a traditional telephone.

One can connect a traditional phone to the IP network
through a media gateway or integrated access device (IAD).
The media gateway acts as a bridge from the traditional phone
network to the IP network. IADs (and some media gateways)
appear to the phone to be the phone network. For example,
they provide dial tone and collect digits for formulating a
connection request (dialed number).

The IAD is a consumer device. The media gateway can be
either a consumer device in the home serving one or a small
number of telephones or it can be carrier equipment serving
hundreds or thousands of telephone lines. Either way, the
gateway or IAD translates PSTN signaling to SIP and the
bearer (voice) path to RTP [9].

 An interesting feature of using SIP is that traditional
phones connected locally to an IAD or remotely through the
public telephone network appear the same to the network.

The function of the controller is to receive commands from
the telephone and translate them into the appropriate appliance
control commands.

In the prior art for using a telephone as a remote control,
one establishes a full-duplex media connection between the
telephone and the controller. This allows the controller to
detect the user signaling, which in this case are in-band DTMF
tones.

One can extend the model to the digital world. In VoIP, the
bearer channel, where the actual media (e.g., voice) traverses
the network, uses the real-time protocol, or RTP. RTP can
transport the actual tones for DTMF. In addition, in VoIP, one
can send named tones [10] over the bearer channel in RTP.
Using named tones, the phone can send a packet indicating the
user has pressed the “1” key, rather than, or in addition to,

transmitting the DTMF for the “1” key, which happens to be
697 Hz + 1209 Hz [11]. For historical reasons, such named
tone packets are called RFC 2833 packets.

One might consider RFC 2833 packets to be signaling,
rather than media. However, RFC 2833 packets have a number
of drawbacks when used for signaling. First, the packets
physically travel in the bearer stream. This means that any
application that has interest in the signaling must be in the
bearer path. In the analog world, this was not a problem, as the
only way to detect DTMF was to establish a bearer-channel
connection to the phone, usually over the public telephone
network. However, it is an excessive burden to place on an
application to have to terminate and interpret the bearer
channel if all it is looking for is key press user input.

A second drawback of using RFC 2833 is that RTP, the
transport RFC 2833 uses, is not a reliable delivery mechanism.
RTP trades off reliable delivery for real-time stream delivery,
where it is more important that the packets come at regular (or
predictable) intervals, even if that means dropping a packet.

 Whereas this is an acceptable trade-off for the delivery of
multimedia streams, it is not acceptable for the delivery of
signaling.

In our system, we make only a signaling connection
between the SIP Phone or gateway and the controller. This has
a number of advantages. First, the controller does not need
expensive tone detection circuitry. Second, the SIP Phone
directly tells the controller the exact key pressed, rather than
translating the key press into another format for the controller
to decode. Third, the controller only needs a signaling stack
(SIP in this case); it does not require a media stack (such as
RTP). Fourth, if the user is dialing up remotely, and a service
provider hosts the media gateway, only the signaling need
traverse the access network. Given tThe typical rate of
packets for signaling areis on the order of 1about one packet
per /second. and tThe typical rate of ppackets for voice media
areare on the order of 50about fifty packets per second, this is
a significant savings. Fifth, there are well-known problems
with establishing media connections through a network
address translator[12], or NAT, which most residential
network gateways are. For example, many signaling protocols,
including SIP, insert the IP address of the media endpoint into
some signaling messages. However, a NAT silently changes
the endpoint’s IP address, making the address in the signaling
incorrect. Transmitting the user input in the signaling layer
eliminates these problems.

III. KPML

SIP Phones and gateways use the KPML protocol [13] to
transmit key presses in the signaling layer. KPML combines a
markup, the Key Press Stimulus Markup Language, with the
SIP SUBSCRIBE / NOTIFY protocol. The following is a brief
overview of KPML.

There are three primary goals of KPML. The first is to
present a compact, application-level representation to reduce
the processing burden of application clients. This is
particularly important for consumer electronic devices. The
second is to reduce the number of messages required to
transfer application-level state. The third is to reduce network
traffic and reduce the application processing burden by

E. W. Burger and O. Frieder: A Novel System for Remote Control of Household Devices Using Digital IP Phones

577

sending messages only to applications interested in a given
user input pattern.

Applications send subscription messages to a device. The
subscription message for each application identifies a pattern
of user input for the device to notify the application is to be
notified of.

 KPML uses the SIP SUBSCRIBE/NOTIFY mechanism
[14]. This mechanism provides a means for handling multiple,
independent requests.

The device monitors input from the user to identify the
occurrence of the patterns identified in the subscription
messages. When the pattern occurs, the device notifies the
corresponding application. The device only notifies the
particular application that provided the subscription message,
conserving processing and communications resources.

Subscription messages can also contain tags associated with
patterns. When the device detects a match and reports it to the
application, the device also returns the tag, enabling the
application to easily determine easily exactly what response to
the input is appropriate without needing to maintain a large
amount of internal state information.

Some applications care to continuously monitor the stream
continuously for a particular pattern. However, other
applications look for only a single occurrence of a particular
pattern, at which time the application is finishesd monitoring
or may register a different set of patterns. The first type of
request is referred to as a "persistent" request, whereas the
second type is termed a "one-shot" request. KPML provides
for the requesting application to specify the nature (persistent
or one-shot) of the request.

Indicating the nature of the request in the subscription
reduces the protocol overhead for terminating the subscription.
For many interactions, the subscription termination messages
may be a significant portion of the overall number of
messages and bytes transferred.

In Fig. 2, we illustrate a sample KPML request. Here the
key sequence *1 indicates a command for the PC and *2
indicates a command for the oven. The trailing * indicates to
turn the appliance on whereas # indicates to turn the appliance
off.

<?xml version="1.0" encoding="UTF-8"?>
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-
request"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="urn:ietf:params:xml:ns:kpml-
request kpml-request.xsd"
 version="1.0">
 <pattern>
 <regex tag="PCOn">*1*</regex>
 <regex tag="PCOff">*1#</regex>
 <regex tag="OvenOn">*2*</regex>
 <regex tag="OvenOff">*2#</regex>
 </pattern>
</kpml-request>

Figure 2 - KPML Request

By using a tag, one can abstract the control program from
the actual interface. That is, rather than having code looking
for the string “*1*”, the code looks for the tag “PCOn”. This

makes it easier to introduce new modalities, such as HTML on
a PDA, with only minor changes to the control program.

Note the SIP Phone will only notify the controller when the
user enters a matching pattern. This is useful if multiple
applications are looking for different patterns.

IV. LOCAL AND REMOTE OPERATION
The concept of having different user interfaces depending

on the physical location of the phone is not new. For example,
Wong’s controller [2] had a switch that enabled a user with a
locally-connected phone to bypass entering a pass code. The
idea was that if your phone was connected “in the home”, the
fact of physical access was enough to authenticate the user.

Most controllers use a password challenge. That is, when
the remote user calls the controller, the controller prompts the
user to enter a series of digits to indicate the caller is really the
homeowner.

We can improve upon this distinction of who is an
authorized user. In the traditional phone system, all we can do
is detect a directly connected phone (with a non-public
interface, as in Yamamoto, et al. [1]) or require the pass code.
In the digital SIP network, we can leverage modern, digital
security methods[15]. One example of such methods is X.509
certificates for TLS [16].

With a pre-loaded X.509 certificate, the user’s SIP phone
can automatically authenticate itself with the network. This
method does not necessarily require the user to enter a pass
code (although one can require this for added security).

A novel feature is that now, rather than having
authentication based on physical connectivity, we achieve
authentication is achieved with distributed cryptographic
algorithms. This means that the user can take their phone with
them when they travel, and the phone itself is their
authentication token, rather than a digit string.

Likewise, if the user uses, for example, a remote soft phone,
they can enter a considerably richer and longer password for a
digest authentication [17]. This retains the ability of a user to
use a public phone, yet have the benefit of a streamlined (and
much more secure) authentication mechanism.

V. PROTOCOL COMPARISON

We implemented KPML in a network IP gateway [18], and
others are implementing it in a SIP Phone and circuit switched
network media gateway. Significant bandwidth and packet
reduction occurred. In addition, much simpler controllers that
do not need bearer channel circuitry were constructed.
Moreover, KPML enables one to build low power consumer
SIP Phones to be built that do not require elaborate browsers
or displays. At the same time, the KPML application model
makes it easier to build controllers that offer both DTMF
interfaces to phones and rich, graphical user interfaces to PCs
and PDAs.

As an example of the efficiencies of KPML, we look
atconsider a typical remote home control scenario. In this
scenario, we wish to control the power to a local PC through a
switched outlet power controller. The purpose is to remotely
power-on (and off) the PC before accessing it over the
Internet.

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 578

In the call flow, the user connects to the controller, hears a
voice prompt asking for a pass code (if the device is nothas no
authenticationed), and then hears a prompt asking which outlet
number to turn on or off. The pass code is eight digits and the
user enters four commands before hanging up.

In the following analysis, we consider the approach of
detecting tones in-band as compared to the KPML approach.

Note that the traditional approach of dialing in to an analog
controller over the PSTN is functionally equivalent to using
in-band tones. This is because the SIP gateway function is
simply translating the analog phone signals into the digital
domain. Likewise, if the call is already in the VoIP domain,
but the tones are still in-band, a network IP gateway performs
the tone detection and injection of the KPML messages into
the SIP signaling path.

A. Detailed Call Flow
In Fig. 3, we illustrate shows the general call flow.
 First there is a call from a gateway to the controller. In this

case,Here the user calls their controller. This can occur by
translations from a dialed number. In this case, the user dials a
number, like 800 555 1212, which routes over the PSTN to the
gateway, which then maps the number to the SIP address of
the controller. Instead of calling over the PSTN, the user could
connect directly to the controller from a SIP phone by entering
the Request-URI (address) of the controller. Likewise, an IAD
can do the mapping from a number to the controller Request-
URI. In this example, the Request-URI is
“sip:controller@user.example.com”.

Since the call flows are identical for each of the access
cases, namely via a gateway, an IAD, or a SIP phone, we use
the term gateway to represent all of these scenarios, including
other call establishment procedures and devices known in the
art. Details of the session establishment protocol are in the SIP
specification, RFC 3261 [19].

Figure 3 - Call Flow

In all scenarios, one establishes the session with the SIP
handshake in messages (301), (302), and (303). The
handshake establishes the session by exchanging and
negotiating capabilities.

The controller then prompts the user by streaming the
prompt requesting the caller for a pass code (304). The user
enters the pass code digits (305). Upon correct entry of the
pass code, the controller streams a command tone (306), after
which the caller enters the command digits (307). The
controller emits a confirmation tone (308). The cycle of
command digits and confirmation tones can repeat, until the
caller hangs up the phone. At this point the phone or gateway
sends a disconnect message (309), which the controller
acknowledges (310).

B. Named Tones
For the named tones case, the digit signaling (305) from

Fig. 3 becomes expanded by the redundancy protocol of RFC
2833. The RFC 2833 redundancy protocol is to repeat a given
digit, piggy-backed on a new digit, for some number of digits,
usually 5. The gateway sends the redundant digits in the same
packet with new digits, saving the packet overhead for the
digits. If the caller does not enter a new digit within the repeat
period, the gateway emits a packet with the remaining
redundant digits.

Note that this is an example of “reliability by hope.” RFC
2833 assumes there is a loss of connectivity for no more than
the redundancy period. The redundancy period is the time
period from when the gateway sends the first copy of the digit
to the last redundant copy. RFC 2833 “hopes” that the network
will deliver at least one copy of the digit during the
redundancy period. Besides being inefficient, in that the
gateway sends many more packets than necessary, the
redundancy scheme does not provide a reliable digit delivery
mechanism.

In Fig. 4, we shows the flow for the pass code digits. A
similar expansion occurs for the command digits.

 Steps (401), (402), and (403) in Fig. 4 are the SIP session
establishment protocol, INVITE, 200 OK, and ACK,
respectively.

 In step (404), the controller streams the pass code prompt
to the gateway.

The user enters the first digit, which the gateway encodes as
a RFC 2833 named tone packet (405). The user enters the
second digit, which the gateway encodes as a RFC 2833
named tone packet, with a redundant copy of the first digit
(406). The gateway encodes and sends the user’s subsequent
digits in steps (407) through (417).

C. KPML
In Fig. 5, we shows the entire call flow for this scenario

using KPML.
 Steps (501), (502), and (503) in Fig. 5 are the SIP session

establishment protocol, INVITE, 200 OK, and ACK,
respectively.

The controller subscribes for the tone detection events
(504), which the controller gateway acknowledges (505) and
sends an instant notification (506), which the gateway
controller acknowledges (507).

E. W. Burger and O. Frieder: A Novel System for Remote Control of Household Devices Using Digital IP Phones

579

Figure 4 - Named Tones Call Flow Extract

The controller then streams the pass code prompt to the

gateway (508). The user enters the digits, and the gateway
sends the collected digits to the controller (509) which the
controller acknowledges (510).

The controller streams the command tone to the gateway
(511). In response, the user enters the command, which the
gateway sends to the controller (512) and the controller
acknowledges (513). This cycle completes three more times
(512514) through (523522). After the next confirmation tone
(523), , at which point the user hangs up (524) and the
controller acknowledges the disconnect (525).

 The gateway then informs the controller of the subscription
termination due to the user hanging up (526) which the
controller acknowledges (527).

VI. NETWORK UTILIZATION

We set out to compare the efficiencies of using various digit
signaling schemes, including pure in-band transmission of
DTMF tones (G.711), sending named tones (RFC 2833), and
using KPML.

In-band transmission is simply where the gateway converts
the analog signals into a continuous stream of G.711 RTP
packets. RFC 2833 sends media packets during prompt
playing, but sends only named tone packets (RFC 2833) and
redundancy packets in the media stream when the caller enters
digits. KPML sends media packets during prompt playing, but
sends only KPML events (and handshakes) in the signaling
stream when the caller enters digits.

To determine what the associated cost is, if any, to use a
reliable protocol in the signaling channel (KPML), as opposed
to sending signaling in the media channel (G.711 and RFC
2833), we conducted an experimental study.

A. G.711
The pass code prompt is 2140ms long.
G.711 places 20ms of audio into a 238 byte RTP packet.

The 238 byte figure includes 160 bytes for the audio payload,
as well as the RTP, UDP, IP, and Ethernet headers. Thus, the
pass code prompt uses (2140ms) / (20ms/packet) = 107
packets. At 238 bytes per packet, the prompt uses 25,466
bytes.

The command (306) and confirmation (308) tones are
400ms each, or 20 G.711 20ms packets using 4,760 bytes.

Figure 5 - Entire KPML Call Flow

There is a system processing delay of 500ms after the
controller receives the command, before sending each
confirmation tone.

VI. NETWORK UTILIZATION
We set out to compare the efficiencies of using various digit

signaling schemes, including pure in-band transmission of
DTMF tones (G.711), sending named tones (RFC 2833), and
using KPML.

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 580

In-band transmission is simply where the gateway converts
the analog signals into a continuous stream of G.711 RTP
packets. RFC 2833 sends media packets during prompt
playing, but sends only named tone packets (RFC 2833) and
redundancy packets in the media stream when the caller enters
digits. KPML sends media packets during prompt playing, but
sends only KPML events (and handshakes) in the signaling
stream when the caller enters digits.

We were looking to see what the cost, if any, there is to use
a reliable protocol in the signaling channel (KPML) as
opposed to sending signaling in the media channel (G.711 and
RFC 2833).

A. G.711
The pass code prompt is 2140ms long.
G.711 places 20ms of audio into a 238 byte RTP packet.

The 238 byte figure includes 160 bytes for the audio payload,
as well as the RTP, UDP, IP, and Ethernet headers. Thus, the
pass code prompt uses (2140ms) / (20ms/packet) = 107
packets. At 238 bytes per packet, the prompt uses 25,466
bytes.

The command (306) and confirmation (308) tones are
400ms each, or 20 G.711 20ms packets using 4,760 bytes.

There is a system processing delay of 500ms after the
controller receives the command, before sending each
confirmation tone.

Summing up these times, we find the total transaction time
for the scenario examined in Protocol Comparison above is
2140ms for the prompt, 3380ms for the pass code entry,
400ms for the confirmation tone, 1350ms for the command
entry, 500ms of system processing time, and 400ms for the
command confirmation tone. This results in a grand total of
6480ms8170ms. For the scenarios where the gateway and
controller continuously transmit G.711, the 8170ms
transaction time represents the transmission of 409 packets
and 97,342 bytes in each direction.

Note that TCP, IP, and Ethernet headers add 40 bytes to a
TCP packet.

B. RFC 2833
In Table 1, we enumerate shows the packet and byte counts

for the message and RTP exchanges for the long transaction
described in Protocol Comparison, using RFC 2833 for
signaling transport. The numbers in the “#” column refer to
the message number. Numbers past 417 are message number
from the exchange that occur after the dialog depicted in Fig.
4.

In Fig. 4, the messages labeled “RFC 2833 n” means a
message with n digits in it. For example, message (407),
labeled “RFC 2833 3”, has three digits in it, the third user-
entered digit, the first redundant copy of the second digit, and
the second redundant copy of the first digit.

TABLE 1 – LONG RFC2833 TRANSACTION

Msg. Len. w/TCP Bytes I/O
Pkts.

In
Pkts.
Out

401 INVITE 586 626 626 I 1 0
402 OK 608 648 648 O 0 1
403 ACK 194 234 234 I 1 0
404 PC Prompt 25466 0 25466 O 0 107
405 RFC 2833 1 86 86 I 1 0
406 RFC 2833 2 95 95 I 1 0
407 RFC 2833 3 103 103 I 1 0
408 RFC 2833 4 111 111 I 1 0
409 RFC 2833 5 119 119 I 1 0
410 RFC 2833 6 127 127 I 1 0
411 RFC 2833 6 127 127 I 1 0
412 RFC 2833 6 127 127 I 1 0
413 RFC 2833 5 119 119 I 1 0
414 RFC 2833 4 111 111 I 1 0
415 RFC 2833 3 103 103 I 1 0
416 RFC 2833 2 95 95 I 1 0
417 RFC 2833 1 86 86 I 1 0
418 Cmd Tone 4760 4760 O 0 20
419 RFC 2833 1 86 86 I 1 0
420 RFC 2833 2 95 95 I 1 0
421 RFC 2833 3 103 103 I 1 0
422 RFC 2833 3 103 103 I 1 0
423 RFC 2833 3 103 103 I 1 0
424 RFC 2833 3 103 103 I 1 0
425 RFC 2833 2 95 95 I 1 0
426 RFC 2833 1 86 86 I 1 0
427 Conf Tone 4760 4760 O 0 20
428 RFC 2833 1 86 86 I 1 0
429 RFC 2833 2 95 95 I 1 0
430 RFC 2833 3 103 103 I 1 0
431 RFC 2833 3 103 103 I 1 0
432 RFC 2833 3 103 103 I 1 0
433 RFC 2833 3 103 103 I 1 0
434 RFC 2833 2 95 95 I 1 0
435 RFC 2833 1 86 86 I 1 0
436 Conf Tone 4760 4760 O 0 20
437 RFC 2833 1 86 86 I 1 0
438 RFC 2833 2 95 95 I 1 0
439 RFC 2833 3 103 103 I 1 0
440 RFC 2833 3 103 103 I 1 0
441 RFC 2833 3 103 103 I 1 0
442 RFC 2833 3 103 103 I 1 0
443 RFC 2833 2 95 95 I 1 0
444 RFC 2833 1 86 86 I 1 0
445 Conf Tone 4760 4760 O 0 20
446 RFC 2833 1 86 86 I 1 0
447 RFC 2833 2 95 95 I 1 0
448 RFC 2833 3 103 103 I 1 0
449 RFC 2833 3 103 103 I 1 0
450 RFC 2833 3 103 103 I 1 0
451 RFC 2833 3 103 103 I 1 0
452 RFC 2833 2 95 95 I 1 0
453 RFC 2833 1 86 86 I 1 0
454 Conf Tone 4760 4760 O 0 20
455 BYE 192 232 232 I 1 0
456 OK 223 263 263 O 0 1

 Total In 5,597
Total

Out 50,177
Total
Pkts. 48 209

C. KPML
In Table 2, we enumerate the packet and byte counts for the

message and RTP exchanges for the long transaction
described in Protocol Comparison, using KPML for signaling
transport. The numbers in the “#” column indicate the
message number from Fig. 5.

C. KPML
Table 2 shows the packet and byte counts for the message

and RTP exchanges for the long transaction described in
Protocol Comparison, using KPML for signaling transport.
The numbers in the “#” column indicate the message number
from Fig. 5.

E. W. Burger and O. Frieder: A Novel System for Remote Control of Household Devices Using Digital IP Phones

581

TABLE 2 – LONG KPML TRANSACTION

Msg. Len. w/TCP Bytes I/O
Pkts.

In
Pkts.
Out

501 INVITE 586 626 626 I 1 0
502 OK 488 528 528 O 0 1
503 ACK 192 232 232 I 1 0
504 SUBSCRIBE 851 891 891 O 0 1
505 OK 257 297 297 I 1 0
506 NOTIFY 285 325 325 I 1 0
507 OK 239 279 279 O 0 1
508 PC Prompt 25466 0 25466 O 0 107
509 NOTIFY 619 659 659 I 1 0
510 OK 239 279 279 O 0 1
511 Cmd Tone 4760 4760 O 0 20
512 NOTIFY 619 659 659 I 1 0
513 OK 239 279 279 O 0 1
514 Conf Tone 4760 4760 O 0 20
515 NOTIFY 619 659 659 I 1 0
516 OK 239 279 279 O 0 1
517 Conf Tone 4760 4760 O 0 20
518 NOTIFY 619 659 659 I 1 0
519 OK 239 279 279 O 0 1
520 Conf Tone 4760 4760 O 0 20
521 NOTIFY 619 659 659 I 1 0
522 OK 239 279 279 O 0 1
523 Conf Tone 4760 4760 O 0 20
524 BYE 192 232 232 I 1 0
525 OK 223 263 263 O 0 1
526 NOTIFY 276 316 316 I 1 0
527 OK 239 279 279 O 0 1

 Total In 5,323
Total

Out 52,901
Total
Pkts. 11 217

VII. ANALYSIS

We examined the message flows and bandwidth usage of
various representative methods of transmitting signaling
information from a user with a plain old telephone. Namely,
we examined sending DTMF tones from the telephone,
through a gateway, to a controller (the G.711 case); sending
packets that are representative of the DTMF tones (the named
tones or RFC 2833 case); and using a signaling-level protocol
(the KPML case).

Using signaling instead of the actual digital waveforms for
transporting the user input clearly is a benefit to network
resources consumption. Both the named tones without G.711
and KPML have more than an order of magnitude fewer
inbound bytes and inbound packets than the continuous RTP
stream (DTMF). In Table 3, shows a comparison of we
compare the results.

TABLE 3 - SUMMARY
Protocol Inbound

Bytes
Outbound

Bytes
Inbound
Packets

Outbound
Packets

DTMF 97,342 97,342 409 409
RFC 2833 5,597 50,177 48 209
KPML 5,323 52,901 11 217

The prompts dominate the outbound byte count, is

dominated by the prompts, but only having to send packets
when actually playing a prompt clearly is advantageous.

Examining Table 3, we find that the byte counts for KPML
and RFC 2833 are on the same order of magnitude. We see
that RFC 2833 uses approximately 5% fewer outbound bytes
and packets than KPML. However, it uses approximately 5%
more inbound bytes and over four times the packets than
KPML.

Most important, RFC 2833 does not have the protocol
property of reliable delivery. Moreover, the KPML model
enables stateless servers, which the named tone model does
not. KPML provides the properties of an easier-to-program
model and reliable delivery at only a small premium over RFC
2833.

 In addition, the more digits captured and interpreted by
KPML, the smaller the difference in network utilization
becomes on the outbound side. KPML has a more pronounced
benefit when considering, whereas the difference in network
utilization on the inbound side becomes more pronounced in
favor of KPML.

The programming flexibility of KPML over RFC 2833 is an
important feature. Consider how the program logic at the
controller changes when one goes from eight-digit pass codes
to four-digit pass codes. In the RFC 2833 case, one must
modify the program logic at the controller to expect a different
number of digits. In the KPML case, one only needs to modify
the KPML markup. For either four or eight digit pass codes,
the controller receives a NOTIFY with the “pw” tag,
informing the controller that the digits represent a valid pass
code. This logic is much simpler than having to parse out each
and every digit individually.

VIII. CONCLUSIONS
This paperWe described a new environment, KPML, . This

environment makes it possible towhich easily and efficiently
controls devices in the home environment remotely, without
the need for specialized hardware in the home devices. This
environment imposes no requirements for complex line
sharing or specialized control hardware. The ubiquitous plain
old telephone with a 12-digit keypad is all that one needs to
control the home devices.

We have shown how KPML provides an efficient, reliable
protocol for the remote control of consumer devices using
plain old telephones with 12-digit keypads using Internet
transport technologies. More importantly, KPML enables
device developers to create dynamic user interfaces, which are
much easier to create and maintain.

Further contributions not explored in this paper include the
ability of the protocol KPML approach to allow multiple
devices to simultaneously get input from a single controlling
device, how KPML maps to the web model of application
development, and enhancements that reducereduce the number
of SIP messages for single, stand-alone user interface
interactions.

IX. ACKNOWLEDGMENT

The authors would like to thank Martin Dolly for his
editorial contribution to the IETF KPML
standardspecification.

X. REFERENCES
[1] K. Yamamoto, S. Shinohara, and H. Yokota, "New home telephone

system using Japanese Home Bus System standard," IEEE
Transactions on Consumer Electronics, vol. 35, pp. 687-697, 1989.

[2] E. M. C. Wong, "A phone-based remote controller for home and office
automation," IEEE Transactions on Consumer Electronics, vol. 40, pp.
28-34, 1994.

[3] B. Koyuncu, "PC Remote Control of Appliances by Using Telephone
Lines," IEEE Transactions on Consumer Electronics, vol. 41, pp. 201-
209, 1995.

[4] H. Kanma, N. Wakabayashi, R. Kanazawa, and H. Ito, "Home
appliance control system over Bluetooth with a cellular phone," IEEE
Transactions on Consumer Electronics, vol. 49, pp. 1049-1053, 2003.

[5] H. Schulzrinne, X. Wu, S. Sidiroglou, and S. Berger, "Ubiquitous
computing in home networks," IEEE Communications Magazine, vol.
41, pp. 128-135, 2003.

IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, MAY 2006 582

[6] ITU-T, "Control protocol for multimedia communication," ITU,
Geneva, Recommendation H.245, July 2003.

[7] H. Schulzrinne and J. Rosenberg, "The Session Initiation Protocol:
Internet-centric signaling," IEEE Comm. Mag., vol. 38, pp. 134-141,
2000.

[8] R. Verhoeven and W. Dees, "Defining services for mobile terminals
using remote user interfaces," IEEE Transactions on Consumer
Electronics, vol. 50, pp. 535-542, 2004.

[9] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, "RTP: A
Transport Protocol for Real-Time Applications," IETF, RFC 3550, July
2003.

[10] H. Schulzrinne and S. Petrack, "RTP Payload for DTMF Digits,
Telephony Tones and Telephony Signals," IETF, RFC 2833, May
2000.

[11] ITU-T, "Technical Features of Push-Button Telephone Sets,"
International Telecommunications Union, Geneva, ITU-T
Recommendation Q.23, November 1998.

[12] T. Hain, "Architectural Implications of NAT," IETF, RFC 2993,
November 2000.

[13] E. W. Burger and M. Dolly, "A Session Initiation Protocol (SIP) Event
Package for Key Press Stimulus (KPML)," IETF, Internet Draft draft-
ietf-sipping-kpml-07, December 29, 2004, work in progress.

[14] A. B. Roach, "Session Initiation Protocol (SIP)-Specific Event
Notification," IETF, RFC 3265, June 2002.

[15] S. Moyer, D. Marples, and S. Tsang, "A protocol for wide area secure
networked appliance communication," Communications Magazine,
IEEE, vol. 39, pp. 52-59, 2001.

[16] T. Dierks and P. L. Karlton, "The TLS Protocol Version 1.0," IETF,
RFC 2246, January 1999.

[17] J. Franks, P. M. Hallam-Baker, J. L. Hostetler, S. D. Lawrence, P. J.
Leach, A. Luotonen, and L. C. Stewart, "HTTP Authentication: Basic
and Digest Access Authentication," IETF, RFC 2617, June 1999.

[18] E. Burger, "A New Inter-Provider Interconnect Technology for
Multimedia Networks," IEEE Communications Magazine, vol. 43, pp.
147-151, 2005.

[19] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, "SIP: Session Initiation
Protocol," IETF, RFC 3261, June 2002.

Eric W. Burger (M’84-SM’00) is the Chief Technology
Officer of Brooktrout Technology, Inc. Prior to Brooktrout,
he founded SnowShore Networks, Inc., where he invented
the SIP Controlled Multifunction Media Server. He held
various research and management positions with MCI,
Cable & Wireless, ADC/Centigram, The Telephone
Connection, Valid Logic Systems, and Texas Instruments.

He holds degrees from the Massachusetts Institute of Technology and K.U.
Leuven, and is currently affiliated with the Illinois Institute of Technology. He
currently serves as the Chair of the SPEECHSC and LEMONADE Work Groups in
the IETF and is active in signaling and applications protocol development in
the IETF and W3C. He is a member of the ACM. His research interests focus
on real-time multimedia protocols and architectures for large-scale multimedia
systems.

Dr. Ophir Frieder (SM '93, F '02) is the IITRI Chair
Professor of Computer Science and the Director of the
Information Retrieval Laboratory at the Illinois Institute of
Technology. His research interests focus on scalable
information retrieval systems spanning search and retrieval
and communications issues. He is an AAAS Fellow, ACM
Fellow, and IEEE Fellow.

