On Mediated Search of the United States
Holocaust Memorial Museum Data

Jefferson Heard*, Jordan Wilberding*, Gideon Frieder**,
Ophir Frieder, David Grossman, and Larry Kane*

Information Retrieval Lab
Illinois Institute of Technology

Abstract. The United States Holocaust Memorial Museum (USHMM)
recently celebrated its ten-year anniversary. The museum was established
to bear witness to the human atrocities committed by the Nazi reign
of terror. As such, related data must be collected, and means to store,
search, and analyze the data must be provided. Presently, the data avail-
able reside in various formats, sizes, and structures, in videotape and
films, in microfilms and microfiche, in various incompatible structured
databases, as unstructured electronic documents, and semi-structured
indexes scattered throughout the organizations. Collected data are par-
titioned over more than a dozen languages, further complicating their
processing. There is currently no single search mechanism or even de-
partment of human experts that can sift through all the data in a fash-
ion that provides global, uniform access. We are currently experimenting
with our developed Intranet Mediator technology to provide answers,
rather than a potential list of sources as provided by common search en-
gines, to questions posed in natural language by Holocaust researchers.
A description of a prototype that uses a subset of the data available
within the USHMM is described.

1 Introduction

Quoted directly from its website, the mission of the United States Holocaust
Memorial Museum (USHMM) states:

“The United States Holocaust Memorial Museum is America’s national
institution for the documentation, study, and interpretation of Holocaust
history, and serves as this country’s memorial to the millions of people
murdered during the Holocaust.”

We are developing a Mediator search tool to provide a natural language, sin-
gle point of querying interface to the United States Holocaust Memorial Museum
data in all its various formats. This effort is conducted independently from, but
in cooperation with the archives division of the USHMM.

* Also of Intranet Mediator Inc.
** Also of George Washington University.

The Intranet Mediator [3] is a search tool based on patented technology [2]
capable of providing a layer of abstraction over structured (SQL) databases,
semi-structured (XML, MARC, LOC) document repositories, and unstructured
text repositories using their own search engines. This layer of abstraction allows
the user a natural-language interface to query all of these repositories in an
intelligent manner from a single place. It also places no requirements on the
underlying systems that it searches. We have developed a system that allows a
researcher to enter a natural language question and query up to six sources, some
of which are structured, semi-structured (XML), and text, all at the direction
of the Mediator.

The Mediator Architecture

PR
| Rule Modules

Holocaust
Encyclopedia

Museum Exhibits

Intranet Mediator Inc.

Fig. 1. Architecture of the Intranet Mediator.

The USHMM'’s archives contain many collections in languages other than
English. In addition to our work in this study, we are developing a method of
querying these collections in their own languages and returning interpretable
results. Towards this, we have included in our prototype an English search over
the Slovak Jewish Census collection, a small index of boxes of text and film
documents that contains abstracts written in the Slovak language of each record.
In the search of these documents, results are presented to the user in their
original language of Slovak. For description on recent efforts in cross language
information retrieval, see [4].

2 Related Work

Question and Answer systems abound and include the likes of START [7] and
JAVELIN [9]. These systems handle natural language questions, like our Media-
tor, however they operate on only one kind of data and most often use “canned”
answers, such as Wikipedia for their results. In addition, the Mediator uses tech-
niques from Natural Language Processing, such as named-entity extraction [§]
and text classification [1] to extract the neccessary data from the queries to pose
them to the different types of systems and also to direct them towards the most
salient procedure for obtaining and composing a final answer.

3 Solution Architecture

The global architecture of the Intranet Mediator is illustrated in Figure 1. When
a user issues a natural language question to the Mediator, a Redirector routes
it through several levels of processing and then directs the user’s browser to
the answer. Inside the QueryEngine, the user’s query is first broken up by a
Tokenizer. The sequence of tokens is then analyzed by a KnownEntityTagger
that finds, concatenates, and tags subsequences that exist within the structured
repositories available to the Mediator. This sequence of tagged data is passed
through an InferredEntityTagger, which further tags data through finding pat-
terns that have previously surrounded a known entity. The KnownEntityTagger
finds entities in the query by matching substrings with the results of one or more
pre-defined structured queries on the Mediator accessible databases. The Inferre-
dEntityTagger takes the results from the KnownFEntityTagger and uses them as
training as well as checks them for inferrable entities. The InferredEntityTagger
uses a simple trigram tagging scheme similar to [6] to find entities.

This digested query is sent to the QueryDispatcher, which passes the query
through a BayesianLogisticRegressionClassifier, selecting the top-level rule with
the best potential to answer the question. The sequence of tagged entities and
the name of the selected rule are then hashed together to determine if the answer
has already been cached. If the question has no cached answer, the top-level rule
is given the query and entity values and the QueryDispatcher executes it. A
top-level rule, shown in Figure 2, consists of:

<rule name="'Person'>

<questions recognizer="'com.imi.mediator.querydispatcher.BLRQueryRecognizer'>

<query>Who was $Name?</query>
<query>Who is $Name?</query>

</questions>

<required-fields>
<field p='0.0' name='Name' />
<field p='0.8' name="'Birthdate' />
<field p='0.8' name='DeathDate' />

</required-fields>
<logic>
required_fields['Name'] = titlecase(required_fields['Name'])
</logic>
<answer>
<subanswer fields='Name'><h1>%</h1><hr /></subanswer>

<subanswer fields='Birthdate,Deathdate'><h2>(%-%)</h2></subanswer>

</answer>

\</rule>

~

J

Fig. 2. A sample rule.

— A set of questions with known answers, found in the <questions> section

which is used to train the classifier.

A set of required fields, found in the <required-fields> section which is filled
in by the entities found in the query and by sub-rules that use the top-level
rule’s information to spelunk for more data. Assigned along with each field
is the probability the top-level rule can answer the query given that the field
cannot be provided by either the query or a sub-rule.

A logic section, denoted as <logic>, written in Python [10] that operates
via QueryModules with the searchable data repositories and the set of fields
filled in by the query.

A set of formatting instructions for the Aggregator, the <answer> section
that take various pieces of the result data and make them human-readable.

A rule, in our approach, is a template that answers an entire class of similarly

phrased questions. Once a rule is selected and query fields are filled in, sub-rules
are selected to create an execution plan. A sub-rule is a rule that contains no set
of answerable questions, but merely a list of fields the rule requires to execute and
a list of fields the rule provides upon completion. For each required field in the
top-level rule, a priority queue of sub-rules to execute is created. This structure
is prioritized by the probability that the sub-rule will assign the correct value to

the field. Once the execution plan is created, the first item of each priority queue
is polled, and the logic section is executed. Note that the rules are independent
from one another and are executed in parallel. Each time a field is successfully
filled in by a rule, the field’s priority queue is emptied. As long as there are non-
empty priority queues, the execution plan continues. As each field is filled, it is
passed to the Aggregator, which uses the formatting instructions in the top-level
rule to build the answer that is displayed to the user.

One of the unique features of the Mediator is that it attempts to return an
answer to a question rather than a set of hyperlinks or some other form of a
ranked result set, as is common for traditional search engines. While question
answering systems abound, no question answering system exists currently that
is capable of exploiting multiple types of data as the IIT Intranet Mediator is [3].
Furthermore, the Mediator is actually querying the underlying data as opposed
to selecting from a predetermined set of possible answers as in efforts such as
Ask Jeeves (ask.com).

Tor
"When was Anne Frank born?" 2%

Tone?

was frank 2
Lwhen anne born

when | was | @™M€ | born ? Ca,

‘eo\\}

uor

Person

N .
[Bdate ——{ wic HNsB HFDB |
al bdate 4——] wic Hnso Hroo |
Q
o\é’ [oe 3——wic Ho |
> | Pic +—— wic Hwes |

w

Fig. 3. Flow of “When was Anne Frank Born?” through the mediator

An answer is determined entirely by the top-level rule that a question trig-
gers; therefore it is important that the proper rules exist in the system for each
question. In general, one top-level rule should exist for each different type of an-
swer needed. In the case of our prototype system, we created a rule for answering
questions about people, one for answering questions about places, and one for
events. In a more robust system, these might be broken into more subtle rules,
such as answers for questions about a person’s biography versus questions about
a person’s geneology, or questions about concentration camps versus questions
about a city. All questions are answered by the Mediator; it is simply a matter of
granularity of answer that one needs to consider in designing and implementing
rules.

To demonstrate the Mediator, in Figure 3, we illustrate the flow of “When
was Anne Frank born?” through the system we developed using the USHMM
data. The query is first tokenized, case-folded, and then tagged; since “Anne
Frank” exists in the USHMM’s structured repositories, this tagging is done via
the KnownFEntityTagger. Then the tagged sequence is passed to the classifier,
which decides on “Person” as the rule meaning a person’s biographical data. An
execution plan is created for the person rule, including data from four separate
sources: the query, the USHMM’s database of victim and survivor names, a.k.a.
“NameSearch”, our fact database, and the USHMM web search. The leftmost
rule in each queue is executed until there are values filled in for all fields: Name,
Bdate, Ddate, Bio, and Pic. Each final field value will become part of the final
answer, shown at the bottom of the figure. The answer resembles a hand-written
encyclopedia article despite the fact that it has been assembled from multiple
sources on the fly through the work of the Mediator.

Previously, although many retrieval engines were capable of querying multiple
sources, they were limited to a single type of data: structured, unstructured, or
semi-structured. The Mediator is needed to provide this one-query, one-result
approach to managing user requests over these different kinds of data, because
queries on each are different both in terms of the method in which a data source
is queried and in terms of the nature of the returned results. For example, it
may be difficult to “rank” structured results, as all results of a structured query
may provide part of an answer or be used in a statistical fashion to provide a
more high-level answer based on low level data. However, on an unstructured
text repository, ranking of whole documents may be the only way to return data.
A single query will behave in vastly different ways depending upon what kind of
data it is querying. Mediation is a way of intelligently managing these different
behaviors. Our approach to this is that each different type of source is handled
by a query module: a highly configurable object that connects to a data source,
issues a query, and returns results in a uniform way. In our Mediator, we have the
implemented a JDBC query module to handle SQL queries over structured data,
a CGI query module to handle queries to any web-based CGI script via HTTP
GET or POST requests, an XPath query module to handle semi-structured
queries against XML repositories, and Google, Yahoo, and AIRE[5] modules to
handle unstructured searches over text collections.

To compose an anwer from the results returned through these multiple types
of queries on multiple sources, we employ a final processing engine called an
Aggregator. The Aggregator takes each field provided and decides how to display
it. When there is duplicate or conflicting data this is handled by dropping all
duplication except the data with the highest probability of correctness and dis-
playing only that. The Aggregator will display all fields that have confidences
above a configured threshold. A simple printf-like XML template language is in-
cluded as part of a toplevel rule definition which determines the final formatting
of displayed results.

Our solution consists of the Mediator running on a single HP DIL-380 running
Gentoo GNU/Linux 2005.1 with access to data sources residing on the local
machine, other machines on the LAN, and at the USHMM. We have rules for
answering questions about people, places, events, and a default rule that answers
unknown queries with a set of hyperlinks via a traditional search engine. To date,
six data sources are incorporated into the answers we provide:

— USHMM web-site text search

— Learning Center Database: an MS SQL Server database with the full con-
tent of the USHMM Permanent Exhibit, including pictures, videos with their
subtitles in French, Spanish, and English, text snippets with structure asso-
ciated, name databases, and more

— Hand-built database of facts, including birthdates and deathdates and some
small amount of biographical data on famous people from World War II.

— USHMM NameSearch, a CGl-interfaced database that resides on the web-
site and contains thousands of names of survivors and victims and their
associated data.

— Index of the archives of the ministry of interior of the Slovak government in
the years 1938-1945 in the Slovak language.

— Semi-structured location database of townships, metropolitan areas, and
counties in Slovakia that had Jewish residents before the Holocaust.

Table 1. Frequency of most common queries.

Query Occurrences Percent of Log
Holocaust 6409 2.37%
Auschwitz 5190 1.92%
Anne Frank 4799 1.78%
Concentration Camps 3753 1.32%

Hitler 2934 1.09%

We obtained from the USHMM a query log providing all user searches over
an six-month period of time, including major Jewish holidays, for a total of
approximately 270,000 queries. A team of researchers analyzed these queries for
uniqueness and total number of occurrences within the set, and we set out to
cover as many of the most common queries as possible. We treat queries referring
to the same named entity, such as ” Adolph Hitler” and ”Hitler” as equivalent,
since our answer should be the same in both cases. In Table 1, we illustrate the
five most common queries and their frequencies across the log. We created several
query types and tested these against a sample of the query log to determine the
coverage of queries that were handled in some manner more intelligently than
simply passing all the query terms along to the USHMM web search engine. That
is, we determined the coverage of queries that experienced some integration of
data across several sources.

|:| Probable integration
I:l Definite integration
- No integration

Fig. 4. Percentage of queries in log benefiting from mediation

To analyze our system’s coverage of the query log, we first sorted the query
log by the number of occurrences of each query, then took the top 50% of the
queries in the sorted list. These queries were issued to the Mediator and 50%
reported some form of data integration beyond the unstructured USHMM web
search. In Figure 4, these queries form the pie slice designated “definite integra-
tion”. After we had confidence in these results, we took a random sample of one
thousand queries throughout the whole query log and issued these to the me-
diator, with a resulting 51% of these queries returning results integrated from
more than the unstructured USHMM web search. In Figure 4, the additional
handled queries implied by our statistical sample form the pie slice designated
“probable integration”. The pie slice labeled “no integration” covers only those
queries that would return answers containing only links from the web search.

4 Future Work

We would like to develop a way to analyze query data so that likely rules can
be automatically suggested, if not added to the system. As we added more rules
to our engine, the number of mediation-enhanced queries grew rapidly. We do
not yet know the trade-off point where adding new rules does not significantly
increase the coverage our engine gets. As more sources were made available to the
engine, its answers became more accurate and better focused. We are working
to determine a metric for how to define “accurate” so that we can measure the
amount of contribution having a particular data source available makes to the
overall answer.

5 Acknowledgments

We gratefully acknowledge the cooperation of United States Holocaust Memorial
Museum in providing access to all data used herein. We also acknowledge the
Holocaust IPRO team from the Illinois Institute of Technology. Special thanks
go to Steven Beitzel, Eric Jensen, and Michael Lee, the primary architects and
developers of the initial Intranet Mediator[3]. We gratefully acknowlege the In-
tranet Mediator, Inc. for its generous support. This effort is dedicated to the
millions who lost their lives in the Holocaust. HY” D.

References

1. S. Eyheramendyl, A Genkin, W. Ju, D. Lewis and D. Madigan. Sparse Bayesian
Classifiers for Text Categorization. Journal of Intelligence Community Research
and Development, Volume 13, 2003.

2. O. Frieder and D. Grossman. Intranet Mediator. US Patent #6,904,428, June 2005.
3. D. Grossman, S. Beitzel, E. Jensen, and O. Frieder. II'T Intranet Mediator: Bringing
data together on a corporate intranet. IEEE IT PRO, January/February 2002.

4. D. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuristics.
Springer Publishers, 2nd ed., 2004.

5. T. Infantes-Morris, P. Bernhard, K. Fox, G. Faulkner, K. Stripling. Industrial Eval-
uation of a Highly-Accurate Academic IR System. ACM CIKM, New Orleans,
Louisiana, 2003.

6. D. Jurafsky and J. Martin. Speech and Language Processing. pp. 577-583. Prentice
Hall, 2000.

7. B. Katz, G. Marton, G. Borchardt, A. Brownell, S. Felshin, D. Loreto, J. Louis-
Rosenberg, B. Lu, F. Mora, S. Stiller, O. Uzuner and A. Wilco. External Knowledge
Sources for Question Answering. In the Proceedings of TREC-2005, Gaithersburg,
Maryland, November 2005.

8. C. Manning and H. Schutze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 1999, pp.353

9. E. Nyberg, R. Frederking, T. Mitamura, M. Bilotti, K. Hannan, L. Hiyakumoto,
J. Ko, F. Lin, L. Lita, V. Pedro and A. Schlaikjer. JAVELIN I and II Systems at
TREC 2005. In the Proceedings of TREC-2005, Gaithersburg, Maryland, 2005.

10. The Python Language. http://www.python.org.

