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The need for effective identity matching systems has
led to extensive research in the area of name search.
For the most part, such work has been limited to English
and other Latin-based languages. Consequently, algo-
rithms such as Soundex and n-gram matching are of
limited utility for languages such as Arabic, which has
vastly different morphologic features that rely heavily
on phonetic information. The dearth of work in this field
is partly caused by the lack of standardized test data.
Consequently, we have built a collection of 7,939 Arabic
names, along with 50 training queries and 111 test
queries. We use this collection to evaluate a variety of
algorithms, including a derivative of Soundex tailored to
Arabic (ASOUNDEX), measuring effectiveness by using
standard information retrieval measures. Our results
show an improvement of 70% over existing approaches.

Introduction

Identity matching systems frequently employ name
search algorithms to locate relevant information about a
given person effectively. Such systems are used for applica-
tions as diverse as tax fraud detection and immigration con-
trol. Using names to retrieve information makes such systems
susceptible to problems arising from typographical errors.
That is, exact match search approaches will not find
instances of misspelled names or those names that have
more than one accepted spelling. An example of the impor-
tance of quality identity matching is noted in an NCR (1998)
report that estimates that the state of Texas saved $43 million
over 18 months in the area of tax compliance by using an im-
proved name search system. Thus, the importance of such
name-based search applications has resulted in improved
name matching algorithms for English that make use of pho-
netic information, but these language-dependent techniques
have not been extended to Arabic.

Arabic retrieval has been studied since the late 1980s
(Tayli & Al-Salamah, 1990; Al-Shalabi & Evens, 1998).
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Arabic name search in particular, however, to our knowl-
edge has not been studied. Lack of a standard test data set
has certainly been part of the problem. To address this defi-
ciency, we have built a test collection of 7,939 Arabic names
and 111 queries with corresponding relevance judgments.
We employ both phonetic and string similarity-based name
search algorithms. We developed an Arabic counterpart to
English Soundex, ASOUNDEX, measuring the effect of
Arabic-specific modifications at each step. We also tested
language-independent n-grams and string distance techniques
on our Arabic collection. Finally, we experimented with
combination of evidence, fusing ASOUNDEX with n-grams
and edit distances to improve effectiveness. Our results
show that our best fusion technique provides an improve-
ment of more than 70% over basic n-gram techniques.

Previous Work

Numerous name search algorithms for Latin-based
languages effectively find relevant identification informa-
tion. Algorithms that use the phonetic features of names
have been researched thoroughly for English, and string
similarity techniques have garnered interest because of their
language-independent methodology. In proposing a method
for automatic correction of spelling errors, Damerau (1964)
identified four major categories. These are shown in Table 1,
which includes examples in both English and Arabic.
Although Damerau’s research was limited in scope to
English, the categories identified are applicable to text in
other languages, including Arabic.

Phonetic Matching Algorithms

The United States Census Bureau designed Soundex in
1935. Binstock and Rex (1995) describe it as a hashing algo-
rithm that encodes words into a fixed-length Soundex code.
The algorithm partitions consonant sounds into categories
based on distinctive phonetic features, as shown in Table 2.

To encode a name, the algorithm retains the first charac-
ter of the name, and then replaces succeeding consonants
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TABLE 1. Common spelling errors.

English Arabic

Type of error  Baseline name  Deviation Baseline name  Deviation
Insertion Fisher Fischer Sgas Aban
Omission Johnston Johnson 2aal 2l
Substitution Catherine Katherine _HLE _FL_:'
Transposition Hagler Halger Cula g Slen s
TABLE 2. English Soundex codes and categories.
Soundex code Characters Category

1 b,f.p,v Labial

2 ¢, 8J.k q,8,x,2 Guttural and sibilants

3 d, t Dental

4 1 Long liquid

5 m, n Nasal

6 r Short liquid

with the numeric values shown in Table 2. Vowels and the
characters /i, w, and y are ignored because the phonetic infor-
mation they provide is often ambiguous when they are com-
bined with other characters. Adjacent repeated consonant
sounds are represented only once in the code, introducing re-
silience against inadvertent insertions and deletions in
names. Conflating closely linked consonant sounds such as ¢
and s allows for toleration of common spelling mistakes, but
as Gadd (1988) states, the categorization is often too gen-
eral, as in associating k and s.

Gadd’s (1990) PHONIX is a more discriminating
phonetic algorithm that performs substitutions on about 160
character combinations before performing Soundex-style
encoding. The letter x, for example, is replaced by ecs before
the codes shown in Table 3 are applied.

Combined with the substitutions performed in the prepro-
cessing phase, the expanded PHONIX code-set partitions
phonetic sounds more effectively, with ¢ and s differentiated
by the definition of an entirely different category, which
reduces the impact of substitution errors. In evaluating
PHONIX for the general English name search task, Hodge
and Austin (2001) note that its substitution rules were origi-
nally designed for South African name matching, and that

TABLE 3. English PHONIX codes.

PHONIX code Characters
0 a,e,i,o, u,h,w
1 b, p
2 ¢, 8.k q
3 d,t
4 [
5 m, n
6 r
7 fiv
8 S, X, 2

this feature limits its applicability. This limitation may be
circumvented by the design and inclusion of additional sub-
stitution rules, as done by Rogers and Willett (1991).

The codes generated by the original Soundex algorithm
are always four letters in length. This length is adequate for
most purposes but can result in the truncation of potentially
significant phonetic information when the name being
encoded has more than three consonant sounds. In evaluating
the PHONIX algorithm, Zobel and Dart (1996) also consid-
ered a variant that did not place a limit on the length of the
code generated. Experimentation revealed that this variant
outperformed the original algorithm.

In adapting the Soundex system for the Thai language,
Suwanvisat and Prasitjutrakul (1998) showed that the algo-
rithm’s principles could be used for phonetic matching in other
languages as well. Similarly, Kang and Choi (2001) partitioned
the Korean alphabet in developing their Kodex algorithm.
Echoing the findings of Zobel and Dart (1996), Suwanvisat
and Prasitjutrakul (1998) found that effectiveness was consid-
erably improved by removing the limit on code length.

Recent work on improving Soundex focuses primarily
on improving performance by manipulating names before
encoding or by altering Soundex codes after encoding.
Celko’s (1995) approach, for example, ignores # only when
it is not preceded by an a, rather than doing so indiscrimi-
nately. Holmes and McCabe (2002), conversely, describe a
feature they call code shifting, in which the second character
of the Soundex code is removed. They show this feature has
a significant impact in dealing with errors of insertion and
omission near the beginning of names. Significant deviations
from Soundex have included Zobel and Dart’s (1996) Editex
and Hodge and Austin’s (2001) Phonetex. Unlike Soundex
and PHONIX, the former does not require that characters be
placed in a single category, allowing for a more natural rep-
resentation of the phonetic similarities between characters.
Thus, Editex allows the characters c and s to exist in multiple
categories to reflect their relationships with other phoneti-
cally similar characters. Hodge’s Phonetex is a pared-down
implementation of PHONIX featuring nonspecific substitu-
tion rules and an expanded set of disjoint codes, which re-
duces the granularity of the retrieval system, improving
effectiveness and making it more suitable for general name
search applications than the original PHONIX algorithm.

String Similarity Measures

An alternative approach is the use of string distance mea-
sures and n-grams. An n-gram is a set of character sequences
of length n extracted from a word. The n-gram techniques
are language independent, differing significantly from
Soundex in that they do not rely on phonetic similarity. As
identified by n-grams, similarity is based purely on spelling
rather than phonetic information (Hall & Dowling, 1980;
Pfeifer, Poersch, & Fuhr, 1995). The two most commonly
used values of n are 2 and 3 (bigrams and trigrams). A value
of 1 results in a character-by-character matching mecha-
nism. Using a value larger than 3 often yields similar results
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TABLE 4. N-grams yield by “Davidson.”

Type n Grams
Bigrams 2 ‘Da,” ‘av,” ‘vi,” ‘id,” “ds,” ‘so,” ‘on’
Trigrams 3 ‘Dav,” ‘avi,” ‘vid,” ‘ids,” ‘dso,” ‘son’
Padded bigrams 2 ‘D, ‘Da,” ‘av,” ‘vi,” ‘id,” “ds,” ‘so,” ‘on,” ‘n_’
Padded trigrams 3 ‘_Da,” ‘Dayv,” ‘avi,” ‘vid,” ‘ids,” ‘dso,” ‘son,” ‘on_’

because names less than or equal to 4 characters in length
will be compared directly. Experimentally, Pollock and
Zamora (1981) have shown that bigrams and trigrams gener-
ally outperform other n-grams. An important variant of stan-
dard n-grams are “padded” n-grams: the query name has
spaces appended before and after it. Pfeifer and associates
(1995, 1996) determined this feature improves effectiveness
by increasing the importance of matching the initial and ter-
minal letters of a word. Table 4 shows plain and padded
grams for the name Davidson with n at 2 and 3.

Zamora and colleagues (1981) and Angell and coworkers
(1983) considered the use of trigrams to conflate relevant
words that have been spelled differently. Introducing a simi-
larity measure, Damerau (1964) allowed for ranking of
retrieved words by counting differences in features extracted
from the word and the query. Pfeifer and associates (1995)
also proposed a similarity measure, which measured similar-
ity by counting the number of n-grams common to two
words. Holmes and McCabe (2002) showed that for English,
n-gram techniques are less effective than Soundex-based
techniques. The explanation provided is that because n-grams
are unaware of the phonetic information Soundex uses, they
are not able to recognize the phonetic equivalence of various
characters. Even so, Hodge and Austin (2001) note that
n-gram techniques are better equipped to handle insertion
and deletion errors.

An alternative string similarity measure to n-grams are
edit distances. The most common edit-distance measure, the
Levenshtein distance, represents the smallest number of
character insertions, deletions, and substitutions required to
transform one string into another (Levenshtein, 1965).
Thus, two names that differ only by a single character have
an edit distance of 1. Zobel and Dart (1995, 1996) investi-
gated edit distances as a stand-alone approximate search
tool and found that they outperform phonetic matching
techniques. Edit distances are also an integral element of
Zobel’s Editex algorithm, in which they are used to deter-
mine the similarity of words after phonetic encoding has
been completed. It is significant to note that, unlike other
ranking measures, edit distances are not calculated in linear
time; given two names, of length n and m, their edit distance
would be computed in O(nm). Also, edit distances must be
computed at run time, but other techniques such as Soundex
and n-grams allow retrieval systems to store encoded names
and simply use them at run time. As Erikson (1997) notes,
the high cost of doing this at run time makes database
partitioning essential to maintain reasonable efficiency in
practical systems.

Evaluation

Name search may be evaluated similarly to information
retrieval (IR) tasks, thereby allowing us to use standard
precision-and-recall-based measures, as demonstrated by
Zobel and Dart (1996) and Holmes and McCabe (2002). The
latter also uses average precision, which interpolates preci-
sion over 11 points of recall from 0% to100%. R-precision is
also useful, because the number of relevant results in name
search is often too small for accurate interpolation.

To apply precision and recall, it is necessary for retrieval
techniques to return ranked results. Pfeifer’s similarity mea-
sure makes this process easily possible for n-grams, but the
original Soundex algorithm is limited to a simplistic evalua-
tion of results as either relevant or nonrelevant. Holmes cir-
cumvented this issue by employing the Dice (Dice, 1945)
coefficient to rank results. As shown in Equation 1, this
method measures the proportion of features shared by two
sets of data (in this case, Soundex codes).

2(x) . .
= ——— Dice Co-efficient (1)

(¢ + B)
where 6 is the similarity score, y are the features common to
both names, and « and B are the number of features of the
first and second name, respectively. In applying Dice to
Soundex, Holmes and McCabe (2002) considered each indi-
vidual letter of a Soundex code to be a “feature.” For n-grams,
on the other hand, “features’ might be each individual n-gram
of the name.

Because the number of features is relatively small, results
are often weakly ordered; several results have the same sim-
ilarity score, and therefore equal rank. Raghavan and
colleagues (1989) noted that precision is an unreliable mea-
sure when computed against a weakly ordered result set and
proposed two alternatives that take a probabilistic approach.
Seeking to employ standard measures for evaluation, Zobel
instead shuffles results of equal rank to generate random
permutations of the result set and then averages the precision
figures for 10 such permutations.

Determining a definition for relevant in the context of
name search poses another problem for applying informa-
tion retrieval measures to name search. There have been sev-
eral studies of the problem of determining the meaning of
relevance (Borlund, 2003; Mizzaro, 1998). Zobel and Dart
(1996), whose study was based on relevance as determined
by phonetic similarity, instructed assessors to “regard a
name and a query as a match if you think they may be a
match, that is, a name and query are a match whenever you
cannot be sure they are distinct.”

Fusion

Combination of evidence, or data fusion, attempts to
improve the effectiveness of retrieval systems by combining
the results of a variety of retrieval methods. Fox and Shaw
(1994) identified several algorithms for linearly combining

730 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—April 2006

DOI: 10.1002/asi



the results of multiple retrieval techniques. These include
COMBSUM, which simply sums similarity scores, and
COMBAVG, which finds the arithmetic mean of scores from
multiple techniques (McCabe, Chowdhury, Grossman, &
Frieder, 1999). Both Holmes and McCabe (2002) and Zobel
and Dart (1996) utilize fusion to improve the effectiveness
of their name search systems.

Zobel and Dart’s (1996) experiments, which fused vari-
ous phonetic techniques with string similarity measures,
determined that such combinations almost always provide
superior performance. Holmes and McCabe (2002) similarly
combined various iterations of Soundex along with n-grams
to achieve higher levels of recall. In evaluating the results
yielded by Phonetex, Hodge and Austin (2001) also recom-
mend the integration of a typographic evaluation technique
to introduce resilience against insertion and deletion errors.

Arabic Background

Arabic is one of the world’s major languages and is spo-
ken in a wide belt of nations extending from the Arabian
Peninsula across North Africa to the Atlantic Ocean (Katzner,
2002). Although several distinct dialects thrive in the various
Arabic-speaking countries, the written form of the language,
Standard Arabic, is consistent and used in books and newspa-
pers throughout the Arabic world. Unlike text in Latin-based
languages, Arabic text is oriented right to left.

The Arabic alphabet consists of 29 letters and five basic
diacritical marks. Diacritics are marks that attribute special
phonetic values to certain characters, such as the cedilla of
fagade. This basic character set may be extended to 90 with
the addition of other marks and vowels, as Tayli and Al-
Salamah (1990) note. Further, because Arabic characters
change shape when combined with other characters, the
alphabet requires at least 102 glyphs for a basic representa-
tion (AbiFares, 1998). Coupled with the fact that the Arabic
alphabet contains several sets of homophones, standardizing
spellings for Arabic names in information systems is an
erTor-prone process.

Two forms of vowels exist in Arabic. Long vowels are
communicated by means of full characters, such as 1 (alif),
3 (waaw), and < (yaa). The diacritical symbols fathah,
dammah, and kasra represent short vowel sounds. When two
of these short vowels appear adjacently in text, they are
referred to as doubled diacritics and are replaced by a single
symbol referred to as tanween, which appends both a conso-
nant and a vowel sound to the word. The sound of a consonant
may be doubled by following it immediately with another
diacritical symbol known as shadda. Although not a vowel,
shadda is most often grouped with short vowels for sym-
metry. Quite often, short vowel sounds are not inserted fully
in text, and the reader is expected to deduce their presence
from contextual information. Consequently, Arabic words
may be interpreted in as many as 15 different ways when
considered individually, indicating an extremely complex
morphological structure. Hebrew, considered the most
complex language of the Semitic family, is by comparison

relatively simple, featuring a maximum of eight interpreta-
tions for individual words (UBAccess, 2002).

Although Standard Arabic is consistent across the Arab
world, it may still be divided into three distinct but com-
monly occurring categories: text that fully utilizes diacritical
symbols to convey pronunciation information; text that
makes use of diacritics, but not exhaustively; and text that
contains no diacritics at all. The existence of these three cat-
egories, distinguished only by the presence of diacritics, adds
complexity to the design of Arabic information systems:
Although the phonetic information diacritics encapsulate is
certainly valuable, it must be given only measured impor-
tance because diacritics, by definition, are less significant
than consonants and vowels and are, in fact, irrelevant when
unaccompanied. Al-Shalabi and Evens (1998) note that
because computers represent diacritics as full characters, the
distinction is lost, and incorrect usage can mislead informa-
tion systems into marking relevant results as being irrele-
vant. Table 5 shows how the name Mohammed, spelled with
irregular use of diacritics, may be represented in three
completely different ways in extended ASCII encoding.

Consequently, improper diacritic usage may be consid-
ered a major category of errors in the same vein as those
identified by Damerau (1964). Previous efforts to develop
effective Arabic information systems have tackled the prob-
lem diacritics pose by removing them before performing any
form of retrieval. In developing Arabic stemmers for
unstructured text search systems, both Aljlayl and Frieder
(2002) and Larkey, Ballesteros, amd Connell (2002) removed
diacritics in a preprocessing phase. The fact that Arabic
script may or may not clearly define word boundaries is
another issue that requires appropriate consideration. Even
when text is standardized, the possibility of incorrect inser-
tion of spaces remains a valid concern. Wegener (2000)
points out that a final concern lies in the fact that there are
almost 20 encodings currently in use for Arabic, making it
necessary for practical retrieval systems to be usable with all
of them, and that requirement leads to a confusion that,
again, commonly results in typographical errors.

Arabic names are different from English names in that
they are meaningful words chosen from the language. The
name _)-JL-A’ for example, is the Arabic word for patient.
This property has interesting implications for our research:
Because names are meaningful words, their spellings are
largely standardized, rendering one of the key motivations
for English name search, multiple accepted spellings (as
with Catherine and Katherine), inapplicable. Indeed, our
primary motivation is the fact that irregular diacritic use and
regional variants make typographical errors very common.

TABLE 5. Various representation of Mohammed based on diacritic usage.

Arabic name ASCII representation
tan's Aifiaft
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TABLE 6. Initial ASOUNDEX code set.

Code Characters English phonetic equivalent Category
1 e ted b, f Labial
2 ‘ilﬂ ,j*l':, =, U“-,_'J;E-,i k, q,z, s, ¢, 2, j, kh Guttural and sibilants
3 b m i S t,d Dental
4 J l Long liquid
5 Ui m, n Nasal
6 J r Short liquid

Methodology

We developed two new name matching algorithms,
ASOUNDEX and tanween-aware n-grams, and evaluated
them against existing n-grams and edit distance techniques.
As we are unaware of existing Arabic phonetic matching tech-
niques, we only compare ours to these language-independent
techniques. The algorithms experimented with are briefly
outlined in the following:

I. Previous Work
1. DiceUnordered similarity of n-grams
diacritics:
a. Bigrams: 2-grams
b. Trigrams: 3-grams
c. Padded bigrams: 2-grams including spaces at
beginning and end of name
d. Padded trigrams: 3-grams including spaces at
beginning and end of name
2. Edit distances: Levenshtein distances representing the
number of insertions, deletions, and substitutions

including

II. Our Algorithms
1. DiceUnordered similarity of n-grams, which ignore
all diacritics other than the emphatic ranween and
shadda:
a. Tanween-aware bigrams: 2-grams
b. Tanween-aware trigrams: 3-grams
c. Tanween-aware padded bigrams: 2-grams includ-
ing spaces at beginning and end of name
d. Tanween-aware padded trigrams: 3-grams includ-
ing spaces at beginning and end of name
2. ASOUNDEX-8, ASOUNDEX-9, ASOUNDEX-10,
and ASOUNDEX-FINAL: Intermediate algorithms
based on English Soundex, but augmented with
Arabic-specific code categories.
3. ASOUNDEX: Our final Arabic variant of the Soundex
algorithm, which fuses multiple ASOUNDEX-FINAL
codes of lengths between 2 and 7

ASOUNDEX

In designing our phonetic matching technique for Arabic,
ASOUNDEX, we started with the approach used in Soundex
of conflating similar-sounding consonants. We chose to retain
the first character of the name being encoded, with conso-
nants that followed being encoded according to our cus-
tomized code set. This approach is similar to that employed
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in formulating Kodex (Kang & Choi, 2001). Following the
example of Suwanvisat and Prasitjutrakul (1998) in Thai
Soundex, we decided not to restrict the length of encoded
words to 4, as in the original Soundex algorithm. Instead, we
experimented with a variety of lengths to achieve optimal
effectiveness. In Table 6, we illustrate the code set initially
developed for ASOUNDEX.

These codes follow the phonetic categories declared by
the original Soundex code set and capture the majority of
Arabic consonants. The emphatic consonants % and &, how-
ever, have no counterparts in English and therefore require
the definition of additional categories. In Table 7, we present
the additions made to the original code set to reflect this. We
refer to this code set as ASOUNDEX-8. Notice that although
it may be argued that the consonant Z, similar to the ch in
Bach, should similarly be given its own separate category,
phonetics defines it as a member of the guttural group. We
agree with this classification because it is, in fact, often mis-
taken for other members of the guttural group.

We also investigated the effects of categorizing the Arabic
equivalents of the aspirate 4. English Soundex and English
PHONIX both specifically ignore / because its phonetic
properties are not very pronounced and change in combina-
tional forms such as sh and ch. This, however, is not true for
Arabic, allowing us to conflate these characters by adding
another category to the code set, creating a PHONIX-style
preprocessing stage that normalizes the various Arabic aspi-
rates. This extension to the ASOUNDEX-8 code set, shown
in Table 8, is designated ASOUNDEX-9.

TABLE 7. Arabic-specific additions to the code set.

Code Characters English phonetic equivalent Category
7 o Sh Sharp dental
8 t Gh Guttural aspirate
TABLE 8. Adding aspirates and vowels to the code set.
Code  Characters  English phonetic equivalent Category
9 ‘HC,; H Aspirate
N w Labial semivowel
|,.|,", \, i,& (Depends on diacritic used) Vowel
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Also shown in Table 8 are two additional categories
formed by conflating various long vowels. This, again, is a
departure from the original Soundex algorithm, which
ignores vowels completely. PHONIX performs similar con-
flation by indiscriminately replacing vowels with V. Because
vowels are more clearly defined in Arabic and are not gener-
ally affected by the presence of other characters, they are
more suitable for categorization than their English equiva-
lents. We refer to these new variations as ASOUNDEX-10
and ASOUNDEX-FINAL.

The algorithm we refer to as ASOUNDEX uses the
ASOUNDEX-FINAL encoding scheme to generate multiple
codes, of lengths between 2 and 9, and then employs fusion
to generate the best possible results using all these codes.

Tanween-Aware n-Grams

To compensate for improper use of diacritics, we consid-
ered an Arabic-specific variant of n-grams that ignores all di-
acritics other than the emphatic ranween, or doubled diacrit-
ics, and shadda. These diacritics are more significant than
other diacritics such as fathah and kasrah because they
append consonant sounds to words rather than simply alter-
ing vowel sounds. Table 9 shows how the presence of these
emphatic diacritics alters pronunciation, with the appended
consonant sounds highlighted. These fanween-aware n-grams
allow for a fair comparison of n-grams and ASOUNDEX,
which uniformly ignores diacritics, thereby effectively cir-
cumventing the problems of improper and incomplete usage
of diacritics.

Similarity Coefficient

To rank names by similarity from the ASOUNDEX and
n-gram algorithms (edit distances provide an inherent simi-
larity measure), we employed the Dice coefficient used in
previous work. We experimented with two versions of Dice:
the first, which we refer to as DiceExact, requires that
matching features occur at the same position within both
names. The n-gram methods, however, are defined such that
n-grams simply shared between both words are counted
without regard to position. For a fair comparison, therefore,
we also used DiceUnordered, which considers matching
features as any features that are found within both names,
regardless of position. When testing our various retrieval
methods, we used the similarity measure most beneficial
to effectiveness for each technique. Thus, we used
DiceUnordered for n-gram techniques and DiceExact for

ASOUNDEX. Because the number of features available for
comparison is small, these measures often assign several
names the same similarity score, leading to weakly ordered
result sets. We follow Zobel’s example in generating 10 ran-
dom permutations of the result set returned and averaging
precision values over these permutations to prevent this
problem.

Results

Because no standard collection of Arabic names exists,
we built one to test our algorithms. We started by pooling
lists of names found on publicly available Web sites (e.g.,
kabalarians.com, arabia.com, and ajeeb.com). These lists
included names that had been transliterated from Arabic to
English, which we, therefore, traced back to their original
Arabic spellings and then entered manually. We made every
effort to ensure proper usage of diacritics. Importantly, the
collection does not contain names prefaced with prefixes
such as Abu or Ibn, which reflect familial relations. The
name Muhammed bin Sulaiman, for example, actually trans-
lates as Muhammed, son of Sulaiman, so that Muhammed is
the given name, and Sulaiman is the surname. Both the con-
stituent names are stored in the collection, but the combined
form is not stored, because storing it would be equivalent to
storing both the given name and the surname in an English
name database. It is assumed that words that express famil-
ial relations in this manner would be removed at index time.
Instead, we tested retrieval effectiveness of compound
names by formulating queries such as Abdul Qadir, which is
a single name written as two distinct words. It compounds
the words Abdul and Qadir and is therefore relevant to both.

Queries were formulated by applying Damerau’s (1964)
common spelling errors to randomly selected names from
the collection. Thus, queries featured insertion, deletion,
substitution, and transposition of both characters and diacrit-
ics. In addition, we applied random spacing to some of the
queries to simulate word-break errors, which can occur
because Arabic text does not always have clearly defined
word boundaries. We note the difference from Zobel’s
method: Zobel used names from the collection as queries
and then evaluated the results for relevance, a method
invalid in our case because Arabic names are meaningful
words (Abdullah means “servant of God”) and therefore
have only one accepted spelling. Because the collection, by
definition, contains only accepted spellings, it is unsuitable
as a source of queries. Consequently, we are forced to create
queries by transforming names from the collection even

TABLE 9. The phonetic effects of tanween and shadda.

Diacritic Symbol Application Baseline word Deviation
Shadda » Pt Fukr Fu-kk-ir
Double Fathah (ranween) o o Mubakkir Mubakkir-an
Double Dammah (tanween) a i Bint Bint-un
Double Kasrah (tanween) - :‘uJ 3 Wahid Wabhid-in
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though this process causes a natural bias in favor of string
similarity measures, particularly edit distances.

An initial set of 50 training queries was prepared to tune
parameters such as categorization of vowel sounds and opti-
mal code length for the ASOUNDEX algorithm. A further
set of 111 queries was then used for evaluation of the various
algorithms being tested. Finally, a derivative set of queries
was formulated by simply stripping all diacritics from this
set of evaluation queries.

Before creating relevance judgments for the queries, we
first defined a measure of relevance. Zobel and Dart’s (1996)
definition of relevance instructed assessors that “a name and
a query are a match whenever you cannot be sure they are
distinct,” with words being read aloud to the assessors. We
considered Mizzaro’s (1998) review of definitions of rele-
vance employed for information retrieval before using the
following: A name is relevant to a query name if they refer to
the same name. Leaning toward Mizzaro’s “user-oriented”
paradigm allows us to consider derivative forms of names as
being relevant. In English, this would make Robert relevant
to a query of Rob, Bob, or Robert; in Arabic, this includes
partial matches for combinational forms such as Abdul Qadir.

The relevance judgments were made by a manual inspec-
tion of pooled results by an Arabic speaker on the basis of a
manual inspection of the names rather than Zobel’s pronun-
ciation-based method. Zobel notes that our method would
cause a bias in favor of string-distance measures such as
n-grams and edit distances. Each query had, on average,
1.81 relevant names, with a standard deviation of 1.1.

ASOUNDEX Variants and Code Lengths

As described previously, we considered various code sets
and several different code Ilengths in developing
ASOUNDEX. In Table 10, we show the effectiveness of the
variants we tested. In testing these intermediate versions of
ASOUNDEX on our training set of 50 queries, we used a
fixed code length of 4. The first character of each name was
retained, and the next three consonants were encoded as pre-
viously discussed. Our first version of the algorithm,
ASOUNDEX-S8, is the most basic version that captures all the
consonant sounds of Arabic. The results showed that conflat-
ing Arabic’s various aspirates, as done by ASOUNDEX-9,
provides a clear improvement in effectiveness. Similarly,
grouping waaw'’s, as done by ASOUNDEX-10, also provides
a significant improvement. In light of this, we experimented
with conflating other long vowels in a similar manner, pro-
ducing ASOUNDEX-FINAL. Interestingly, this version did
not provide performance superior to that of ASOUNDEX-10.

TABLE 10. ASOUNDEX variants at code length 4.

Algorithm Average precision R-precision
ASOUNDEX-8 0.2427 0.1285
ASOUNDEX-9 0.3005 0.2222
ASOUNDEX-10 0.3452 0.2569
ASOUNDEX-FINAL 0.3411 0.2344

TABLE 11. Fusing ASOUNDEX-10 and ASOUNDEX-FINAL codea.

Algorithm Average precision R-precision
Fused ASOUNDEX-10 0.4021 0.3236
Fused ASOUNDEX-FINAL 0.4495 0.3479

As reflected in Table 11, this experimentation shows that
although it does not perform as well on its own at code
length 4, ASOUNDEX-FINAL is a better candidate for
fusion than ASOUNDEX-10. Consequently, our final algo-
rithm, ASOUNDEX, fuses multiple ASOUNDEX-FINAL
codes of different lengths.

Next, we examine the ways different code lengths and
fused combinations of different code lengths perform.
Figure 1 shows the ways altering the length of
ASOUNDEX-FINAL codes between 2 and 9 affected
average precision.

Retrieval  effectiveness of ASOUNDEX (fused
ASOUNDEX-FINAL) clearly improves as code length is
increased; performance levels off as length approaches 6.
We also show average precision for a single ASOUNDEX-
FINAL code as length is increased. Again, there are signifi-
cant improvements as length increases, and, as before, these
gains level off as code length approaches 6. The finding that
both fused and single codes perform similarly when code
length is less than 3 is attributable to the fact that Arabic
words are normally composed of only three or four conso-
nants (Aljlayl & Frieder, 2002; Tayli & Al-Salamah, 1990).
Therefore, we set the maximal code length of codes fused by
ASOUNDEX to 7.

Comparison to String Matching Baselines

We then proceeded to use our testing set of 111 queries to
compare ASOUNDEX with different candidate algorithms.
Because we were testing for performance both with and
without diacritics, we initially collected two sets of data. The
first of these used queries with diacritics on our original col-
lection, which also contained diacritics. The second was of
queries without diacritics on a version of the collection

Average Precision vs. Code length

| =¢- Single ASOUNDEX-FINAL <@ Fused ASOUNDEX-FINAL
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FIG. 1. Change in average precision with code length.
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TABLE 12. Effectiveness for queries with diacritics.

Algorithm Average precision R-precision P@1 P@2 P@3
Edit distances 0.5141 0.4356 0.3798 0.4494 0.4372
Tanween-aware bigrams 0.4538 0.4173 0.3745 0.4089 0.4180
Tanween-aware padded bigrams 0.4789 0.4119 0.3768 0.4058 0.4196
Tanween-aware padded trigrams 0.4327 0.3737 0.3194 0.3768 0.3813
ASOUNDEX 0.4435 0.3576 0.2794 0.3573 0.3489
Tanween-aware trigrams 0.3533 0.3018 0.2488 0.3031 0.3026
Padded bigrams 0.3520 0.2595 0.2274 0.2740 0.2572
Padded trigrams 0.3164 0.2518 0.2503 0.2541 0.2572
Bigrams 0.2779 0.2335 0.1907 0.2213 0.2312
Trigrams 0.2535 0.2037 0.1884 0.2037 0.2182
TABLE 13. Effectiveness for queries without diacritics when used on a collection without diacritics.

Algorithm Average precision R-precision P@l P@2 P@3
ASOUNDEX 0.5459 0.3787 0.2908 0.3596 0.3971
Edit distances 0.4436 0.3125 0.2771 0.3474 0.3691
Padded bigrams 0.4411 0.2939 0.2343 0.3000 0.2962
Tanween-aware padded bigrams 0.4410 0.2939 0.2434 0.3084 0.2962
Padded trigrams 0.3844 0.2633 0.2457 0.2771 0.2794
Tanween-aware padded trigrams 0.3843 0.2633 0.2419 0.2801 0.2732
Bigrams 0.3228 0.2266 0.2037 0.2327 0.2312
Tanween-aware bigrams 0.3235 0.2266 0.1838 0.2266 0.2251
Trigrams 0.3024 0.2037 0.2182 0.2220 0.2083
Tanween-aware trigrams 0.3024 0.2037 0.2044 0.2106 0.2182

without diacritics. Because improper use of diacritics is a
significant source of errors, however, we also constructed a
third set of data that used queries without diacritics on the
original collection that contained diacritics. In this way, we
were able to test each algorithm’s resilience to improper
diacritic usage. Because there are, on average, only 1.81 rel-
evant names for each query, we collected precision at one,
two, and three names retrieved in addition to average preci-
sion and R-precision. Table 12 shows results from our first
set of experiments, in which we ran queries with diacritics
on the original collection. It is clear that ASOUNDEX repre-
sents a significant improvement over the most basic n-gram
methods, but that improved string matching techniques such
as tanween-aware padded bigrams provide superior perfor-
mance. Edit distances perform best, with both high precision
and high recall.

Welch ¢ tests, however, show that the difference in effec-
tiveness between ASOUNDEX and both edit distances and
tanween-aware bigrams is insignificant at a confidence inter-
val of 95%, with p-values of 0.1587 and 0.853, respectively.

In our second set of experiments, shown in Table 13, we
stripped both the collection and the queries of diacritics and
then measured performance. Although ASOUNDEX contin-
ues to perform well, effectiveness drops almost uniformly
across the other techniques. We note that ASOUNDEX’s
R-precision remains stable, but that its average precision is
markedly improved, indicating that relevant results are
being attributed low rankings. This underlines our previous
observation that average precision’s interpolated process
limits its applicability for name search.

Interestingly, the performance of edit distances is impacted
drastically, even though with diacritics stripped from both
the queries and collection, we would have expected it to
remain stable. The n-gram techniques clearly benefit now
that the ambiguity introduced by diacritics is completely
removed, and they display markedly better performance
across the board. This strips away the advantage that the
tanween-aware techniques previously bore, and conse-
quently tanween-aware techniques perform only as well as
their regular counterparts.

Welch ¢ tests show that the observed performance
difference of ASOUNDEX over the best n-gram method,
padded bigrams, is significant at a confidence interval of
95%, with a p-value of 0.0141. Comparing ASOUNDEX to
edit distances, however, yields a p-value of 0.0818, indicat-
ing significance only at a 90% confidence interval.

To measure resilience to incorrect diacritic use, our third
set of experiments paired queries stripped of diacritics with
the original collection, which included diacritics. As we
show in Table 14, ASOUNDEXs retrieval effectiveness for
queries without diacritics is identical to that for queries with
diacritics. This is simply because ASOUNDEX recognizes
diacritics as short vowels and ignores them so that, in effect,
all queries are stripped of diacritics. The effect on n-gram
methods of stripping diacritics, on the other hand, is consid-
erable. Padded bigrams and padded trigrams, previously the
poorest of the n-gram methods, are now second only to
ASOUNDEX. Tanween-aware n-grams, which rely on
diacritics for additional phonetic information, are severely
impacted by their absence, with extremely poor retrieval
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TABLE 14. Effectiveness for queries without diacritics when used on a collection with diacritics.

Algorithm Average precision R-precision P@1 P@2 P@3
ASOUNDEX 0.4435 0.3572 0.2972 0.3546 0.3627
Padded bigrams 0.3303 0.2365 0.2182 0.2549 0.2434
Padded trigrams 0.2942 0.2197 0.2067 0.2144 0.2266
Bigrams 0.2460 0.2014 0.1838 0.2014 0.2021
Trigrams 0.2368 0.1853 0.1654 0.1830 0.1876
Edit distances 0.2064 0.1509 0.1242 0.1639 0.1555
Tanween-aware padded bigrams 0.1316 0.0997 0.0875 0.1066 0.0974
Tanween-aware padded trigrams 0.0452 0.0294 0.0294 0.0294 0.0294
Tanween-aware trigrams 0.0308 0.0225 0.0202 0.0202 0.0202
Tanween-aware bigrams 0.0722 0.0546 0.0500 0.0546 0.0546

performance. Clearly, therefore, although ranween-aware
n-grams provide excellent effectiveness in which regular use
of diacritics is ensured, they are not resilient to irregular
diacritic usage.

Welch t tests show that the performance difference
between ASOUNDEX and the best n-gram method, padded
bigrams, is significant at an interval of 95% with a p-value
of 0.0263; the difference between ASOUNDEX and edit
distances is extremely pronounced, yielding a p-value of
1.73 X 105, and significant even at the 99% level.

In our final set of experiments, we fused string distance
methods with ASOUNDEX. We utilized COMBSUM for
this purpose, ranking retrieved results by the sum of scores
returned by each individual technique. The fused techniques
were tested over both queries with diacritics and those with-
out. In Table 15, we illustrate the various combinations we
considered, with results for testing over queries without
diacritics. It shows that fusion of ASOUNDEX and edit
distances results in an average precision of 0.6670 and R-
precision of 0.4991, outperforming both plain ASOUNDEX
and the fusion of ASOUNDEX with tanween-aware padded
bigrams.

To confirm the significance of these results, we collected
the results from all three of the scenarios described and

TABLE 15. Effectiveness for fused techniques.

Technique Average precision R-precision
ASOUNDEX and edit distances 0.6670 0.4991
ASOUNDEX and

tanween-aware padded bigrams 0.6556 0.4846
ASOUNDEX 0.5459 0.3787

TABLE 16. Significance of leading techniques.

tested their composite significance. The results of these tests
are shown in Table 16.

From these results, we may draw the fact that although
ASOUNDEX may be outperformed by edit distances and
specialized n-gram methods in the specific instance in which
regular use of diacritics is ensured, ASOUNDEX provides a
statistically significant improvement over both techniques in
the general situation. Also obvious is the fact that our fused
techniques provide an improvement in performance that is
significant even at the 99% level.

Analysis

Although ASOUNDEX does not necessarily outperform
string-distance measures, it is far more resilient in terms of
dealing with irregular use of diacritics. Also, in evaluating
queries that made regular use of diacritics, tanween-aware
n-grams far outperformed normal n-grams. Experiments
with queries that do not make use of diacritics, however,
showed the exact opposite result, as fanween-aware n-grams
were stripped of their advantage. In both cases, an examina-
tion of the results yielded shows that n-gram techniques
almost uniformly miss correct relevant names that are
spelled differently but are still phonetically similar. This
process is illustrated by the results retrieved for the query
=g, a misspelled name that has three relevant results in
the collection. Table 17 shows the top three names retrieved
by the best-performing techniques when the query contains
diacritics, as well as when diacritics have been stripped.
Relevant names are underlined.

We find that ASOUNDEX retrieves two correct answers
for queries with and without diacritics. Edit distances per-
form very well with queries that correctly use diacritics but
deliver poor results when the query is stripped of diacritics.

Against padded trigrams

Against edit distances

Technique (p value) (p value)
ASOUNDEX 0.00038 Significant 0.07118 Not significant
Edit distances 0.07327 Not significant n/a n/a
ASOUNDEX fused with n-grams 8.777e-09 Significant 4.544e-05 Significant
ASOUNDEX fused with edit distances 3.85e-09 Significant 2.586e-05 Significant
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TABLE 17. Top three results retrieved for the query name * Creag

Results for ¢ eag™
(without diacritics)

Results for ‘(g™

Technique (with diacritics)

TABLE 18. Results for the query name ¢ ek by ASOUNDEX and edit
distances.

Technique Top results returned

ﬁ" . i-- LLLuIL_h-= : 2. .'g—a“ﬂ—‘- 2

B -a’ - -a, B
Ol e, (283

Cuel, cn , ma

ASOUNDEX

Edit distances

Tanween-aware
padded bigrams

Padded trigrams A (e, s A (e, (i

The tanween-aware padded bigrams, the best n-gram tech-
nique when used on queries with diacritics, as do edit
distances, fail to retrieve any relevant names when the query
is stripped of diacritics. Padded trigrams, on the other hand,
display their resilience to varied diacritic usage by returning
the same results for queries with and without diacritics. The
inconsistent performance of fanween-aware padded bigrams
is caused by the value placed on diacritics by this technique.
Because padded trigrams do not consider diacritics in any
special manner at all, this technique is relatively unaffected
by improper use. In addition to highlighting ASOUNDEX’s
resilience to varied diacritics usage, Table 17 reveals the
importance of phonetic matching in an effective name
search system: ASOUNDEX is the only technique that cor-
rectly returns the relevant names as the top results for this
query. Edit distances incorrectly interpret * 1%, as being rel-
evant because, with transpositions being counted equiva-
lently to insertions or deletions, the distance between this
and the query is small. With the n-gram techniques, although
padding improves performance, this particular query shows
how relevant names that differ from the query name in the
initial or terminal character can incorrectly be judged as rel-
evant. The results also show that ASOUNDEX correctly
retrieves two relevant names, but it misses a third, u_...hu’
because our final ASOUNDEX algorithm categorizes the
vowel alif as it would a consonant, causing it to be encoded
differently than the query name is. Thus, although we have
found that categorizing alifs as we do consonants improves
performance in the general case, this particular query high-
lights a situation in which it would be advantageous not to
perform this categorization.

The fact that edit distances outperform ASOUNDEX
when thorough, proper use of diacritics is present in both
queries and the collection is not unexpected, as Zobel and
Dart (1996) state that edit distances are more accurate than
phonetic matching techniques as approximate search tools.
Zobel and Dart further suggest that our approach to formu-
lating relevance judgments, which is based on a textual
inspection of results rather than a phonetic evaluation of
similarity, biases the judgments in favor of string-distance
measures. We applied, on average, 2.29 character errors
(substitutions, transpositions, etc.) to create each misspelled
query. Our experiments confirm that edit distances yield high
performance in terms of both recall and precision. However,
their performance is reduced when thorough use of dia-
critics is not ensured. Table 18 shows results returned by

ASOUNDEX

Edit distances

ASOUNDEX and edit distances for the query name Ll
when diacritics are used. Relevant results are underlined.

The use of edit distances retrieves both of this query’s rel-
evant names whereas ASOUNDEX retrieves none. This is
because both of these relevant names are translated to the
original query name with only two insertions or deletions.
The ASOUNDEX code for each of the names retrieved dif-
fers from the query name’s code by only a single character.
Thus, they are preferred to the relevant names, which both
differ from the query name more significantly in terms of
spelling. In addition to their lack of resilience to improper
diacritic use, note that the efficiency of edit distances is also
an issue, as they are computed in quadratic time and, unlike
ASOUNDEX and n-grams, must be computed at run time.

On the observation that string-distance measures provide
high effectiveness and ASOUNDEX provides excellent
resilience, we investigated pairing the techniques to capture
the advantages inherent in each. Our results show that com-
bining ASOUNDEX edit distances and with tanween-aware
bigrams, the best of our n-gram techniques, results in the
highest precision. Testing this combination over queries
with and without diacritics showed that performance
remains unaffected by mistakes in diacritic use. Similarly,
combining ASOUNDEX with edit distances also yielded
improved results. Using the same query previously shown to
compare the top-performing techniques, Table 19 shows
results obtained from our fusion experiments. Consistently
with our previous results, two of three relevant results are
retrieved, although the other result that neither ASOUNDEX
nor our string distance measures were able to retrieve is still
absent. The fused techniques are relatively resilient to varied
diacritic usage.

We next consider our other example: the query ‘il
which we previously showed edit distances handled more
effectively than ASOUNDEX. Table 20 shows the top results
retrieved by our fused techniques.

Interestingly, the fusion of ASOUNDEX and tanween-
aware padded bigrams does not retrieve any relevant results.

TABLE 19. Top three results retrieved by fusion techniques for the query
name * (peag,

Results for * (remg? Results for *(pemg™®
Technique (with diacritics) (without diacritics)
ASOUNDEX and (e, Al ppoll  Cppeand Aol g0
tanween-aware
padded bigrams . . - . .. ..
ASOUNDEX and e, Abpcnd apul Cpeans, Ay Slg

edit distances
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TABLE 20. Results for the query name el by fusion techniques.

Technique Top results returned

ASOUNDEX and tanween-aware
padded bigrams

ASOUNDEX and edit distances

't"‘l:“* L,‘l;u‘ ULn:

Examining the results returned by each individual technique,
we find that neither ASOUNDEX nor the n-gram technique
retrieved any relevant results individually, a finding that
explains this result. The fusion of ASOUNDEX and edit
distances, on the other hand, retrieves both relevant names
previously returned by edit distances.

Conclusions and Future Work

We developed two new algorithms for Arabic name
search and compared them to existing language-independent
techniques. ASOUNDEX is a phonetic technique based on
English Soundex and deriving features from Editex and
PHONIX. We have shown the value of phonetic matching in
providing resilience over pure string similarity systems.
Further, we have leveraged fusion of results to incorporate
the specific strengths of both phonetic and string similarity
techniques into our retrieval system, yielding effectiveness
almost double that of language-independent n-gram tech-
niques. For evaluation purposes, we have constructed a
collection of 7,939 Arabic names along with sets of queries
and relevance judgments.

Our results show that R-precision is superior to average
precision for the Arabic name search task because the number
of relevant results is too small for interpolation. However,
weak ordering in the result sets demands that R-precision be
calculated over a number of random permutations of the
results. We also find reason to reexamine Zobel and Dart’s
(1995) observation that string similarity measures outper-
form phonetic matching techniques, noting that this is not
true for Arabic.

In the future, we will explore several enhancements to
ASOUNDEX, such as code shifting, described by Holmes
and McCabe (2002), and other fusion methods. Further work
is necessary to introduce greater resilience to transposition
errors, which are more difficult to handle than errors such as
substitution. Similarly, further improved resilience to
improper diacritic use would likely continue to yield
improvements for Arabic name search systems.
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