
QuickUMLS: a fast, unsupervised approach
for medical concept extraction

Luca Soldaini
Information Retrieval Lab
Georgetown University
Washington, DC, USA

luca@ir.cs.georgetown.edu

Nazli Goharian
Information Retrieval Lab
Georgetown University
Washington, DC, USA

nazli@ir.cs.georgetown.edu

ABSTRACT
Entity extraction is a fundamental step in many health in-
formatics systems. In recent years, tools such as MetaMap
and cTAKES have been widely used for medical concept ex-
traction on medical literature and clinical notes; however,
relatively little interest has been placed on their scalabil-
ity to large datasets. In this work, we present QuickUMLS:
a fast, unsupervised, approximate dictionary matching algo-
rithm for medical concept extraction. The proposed method
achieves similar precision and recall of state-of-the-art sys-
tems on two clinical notes corpora, and outperforms MetaMap
and cTAKES on a dataset of consumer drug reviews. More
importantly, it is up to 135 times faster than both systems.

CCS Concepts
•Applied computing → Health care information sys-
tems;

Keywords
Concept extraction; Health informatics; Biomedical mining

1. INTRODUCTION
One of the cornerstones of many health informatics sys-

tems is the identification of medical entities in unstructured
documents. A system designed to address this task receives
a document as input and returns a set of spans in the doc-
uments, as well as identifiers of medical concepts associated
with each span (such as concepts in the UMLS metathe-
saurus1). The concepts can then be used in, among others,
information retrieval [6, 10], question answering [14], and
clinical events detection and parsing [3] tasks.

Many have focused on increasing the precision and recall
of medical information extraction systems; yet, relatively
little attention has been dedicated to their efficiency. This

1The Unified Medical Language System is a collection of medical
thesauri maintained by the US National Library of Medicine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MedIR ’16 Pisa, Italy
c© 2016 ACM. ISBN xxxxxxxxxxxxxxx. . . $xx.xx

DOI: xxxxxxxxxxx

limits their applicability to large datasets. In this work, we
introduce a system that relies on approximate matching to
terms in UMLS to extract medical concepts from unstruc-
tured text. Our implementation is able to extract concepts
using the entire English subset of UMLS from a document of
approximately 1000 tokens2 within 500 to 1000 ms, depend-
ing on the threshold used for approximate string matching.
Furthermore, since its inverted index is stored on disk, it
requires a modest amount of memory (most of which is used
by a shallow tagger). An implementation of our system in
Python is freely available to researchers3.

Concept extraction pipelines such as MetaMap [2] and
cTAKES [12] are widely used in research and industry ap-
plications. The former uses a shallow parser to generate
candidate phrases; then, for each candidate phrase, many
lexical variations are generated; finally, each phrase is scored
based on their distance to concepts in UMLS. A word disam-
biguation tool is also used to favor concepts that are seman-
tically consistent with surrounding text. Similarly, cTAKES
matches candidate phrases (as well as their permutations
and lexical variations) with concepts in UMLS and a list of
concepts maintained by Mayo Clinic.

Many other solutions — often designed for specific sce-
narios — have been introduced in recent years. For exam-
ple, Zhou et al. [17] proposed MaxMatcher, a fuzzy match-
ing approach to extract biomedical concepts. Like our sys-
tem, MaxMatcher performs approximate dictionary match-
ing against UMLS. Their system considers a token as min-
imum edit distance between two expressions; Thus, unlike
QuickUMLS, it does not capture variations of terms (e.g.,
“tumor”vs“tumour”) unless they are present in UMLS. Del-
becque and Zweigenbaum [4] introduced a system that at-
tempts at matching noun phrases to concepts in UMLS.
Terms in noun phrases are replaced by their lemma before
being matched with concepts; concepts that share only a
subset of terms with a noun phrase are still considered unless
they are significantly longer or shorter than the noun phrase.
This approach, while suited for the drug reviews dataset —
where 95% of the annotations are noun phrases — would not
be effective for the clinical notes datasets, where approxi-
mately only half of the concepts (48% for i2b2 dataset, 49%
for THYME corpus) are noun phrases. Abacha and Zweigen-
baum [1] introduced MeTAE, a rule-based concept extrac-
tion algorithm. MeTAE employs sentence chunking before
using MetaMap to obtain concepts. When testing MetaMap

2A token is any sequence of alphanumeric characters or
punctuation symbols delimited by whitespace.
3https://github.com/Georgetown-IR-Lab/QuickUMLS

against the method proposed in this paper, we chunk the in-
put text into sentences before processing it with MetaMap.
Divita et al. [5] proposed a system that performs exact con-
cept mapping of terms in the UMLS metathesaurus. Their
system attempts to match the maximum number of terms
within a sliding window; if no match is found, the last term
in the window is dropped. Compared to our system, their so-
lution does not support approximate matching of concepts,
thus making it less flexible.

In summary, the contribution of this work is threefold:
(i) we introduce a system to perform UMLS concept extrac-
tion on unstructured documents; the proposed method is
significantly faster than other state-of-the-art systems while
achieving comparable accuracy; (ii) we evaluate its perfor-
mance on three different datasets ranging from clinical notes
to drug reviews written by laypeople; (iii) we release an im-
plementation of the system for other researches to use.

2. METHODOLOGY
The problem of extracting concepts from unstructured

documents can be formalized as follows. Let a dictionary
S be a set of strings, C collection of concepts, C : C → S
a map that associates a concept in the collection to one or
more strings in the dictionary. Given a document d, which
we represent as a sequence of tokens {d1, . . . , dn}, a similar-
ity function strsim, and a similarity threshold α ∈ [0, 1], a
concept extraction algorithm returns the following set:

{(dij , ck) | ∃sh ∈ C(ck) s.t. strsim(dij , sh) > α} (1)

where dij represents a sequence of tokens in d and sh ∈ S is a
string representing concept ck ∈ C. In this work, we require
that no overlapping concepts should be extracted; this is
due to the fact that no overlapping concepts are present in
the datasets used for evaluation. The implementation of our
system includes an option to return overlapping concepts.

The problem of approximate dictionary matching for a
string can be formally stated as follows: given a target string
x, a threshold α, a dictionary S, and a similarity function
strsim, we wish to find the subset Yx,α ⊆ S such that

Yx,α = {y ∈ S | strsim(x, y) > α} (2)

Many functions can be used to estimate the similarity of
strings x and y; in this paper we use Jaccard similarity:

Jaccard(x, y) = |x ∪ y| / |x ∩ y| (3)

A näıve solution of the approximate dictionary matching
problem is to compute the similarity of each string in S to
the target string x. This approach has complexity O(|S|);
thus, it is computationally expensive in applications where
S is large. This aspect makes the näıve approach unfeasible,
as the English subset of UMLS contains more than 6 mil-
lion strings. Our approach leverages CPMerge, an algorithm
for approximate dictionary matching introduced by Okazaki
and Tsujii in [9].

2.1 CPMerge
Rather than computing the similarity with every string in

the vocabulary, CPMerge obtains the subset Yx,α by repre-
senting strings as a set of features, and then identifying those
strings in S that have more than τ features in common with
the target string x. CPMerge represents the dictionary S
as an inverted index that associates each feature with the

strings containing such feature; thus, the problem of the ap-
proximate dictionary matching is equal to finding a solution
to the τ -overlap join problem [11] on the posting lists of the
features of target string x (i.e., the list of strings associated
with each feature [7]), as shown in [9].

In detail, CPMerge determines Yx,α as follows: first, it
considers character trigrams as features; for example, the
string x = “tumor” is associated with the following set of
features: X = {##t, #tu, tum, umo, mor, or#, r##}, where
the pound sign denotes the beginning or the end of a string.

Then, it computes the minimum and maximum size of
the feature set Y of any string y ∈ S that could have at
least τ features in common with x. When Jaccard simi-
larity is used, min |Y | = dα· |X|e and max|Y | = b|X|/αc.
The minimum number of overlapping features τ also de-
pends on the similarity function used; in our case, τ =
d(α (|X|+ |Y |) /(1 + α)e. For example, for x = “tumor”,
|X| = 7; thus, any string y ∈ S such that Jaccard(x, y) > 0.7
must have between d0.7· 7e = 5 and b7/0.7c = 10 features.
We remand the reader to [9] for more details on how min|Y |,
max|Y |, and τ are derived from Equations 2 and 3.

Once the minimum and maximum lengths are determined,
CPMerge obtains, for each l ∈ {min|Y |, min|Y | + 1, . . . ,
max |Y |}, the set Yx,α,l of strings of length l that have more
than τ features in common with x. This is done by join-
ing the posting lists of each feature in X, and keeping those
strings that appear in more than τ lists. For efficiency rea-
sons, each posting list is partitioned in sets containing all
strings of the same length; thus, CPMerge can join the sub-
set of each posting lists containing strings of length l without
visiting the entire list. The set of all approximate dictionary
matching of string x is obtained by considering the union of
Yx,α,l for all acceptable values of l.

2.2 QuickUMLS
Given a document d of length n, a similarity threshold

α, and a window size w, QuickUMLS efficiently generates,
for each token di ∈ d, all possible sequences of tokens dij =
{di, . . . , dj}, j ∈ {i, . . . , i+w−1}4. Then, a set of heuristics
is used to determine whether dij is a valid sequence of tokens;
if that is the case, CPMerge is used to identify strings in S
that are similar to dij . Once the subset of all possible match-
ing strings Zd,α =

⋃
dij

(
Ydij ,α

)
is determined, QuickUMLS

selects the most appropriate subset Z ′
d,α of strings such that

there is no overlap between the set of extracted concepts.
In detail, QuickUMLS proceeds as follows. First, it to-

kenizes d and obtains part of speech tags for each token.
SpaCy5 was used to accomplish both tasks. Then, ∀i, j ∈
{1, . . . , n}, j 6 (i + w − 1), it generates all possible valid
sequence of tokens. A sequence of tokens dij is valid if:
• dij contains at most w tokens. A token could be a word

or punctuation; we allow punctuation to be part of a se-
quence of tokens because, in the medical domain, punc-
tuation is often part of the name of a drug, disease, or
treatment (e.g., “Lantus (Insulin Glargine)”). Numbers
are also allowed to appear in valid sequences, as long as
they are not the only token in the sequence, so that addi-
tional information such as particular dosage of drugs (e.g.,
“Tylenol 325mg Tablet”) are captured.

4if (i+ w − 1) > n, then j ∈ {i, . . . , n}
5v.0.100.7, https://spacy.io/

• dij does not span across sentences6.
• The first or the last tokens of the sequence (di and dj ,

respectively) are not a conjunction, an adposition, or a
determiner as determined by the extracted part-of-speech
tags. Such tokens are kept as long as they appear within
a sequence; this was determined to be a good strategy for
handling strings such as “difficulty in walking”.
• The first token in the sequence (di) is not punctuation.
• dij is not a stop word or a number if dij contains only one

token (i.e., i = j).
Then, CPMerge is used to find strings in S whose similarity
to dij is greater or equal to α and add them to Zd,α. Given
the set Zd,α of all possible sequences in d that can be as-
sociated with concepts in C, QuickUMLS selects a subset of
string with no overlap that maximizes the sum of the simi-
larity scores with token sequences in d. In detail, it greedily
chooses sequences to include in Z ′

d,α based on their similar-
ity to a string in S. In other words, for two overlapping
sequences dij and dpq, dij is added to Z ′

d,α if for all s ∈ S,
strsim(dij , s) > strsim(dpq, s). In case of ties (that is, there
exists s ∈ S such that strsim(dij , s) = strsim(dpq, s)), the
longer sequence is chosen.

3. EVALUATION
In this section, we compare the proposed approach with

MetaMap7 and cTAKES8. We report the performance of the
three systems in terms of precision, recall, and F-1; further-
more, we analyze the running time of each pipeline. Each
system is tested against three datasets: two corpora of clini-
cal notes and a collection of drug reviews. The first two were
chosen because both cTAKES and MetaMap are known to
perform well on clinical notes, although the latter could be
effected by lack of proper syntactical structure.

We also examined the performance of QuickUMLS on
laypeople-generated content, as tools designed for concept
extraction on clinical notes are known to struggle on it. In
particular, we were interested in understanding whether the
approximate dictionary match approach introduced in this
paper could address syntactic and spelling mistakes often
found in reviews written by consumers.

All experiments were carried out on a workstation with
two AMD Opteron 4386 CPUs, 32GB of RAM, and a SSD.

3.1 Datasets

3.1.1 2010 i2b2/VA Challenge
The 2010 i2b2/VA Challenge dataset [15] is a collection

of clinical notes from the Veterans Affairs (VA) electronic
medical records system. We use a subset of 169 reports that
have been annotated with medical concepts.

Notes in the subset have a mean length of 1040 tokens
(maximum 4460, minimum 123, median 990); on average,
each document contains 99 medical concepts (maximum 427,
minimum 2, median 83). As suggested in [8], we considered
UMLS concepts from 16 semantic types that are typically
associated with the four aspect of the medical decision cri-
teria (namely symptoms, diagnostic tests, diagnoses, and

6SpaCy determines sentence boundaries from the syntactic
dependency parse tree.
7v.2016, UMLS 2015AB release, NegEx processing enabled.
Rather than using MetaMap’s chunker, we preprocess input
text with SpaCy, as it is much faster.
8v.3.2.2, FastUMLSProcessor pipeline.

Method Prec Rec F-1 ms/doc

MetaMap 0.49* 0.48* 0.48* 19,295*

cTAKES 0.71 0.53* 0.61 3,852*

QuickUMLS

α = 0.6 0.50* 0.75 0.60 1,594*

α = 0.7 0.60* 0.66* 0.63 680*

α = 0.8 0.63* 0.60* 0.61 332*

α = 0.9 0.64* 0.56* 0.60 193*

α = 1.0 0.67* 0.54* 0.60 143

Table 1: Results for the i2b2 dataset. cTAKES out-
performs QuickUMLS in precision, but QuickUMLS has
better recall. QuickUMLS is 2.5 to 135 times faster than
MetaMap or cTAKES. * indicates statistically significant
differences from best value (Welch’s t-test, p < 0.05).

treatments); that is, they represent necessary information
health practitioners need to assist their patients.

We will refer to this collection as the“i2b2 dataset”through-
out the reminder of the paper.

3.1.2 THYME
The THYME corpus [13] consists of 1254 de-identified

clinical reports from a large US healthcare provider (Mayo
Clinic). The reports summarize the interactions between
physicians and patients in the oncology department. Each
note was annotated with the following entities: temporal
events, temporal relations, and clinical concepts. In this pa-
per, we use the clinical concepts to evaluate the performance
of the proposed method.

Clinical reports in THYME have a mean length of 1035
tokens (max 4423, min 114, median 836); on average, each
document contains 172 medical concepts (max 779, min 15,
median 127). As for the i2b2 dataset, we considered the
subset of UMLS concepts proposed in [8].

3.1.3 Drug Reviews
We also evaluate the proposed system on a corpus of

consumer-generated reviews for five commonly used breast
cancer drugs: Anastrozole, Exemestane, Letrozole, Ralox-
ifene, and Tamoxifen. This dataset was introduced by Yates
and Goharian [16]; it contains 2500 reviews from askapatient.

com, drugs.com, and drugratingz.com. We use a subset of
250 reviews annotated for mentions of adverse drug reac-
tions. Reviews in this dataset are substantially shorter than
clinical notes in the i2b2 and THYME corpora, having an
average length of 131 tokens (max 580, min 24, median 114).
Furthermore, they contain, on average, just 2 mentions of
adverse drug reactions (max 9, min 1, median 2). For this
dataset, we considered UMLS concepts associated with the
following semantic types: “Sign or Symptom”, “Disease or
Syndrome”, “Finding”, and “Neoplastic Process”.

3.2 Results
The performances of QuickUMLS, cTAKES, and MetaMap

on the datasets introduced in Section 3.1 are shown in Table
1, 2, and 3. The size of the window w used by QuickUMLS
was set to 5 after empirical evaluation; the effect of different
values for the similarity threshold α are studied. Regardless
of the value of α chosen, the running time of QuickUMLS is
dominated by the approximate matching subroutine.

As shown in Table 1, cTAKES outperforms our method
in terms of precision on the i2b2 dataset. This is an ex-
pected result, as cTAKES is optimized to process clinical
narratives. On the other hand, QuickUMLS achieves better
recall than any other method when α = 0.6, outperforming

Method Prec Rec F-1 ms/doc

MetaMap 0.71* 0.53* 0.61* 15,935

cTAKES 0.89 0.55* 0.68* 3,765*

QuickUMLS

α = 0.6 0.68* 0.77 0.72 1,536*

α = 0.7 0.78* 0.67* 0.72 646*

α = 0.8 0.83* 0.61* 0.70† 340*

α = 0.9 0.85* 0.57* 0.68* 174*

α = 1.0 0.87* 0.55* 0.67* 141

Table 2: Results for the THYME corpus. cTAKES
achieves the best precision, QuickUMLS the best recall
and substantially better throughput than MetaMap or
cTAKES. * indicates statistically significant differences
from best value (Welch’s t-test, p < 0.05).† indicates sta-
tistical significance from ααα= 0.6 but not ααα= 0.7.

cTAKES in terms of F-1 score, although the difference is
not statistically significant. Furthermore, we observe that
QuickUMLS exhibits comparable performances to cTAKES
when α = 1.0 (Prec: −6% , Rec: +2%, F-1 : +3%), yet it is
26 times faster. Surprisingly, MetaMap performs poorly; we
attribute this to the fact that MetaMap is more sensible to
the lack of syntactic structure and the use of abbreviations.

The results for the THYME corpus (Table 2) closely re-
semble those obtained on the i2b2 dataset: cTAKES achieves
the best precision (0.89 vs 0.87), while QuickUMLS shows a
better recall for smaller values of α (0.77 vs 0.55). Moreover,
when α = 1.0, QuickUMLS achieves nearly identical perfor-
mances to cTAKES (−2% precision, statistically significant;
identical recall) while being over 25 times faster. We note
that there exists a trade off between precision and recall in
QuickUMLS with respect to the similarity threshold: larger
values of α increase precision but decrease recall; the oppo-
site holds true for smaller values of α. For both the i2b2
dataset and the THYME corpus, α = 0.7 yields to the best
performances in terms of F-1 (difference is not statistically
significant for the i2b2 dataset); however, in other applica-
tions, values of α that favors precision over recall (or vice
versa) might be more desirable.

Lastly, the results for the drug reviews dataset are shown
in Table 3. First, we notice that QuickUMLS outperforms
both cTAKES and MetaMap in all metrics (precision, re-
call, F-1, and running time; statistically significant). We
believe that QuickUMLS is more suited to handle lexical
variation typical of laypeople-generated content due to the
use of approximate dictionary matching algorithm. How-
ever, we notice that all systems achieve lower performances
than on the other datasets. We observe that the decrease in
precision is likely caused by the fact that only the symptoms
and findings associated with adverse reactions to five can-
cer drugs have been annotated in the dataset. That means
that correctly identified medical symptoms can cause a false
positive if they are not an adverse drug reaction for any of
the five drugs in the dataset. Finally, we attribute the de-
crease in recall to the fact that laypeople are more likely to
describe symptoms using locutions or informal terms.

4. CONCLUSIONS
In this work we introduced QuickUMLS, a system that

extract medical concepts from unstructured text. Given a
document, QuickUMLS extract spans of the documents that
have an approximate match in the set of strings in UMLS,
returning the concepts associated with such strings. We
showed that QuickUMLS offers comparable performance to

Method Prec Rec F-1 ms/doc

MetaMap 0.12* 0.16* 0.14* 1,774*

cTAKES 0.16* 0.37* 0.22* 301*

QuickUMLS

α = 0.6 0.16* 0.6 0.25* 116*

α = 0.7 0.38* 0.51 0.44* 57*

α = 0.8 0.43 0.51 0.47 32*

α = 0.9 0.47 0.50 0.48 22

α = 1.0 0.47 0.45* 0.46 18

Table 3: Results for the drug reviews dataset.
QuickUMLS outperforms both cTAKES and MetaMap
on content generated by laypeople. * indicates statistical
significance from best value (Welch’s t-test, p < 0.05).

state-of-the-art systems while being substantially faster.

5. ACKNOWLEDGMENTS
This work was partially supported by the US National

Science Foundation through grant CNS-1204347.

6. REFERENCES
[1] A. B. Abacha and P. Zweigenbaum. Medical entity

recognition: A comparison of semantic and statistical
methods. In BioNLP Workshop, 2011.

[2] A. R. Aronson and F. M. Lang. An overview of MetaMap:
historical perspective and recent advances. JAMIA, 17(3),
2010.

[3] S. Bethard, L. Derczynski, G. Savova, J. Pustejovsky, and
M. Verhagen. SemEval 2015 task 6: Clinical TempEval. In
SemEval Workshop, 2015.

[4] T. Delbecque and P. Zweigenbaum. Metacode: a
lightweight umls mapping tool. In AIME, 2007.

[5] G. Divita, Q. T. Zeng, A. V. Gundlapalli, S. Duvall,
J. Nebeker, and M. H. Samore. Sophia: a expedient UMLS
concept extraction annotator. In AMIA, volume 2014, 2014.

[6] L. Goeuriot, L. Kelly, H. Suominen, L. Hanlen, A. Névéol,
C. Grouin, J. Palotti, and G. Zuccon. Overview of the
CLEF eHealth evaluation lab 2015. In CLEF. 2015.

[7] D. A. Grossman and O. Frieder. Information Retrieval:
Algorithms and Heuristics. Springer, 2012.

[8] N. Limsopatham, C. Macdonald, and I. Ounis. Inferring
conceptual relationships to improve medical records search.
OAIR, 2013.

[9] N. Okazaki and J. Tsujii. Simple and efficient algorithm for
approximate dictionary matching. In Coling, 2010.

[10] K. Roberts, M. Simpson, D. Demner-Fushman,
E. Voorhees, and W. Hersh. State-of-the-art in biomedical
literature retrieval for clinical cases: a survey of the TREC
2014 CDS track. Inf. Retr. Journal, 19(1), 2016.

[11] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[12] G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng,
S. Sohn, K. C. Kipper-Schuler, and C. G. Chute. Mayo
clinical text analysis and knowledge extraction system
(cTAKES): architecture, component evaluation and
applications. JAMIA, 17(5), 2010.

[13] W. F. Styler IV, S. Bethard, S. Finan, M. Palmer,
S. Pradhan, P. C. de Groen, B. Erickson, T. Miller, C. Lin,
G. Savova, et al. Temporal annotation in the clinical
domain. Trans. of the ACL, 2, 2014.

[14] G. Tsatsaronis, G. Balikas, P. Malakasiotis, I. Partalas,
M. Zschunke, M. R. Alvers, D. Weissenborn, A. Krithara,
S. Petridis, D. Polychronopoulos, et al. An overview of the
BIOASQ large-scale biomedical semantic indexing and
question answering competition. BMC Bioinf., 16(1), 2015.

[15] Ö. Uzuner, B. R. South, S. Shen, and S. L. DuVall. 2010
i2b2/VA challenge on concepts, assertions, and relations in
clinical text. JAMIA, 18(5), 2011.

[16] A. Yates and N. Goharian. ADRTrace: detecting expected
and unexpected adverse drug reactions from user reviews
on social media sites. In ECIR. Springer, 2013.

[17] X. Zhou, X. Zhang, and X. Hu. MaxMatcher: Biological
concept extraction using approximate dictionary lookup. In
PRICAI, 2006.

