Parallelizing the Buckshot Algorithm for Efficient
Document Clustering’

Eric C. Jensen, Steven M. Beitzel, Angelo J. Pilotto, Nazli Goharian, Ophir Frieder
Information Retrieval Laboratory
lllinois Institute of Technology
Chicago, IL 60616
{jensen,beitzel,pilotto,goharian,frieder}@ir.iit.edu

ABSTRACT

We present a parallel implementation of the Buckshot doc-
ument clustering algorithm. We demonstrate that this par-
allel approach is highly efficient both in terms of load bal-
ancing and minimization of communication. In a series of
experiments using the 2GB of SGML data from TReC disks
4 and 5, our parallel approach was shown to be scalable in
terms of processors efficiently used and the number of clus-
ters created.

1. INTRODUCTION

We describe a parallel implementation of a classical clus-
tering approach based on partitioning called Buckshot Clus-
tering [2]. Since the volume of data stored and searched in
today’s information systems is vast, high performance com-
puting, in this case parallel processing, is needed to sustain
acceptable clustering times. Some recent parallel text clus-
tering efforts include the works by Dhillon, et. al [4] and
Ruocco & Frieder [6].

Dhillon, et. al parallelized the spherical k-means par-
titioning algorithm and achieved near linear speedup and
scaleup when running on test collections of documents from
8-128 terms in length, the largest of which was 2GB [3].
Ruocco and Frieder [6] developed a near linear speedup par-
allel single-pass partitioning algorithm but only evaluated
their approach on subsets of the Tipster document collec-
tion, the largest of which contained 10000 documents. We
evaluate our parallel document clustering on a standard,
modern document collection to support future comparisons.

The original buckshot algorithm presented in [2] only de-
fines two stages to the algorithm: selecting a random sample
of documents of size \/R and using a cluster subroutine to
find initial centers from this random sample. The cluster

*We thank the National Science Foundation and the Army
Research Office for their support under contract numbers
NSF ETA-0119469, NSF EIA-0130673, and ARO DAADI19-
01-1-0432.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’ 02, November 4-9, 2002, McLean, Virginia, USA.

Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

subroutine can be any hierarchical agglomerative approach.
The buckshot algorithm itself gives no information on what
to do after the initial centers are created, although tech-
niques for assigning the remaining documents to appropriate
centers are given. Our parallel approach uses an Assign-To-
Nearest algorithm similar to the one discussed in [2].

2. PARALLEL APPROACH TOBUCKSHOT

Our parallel approach to the buckshot clustering algo-
rithm is described in 3 phases. Phases 1 and 3 of the buck-
shot algorithm are fairly straightforward to parallelize, as
the data can be easily partitioned among nodes, and there
is no need for communication or coordination. The main ef-
fort involves parallelizing the creation of the initial clusters
via hierarchical agglomerative clustering. A single similar-
ity matrix must be kept consistent among all nodes, which
requires communication whenever updates are performed.
Our proposed approach reduces the amount of necessary
communication. Our algorithm is designed to produce the
same results as a serial implementation. We describe our
parallel approach for each phase of the Buckshot algorithm
in the following three sections.

2.1 Build Similarity Matrix for v&» Sample

Each row in the document-to-document similarity matrix
represents a document in the random sample and the sim-
ilarity scores relating it to every other document. By us-
ing row-based partitioning, we are able to assign each node

approximately VEn yows of the matrix to “manage”. The
managing node is responsible for calculating its initial sec-
tion of the similarity matrix and maintaining the similarity
scores during the clustering subroutine. In Figure 1, we il-
lustrate our sample similarity matrix after partitioning it
among three nodes. As shown, the data and the computa-
tional load are evenly partitioned over the available nodes
in the system.

1 2|1 3] 4] 5| 6

N1 |1 -1 7| 8] 9(10| 11
21 7 -1 12 (13|14 | 15
N2 |3 8|12 -116 |17 | 18
41 911316 - 119120
N3 |5 (10|14 | 17|19 -1 21
6|11 15|18 |20 |21 -

Figure 1: A partitioned similarity matrix

Efficient serial implementations of the Buckshot algorithm

only require the storage of one half of the symmetrical simi-
2

larity matrix, requiring M matrix entries. Our par-
allel approach requires the storage of the complete matrix,
so that each node can find similarities between its managed
clusters and the newly formed clusters with a minimum of
communication, which is of significant importance for any
vast amount of data.

In step one, a single node selects the random sample of
Vkn documents and sends their identifiers to all participat-
ing nodes. Each node then identifies its unique subset of the
similarity matrix to manage. Once the sub-matrix is iden-
tified, each node calculates similarity scores for each of its
managed documents to every other document in the random
sample. For this process, we load term vectors representing
each document in the sample into memory.

A key requirement of our parallel algorithm is that each
node in the system must have sufficient main memory avail-
able to hold the term vectors for all vkn documents in
the random sample. This condition is necessary to pre-
vent prohibitive I/O and communication costs that would
be required if term vectors had to be continually shuffled
between disk, main memory, and various nodes. This is the
dominating memory cost in our parallel algorithm.

2.2 A Parallel Clustering Subroutine

Each node is only responsible for maintenance of its par-
tition of the similarity matrix. Therefore, the first phase in
the cluster subroutine is for each node to scan its portion of
the matrix for the clusters with the highest similarity. Single
documents are viewed as clusters of size one. Once a node
identifies its two most-similar clusters, it notifies all other
nodes in the system.

As the result of phase 1 on our example, node 1 broad-
casts value 15, along with the two cluster identifiers that
correspond to that similarity. Node 2 broadcasts 20 and its
component cluster identifiers, and node 3 broadcasts 21, etc.
Once each node has discovered the clusters that have high-
est similarity over the entire matrix, it updates its portion of
the similarity matrix to reflect the merge of the most-similar
clusters. This update operation involves several steps. First,
a node must be selected to manage the new cluster. To
enforce even cluster distribution and load-balancing across
nodes, this is done by keeping a count of how many clusters
are currently being managed by each node, and selecting the
node with the smallest load as the “managing node” for the
new cluster. Ties are broken by assigning the node with the
lowest rank to manage the new cluster. Once the managing
node is selected, each node must update the similarity scores
to the new cluster in each row of its portion of the similarity
matrix. There are several methods of updating the simi-
larity scores when a new cluster is formed. We used the
group-average method proposed in [2]. When a new cluster
« is formed from components a1 and aa, its similarity to an
arbitrary cluster 8 can be found by the following:

sim(a, B) = (Sim(oq,B)JQrsim(az,ﬁ))

In our example, each node updates the scores between the
new cluster, created by merged clusters 5 and 6, and each
existing cluster. The matrix is updated as shown in figure
2.

1 2 31 4]5|6]|56

N1 1 - 7| 8 91 -|-| 11
2 7 -1 12113 -] - 15

N2 3| 8|12 -116 | -| -] 18
41 913]| 16 -1 -1 -1 20

N3 5 - - - - - - -
6 - - - [R -

56 | 11 | 15|18 |20 | - | - -

Figure 2: A modified similarity matrix

Node 3, as the most under-utilized node due to the merge
of clusters 5 and 6, is selected to manage the new cluster.
Once the managing node is identified, the first available
empty row in the managing node’s sub-matrix is selected
to hold the row for the new cluster. Consequently, all the
similarity values between each of the clusters and the new
cluster are written into the corresponding location. This
guarantees the consistency of the entries of the matrix in all
nodes, and avoids allocating extra storage space to append
new columns and rows to the sub-matrix on each node.

Once each node calculates similarity scores between the
documents it manages and the newly created cluster, it
sends them to the new cluster’s managing node. This al-
lows the managing node to fill in the columns for the row
in its portion of the similarity matrix that represents the
newly-formed cluster. In our example, node 1 sends{1, 10.5}
and {2, 14.5} to node 3 to populate the similarities. Node 2
sends {3,17.5} and {4, 19.5} to node 3. Once node 3 collects
the scores from other nodes and updates its partition of the
matrix, the entire matrix has been updated and ready to re-
peat this process. Each pass of this algorithm results in the
merging of two existing clusters into one, and thus requires
Vkn —k steps to form k clusters.

2.3 Group Remaining Documentsin Parallel

After the completion of the clustering subroutine, k initial
clusters are created from the random sample of vkn docu-
ments. The third phase of the Buckshot algorithm assigns
the remaining documents according to their similarity to the
centroids of the initial clusters. This step of the algorithm is
trivially parallelized via data partitioning. First, the initial
cluster centroids are calculated on every node. This is done
in favor of communication due to the relatively large cost of
communication versus a simple calculation on each node.

After centroid calculation is complete, each node is as-
signed approximately n=vkn qocuments to process. Each
node iterates through these documents in place, by reading
the term vector from disk, comparing it to each centroid,
making the assignment, discarding the term vector, reading
the next one, and so on until all documents are assigned.
Once this process is completed, the document identifiers for
each final cluster are gathered onto the root node for writing
out to disk.

3. EXPERIMENTATION
3.1 Setup

Our experiments were conducted on a Linux Beowulf clus-
ter of 16 computers connected via a gigabit Ethernet switch,
each with two Pentium III 1000MHz CPUs and 1GB of main

Number of clusters Number of nodes
16 32 64 clusters | 2 4 6 8| 10| 12| 14 | 16
nodes | I/O | w/oI/O [I/O | w/oI/O | I/O | w/oI/O 16 | 1| .51 | .35 | .26 | .21 | .18 | .16 | .13
2 | 405 335 | 763 624 | 1556 1284 82 | 1].50|.34|.25|.21| .17 | .15 | .13
4 | 207 171 | 384 314 | 780 643 64 | 1|.50| .34 | .26 |.21 | .17 | .15 | .13
6 | 141 117 | 257 210 | 527 435
8 | 105 87 | 194 158 | 401 331
10 35 70 | 157 198 319 264 Figure 4: Time ratios by the number of nodes.
12 72 59 | 131 107 | 267 221
77| 63 52 | 113 92 | 231 191 — fg“mbegz"f Cl“‘*tegfl
16 55 45 | 100 81 206 170 3 17786 333
4 1] 1.84 3.76
Figure 3: Execution times (minutes) 6 L] 179 3.72
8 1] 1.82 3.80
10 11183 3.77
memory. We implemented our algorithm in Java 1.4, using 12 1181 3.75
the MPI for Java library [1] as a wrapper for the MPICH [5] 14 1] 177 3.67
message-passing library. All communication operations in 16 11180 3.78

our implementation make use of underlying recursive dou-
bling collective algorithms in the MPI library. Experiments
were run on idle nodes, using only one processor on each
computer.

Experiments were performed using the 2GB SGML col-
lection from TReC disks four and five [7]. Documents were
parsed into term vectors prior to clustering. Term vector
files were replicated onto single local UDMA33 EIDE hard
drives on each node. Lexicon data needed for similarity cal-
culations were loaded entirely into memory on each node
from an NFS shared filesystem. No other significant disk
I/0O was necessary.

3.2 Performance Metrics

Our timings begin with the completion of process launch-
ing and communications initialization (MPILInit) up to the
completion of the gathering of the cluster definitions onto
the root node. Disk I/O time consists of the sum of the
time for bulk I/O sections such as the loading of the term
lexicon with the time for repeated I/O operations such as
reading document vectors.

The experiments are done with a varying number of com-
putation nodes (p) and clusters(k) to show scalability in
terms of processing nodes and the number of clusters. Note
that increasing k is computationally similar to an increase
in the data set size since all portions of the algorithm scale
with the product nk and never its components individually.

The random set of sample documents was held constant
for each number of clusters. Initial centers and final clusters
for each k were verified to be identical across all experiments
with variant p to ensure that our algorithm does indeed
produce the same clusters with different numbers of nodes.

3.3 Results

Figure 3 includes the timings with and without I/O costs
to examine the effect of I/O on scalability. Figure 4 shows
the ratio of times from the 2-node runs as the number of
nodes is increased. When the number of nodes is increased
the execution time decreases in a nearly linear fashion, par-
ticularly when a large number of clusters is used. Figure 5
shows time ratios from the 16-cluster runs as the number
of clusters is increased. Scaling the number of clusters by
a factor of 2 shows better than the doubled execution time
expected by the algorithm’s O(kn) growth.

Figure 5: Time ratios by number of clusters.

4. CONCLUSION

We designed, implemented, and optimized a parallel ver-
sion of the Buckshot clustering algorithm. Experimental re-
sults on a standard 2GB document collection demonstrate
that our approach is scalable in terms of both the number
of processing nodes and the number of clusters.

5. ACKNOWLDEGEMENTS

We wish to thank Dr. Xian-He Sun of the Illinois Institute
of Technology for his support of this project.

6. REFERENCES

[1] BAKER, M., CARPENTER, B., Fox, G., Ko, S., AND
LM, S. mpijava: An object-oriented java interface to
mpi. In International Workshop on Java for Parallel
and Distributed Computing (April 1999), IPPS/SPDP.

[2] CuTTING, D. R., PEDERSEN, J. O., KARGER, D., AND
TUKEY, J. W. Scatter/gather: A cluster-based
approach to browsing large document collections. In
Proceedings of 15th Annual ACM-SIGIR (1992),
pp. 318-329.

[3] DHILLON, I. S., FAN, J., AND GUAN, Y. Efficient
clustering of very large document collections. In Data
Mining for Scientific and Engineering Applications.
2001.

[4] DHILLON, I. S.,; AND MODHA, D. S. A data-clustering
algorithm on distributed memory multiprocessors. In
Large-Scale Parallel Data Mining, Lecture Notes in
Artificial Intelligence (2000), pp. 245-260.

[5] GrRopP, W., Lusk, E., Doss, N., AND SKJELLUM, A.
High-performance, portable implementation of the MPI
Message Passing Interface Standard. Parallel
Computing 22, 6 (1996), 789-828.

[6] Ruocco, A. S., AND FRIEDER, O. Clustering and
classification of large document bases in a parallel
environment. JASIS 48, 10 (1997), 932-943.

[7] English document collections. Tech. rep., NIST Text
Retrieval Conference, 2002.

