
A Regularization Approach to Combining Keywords and
Training Data in Technology-Assisted Review

Eugene Yang
IR Lab, Georgetown University

Washington, DC, USA
eugene@ir.cs.georgetown.edu

David D. Lewis
Cyxtera Technologies

Dallas, TX, USA
icail2019paper@davelewis.com

Ophir Frieder
IR Lab, Georgetown University

Washington, DC, USA
ophir@ir.cs.georgetown.edu

ABSTRACT
Manual keyword queries and supervised learning (technology-
assisted review) have been viewed as conflicting approaches to
high recall retrieval tasks (such as civil discovery and sunshine law
requests) in the law.We propose a synthesis that uses a keyword list
as a regularizer when learning a logistic regression model from la-
beled examples. Balancing keywords against training data requires
knowing how the regularization penalty should scale with training
set size. We show, however, that advice on scaling from theory is
contradictory, software defaults are inconsistent, and standard prac-
tice (validation-based tuning) is impractical in many high-recall
retrieval settings. Through experiments on simulated e-discovery
data sets, we show that the penalization scheme suggested by a
Bayesian interpretation is substantially safer than alternatives from
stochastic optimization and computational learning theory. Com-
bining keywords and training data provides better effectiveness on
our datasets than using either alone, showing that both approaches
bring value.

CCS CONCEPTS
• Information systems→Clustering and classification; •Com-
puting methodologies → Regularization; Supervised learning
by classification.

KEYWORDS
technology-assisted review, Bayesian priors, informative priors,
text categorization, regularization, logistic regression, keywords

ACM Reference Format:
Eugene Yang, David D. Lewis, and Ophir Frieder. 2019. A Regularization Ap-
proach to Combining Keywords and Training Data in Technology-Assisted
Review. In Seventeenth International Conference on Artificial Intelligence and
Law (ICAIL ’19), June 17–21, 2019, Montreal, QC, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3322640.3326713

1 INTRODUCTION
A range of legal tasks require findingmost or all relevant documents
within a large collection of mostly irrelevant material. These tasks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6754-7/19/06. . . $15.00
https://doi.org/10.1145/3322640.3326713

include electronic discovery (e-discovery) in civil litigation, inter-
nal and law enforcement investigations, information governance,
antitrust reviews, government responses to sunshine law requests,
and patent search. Similar tasks outside the law include systematic
review in medicine [32], annotation of data sets for analytics, and
archival research. In computer science, these tasks are referred
to as high-recall retrieval (HRR) [25, 34], high-recall information
retrieval (HRIR) [1, 10], finite population annotation (FPA) [2], or
simply annotation. We use the term HRR in this paper.

Technological support for HRR initially focused, and still largely
relies, on manual construction of keyword queries [3, 20]. Users
attempt to anticipate good search terms and combine them in a
query. While the full power of Boolean logic is typically available,
in practice user queries are often just disjunctions of words and
phrases, sometimes quite small.

An increasingly popular alternative to keywords is the use of
supervised machine learning, sometimes referred to in HRR as
technology-assisted review (TAR) [1]. Users label example docu-
ments for relevance, and a supervised learning algorithm produces
a predictive model that can be used to rank or classify documents.
When combined with active learning [4] for selecting training data,
supervised learning can vastly reduce the time to find the bulk of
relevant documents [5, 32].

In e-discovery, however, keyword search and supervised learning
are often viewed as in conflict. Heated debates on the appropriate-
ness of the technologies are common, and have spilled into court
cases. Blair & Maron’s 1985 classic study on full-text search [3] is a
common and widely misinterpreted tool in these fights [22].

In truth, both keywords and labeled documents are useful forms
of knowledge, and should both be exploited in HRR tasks. This is
not a new idea: relevance feedback in information retrieval has
long combined user queries and training data in an iterative active
learning loop [23]. What is to some extent new is a focus on high
recall rather than a few top-ranked documents, and the desirability
of applying modern discriminative learning algorithms rather than
text retrieval heuristics.

We propose regularized logistic regression [7, 9] as an appro-
priate tool to combine these two sources of knowledge. Logistic
regression is a widely used and effective approach in TAR applica-
tions [33]. Regularization in logistic regression is typically used to
keep model coefficients close to 0 to avoid overfitting. We propose
instead to keep coefficients close to values suggested by a keyword
query, while also responding to training data. The result is a method
that can be used with keywords only, training data only, or both to
achieve maximal effectiveness.

A major question when using regularization is how strong the
regularization penalty should be. This question is acute in our

https://doi.org/10.1145/3322640.3326713
https://doi.org/10.1145/3322640.3326713

ICAIL ’19, June 17–21, 2019, Montreal, QC, Canada Eugene Yang, David D. Lewis, and Ophir Frieder

application, where regularization must balance a good but imper-
fect query against training sets of unpredictable quality and small
but increasing size. Unfortunately, as we discuss below, different
theoretical frameworks provide conflicting advice on how regu-
larization should vary with training set size, and these conflicting
recommendations have been implemented in widely used open
source machine learning software. Regularizing toward nonzero
values also introduces new algorithmic issues.

We present a systematic study on regularization, including regu-
larization toward keyword queries, for the HRR problem.We review
the three major theoretical frameworks for regularization, and hy-
pothesize that the Bayesian framework provides the most useful
guidance for HRR. We describe our new implementation for fitting
logistic regression models in the Bayesian framework, including
presenting the previously unpublished proximal updates for L1
penalties with non-zero modes. We then present an experimental
study of Bayesian logistic regression on two widely used HRR test
sets. We show our Bayesian MAP approach provides good effec-
tiveness in all three HRR scenarios: query only, training data only,
and both. The results also support our hypothesis that a constant
regularization penalty (the Bayesian MAP approach) is safer and
more effective than alternatives.

2 REGULARIZATION THEORY
Regularization—the penalization of solutions that deviate from prior
expectations in some sense—is a key technique for avoiding fitting
to accidental properties of training data in machine learning [26].
While a variety of regularization techniques have been developed,
the most widely used is adding a penalty on coefficient magnitude
(or, more generally, distance from a specified value) to the training
loss, and finding model coefficients that minimize the sum of loss
and penalty.

So-called L2 penalties, which are proportional to the squares
of the coefficients (actually the square of the L2 norm) are the
most commonly used. L1 penalties, which are proportional to the
absolute values of the coefficients, are also widely used.

Both approaches have advantages beyond improving generaliza-
tion. As discussed below, adding an L2 penalty to a loss function can
aid convergence of fitting. Adding an L1 penalty complicates opti-
mization, but leads to solutions that are sparse (most coefficients
are 0). This provides models that are both more efficient to use
and easier to interpret [9]. Elastic net regularization is a weighted
combination of L1 and L2 penalties with the desirable properties of
both [36].

The desirable properties of these penalties have led to their rein-
vention and analysis in several fields. Here we discuss motivations
from three theoretical perspectives: Bayesian statistics, stochastic
optimization, and computational learning theory.

2.1 Bayesian MAP Estimation
Bayesian statistics provides the most direct motivation for penaliz-
ing coefficient magnitude. Assume a conditional probability model
y = f „x;w” parameterized by a d-dimensional vector of unknown
real-valued coefficients w. Suppose the analyst’s prior over the coef-
ficients is a product of independent, zeromean (and thus zeromode),
equal variance Gaussians. Also suppose the analyst observes a data

set D = „x1;y1”; :::; „xn ;yn ” where each y value was generated by
applying f „x;w” independently to the corresponding x.

Then by Bayes Rule, the analyst’s belief about w after seeing the
data set should take the form of this posterior probability distribu-
tion:

p„wjD” =
p„D jw”p„w”

p„D”
(1)

=

�
n̨

i=1
p„yi jw; xi”

�
d̨

j=1
1p

2π σ 2 e
�
w2
j

2σ 2

!
p„D”

(2)

where we abuse the notation and write p„D jw” for the conditional
probability of seeing the set ofy values inD given the corresponding
x values in D, and write p„D” for the corresponding unconditional
value.

In applications, both the difficulty of computing p„D” and the
demands of efficient prediction often make it impractical to use the
full posterior distribution p„wjD”. It is therefore common to instead
seek a single coefficient vector w� that is given maximum proba-
bility by the posterior distribution: a MAP (maximum a posteriori)
estimate. Depending on the form of the posterior, there may or may
not be a single unique MAP estimate.

Taking the logarithm of the posterior likelihood, negating, and
dropping constants shows that w� is found by maximizing a regu-
larized loss function:

w� = argmax
w

8>><>>:

�

nÕ
i=1

lnp„yi jw; xi”

!
+ λ

dÕ
j=1

w2
j

9>>=>>; (3)

where λ is the regularization strength, and the Gaussian prior leads
to an L2 penalty. An L1 penalty can be derived in a similar way
from a Laplace prior [9].

Since the loss term (the negated log-likelihood) grows with train-
ing set size, the effect of the regularization penalty decreases as the
training set grows. This is a consequence of Bayes Rule, which puts
decreasing weight on the prior beliefs as more data is observed.

2.2 Stochastic Optimization
Stochastic optimization refers to finding optima of functions whose
arguments include random variables. A canonical example is solv-
ing the minimization:

w� = min
w
f f „w” B E»G„w; ξ ”…g (4)

where ξ is a random vector, and G„” is a function with both deter-
ministic and random arguments.

Often ξ ’s distribution makes it impractical to directly encode or
optimize f „w”. However, if a random sample of n values of ξ are
available, one can instead solve the corresponding sample average
approximation (SAA) problem [28]:

w� = min
w

(
f̂n „w” B

1
n

nÕ
i=1

G„w; ξi ”

)
(5)

where one instead optimizes the function f̂n „” whose value is the
sample average of n realizations of G.

A Regularization Approach to Combining Keywords and
Training Data in Technology-Assisted Review ICAIL '19, June 17�21, 2019, Montreal, QC, Canada

In contrast tof ¹º, the function f̂n ¹º can often be written down
in its entirety, and thus could be optimized by general purpose opti-
mization methods. However, the fact that̂fn ¹º is the sum of a large
number of similar terms allows a specialized approach:stochastic
gradientalgorithms [15, 26]. These optimization algorithms process
f̂n ¹º one term at a time, updating an estimate ofw� as each term is
processed.

How similar the solution of Equation 5 is likely to be to the
desired value (the solution to Equation 4) depends on the sample
sizen and on the properties ofG¹º. A desirable case is whenG has
the formG¹w; � º = F¹w; � º + � R¹wº, whereR¹wº is a deterministic
regularization function. This gives the SAA problem:

w� = min
w

(
1
n

nÕ

i =1

F¹w; � i º + � R¹wº

!)

(6)

= min
w

(
nÕ

i =1

F¹w; � i º

!

+ n� R¹wº

)

(7)

Many powerful results are known for the convergence of algo-
rithms for solving Equation 6 whenF¹wº and/or R¹wº have de-
sirable properties, such as strong convexity [26]. A particularly
desirable case is Tikhonov regularization, whereR¹wº is an L2
penalty [30].

If F¹xº is the loss function for a supervised learning problem, the
SAA framework can be applied with the training set playing the
role of the random sample. Equation 6 then expresses a penalized
average loss over the training set, while the equivalent Equation 7
expresses a penalized total loss over the training set, analogous
to Equation 3. The connection has made stochastic optimization
theory a standard tool in proving convergence results for learning
algorithms, particularly variations on stochastic gradient.

Note, however, that Equation 6 assumes that the regularization
penalty is onevery term of the SAA function. Applying this approach
to batch mode supervised learning gives one SAA term per training
example, and thus a regularization penalty that increases linearly
with training set size (Equation 7). Thus while both a Gaussian
Bayesian prior and Tikhonov regularization give L2 penalties, they
suggest very di�erent scaling behavior with training set size.

2.3 Computational Learning Theory
Computational learning theory provides several alternative per-
spectives on coe�cient size penalties, including structural risk min-
imization, PAC-Bayesian analysis, and algorithmic stability [26].
All capture the fact that stronger penalties limit the hypothesis
space (and thus the maximum e�ectiveness) available to the learn-
ing algorithm, but increase the probability that the e�ectiveness
of the �tted coe�cient vector on test data will be similar to its
e�ectiveness on the training data.

Learning theory analyses with di�erent goals leads to di�erent
conclusions about the ideal scaling of penalty strength with coe�-
cient size, usually falling between theO¹1º scaling of the Bayesian
analysis and theO¹nº scaling of the stochastic optimization analysis.
For example, Shalev-Shwartz and Ben-David present a bound on the
e�ectiveness of learning with L2 regularization that assumesO¹

p
nº

scaling of penalty strength with training set size ([26], Corollary
13.9).

2.4 Reconciling the Perspectives
The three perspectives have di�ering assumptions, so the di�erent
scalings they suggest are not inherently in con�ict. The Bayesian
analysis assumes the model being �t exactly describes how the data
was generated. The Bayesian MAP approach �nds the coe�cient
vector most likely to be �correct� under this strong assumption, but
provides no guarantees on e�ectiveness when this assumption is
wrong.

In contrast, many learning theory analyses (including theO¹
p

nº
rate presented above) areagnostic. They indicate what predictive
e�ectiveness we can hope for regardless of how well the data cor-
responds to the model being �t. Unsurprisingly, such analyses are
more conservative about how fast data should overwhelm regular-
ization.

Finally, the focus of stochastic optimization is neither correct-
ness nor predictive accuracy, but the convergence of optimization
algorithms. Classic stochastic optimization analyses apply to ar-
bitrary length sequences of random function realizations. These
analyses require certain properties (e.g., degree of strong convex-
ity) to hold regardless of number of realizations. This makes these
analyses applicable even to online learning situations [11], at the
cost of assuming that regularization scales in a fashion that keeps
the necessary properties constant.

For a �xed training set, there is no tension between the three
perspectives. One can pick� based on desirable properties in any
one of the three frameworks, and that value of� will have a sensible
interpretation in the other two. In fact,� is often treated as a black
box hyperparameter to be chosen using data held out (by validation
or cross-validation) from a �xed, large, representative training set.

3 REGULARIZATION IN HRR
In TAR and other HRR applications, however, training sets are
neither �xed, large, nor representative. Initial training examples,
when any are available, are documents that are found by search
or are opportunistically available. Training sets typically start out
tiny and grow over time by a mixture of user exploration and
iterative active learning [4]. The resulting training sets are often of
modest size and over-sample important portions of the collection,
particularly the relevant documents for the topic of interest.

A small, unrepresentative training set makes regularization cru-
cial for generalization. However, it also makes data-driven ap-
proaches to tuning regularization strength impossible (consider
a training set of size 1) or ine�ective. Theoretical guidance on regu-
larization strength, and on how regularization strength should vary
with training set size, is critical.

Unfortunately, growing training sets are exactly where the theo-
retical analyses are in con�ict. The Bayesian perspective yields an
O¹1º penalization on total training loss, that is:

w� = argmax
w

(
nÕ

i =1

f ¹w;xi ;yi º

!

+ � R¹wº

)

(8)

wheref ¹w;xi ;yi º is the loss on training examplei . This perspective
is commonly presented in the algorithmic literature on machine
learning [27, 35].

ICAIL '19, June 17�21, 2019, Montreal, QC, Canada Eugene Yang, David D. Lewis, and Ophir Frieder

Stochastic optimization theory, on the other hand, suggests an
O¹nº penalty on total training loss:

w� = argmax
w

(
nÕ

i =1

f ¹w;xi ;yi º

!

+ n� R¹wº

)

: (9)

This formulation too is widely used in the algorithmic literature
on machine learning [14,21,35]. As discussed above, computational
learning theory suggests a range of penalization strengths, but is
less widely cited by developers of practical algorithms.

3.1 Regularization in Open Source Software
This con�ict between theoretical perspectives plays out in software
as well, in the form of inconsistencies among software options, con-
fusing documentation, and in�exible penalty schemes. We present
three typical examples.

1.LIBLINEARis a widely used training package for linear models,
including logistic regression [8]. Its -c parameter speci�es the re-
ciprocal of the regularization penalty on the entire training set loss,
i.e., the Bayesian perspective. Section N.5. of the LIBLINEAR docu-
mentation provides extensive discussion of using cross-validation
to set-c without mentioning whether the penalty is at the instance
or training set level. Reading the source code or the mathemati-
cally dense algorithmic discussion is necessary to determine that
penalties are at the training set level.

2. Scikit-learnis a widely-used suite of Python implementa-
tions of machine learning algorithms. The parameterCof module
sklearn.linear_model.LogisticRegression (default value 1.0)
is documented as:

Inverse of regularization strength; must be a positive
�oat. Like in support vector machines, smaller values
specify stronger regularization.

The parameteralpha of modulesklearn.linear_model.SGD-
Classifier , which can also be used to train logistic regression
models is documented as:

Constant that multiplies the regularization term. De-
faults to 0.0001 Also used to compute learning_rate
when set to `optimal'.

In neither case does the documentation make clear whether
penalization is an the instance or training set level. Examining
the source code shows in fact that penalization is at the instance
level for SGDClassifier and at the training set level forLogis-
ticRegression . The parameters nameCandalpha do align with
common conventions in the stochastic optimization and stochastic
gradient research literature respectively. Users not familiar with
both bodies of research literature are, however, likely to misuse one
or the other parameter.

3.Vowpal Wabbit[13] is highly scalable training software for a
variety of supervised and unsupervised models, including logistic
regression. It supports both batch �tting algorithms (conjugate gra-
dient and BFGS) and online �tting algorithms (many con�gurable
variants on stochastic gradient descent). TheL1andL2 options al-
low separate speci�cation of penalty strength for L1 and L2 regular-
ization. The documentation is admirably clear on whether instance
or training set penalization is used with each algorithm [13]. Which
approach is used depends on which training algorithm is selected,

a di�erence that may well be unappreciated by users focused on
applications rather than algorithmics.

Once a user decodes the penalization scheme for a particular
piece of software, either scaling scheme can be implemented by
appropriate use of the respective penalty argument. However, it
seems likely that ambiguity on this point, and an over-reliance on
tuning by validation and cross-validation, has discouraged thinking
about how penalizationshouldscale with training set size.

Beyond the question of scaling, few or no widely used learning
packages provide direct support for di�erent penalty strengths
for di�erent features and, most importantly for HRR, penalization
toward nonzero modes. A notable exception is the work by Madigan
and collaborators in Bayesian statistics that resulted in the BBR,
BMR and BXR C++ implementations [9], and the Cyclops package in
R [29]. All use an in-memory, cyclic coordinate descent optimization
algorithm. We are aware of no Python implementation, nor one
that takes a stochastic gradient �tting approach that provides a
path toward an external memory / online implementation. This
motivated our own implementation.

3.2 An Implementation for HRR
Our implementation is based on theSGDClassifier from scikit-
learn [19] (described above). We added an option to load a �le
specifying an individual prior mode for each feature, as well as
both an L1 and L2 regularization penalty for each feature. The
implementation is open-sourced and publicly available on GitHub1.
(EUGENE: BE SURE TO FIX THIS.)

Stochastic gradient �tting algorithms process one training exam-
ple at a time, typically taking multiple passes over the training data.
For each example an update to coe�cients is made based on the
�rst derivative of the loss function with respect to each coe�cient.
The loss function and gradients with L2 penalization are:

L� ¹wº = L¹wº + � kw � bk2
2 (10)

r L� ¹wº = r L¹wº + 2� ¹w � bº (11)

whereL¹wº be the logistic loss function of the weight vectorw and
b is the vector of modes. The gradient update is straightforward,
di�ering only by an addition or subtraction of2� b from the typical
update for zero-mode regularized logistic regression.

For L1 regularization, stochastic gradient algorithms face the
problem of maintaining coe�cient vector sparsity in the face of
noisy per-example updates.SGDClassifier addresses this by us-
ing a truncated gradient update [31] that is not easily adapted to
nonzero modes. We instead adapted the more recently popular ap-
proach ofproximal updates[27]. This replace SGD's gradient-based
update with two updates: a gradient-based step on the smooth com-
ponents of the gradient, followed by a projection step based on the
discontinuous component of the gradient (e.g., L1 penalty).

The proximal update for a zero-mode L1 penalty is widely known.
The proximal update for the nonzero mode L1 penalty does not
appear to have been previously published, so we present it below.
Let the penalized loss be:

L� ¹wº = L¹wº + � kw � bk1 (12)

1Link will be provided after blind review.

A Regularization Approach to Combining Keywords and
Training Data in Technology-Assisted Review ICAIL '19, June 17�21, 2019, Montreal, QC, Canada

and let
 ¹wº = � kw � bk1. By Equation 2.2 and 6.3 in Parikh and
Boyd [18], the proximal operator for coordinatei is,

¹prox
 ¹wººi = prox� k�k1
¹wi � bi º + bi (13)

=

8>>><

>>>
:

wi � � ; wi � bi � �

bi ; kwi � bi k1 � �

wi + � ; wi � bi � � �

(14)

For each training example, we �rst update the coe�cient vector
based on the gradient of the logistic loss. We then check whether
eachwi falls within an interval of width � aroundbi . If so,wi is
replaced withbi . Otherwisewi has� added or subtracted. The
approach is easily generalized to di�erent penalty strengths for
each coe�cient, and to the elastic net.

Our implementation supports bothO¹1º andO¹nº scaling. The
version of the software used in this study assumes the data set �ts
in memory, but as an SGD algorithm could be adapted to the online
setting. As is common for in-memory SGD implementations, an
iteration processes each example in the training set once, with a
di�erent random order used on each iteration. The convergence test
is based on thetolerance, i.e., minimum of the absolute di�erence
of the average example loss between two consecutive epochs. We
set the tolerance to be 0.001, i.e., terminate SGD when the absolute
di�erence of the average example loss between two consecutive
epochs is smaller than 0.001, in our study.(DDL TO EUGENE:
HERE IT SAYS 0.001 BUT BELOW IT SAYS10� 4.)

4 EXPERIMENTAL METHODS
With an implementation in hand, our goal was to understand how to
use regularization to e�ectively strike a balance between keywords
and training data in HRR. Our core hypothesis was that Bayesian
penalization, i.e., a regularization penalty that is constant rather
than growing with training set size, would be the most e�ective
approach.

The experimental challenge we faced were the many strong
con�ating factors that needed to be controlled for: the variable
di�culty of classi�cation problems, the variable e�ectiveness of
their keyword queries, and the variable quality of training sets even
for a given classi�cation problem and training set size. Our design
controlled for all these factors in order to tease out the impact of
penalty strength.

4.1 Modeling
We �t logistic regression models by optimizing the training set MAP
estimate under either a zero mode or keyword-based prior. Fitting
for each run continued until an optimization tolerance of10� 4 was
reached, or until10;000iterations were run. Hitting the iteration
limit typically occurred only for very low values of penalization.

We tested priors with two types of modes: all zeros, or all zeroes
except for words that occur in the keyword query for that topic. The
keyword-based nonzero mode when used was1+ log¹qtfº, where
qtf is the number of occurrences of the term in the keyword query.
We refer to this as either the nonzero mode case or the QTF mode
case. In almost all cases this value was simply 1.0, since few query
words occurred more than once.

For each mode type we studied both L1 and L2 penalization for
distance from mode, and a range of strengths for that penalty.

4.2 Datasets
We used two datasets popular in e-discovery research.

4.2.1 Jeb Bush Collection.The Jeb Bush data consists of electronic
mail communications involving the governor of the US state of
Florida [24]. Several versions of the data have been distributed. We
obtained our copy from Gordon Cormack, co-organizer of the TREC
2015 and 2016 Total Recall tracks. This version consisted of 290,099
�les, each with one message. We removed exact duplicates based
on the MD5 hash of �le, resulting in 274,124 unique documents.

The TREC 2015 Total Recall Track de�ned 10 binary topics on
the Jeb Bush data and distributed short titles and class labels for
each [24]. The TREC 2016 Total Recall Track de�ned 34 more topics
with titles and ternary (�non-relevant� vs. �relevant� vs. �impor-
tant�) class labels [12]. For the 2016 data we treated both �relevant�
and �important� as positive labels, and �non-relevant� as the nega-
tive label. This gave 44 binary classi�cation problems. To ensure
enough positive examples for accurate estimation of e�ectiveness,
however, we limited ourselves to the 33 topics with at least 160
positive documents. We used the topic title to simulate keywords
selected by an expert user. The length of titles range from one word
(e.g. �Space�) to �ve (e.g. �Lost Foster Child Rilya Wilson�).

4.2.2 RCV1-v2.We know of no other email datasets besides Jeb
Bush with a comparable number of topics and thoroughness of
labeling. We thus supplemented our experiments with tests on the
RCV1-v2, a widely used text categorization test collection [17].

RCV1-v2 consists of 804,414 newswire stories exhaustively cate-
gorized by professional coders with respect to 658 categories. We
used as our experimental topics the 82 categories (which include
categories from the Reuters "Topics", "Regions", and "Industries"
subgroups) that had at least 10,000 positive documents. Each RCV1-
v2 category has a Reuters Business Brie�ng (RBB) description of
between one and seventeen English words. We used these as our
expert keyword queries.

4.3 Text Representation
Many text representation strategies in information retrieval im-
plicitly exert regularization e�ects [16]. These include stopword
removal, collection weighting, stemming, thesauri, clustering, and
latent space representations (LSI, word2vec, etc.). Since our goal is
to understand penalization-based regularization, we omit all these.
We simply downcased text, replaced punctuation with whitespace,
and separated text into tokens at whitespace boundaries. Each
unique type in a document was treated as a feature whose value
was1+ log¹tfº, wheretf was the number of occurrences of tokens
for that type in the document.

4.4 Training and Test Data
Given our interest in fundamental properties of regularization, we
adopted a conventional training / test split of the collection even
though this is less natural for HRR studies. In particular, each test
collection was split randomly into a 40% proportion used as a source

ICAIL '19, June 17�21, 2019, Montreal, QC, Canada Eugene Yang, David D. Lewis, and Ophir Frieder

for (variable and much smaller) training sets, and a 60% portion
used in all cases as the test set.

Training set size can of course not be varied without varying
training set composition. As is usual in learning curve experiments
we use a nested design where smaller training sets are contained
within larger ones. In particular, we use nested training sets of size
ranging from 2 to 128 by powers of two.

Initial training sets in HRR tasks are typically created from op-
portunistically available documents, or those found by keyword
searches. They are then grown using one of many active learning al-
gorithms, which tend to enrich the proportion of positive examples
compared to the dataset as a whole. Since our focus is not on the
details of active learning, we took the expedient of simply making
training sets contain equal numbers of randomly selected positive
and negative examples.

In addition, variability in e�ectiveness between training sets
is extremely high for small training sets. We addressed this by
randomly selecting 20 di�erent training sets (replicates) of the
maximum size (128 documents) for each topic. Each maximum size
training set consisted of 64 positives and 64 negatives drawn by
simple random sampling from the 40% training pool. The nested
smaller training sets within each replicate were then produced
by randomly sampling separately from the 64 positives and 64
negatives, so that all training sets had equal numbers of positive
and negative examples.

For RCV1-v2, sampling of the twenty replicas was without re-
placement, making each of the twenty training sets independent.
For the Jeb Bush collection the 40% pool was not large enough to
support this, so sampling waswith replacement. This means there
is some overlap (mostly in positive examples) among replicas. To
allow easy replication, all random sampling was done based on a
lexicographic ordering of the MD5 hash of the unique document
ID. This meant also that we held constant the choice of negative
examples to the extent possible.

4.5 Measuring E�ectiveness
Both ranked retrieval and classi�cation e�ectiveness measures have
been used for evaluating HRR tasks depending on whether assisted
retrieval or culling work�ows are the focus of interest. We chose
the ranked retrieval measureR-precision(proportion of relevant
documents above a cuto� equal to the number of testset relevant
documents). This is an easily interpretable measure which ranges
from 0 to 1, and can take on values of both 0 (assuming the percent-
age of relevant documents is below 50%) and 1 for some ranking.

We computed testset R-precision for each run, and averaged it
across the 20 replicates of a given training set size for a penalty
level and topic. For dataset level measures, we then averaged this
value across all topics for a given training set size and penalty level.

4.6 Experiment Design
Our hypothesis was that theO¹1º penalty scaling suggested by
Bayesian statistics was more appropriate than theO¹nº scaling sug-
gested by stochastic optimization. We therefore varied our penalty
strengths on the same power-of-two scale used for varying training
set sizes.

We present average R-precision values for runs using heatmaps
with penalty strength on the x-axis and training set size on the y-
axis, both using a logarithmic scale. We could vary penalty strength
over a much wider range (from2� 24 to 216) than training set size,
however, so scales are not identical for the two axes. In all cases,
however,O¹nº scaling corresponds to diagonals through the heat
map from lower left to upper right, whileO¹1º scaling corresponds
to vertical heat map columns.

We stress that the heatmaps are coloredrow-by-row: the highest
average R-precision in each row has the lightest color, and the
lowest having the darkest color. This re�ects the fact that we can
always choose our regularization penalty, but at any given moment
have only a certain amount of training data. A good penalty for a
particular training set size is one that yields a light colored cell (high
R-precision). A good penaltyscaling schemeis one that provides
a path through light-colored cells in all rows as training set size
increases.

5 RESULTS & ANALYSIS
Our Bayesian logistic regression approach is applicable to all three
settings faced by HRR users: keywords only, labeled training exam-
ples only, and both keywords and labeled training examples. We
discuss results for each.

5.1 Keywords Only
A straightforward but important bene�t of the Bayesian approach
is that the nonzero components of a keyword-based prior act like a
statistical ranked retrieval query. When there is no training data,
the posterior mode is the same as the prior mode. Since both simple
ranked retrieval and logistic regression scoring are based on dot
products, a prior mode which is a good ranked retrieval query
provides us nontrivial e�ectiveness even with no training data.

Figure 1 show the average R-precision across classes for the Jeb
Bush and RCV1 data sets respectively. The lower red line in each
graph corresponds to using our QTF prior modes as a query. For
comparison we also include (upper green line) the results from
running the textual query using the BM25 option of the state-of-
the-art Elasticsearch search engine.

Using the QTF mode as a query achieves better e�ectiveness
than a logistic regression model trained on four examples using
a zero-mode prior. The Elasticsearch BM25 query is even better,
raising the intriguing possibility of using task IDF weighting in
Bayesian logistic regression (see Future Work).

By the time 128 training examples are available, however, both
zero-mode and keyword-based priors have much greater e�ective-
ness than even state of the art statistical retrieval using the keyword
query, emphasizing why supervised learning is increasingly domi-
nant in HRR tasks.

5.2 Labeled Examples Only
A widely used approach to HRR is to train a regularized logistic re-
gression model on labeled data. The lines for Zero priors in Figure 1
show average R-precision values for this approach for training sets
of size 4 and 128, with a range of penalty strengths for L2 regu-
larization. We see the classic humped pattern where intermediate
penalty strengths provide maximal e�ectiveness. The optimal range

A Regularization Approach to Combining Keywords and
Training Data in Technology-Assisted Review ICAIL '19, June 17�21, 2019, Montreal, QC, Canada

(a) Jeb Bush Collection / Training Set Size = 4 (b) Jeb Bush Collection / Training Set Size = 128

(c) RCV1-v2 Collection / Training Set Size = 4 (d) RCV1-v2 Collection / Training Set Size = 128

Figure 1: Line Charts of training set size 4 and 128. Red and green lines are the query retrieval baselines using log QTF and
BM25 model accordingly. The circle dots indicate the statistically signi�cant with 99% con�dence between regularizing toward
non-zero and zero priors. The triangle dots indicate not statistically signi�cant between the two.

of strengths with 4 training examples is roughly from2� 12 to 25

for both test collections. With 128 examples, the range is roughly
2� 10 to 2� 5. This is consistent withO¹1º scaling of penalties being
an e�ective heuristic, and argues againstO¹nº scaling.

The Figure 2 heatmaps make this point more directly. An e�ec-
tive penalization policy is one that stays in light colored region of
these graphs as training set size increases (bottom to top).O¹1º
policies (vertical columns) provide near optimal e�ectiveness at all
training set sizes for a range of initial penalty strengths. In contrast,
O¹nº policies are diagonals from lower left to upper right, and risk
entering (or never leaving) the zone of low e�ectiveness. Indeed,
these results suggest a decreasing rate of penalization might be even
safer, since there appears to be little downside of underpenalization
in these averaged graphs.

In practice, however, a user is typically interested in e�ectiveness
on a particular topic, not averaged e�ectiveness over many topics.
We were concerned that averaging R-precision over topics with very
di�erent frequencies and e�ectiveness levels might have hidden
important variation among topics. In Figure 3 we therefore break
out the individual zero-mode L2 results for 40 RCV1 topics, selected

to exhibit all major patterns we found on our 82 RCV1 topics. Topics
are sorted from least frequent (upper left) to most frequent (bottom
right). The topic name and logarithm base two of the topic frequency
are shown for each graph. As before, the x- and y-axes are the
base two logarithms of the penalty strength and training set size
respectively.

At this level of detail, it is clear that both underpenalization and
overpenalization can be dangers, but for di�erent topics. AnO¹1º
scaling, however, is safe in essentially all cases. We found similar
behavior for the other RCV1 topics, for L1 regularization instead of
L2, and for the Jeb Bush collection instead of RCV1.

5.3 Keywords Plus Labeled Data
Figure 1 show that a keyword-based (non-zero) prior more than dou-
bles the maximum e�ectiveness of the usual zero mode prior when
only 4 training documents are available. Circles are shown when
the improvement for using the non-zero prior is statistically signif-
icant at the 99% con�dence level under the assumption that topics
are independently sampled from some population. While such tests

	Abstract
	1 Introduction
	2 Regularization Theory
	2.1 Bayesian MAP Estimation
	2.2 Stochastic Optimization
	2.3 Computational Learning Theory
	2.4 Reconciling the Perspectives

	3 Regularization in HRR
	3.1 Regularization in Open Source Software
	3.2 An Implementation for HRR

	4 Experimental Methods
	4.1 Modeling
	4.2 Datasets
	4.3 Text Representation
	4.4 Training and Test Data
	4.5 Measuring Effectiveness
	4.6 Experiment Design

	5 Results & Analysis
	5.1 Keywords Only
	5.2 Labeled Examples Only
	5.3 Keywords Plus Labeled Data

	6 Future Work
	7 Summary
	References

