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ABSTRACT

Manual keyword queries and supervised learning (technology-
assisted review) have been viewed as conflicting approaches to
high recall retrieval tasks (such as civil discovery and sunshine law
requests) in the law. We propose a synthesis that uses a keyword list
as a regularizer when learning a logistic regression model from la-
beled examples. Balancing keywords against training data requires
knowing how the regularization penalty should scale with training
set size. We show, however, that advice on scaling from theory is
contradictory, software defaults are inconsistent, and standard prac-
tice (validation-based tuning) is impractical in many high-recall
retrieval settings. Through experiments on simulated e-discovery
data sets, we show that the penalization scheme suggested by a
Bayesian interpretation is substantially safer than alternatives from
stochastic optimization and computational learning theory. Com-
bining keywords and training data provides better effectiveness on
our datasets than using either alone, showing that both approaches
bring value.
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1 INTRODUCTION

A range of legal tasks require finding most or all relevant documents
within a large collection of mostly irrelevant material. These tasks
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include electronic discovery (e-discovery) in civil litigation, inter-
nal and law enforcement investigations, information governance,
antitrust reviews, government responses to sunshine law requests,
and patent search. Similar tasks outside the law include systematic
review in medicine [32], annotation of data sets for analytics, and
archival research. In computer science, these tasks are referred
to as high-recall retrieval (HRR) [25, 34], high-recall information
retrieval (HRIR) [1, 10], finite population annotation (FPA) [2], or
simply annotation. We use the term HRR in this paper.

Technological support for HRR initially focused, and still largely
relies, on manual construction of keyword queries [3, 20]. Users
attempt to anticipate good search terms and combine them in a
query. While the full power of Boolean logic is typically available,
in practice user queries are often just disjunctions of words and
phrases, sometimes quite small.

An increasingly popular alternative to keywords is the use of
supervised machine learning, sometimes referred to in HRR as
technology-assisted review (TAR) [1]. Users label example docu-
ments for relevance, and a supervised learning algorithm produces
a predictive model that can be used to rank or classify documents.
When combined with active learning [4] for selecting training data,
supervised learning can vastly reduce the time to find the bulk of
relevant documents [5, 32].

In e-discovery, however, keyword search and supervised learning
are often viewed as in conflict. Heated debates on the appropriate-
ness of the technologies are common, and have spilled into court
cases. Blair & Maron’s 1985 classic study on full-text search [3] is a
common and widely misinterpreted tool in these fights [22].

In truth, both keywords and labeled documents are useful forms
of knowledge, and should both be exploited in HRR tasks. This is
not a new idea: relevance feedback in information retrieval has
long combined user queries and training data in an iterative active
learning loop [23]. What is to some extent new is a focus on high
recall rather than a few top-ranked documents, and the desirability
of applying modern discriminative learning algorithms rather than
text retrieval heuristics.

We propose regularized logistic regression [7, 9] as an appro-
priate tool to combine these two sources of knowledge. Logistic
regression is a widely used and effective approach in TAR applica-
tions [33]. Regularization in logistic regression is typically used to
keep model coeflicients close to 0 to avoid overfitting. We propose
instead to keep coefficients close to values suggested by a keyword
query, while also responding to training data. The result is a method
that can be used with keywords only, training data only, or both to
achieve maximal effectiveness.

A major question when using regularization is how strong the
regularization penalty should be. This question is acute in our
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application, where regularization must balance a good but imper-
fect query against training sets of unpredictable quality and small
but increasing size. Unfortunately, as we discuss below, different
theoretical frameworks provide conflicting advice on how regu-
larization should vary with training set size, and these conflicting
recommendations have been implemented in widely used open
source machine learning software. Regularizing toward nonzero
values also introduces new algorithmic issues.

We present a systematic study on regularization, including regu-
larization toward keyword queries, for the HRR problem. We review
the three major theoretical frameworks for regularization, and hy-
pothesize that the Bayesian framework provides the most useful
guidance for HRR. We describe our new implementation for fitting
logistic regression models in the Bayesian framework, including
presenting the previously unpublished proximal updates for L1
penalties with non-zero modes. We then present an experimental
study of Bayesian logistic regression on two widely used HRR test
sets. We show our Bayesian MAP approach provides good effec-
tiveness in all three HRR scenarios: query only, training data only,
and both. The results also support our hypothesis that a constant
regularization penalty (the Bayesian MAP approach) is safer and
more effective than alternatives.

2 REGULARIZATION THEORY

Regularization—the penalization of solutions that deviate from prior
expectations in some sense—is a key technique for avoiding fitting
to accidental properties of training data in machine learning [26].
While a variety of regularization techniques have been developed,
the most widely used is adding a penalty on coefficient magnitude
(or, more generally, distance from a specified value) to the training
loss, and finding model coefficients that minimize the sum of loss
and penalty.

So-called L2 penalties, which are proportional to the squares
of the coefficients (actually the square of the L2 norm) are the
most commonly used. L1 penalties, which are proportional to the
absolute values of the coefficients, are also widely used.

Both approaches have advantages beyond improving generaliza-
tion. As discussed below, adding an L2 penalty to a loss function can
aid convergence of fitting. Adding an L1 penalty complicates opti-
mization, but leads to solutions that are sparse (most coefficients
are 0). This provides models that are both more efficient to use
and easier to interpret [9]. Elastic net regularization is a weighted
combination of L1 and L2 penalties with the desirable properties of
both [36].

The desirable properties of these penalties have led to their rein-
vention and analysis in several fields. Here we discuss motivations
from three theoretical perspectives: Bayesian statistics, stochastic
optimization, and computational learning theory.

2.1 Bayesian MAP Estimation

Bayesian statistics provides the most direct motivation for penaliz-
ing coefficient magnitude. Assume a conditional probability model
y = f(x; w) parameterized by a d-dimensional vector of unknown
real-valued coefficients w. Suppose the analyst’s prior over the coef-
ficients is a product of independent, zero mean (and thus zero mode),
equal variance Gaussians. Also suppose the analyst observes a data
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set D = (X1, Y1), ..., (Xn, yn) where each y value was generated by
applying f(x; w) independently to the corresponding x.

Then by Bayes Rule, the analyst’s belief about w after seeing the
data set should take the form of this posterior probability distribu-
tion:

_ p(Dlw)p(w)
plwip) = F= T 1)
n d i
_ (Elp(y,-lw;xo) jlel Tt ) @)

p(D)
where we abuse the notation and write p(D|w) for the conditional
probability of seeing the set of y values in D given the corresponding
x values in D, and write p(D) for the corresponding unconditional
value.

In applications, both the difficulty of computing p(D) and the
demands of efficient prediction often make it impractical to use the
full posterior distribution p(w|D). It is therefore common to instead
seek a single coefficient vector w* that is given maximum proba-
bility by the posterior distribution: a MAP (maximum a posteriori)
estimate. Depending on the form of the posterior, there may or may
not be a single unique MAP estimate.

Taking the logarithm of the posterior likelihood, negating, and
dropping constants shows that w* is found by maximizing a regu-
larized loss function:

n d
w" = argmax (— Z In p(yi|w; Xi)) +A Z sz' )
w i=1 J=t

where A is the regularization strength, and the Gaussian prior leads
to an L2 penalty. An L1 penalty can be derived in a similar way
from a Laplace prior [9].

Since the loss term (the negated log-likelihood) grows with train-
ing set size, the effect of the regularization penalty decreases as the
training set grows. This is a consequence of Bayes Rule, which puts
decreasing weight on the prior beliefs as more data is observed.

2.2 Stochastic Optimization

Stochastic optimization refers to finding optima of functions whose
arguments include random variables. A canonical example is solv-
ing the minimization:

w' = ngn{f(w) = E[G(w, §)]} 4)

where ¢ is a random vector, and G() is a function with both deter-
ministic and random arguments.

Often &’s distribution makes it impractical to directly encode or
optimize f(w). However, if a random sample of n values of ¢ are
available, one can instead solve the corresponding sample average
approximation (SAA) problem [28]:

w* = min { falw) = =3 Glw, ,;,.)} )
i=1

where one instead optimizes the function f,, () whose value is the
sample average of n realizations of G.



A Regularization Approach to Combining Keywords and
Training Data in Technology-Assisted Review

In contrast to f(), the function fn () can often be written down
in its entirety, and thus could be optimized by general purpose opti-
mization methods. However, the fact that fn() is the sum of a large
number of similar terms allows a specialized approach: stochastic
gradient algorithms [15, 26]. These optimization algorithms process
fn () one term at a time, updating an estimate of w* as each term is
processed.

How similar the solution of Equation 5 is likely to be to the
desired value (the solution to Equation 4) depends on the sample
size n and on the properties of G(). A desirable case is when G has
the form G(w, &) = F(w, &) + AR(w), where R(w) is a deterministic
regularization function. This gives the SAA problem:

w" = min {% Z (F(W; &)+ AR(W))} (6)

i=1

= min {(Z F(w; gi)) + nAR(w)} @)

i=1

Many powerful results are known for the convergence of algo-
rithms for solving Equation 6 when F(w) and/or R(w) have de-
sirable properties, such as strong convexity [26]. A particularly
desirable case is Tikhonov regularization, where R(w) is an L2
penalty [30].

If F(x) is the loss function for a supervised learning problem, the
SAA framework can be applied with the training set playing the
role of the random sample. Equation 6 then expresses a penalized
average loss over the training set, while the equivalent Equation 7
expresses a penalized total loss over the training set, analogous
to Equation 3. The connection has made stochastic optimization
theory a standard tool in proving convergence results for learning
algorithms, particularly variations on stochastic gradient.

Note, however, that Equation 6 assumes that the regularization
penalty is on every term of the SAA function. Applying this approach
to batch mode supervised learning gives one SAA term per training
example, and thus a regularization penalty that increases linearly
with training set size (Equation 7). Thus while both a Gaussian
Bayesian prior and Tikhonov regularization give L2 penalties, they
suggest very different scaling behavior with training set size.

2.3 Computational Learning Theory

Computational learning theory provides several alternative per-
spectives on coefficient size penalties, including structural risk min-
imization, PAC-Bayesian analysis, and algorithmic stability [26].
All capture the fact that stronger penalties limit the hypothesis
space (and thus the maximum effectiveness) available to the learn-
ing algorithm, but increase the probability that the effectiveness
of the fitted coefficient vector on test data will be similar to its
effectiveness on the training data.

Learning theory analyses with different goals leads to different
conclusions about the ideal scaling of penalty strength with coeffi-
cient size, usually falling between the O(1) scaling of the Bayesian
analysis and the O(n) scaling of the stochastic optimization analysis.
For example, Shalev-Shwartz and Ben-David present a bound on the
effectiveness of learning with L2 regularization that assumes O(+/n)
scaling of penalty strength with training set size ([26], Corollary
13.9).
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2.4 Reconciling the Perspectives

The three perspectives have differing assumptions, so the different
scalings they suggest are not inherently in conflict. The Bayesian
analysis assumes the model being fit exactly describes how the data
was generated. The Bayesian MAP approach finds the coefficient
vector most likely to be “correct” under this strong assumption, but
provides no guarantees on effectiveness when this assumption is
wrong.

In contrast, many learning theory analyses (including the O(+/n)
rate presented above) are agnostic. They indicate what predictive
effectiveness we can hope for regardless of how well the data cor-
responds to the model being fit. Unsurprisingly, such analyses are
more conservative about how fast data should overwhelm regular-
ization.

Finally, the focus of stochastic optimization is neither correct-
ness nor predictive accuracy, but the convergence of optimization
algorithms. Classic stochastic optimization analyses apply to ar-
bitrary length sequences of random function realizations. These
analyses require certain properties (e.g., degree of strong convex-
ity) to hold regardless of number of realizations. This makes these
analyses applicable even to online learning situations [11], at the
cost of assuming that regularization scales in a fashion that keeps
the necessary properties constant.

For a fixed training set, there is no tension between the three
perspectives. One can pick A based on desirable properties in any
one of the three frameworks, and that value of A will have a sensible
interpretation in the other two. In fact, 1 is often treated as a black
box hyperparameter to be chosen using data held out (by validation
or cross-validation) from a fixed, large, representative training set.

3 REGULARIZATION IN HRR

In TAR and other HRR applications, however, training sets are
neither fixed, large, nor representative. Initial training examples,
when any are available, are documents that are found by search
or are opportunistically available. Training sets typically start out
tiny and grow over time by a mixture of user exploration and
iterative active learning [4]. The resulting training sets are often of
modest size and over-sample important portions of the collection,
particularly the relevant documents for the topic of interest.

A small, unrepresentative training set makes regularization cru-
cial for generalization. However, it also makes data-driven ap-
proaches to tuning regularization strength impossible (consider
a training set of size 1) or ineffective. Theoretical guidance on regu-
larization strength, and on how regularization strength should vary
with training set size, is critical.

Unfortunately, growing training sets are exactly where the theo-
retical analyses are in conflict. The Bayesian perspective yields an
O(1) penalization on total training loss, that is:

w* = argmax {(Z f(w;xi, yi)) + /IR(W)} (8)

i=1

where f(w;xj, y;) is the loss on training example i. This perspective
is commonly presented in the algorithmic literature on machine
learning [27, 35].
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Stochastic optimization theory, on the other hand, suggests an
O(n) penalty on total training loss:

n
w* = argmax {(Z fw; x;, yi)) + nAR(w)} . 9)
w i=1

This formulation too is widely used in the algorithmic literature
on machine learning [14, 21, 35]. As discussed above, computational
learning theory suggests a range of penalization strengths, but is
less widely cited by developers of practical algorithms.

3.1 Regularization in Open Source Software

This conflict between theoretical perspectives plays out in software
as well, in the form of inconsistencies among software options, con-
fusing documentation, and inflexible penalty schemes. We present
three typical examples.

1. LIBLINEAR is a widely used training package for linear models,
including logistic regression [8]. Its -c parameter specifies the re-
ciprocal of the regularization penalty on the entire training set loss,
i.e., the Bayesian perspective. Section N.5. of the LIBLINEAR docu-
mentation provides extensive discussion of using cross-validation
to set -c without mentioning whether the penalty is at the instance
or training set level. Reading the source code or the mathemati-
cally dense algorithmic discussion is necessary to determine that
penalties are at the training set level.

2. Scikit-learn is a widely-used suite of Python implementa-
tions of machine learning algorithms. The parameter C of module
sklearn.linear_model.lLogisticRegression (default value 1.0)
is documented as:

Inverse of regularization strength; must be a positive
float. Like in support vector machines, smaller values
specify stronger regularization.

The parameter alpha of module sklearn.linear_model.SGD-
Classifier, which can also be used to train logistic regression
models is documented as:

Constant that multiplies the regularization term. De-
faults to 0.0001 Also used to compute learning_rate
when set to ‘optimal’.

In neither case does the documentation make clear whether
penalization is an the instance or training set level. Examining
the source code shows in fact that penalization is at the instance
level for SGDClassifier and at the training set level for Logis-
ticRegression. The parameters name C and alpha do align with
common conventions in the stochastic optimization and stochastic
gradient research literature respectively. Users not familiar with
both bodies of research literature are, however, likely to misuse one
or the other parameter.

3. Vowpal Wabbit [13] is highly scalable training software for a
variety of supervised and unsupervised models, including logistic
regression. It supports both batch fitting algorithms (conjugate gra-
dient and BFGS) and online fitting algorithms (many configurable
variants on stochastic gradient descent). The L1 and L2 options al-
low separate specification of penalty strength for L1 and L2 regular-
ization. The documentation is admirably clear on whether instance
or training set penalization is used with each algorithm [13]. Which
approach is used depends on which training algorithm is selected,
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a difference that may well be unappreciated by users focused on
applications rather than algorithmics.

Once a user decodes the penalization scheme for a particular
piece of software, either scaling scheme can be implemented by
appropriate use of the respective penalty argument. However, it
seems likely that ambiguity on this point, and an over-reliance on
tuning by validation and cross-validation, has discouraged thinking
about how penalization should scale with training set size.

Beyond the question of scaling, few or no widely used learning
packages provide direct support for different penalty strengths
for different features and, most importantly for HRR, penalization
toward nonzero modes. A notable exception is the work by Madigan
and collaborators in Bayesian statistics that resulted in the BBR,
BMR and BXR C++ implementations [9], and the Cyclops package in
R [29]. All use an in-memory, cyclic coordinate descent optimization
algorithm. We are aware of no Python implementation, nor one
that takes a stochastic gradient fitting approach that provides a
path toward an external memory / online implementation. This
motivated our own implementation.

3.2 An Implementation for HRR

Our implementation is based on the SGDClassifier from scikit-
learn [19] (described above). We added an option to load a file
specifying an individual prior mode for each feature, as well as
both an L1 and L2 regularization penalty for each feature. The
implementation is open-sourced and publicly available on GitHub®.
(EUGENE: BE SURE TO FIX THIS.)

Stochastic gradient fitting algorithms process one training exam-
ple at a time, typically taking multiple passes over the training data.
For each example an update to coefficients is made based on the
first derivative of the loss function with respect to each coefficient.
The loss function and gradients with L2 penalization are:

Lo(w) = L(w) + o ||w = b||3 (10)
VLs(w) = VL(w) + 20(w —b) (11)

where L(w) be the logistic loss function of the weight vector w and
b is the vector of modes. The gradient update is straightforward,
differing only by an addition or subtraction of 2ob from the typical
update for zero-mode regularized logistic regression.

For L1 regularization, stochastic gradient algorithms face the
problem of maintaining coefficient vector sparsity in the face of
noisy per-example updates. SGDClassifier addresses this by us-
ing a truncated gradient update [31] that is not easily adapted to
nonzero modes. We instead adapted the more recently popular ap-
proach of proximal updates [27]. This replace SGD’s gradient-based
update with two updates: a gradient-based step on the smooth com-
ponents of the gradient, followed by a projection step based on the
discontinuous component of the gradient (e.g., L1 penalty).

The proximal update for a zero-mode L1 penalty is widely known.
The proximal update for the nonzero mode L1 penalty does not
appear to have been previously published, so we present it below.
Let the penalized loss be:

Lo(w) = L(w) + o ||lw - bl|; (12)

!Link will be provided after blind review.
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and let Q(w) = o [|[w — b||;. By Equation 2.2 and 6.3 in Parikh and
Boyd [18], the proximal operator for coordinate i is,

(proxq(w)); = prox, . (wi — bi) + b; (13)

wi—0, wi—-bj>0
=4bi, lwi = bill; < o (14)

wi+o0, wi—bj<-0o

For each training example, we first update the coefficient vector
based on the gradient of the logistic loss. We then check whether
each w; falls within an interval of width o around b;. If so, w; is
replaced with b;. Otherwise w; has ¢ added or subtracted. The
approach is easily generalized to different penalty strengths for
each coefficient, and to the elastic net.

Our implementation supports both O(1) and O(n) scaling. The
version of the software used in this study assumes the data set fits
in memory, but as an SGD algorithm could be adapted to the online
setting. As is common for in-memory SGD implementations, an
iteration processes each example in the training set once, with a
different random order used on each iteration. The convergence test
is based on the tolerance, i.e., minimum of the absolute difference
of the average example loss between two consecutive epochs. We
set the tolerance to be 0.001, i.e., terminate SGD when the absolute
difference of the average example loss between two consecutive
epochs is smaller than 0.001, in our study. (DDL TO EUGENE:
HERE IT SAYS 0.001 BUT BELOW IT SAYS 1074.)

4 EXPERIMENTAL METHODS

With an implementation in hand, our goal was to understand how to
use regularization to effectively strike a balance between keywords
and training data in HRR. Our core hypothesis was that Bayesian
penalization, i.e., a regularization penalty that is constant rather
than growing with training set size, would be the most effective
approach.

The experimental challenge we faced were the many strong
conflating factors that needed to be controlled for: the variable
difficulty of classification problems, the variable effectiveness of
their keyword queries, and the variable quality of training sets even
for a given classification problem and training set size. Our design
controlled for all these factors in order to tease out the impact of
penalty strength.

4.1 Modeling

We fit logistic regression models by optimizing the training set MAP
estimate under either a zero mode or keyword-based prior. Fitting
for each run continued until an optimization tolerance of 10™* was
reached, or until 10, 000 iterations were run. Hitting the iteration
limit typically occurred only for very low values of penalization.

We tested priors with two types of modes: all zeros, or all zeroes
except for words that occur in the keyword query for that topic. The
keyword-based nonzero mode when used was 1 + log(qtf), where
qtf is the number of occurrences of the term in the keyword query.
We refer to this as either the nonzero mode case or the QTF mode
case. In almost all cases this value was simply 1.0, since few query
words occurred more than once.
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For each mode type we studied both L1 and L2 penalization for
distance from mode, and a range of strengths for that penalty.

4.2 Datasets

We used two datasets popular in e-discovery research.

4.2.1 Jeb Bush Collection. The Jeb Bush data consists of electronic
mail communications involving the governor of the US state of
Florida [24]. Several versions of the data have been distributed. We
obtained our copy from Gordon Cormack, co-organizer of the TREC
2015 and 2016 Total Recall tracks. This version consisted of 290,099
files, each with one message. We removed exact duplicates based
on the MD5 hash of file, resulting in 274,124 unique documents.

The TREC 2015 Total Recall Track defined 10 binary topics on
the Jeb Bush data and distributed short titles and class labels for
each [24]. The TREC 2016 Total Recall Track defined 34 more topics
with titles and ternary (“non-relevant” vs. “relevant” vs. “impor-
tant”) class labels [12]. For the 2016 data we treated both “relevant”
and “important” as positive labels, and “non-relevant” as the nega-
tive label. This gave 44 binary classification problems. To ensure
enough positive examples for accurate estimation of effectiveness,
however, we limited ourselves to the 33 topics with at least 160
positive documents. We used the topic title to simulate keywords
selected by an expert user. The length of titles range from one word
(e.g. “Space”) to five (e.g. “Lost Foster Child Rilya Wilson”).

4.2.2 RCV1-v2. We know of no other email datasets besides Jeb
Bush with a comparable number of topics and thoroughness of
labeling. We thus supplemented our experiments with tests on the
RCV1-v2, a widely used text categorization test collection [17].

RCV1-v2 consists of 804,414 newswire stories exhaustively cate-
gorized by professional coders with respect to 658 categories. We
used as our experimental topics the 82 categories (which include
categories from the Reuters "Topics", "Regions”, and "Industries"
subgroups) that had at least 10,000 positive documents. Each RCV1-
v2 category has a Reuters Business Briefing (RBB) description of
between one and seventeen English words. We used these as our
expert keyword queries.

4.3 Text Representation

Many text representation strategies in information retrieval im-
plicitly exert regularization effects [16]. These include stopword
removal, collection weighting, stemming, thesauri, clustering, and
latent space representations (LSI, word2vec, etc.). Since our goal is
to understand penalization-based regularization, we omit all these.
We simply downcased text, replaced punctuation with whitespace,
and separated text into tokens at whitespace boundaries. Each
unique type in a document was treated as a feature whose value
was 1 + log(tf), where tf was the number of occurrences of tokens
for that type in the document.

4.4 Training and Test Data

Given our interest in fundamental properties of regularization, we
adopted a conventional training / test split of the collection even
though this is less natural for HRR studies. In particular, each test
collection was split randomly into a 40% proportion used as a source
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for (variable and much smaller) training sets, and a 60% portion
used in all cases as the test set.

Training set size can of course not be varied without varying
training set composition. As is usual in learning curve experiments
we use a nested design where smaller training sets are contained
within larger ones. In particular, we use nested training sets of size
ranging from 2 to 128 by powers of two.

Initial training sets in HRR tasks are typically created from op-
portunistically available documents, or those found by keyword
searches. They are then grown using one of many active learning al-
gorithms, which tend to enrich the proportion of positive examples
compared to the dataset as a whole. Since our focus is not on the
details of active learning, we took the expedient of simply making
training sets contain equal numbers of randomly selected positive
and negative examples.

In addition, variability in effectiveness between training sets
is extremely high for small training sets. We addressed this by
randomly selecting 20 different training sets (replicates) of the
maximum size (128 documents) for each topic. Each maximum size
training set consisted of 64 positives and 64 negatives drawn by
simple random sampling from the 40% training pool. The nested
smaller training sets within each replicate were then produced
by randomly sampling separately from the 64 positives and 64
negatives, so that all training sets had equal numbers of positive
and negative examples.

For RCV1-v2, sampling of the twenty replicas was without re-
placement, making each of the twenty training sets independent.
For the Jeb Bush collection the 40% pool was not large enough to
support this, so sampling was with replacement. This means there
is some overlap (mostly in positive examples) among replicas. To
allow easy replication, all random sampling was done based on a
lexicographic ordering of the MD5 hash of the unique document
ID. This meant also that we held constant the choice of negative
examples to the extent possible.

4.5 Measuring Effectiveness

Both ranked retrieval and classification effectiveness measures have
been used for evaluating HRR tasks depending on whether assisted
retrieval or culling workflows are the focus of interest. We chose
the ranked retrieval measure R-precision (proportion of relevant
documents above a cutoff equal to the number of testset relevant
documents). This is an easily interpretable measure which ranges
from 0 to 1, and can take on values of both 0 (assuming the percent-
age of relevant documents is below 50%) and 1 for some ranking.
We computed testset R-precision for each run, and averaged it
across the 20 replicates of a given training set size for a penalty
level and topic. For dataset level measures, we then averaged this
value across all topics for a given training set size and penalty level.

4.6 Experiment Design

Our hypothesis was that the O(1) penalty scaling suggested by
Bayesian statistics was more appropriate than the O(n) scaling sug-
gested by stochastic optimization. We therefore varied our penalty
strengths on the same power-of-two scale used for varying training
set sizes.
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We present average R-precision values for runs using heatmaps
with penalty strength on the x-axis and training set size on the y-
axis, both using a logarithmic scale. We could vary penalty strength
over a much wider range (from 2724 to 21°) than training set size,
however, so scales are not identical for the two axes. In all cases,
however, O(n) scaling corresponds to diagonals through the heat
map from lower left to upper right, while O(1) scaling corresponds
to vertical heat map columns.

We stress that the heatmaps are colored row-by-row: the highest
average R-precision in each row has the lightest color, and the
lowest having the darkest color. This reflects the fact that we can
always choose our regularization penalty, but at any given moment
have only a certain amount of training data. A good penalty for a
particular training set size is one that yields a light colored cell (high
R-precision). A good penalty scaling scheme is one that provides
a path through light-colored cells in all rows as training set size
increases.

5 RESULTS & ANALYSIS

Our Bayesian logistic regression approach is applicable to all three
settings faced by HRR users: keywords only, labeled training exam-
ples only, and both keywords and labeled training examples. We
discuss results for each.

5.1 Keywords Only

A straightforward but important benefit of the Bayesian approach
is that the nonzero components of a keyword-based prior act like a
statistical ranked retrieval query. When there is no training data,
the posterior mode is the same as the prior mode. Since both simple
ranked retrieval and logistic regression scoring are based on dot
products, a prior mode which is a good ranked retrieval query
provides us nontrivial effectiveness even with no training data.

Figure 1 show the average R-precision across classes for the Jeb
Bush and RCV1 data sets respectively. The lower red line in each
graph corresponds to using our QTF prior modes as a query. For
comparison we also include (upper green line) the results from
running the textual query using the BM25 option of the state-of-
the-art Elasticsearch search engine.

Using the QTF mode as a query achieves better effectiveness
than a logistic regression model trained on four examples using
a zero-mode prior. The Elasticsearch BM25 query is even better,
raising the intriguing possibility of using task IDF weighting in
Bayesian logistic regression (see Future Work).

By the time 128 training examples are available, however, both
zero-mode and keyword-based priors have much greater effective-
ness than even state of the art statistical retrieval using the keyword
query, emphasizing why supervised learning is increasingly domi-
nant in HRR tasks.

5.2 Labeled Examples Only

A widely used approach to HRR is to train a regularized logistic re-
gression model on labeled data. The lines for Zero priors in Figure 1
show average R-precision values for this approach for training sets
of size 4 and 128, with a range of penalty strengths for L2 regu-
larization. We see the classic humped pattern where intermediate
penalty strengths provide maximal effectiveness. The optimal range
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Figure 1: Line Charts of training set size 4 and 128. Red and green lines are the query retrieval baselines using log QTF and
BM25 model accordingly. The circle dots indicate the statistically significant with 99% confidence between regularizing toward
non-zero and zero priors. The triangle dots indicate not statistically significant between the two.

of strengths with 4 training examples is roughly from 2712 to 2°
for both test collections. With 128 examples, the range is roughly
2710 to 275, This is consistent with O(1) scaling of penalties being
an effective heuristic, and argues against O(n) scaling.

The Figure 2 heatmaps make this point more directly. An effec-
tive penalization policy is one that stays in light colored region of
these graphs as training set size increases (bottom to top). O(1)
policies (vertical columns) provide near optimal effectiveness at all
training set sizes for a range of initial penalty strengths. In contrast,
O(n) policies are diagonals from lower left to upper right, and risk
entering (or never leaving) the zone of low effectiveness. Indeed,
these results suggest a decreasing rate of penalization might be even
safer, since there appears to be little downside of underpenalization
in these averaged graphs.

In practice, however, a user is typically interested in effectiveness

on a particular topic, not averaged effectiveness over many topics.

We were concerned that averaging R-precision over topics with very
different frequencies and effectiveness levels might have hidden
important variation among topics. In Figure 3 we therefore break
out the individual zero-mode L2 results for 40 RCV1 topics, selected

to exhibit all major patterns we found on our 82 RCV1 topics. Topics
are sorted from least frequent (upper left) to most frequent (bottom
right). The topic name and logarithm base two of the topic frequency
are shown for each graph. As before, the x- and y-axes are the
base two logarithms of the penalty strength and training set size
respectively.

At this level of detalil, it is clear that both underpenalization and
overpenalization can be dangers, but for different topics. An O(1)
scaling, however, is safe in essentially all cases. We found similar
behavior for the other RCV1 topics, for L1 regularization instead of
L2, and for the Jeb Bush collection instead of RCV1.

5.3 Keywords Plus Labeled Data

Figure 1 show that a keyword-based (non-zero) prior more than dou-
bles the maximum effectiveness of the usual zero mode prior when
only 4 training documents are available. Circles are shown when
the improvement for using the non-zero prior is statistically signif-
icant at the 99% confidence level under the assumption that topics
are independently sampled from some population. While such tests



ICAIL ’19, June 17-21, 2019, Montreal, QC, Canada

0

>- 049 049 049 049 049 050 053 0.54 055 054 053
I:OAZ 042 043 046 047 047 047 046
033 034 034 034 035 035 037 038 038 038 037 036 035 034 034 034 034 034 033 032 kY
0.27 027 027 027 028 029 030 030 030 029 029 029 029 028 028 0.28 028 015

0 7.

o
&

021 022 022 022 022 023 023 023 023 023 023 023 023 022 023 022

Log Training Set Size

o
i
o

0.16 0.16 0.16 0.17 0.7 0.17 017 0.18 017 017 0.17 017 017 0.17 0.16 015
013013 043 014 014 015 015 015 015 015 015 014 014 014 [ 013

24,0 -22.0 20,0 -18.0 -16.0 -14.0 12,0 -10.0 -8.0 60 -40 20 00 20 40 60 80
Log Total Penalty

1.0 2.0 3.0 4.0 50 6
° o
o N
o =

10.0 12,0 140 16.0

(a) Jeb Bush Collection / L2 Regularization with zero mode

- 050 050 0.50 0.50 0.50 0.50 051 0.54 056 0.56 0.56
- 042 042 042 042 042 043 044 047 048 049 049

@
&
°
W
®

034 034 035 035 036 038 039 039 039

.27 0.27 027 028 028 029 029 031 031 031 030
021 021 022 022 023 023 023 023 022

.4
<]
°
]

017 017 017 017 018 018 018 018 0.16
013 013 014 014 014 015 014 014@
. o 4

24,0 -22.0 20,0 -18.0 -16.0 -14.0 -12.0 -10.0 -8.0 6.0 -40 2.0
Log Total Penalty

Log Training Set Size
10 2.0 3.0 4.0 50 60 7.0

o o o o o
i)
°
R

H
&
°
&

(c) Jeb Bush Collection / L1 Regularization with zero mode

0.63 0.63 0.63 0.63 o.Glm

8o 0.58 058 0.57 0.57 o.sem - 52
%;—0.44 0.44 044 045 046 047 049 050 050 050 050 0.49 048 048 047 047 047 047 OAEm
25-036 036 036 037 038 039 040 041 041 041 041 041 040 040 040 039 039 039 033

E;-oza 0.28 029 029 029 030 032 032 032 032 032 032 032 032 031 030 0.28 024
é"z-o.zz 022 022 022 022 023 024 024 024 024 024 024 024 023

, 1 m 017 018 019 019 019 019 019 019 017 0.8

-24.0 -22.0 -20.0 -18.0 -16.0 -14.0 -12.0 -10.0 -8.0 6.0 -40 20 00 20
Log Total Penalty

(e) RCV1-v2 Collection / L2 Regularization with zero mode

o
o
&

0.58 058 0.58 0.59 059 0.60 0.63 0.63 0.63 0.63

X

0.52 052 052 0.53 053 0.55 058 059 0.59 0.58

o o
= &

S

0.44 045 045 045 047 048 051 052 052 052

036 036 0.37 037 038 040 042 043 043 044

°
N
£

028 028 029 029 031 032 033 034 034 034

o
N

021 022 022 022 023 024 025 025 025 024

Log Training Set Size
10 2.0 3.0 4.0 50 60 7.0
o
&
&

016 016 0.6 016 0.18 019 019 018 0.18 0.16

-22.0 -20.0 -18.0 -16.0 -14.0 -12.0 -10.0 80 6.0 -40 20 00 20 40 6.0
Log Total Penalty

e
B- 2
P

80 100 12.0 14.0 16.0

(g) RCV1-v2 Collection / L1 Regularization with zero mode

Eugene Yang, David D. Lewis, and Ophir Frieder

.49 0.49 049 049 049 050 0.53 054 055 0.54 054 051 049 049 m
.42 042 042 042 042 043 046 047 047 047 047 046 047 046 JUEL)
0.38 039 039 039 040 044 041

s o

036 041 0.38 [0.35
033 038 035 033 031 031 031 031 031 031

Log Training Set Size

033 036 034 031 031 031 031 031 031 031
026 0.34 034 031 031 031 031 031 031 031 031
24,0 220 20.0 -18.0 -16.0 -14.0 12,0 -10.0 -8.0 6.0 -40 20 00 20 40 60 80 100 120 140 160

Log Total Penalty

(b) Jeb Bush Collection / L2 Regularization with non-zero mode

o-049 049 050 050 050 0.50 051 0.54 056 056 0.56 054 0.47
=
o -042 041 042 042 042 043 044 047 048 049 049 048

&

&3

b=y ﬂo.ﬂ 0.39 0.40 040 041 041

L

2o 131032 0.36

£

£ | 024 ] 024 [T/ [LER 031 31 031 031 03 031
k] 029 031 031 031 031 031 031 031 031 031 031

022 0.31 031 031 031 031 031 031 031 031 031 031
120 -10.0 80 60 -40 20 00 20 40 60
Log Total Penalty

80 100 12.0 140 160

.0 -22.0 -20.0 -18.0 -16.0 -14.
(d) Jeb Bush Collection / L1 Regularization with none-zero mode

- 058 058 058 059 059 059 0.63 0.63 0.64 0.64 0.63 0.62 0.61 0.59

o
Y o-052 052 052 052 0.53 053 057 0.58 0.58 0.58 0.58 0.58 0.58 0.54 0.
n e
fol=Y 0.54 0.48 40 | 0.38 | 0.36 | 0.3
Vo
29 0.49 [0:43 037036 0.3
£«
%o 0.44 040 [037/037 [ 0
[ | I
g’o 0.41 038 0.37 0.37 0.36 0.36 0.36 0.36 0.36
]
o 0.38 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36

24.0 -22.0 200 -18.0 -16.0 -14.0 -12.0 -10.0 -8.0 6.0 -40 2.0 00 20 40 60 80 100 12.0 140 16.0

Log Total Penalty

(f) RCV1-v2 Collection / L2 Regularization with non-zero mode

o-058 058 058 058 059 059 060 0.63 0.63 0.63 0.63 0.61 0.54 KIEYANN
N
-052 052 052 052 053 053 055 058 059 0.59 0.59 o.sam

9

2o

&

5 o- 044 045 (045/(0.45 047 049 052 052 052 053 051 EUANES

A

2o 41| 0.43 0.44 044 045 0.44 EFEES

£ 4

Eo mgas 036 038 038 036 036 036 036 036 036 036 0.36 0.36
B

8o '-"0.32 036 036 036 036 036 036 036 036 0.36 0.36
&
° m«;.ss 036 036 036 036 036 036 036 036 0.36 0.36
& 0

-24.0 -22.0 -20.0 -18.0 -16.0 -14.0 -12.0 -10.0 80 60 -40 20 00 20 40 60 80 100 12.0 140 16.0
Log Total Penalty

(h) RCV1-v2 Collection / L1 Regularization with none-zero mode

Figure 2: R-Precision heatmaps using L1/L2 regularization with zero and non-zero mode on Jeb Bush and RCV1-v2 collection.
The value of each cell are averaging over 33 topics for Jeb Bush heatmaps(a-d) and over 82 topics for RCV1-v2 heatmaps(e-h).
Cells are colored row-by-row, where the darkest cells are having lowest values and vice versa.

are common in information retrieval research, they should be con-
sidered only suggestive: topics are not statistically independent of
each other [6].

With very weak penalties (left side of graph) we see the same
result as for a very weak zero-mode prior: poor effectiveness based
on overfitting to the small training set. With very strong penalties
(right side of graph) we get simply the effectiveness of the QTF
keyword query. The fact that maximum effectiveness is reached at
an intermediate level shows that both keywords and training data
are being leveraged. That maximum effectiveness is roughly double
than of the best zero-mode regularized model.

For a training set of 128 documents, on the other hand, there
is little difference between optimal effectiveness with and with-
out keywords, though the keyword query gives some additional
margin of error against a poor choice of penalty. This is unsurpris-
ing, since a large amount of training allows tuning of coefficient
weights to the behavior of the terms in the particular data set, not
just taking advantage of the general relatedness of terms. Com-
paring the numerical R-precision values in Figure 2 tells the same
story, showing that a keyword-based prior provides substantial

effectiveness improvements until training sets reach roughly 16 to
32 documents in size. This improvement, however, comes with an
increase in sensitivity to penalty strength, with a narrower window
for optimal effectiveness. In contrast to the zero-mode case, both
averaged heatmaps and per-topic heatmaps suggest that a less than
O(1) penalization may be desirable to compensate for the narrow
window.

The topic heatmaps for non-zero priors show more topic-to-topic
variation than was true for zero-mode priors. This is unsurprising,
since not just topic richness and effectiveness, but also keyword
quality, affect results. Worrisomely, for many topics there is a train-
ing set size where optimal penalty strength is very constrained,
i.e. the range of good penalty values is particularly narrow. This
corresponds to a transition from a state where underregulariza-
tion (ignoring the keywords) is the greatest risk to a state where
overregularization (ignoring the training data) is the greatest risk.

The transition point is heavily influenced by the quality or the
usefulness of the keywords. For topics such as regions_MEX, in-
dustries_HKONG and regions_FRA, one or two keywords are ex-
tremely suggestive of relevance, so a large number of training
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examples are necessary to do better than the keywords. In contrast,
for broad topics such as topics_C41, topics_GSPO and topics_-
CCAT, the keywords have little value, and training data is superior
almost immediately.

6 FUTURE WORK

An obvious next step in our work is to verify our results carry
over from balanced training sets to training sets produced by active
learning algorithms, as is typical in HRR systems. These include
both relevance feedback and variants of uncertainty sampling.

The strong performance of the Elasticsearch BM25 baseline raises
the obviously possibility of basing a prior on that technique. This
would replace Dayanik, et al’s use of a corpus of prior knowledge
instances for IDF weighting [? ] with the IDF statistics from the task
corpus itself. An interesting question then is whether IDF weights
are better incorporated into the prior mode, or into the penalty
strengths.

An interesting challenge is exploring ways to widen the regular-
ization bottleneck that occurs during the transition from preferring
keywords to preferring training data. One possible approach would
be to replace a single logistic regression model with an ensemble
of models drawn from the posterior distribution. This is computa-
tionally intensive, but approximations are possible.

Finally, if indeed a sublinear penalization scheme proves supe-
rior over a wide range of experiments, it may suggest the need
for a different theoretical perspective on regularization in HRR.
Properly accounting for the effectively unbounded feature set in
HRR problems is one possible avenue.

7 SUMMARY

We have demonstrated that Bayesian MAP logistic regression pro-
vides a common framework for handling keywords, training data,
or both in high-recall retrieval problems. We have also provided
guidance on appropriately scaling the strength of regularization
penalties as training set sizes increase, and provided some warnings
for users of regularization in established machine learning tools.
Keyword queries and supervised learning need not to be viewed as
in conflict, but instead can be combined to improve on either alone.
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Figure 3: RCV1-v2 collection topic R-Precision heatmaps using L2 regularization with zero and non-zero mode. Topics are
sampled from all 82 experimented topics to represent different patterns.
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