
Effective and Practical Neural Ranking

A Dissertation
submitted to the Faculty of the

Graduate School of Arts and Sciences
of Georgetown University

in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy
in Computer Science

By

Sean MacAvaney, M.S.

Washington, DC
March 24, 2021

Copyright © 2021 by Sean MacAvaney
All Rights Reserved

ii

Effective and Practical Neural Ranking

Sean MacAvaney, M.S.

Dissertation Advisors: Nazli Goharian and Ophir Frieder

Abstract

Supervised machine learning methods that use neural networks (“deep learning”)

have yielded substantial improvements to a multitude of Natural Language Processing

(NLP) tasks in the past decade. Improvements to Information Retrieval (IR) tasks,

such as ad-hoc search, lagged behind those in similar NLP tasks, despite considerable

community efforts. Although there are several contributing factors, I argue in this dis-

sertation that early attempts were not more successful because they did not properly

consider the unique characteristics of IR tasks when designing and training ranking

models. I first demonstrate this by showing how large-scale datasets containing weak

relevance labels can successfully replace training on in-domain collections. This tech-

nique improves the variety of queries encountered when training and helps mitigate

concerns of over-fitting particular test collections. I then show that dataset statis-

tics available in specific IR tasks can be easily incorporated into neural ranking

models alongside the textual features, resulting in more effective ranking models. I also

demonstrate that contextualized representations, particularly those from transformer-

based language models, considerably improve neural ad-hoc ranking performance. I

find that this approach is neither limited to the task of ad-hoc ranking (as demon-

strated by ranking clinical reports) nor English content (as shown by training effective

cross-lingual neural rankers). These efforts demonstrate that neural approaches can

be effective for ranking tasks. However, I observe that these techniques are imprac-

tical due to their high query-time computational costs. To overcome this, I study

approaches for offloading computational cost to index-time, substantially reducing

iii

query-time latency. These techniques make neural methods practical for ranking

tasks. Finally, I take a deep dive into better understanding the linguistic biases of

the methods I propose compared to contemporary and traditional approaches. The

findings from this analysis highlight potential pitfalls of recent methods and provide

a way to measure progress in this area going forward.

Index words: Information retrieval, Deep learning, Efficient ad-hoc search,
Natural language processing

iv

Acknowledgments

This dissertation would not have been possible without the support of innumerable

colleagues, friends, and family members. First and foremost, I thank my academic co-

advisors: Nazli Goharian and Ophir Frieder. They enabled me to pursue my interests

while also pushing me to continue to improve and pursue challenging new direc-

tions. I also thank the remaining members of my dissertation committee—Andrew

Yates, Jimmy Lin, Justin Thaler, Nathan Schneider, and Nicola Tonellotto—who pro-

vided constructive and valuable feedback on my proposal and dissertation. Andrew

and Nicola deserve additional gratitude for serving as mentors during internships

throughout my Ph.D., along with Arman Cohan, Doug Downey, Franck Dernoncourt,

Franco Maria Nardini, Raffaele Perego, Sergey Feldman, and Walter Chang. Each of

these internships enabled me to pursue new and interesting research directions, with

my internship mentors’ support. Next, I would like to thank my remaining co-authors

and collaborators—Amir Zeldes, Ayah Zirikly, Bart Desmet, Canjia Li, Christian

Wolf, Craig Macdonald, Cristopher Flagg, Eugene Yang, Gholam Motamedi, Hao-Ren

Yao, Ish Talati, Kai Hui, Katina Russell, Jay Urbain, Joe Garman, Luca Soldaini,

Ross Filice, Sajad Sotudeh, Tong Xiang, and Zeus De los Santos—with whom I was

able to study a variety of fascinating topics both within and outwith this dissertation.

I would also like to thank the many others I met at Georgetown who were won-

derful and supportive friends, including Jakob Prange, Johnson Truong, Jordana

Bickel, Mohammad Zaheri, Peter Haferl, and countless others. Finally, I would like to

thank those back home who would always cheer me on, including my mother Kathy,

v

father Paul, sister Kelly, brother Dennis, friends Brandon Nickel, Jenny Carrillo,

Kristen Schmalfeldt, Shane Zoltak, Sienna Bast, and many others.

vi

Table of Contents

Chapter
1 Introduction . 1

1.1 Hypotheses . 5
1.2 Organization . 8

2 Ranking Effectiveness of Neural Models without Contextualization . . . 10
2.1 Background and Preliminaries 10
2.2 Effective Ranking with Content-Based Weak Supervision 30
2.3 Employing Dataset Characteristics 41
2.4 Discussion and Conclusions . 72

3 Ranking Effectiveness of Neural Models with Contextualization 74
3.1 Background and Preliminaries 75
3.2 Effective Ranking using Contextualized Language Models 76
3.3 Ranking Significant Discrepancies in Clinical Reports 85
3.4 Addressing the Lack of Multi-lingual Training Data 95
3.5 Choosing Good Training Samples 104
3.6 Searching COVID-19 Literature 129
3.7 Discussion and Conclusions . 140

4 Computational Efficiency of Contextualized Neural Ranking 141
4.1 Background and Preliminaries 141
4.2 Pre-computing Representations 143
4.3 Learning Efficient Sparse Representations for Ranking 165
4.4 Discussion and Conclusions . 176

5 Understanding Neural Ranking Behaviors 177
5.1 Background and Preliminaries 179
5.2 Methodology . 180
5.3 Experiment . 185
5.4 Analysis . 189
5.5 Discussion and Conclusions . 198

6 Conclusions . 199

vii

List of Figures

2.1 Hypothetical CAR query. 42

2.2 Sample headings found in a Wikipedia article. 46

2.3 Example ranking architecture adaptations for CAR. 49

2.4 Example term alignment benefits of using heading independence with

two sample queries. 54

2.5 Example graph construction strategy from a Wikipedia article excerpt. 55

2.6 Kernel density estimation for target (solid), intermediate (dashed), and

title (dotted) heading term occurrence rates 67

2.7 Term occurrence rate plotted by heading frequency. 68

3.1 Example similarity matrix excerpts. 85

3.2 Example radiology impression revisions. 87

3.3 Example unigram importance scores from our radiology model. 94

3.4 Example of curriculum approach from MS-MARCO dataset. 105

3.5 Illustration of intuition for using the KDE difficulty heuristic. 114

3.6 Validation performance comparison between Vanilla BERT model

trained with and without a curriculum. 120

3.7 Overview of SLEDGE. 131

4.1 Overview of PreTTR. 145

4.2 Overview of EPIC. 166

4.3 Frequencies of EPIC document scores. 173

4.4 Relative EPIC importance scores of sample queries. 174

viii

4.5 Relative EPIC representation values of terms that appear in a sample

document. 175

5.1 Overview of strategies for constructing probes. 183

ix

List of Tables

2.1 Comparison of datasets commonly used for evaluating neural ad-hoc

retrieval performance. 15

2.2 Ranking performance when trained using content-based sources (NYT

and Wiki). 38

2.3 Ranking performance using filtered NYT and Wiki. 40

2.4 Example CAR queries from Wikipedia by heading position. 45

2.5 Sample contextual vectors for CAR. 50

2.6 Dataset characteristics from the CAR v1.5 data release. 58

2.7 Manual relevance judgment counts and occurrence frequencies for the

CAR test dataset, benchmarkY1test. 59

2.8 CAR performance results under various models. 62

2.9 CAR performance results under various models with automatic rele-

vance judgments. 63

2.10 MAP scores stratified by heading frequency of target heading for each

query . 69

2.11 Concrete ranking examples in case where knowledge graph method

work well (Query 1), and case where knowledge graph method does

not work well (Query 2). 71

3.1 Ranking performance of contextualized models on Robust04. 81

3.2 Ranking performance on WebTrack 2012–14. 82

3.3 Radiology ranking performance of our method and baselines. 93

x

3.4 Ablation study of our radiology ranking method. 93

3.5 Zero-shot multi-lingual results for various baseline and neural methods

in Arabic and Mandarin. 101

3.6 Zero-shot multi-lingual results for various baseline and neural methods

in Spanish. 102

3.7 Zero-Shot (ZS) and Few-Shot (FS) comparison for Vanilla BERT (mul-

tilingual) on each dataset. 103

3.8 Table of symbols for curriculum learning. 109

3.9 Dataset statistics for curriculum learning experiments 115

3.10 Ranking performance on the TREC DL 2019 answer passage ranking

task. 119

3.11 Ranking performance on the TREC CAR complex answer passage

ranking task. 122

3.12 Ranking performance on the ANTIQUE non-factoid question answering

task. 124

3.13 Ranker performance when the curriculum always uses difficulty scores,

and when employing the anti-curriculum. 127

3.14 Ablation results and comparison of SLEDGE and other zero-shot base-

lines on TREC-COVID Rounds 1 and 2. 136

3.15 TREC COVID Round 1 and 2 comparison between SLEDGE and other

top official Round 2 submissions. 138

3.16 TREC-COVID Round 1 leaderboard (automatic systems). 139

4.1 Table of symbols for PreTTR. 146

4.2 Breakdown of ranking performance when using a PreTTR-based

Vanilla BERT ranking. 155

4.3 Ranking performance at various compression sizes. 157

xi

4.4 Vanilla BERT query-time latency measurements for re-ranking the top

100 documents on TREC WebTrack 2012 and TREC Robust 2004. . 160

4.5 WebTrack 2012 using two other Vanilla transformer architectures:

RoBERTa and DistilBERT. 163

4.6 Effectiveness and efficiency of EPIC compared to a variety of baselines..170

5.1 Results of Measure and Match Probes (MMPs) on TREC DL 2019. . 188

5.2 Results of Text Manipulation Probes (TMPs) on TREC DL 2019. . . 191

5.3 Results of Dataset Transfer Probes (DTPs). 194

xii

Chapter 1

Introduction

Search engines are ubiquitous, with over a trillion queries processed annually and mil-

lions of daily users [1]. Although the exact details of popular search engines remain

elusive due to their proprietary nature, at their core, they still rely heavily on lexical

keyword matching and document quality estimates (e.g., PageRank [144]) to retrieve

and rank results [2, 170]. Lexical ranking is limited, though, since they treat word

matches the same regardless of context. Intuitively, a search engine with an improved

understanding of a document’s textual content should be able to do a better job

ranking documents scoring a document that uses a query term in a relevant context

above documents that use the term incidentally or in a different sense. Although Nat-

ural Language Processing (NLP) techniques such as word sense disambiguation [175]

and semantic indexing [200] have been previously applied to search, these attempts

were largely unsuccessful. With neural network techniques now being used success-

fully in NLP, we can now model more complex relationships between words in a given

text. This dissertation demonstrates that these neural techniques can effectively rank

documents for ad-hoc searches and show how neural ranking can do this with a rea-

sonable impact on query-time latency. I further study the limitations and linguistic

biases introduced by these models.

In the past decade, supervised neural machine learning approaches have domi-

nated the field of NLP [142]. The improvements that neural approaches offer NLP

1

are largely a result of effective understanding of lexical semantics1 through distribu-

tional modeling. This is accomplished via a two-step process. In the first step, the

language is modeled via word co-occurrence in massive amounts of text. This stage

results in a model that places words with similar semantic meaning (inferred through

similar co-occurrences) at similar points in space. In the second step, supervised mod-

eling tunes the original model for a particular task [44, 151]. This stage exploits these

similarities to model a particular task by treating semantically-similar words simi-

larly. This process helps overcome the issue of sparsity in language [155], since most

tasks have a limited amount of training data. Recent improvements to word represen-

tations have allowed the modeling of words in a given textual context, which provides

models with the capacity to learn particular word senses and resolve co-references

(e.g., ELMo [153] and BERT [44]).

There have been high hopes that these techniques can apply to Information

Retrieval (IR), particularly for ad-hoc ranking. In this task, a textual query provided

by a user is used to score documents from a large collection, such that documents

with content relevant to the query are assigned the highest scores. Dozens of research

papers were published on this topic (e.g., [37, 56, 73, 75, 76, 126, 127, 136, 138,

146, 148, 186, 193, 214, 228]), and multiple workshops focusing on this topic were

held [32, 33]. Despite these efforts, few had been able to overcome simple (yet well-

tuned) lexical baselines, such as BM25 [167] (a commonly-used probabilistic retrieval

model from the mid 1990s) [97, 218]. This is surprising because neural approaches

should allow for the semantic matching of terms, as they do for other NLP tasks.

Several factors contribute to the apparent lack of effectiveness of neural ranking

approaches. For instance, as Lin points out in [97], one contributing factor is the

utilization and comparison against weak baselines. There is also some evidence that
1I focus on semantics at the word and sub-word level.

2

when using and incorporating stronger baselines, many of the apparent gains disap-

pear [218]. As I demonstrate in this dissertation, another important factor is inade-

quate consideration of the training environment and task-specific characteristics. As

I show in Section 2.2, the decision to train neural ranking models on limited-scale

datasets (which were built for evaluation of ranking methods, rather than the large-

scale training needed by neural methods) can lead to inferior models. There are also

valid concerns that training and evaluating from the same dataset can overfit to the

dataset, which results in models that are not generally applicable or exhibit artifacts

of the annotation process [57]. Most attempts at neural ranking have also largely failed

to incorporate valuable dataset characteristics for modeling, which I demonstrate can

be easily incorporated into ranking models (Section 2.3).

The aforementioned work in Chapter 2 predates the prominence of large-scale

contextualized language models (such as BERT [44]) in NLP. These models offer a

considerable opportunity for neural IR; they allow models to take advantage of mas-

sive amounts of unlabeled natural language to help model words as they appear in

a given context. In Chapter 3, I demonstrate ways in which these models can be

beneficial to IR tasks. Section 3.2 shows that term representations from contextual-

ized language models can be incorporated into existing neural ranking architectures

to great benefit. In this process, I also show that signals from the contextualized

language model alone can produce a reasonably-effective ranker.2 In Section 3.3, I

show that these signals can be useful for another ranking task, namely the ranking of

discrepancies in clinical reports. In Section 3.4 I show that contextualized language

models can also benefit ranking for languages that have little or no relevance training

data available by transferring relevance signals from larger English collections. In Sec-

tion 3.5, I loop back to the topic of training data and show how adaptive weighing
2Several others made this observation contemporaneously [135, 156, 220].

3

training samples can improve BERT model effectiveness. And finally, in Section 3.6 I

revisit the topic of relevance transfer across tasks first discussed in Section 2.2. I show

that it is still an effective technique—given new models and a new large-scale training

resource—through experiments on a new evaluation dataset focused on search over

COVID-19 literature [166].

Although Chapters 2–3 demonstrate that one can use neural methods effectively

for ranking, they overlook an important aspect needed to use these models in practice:

computational efficiency. Specifically, inefficient models would be expensive for search

engines to run and result in a poor user experience due to increased time waiting for

a response. Though there are various ways to measure efficiency, I focus on query-

time latency: the total time it takes to score and rank documents for a given query.

Indeed, approaches based on contextualized language models incur considerable costs

in terms of this measure. By some benchmarks, conventional techniques are over

150× faster than methods using contextualized language models; a query that would

have taken 20 milliseconds to execute instead takes over 3 seconds. In Chapter 4,

I show that—although effective at ranking—these approaches have a considerable

negative impact on query-time latency. I demonstrate techniques to mitigate this cost

by offloading computational cost to index time. I first show a general approach that

involves partially computing representations (Section 4.2). I then show how specialized

ranking architectures can be designed that reduce the computational time even further

by building sparse query and document representations (Section 4.3).

Finally, in Chapter 5, I investigate possible biases and unintended side-effects of

using these models for ranking. Through probing tasks built to isolate specific model

behaviors, I find that models based on contextualized language models exhibit fun-

damentally different behaviors than conventional approaches. For instance, although

lexical signals such as term frequency affect these models’ rankings, they play a much

4

lesser role in scoring; they can distinguish relevance without these signals effectively.

But this has consequences. Models unintuitively favor documents that contain extra

non-relevant information and slightly favor documents that are more formal or fluent

(even when the underlying message is identical), which can potentially harm lan-

guage learners. These are behaviors not exhibited by traditional models and warrant

consideration before deploying a search engine using these methods.

1.1 Hypotheses

I formulate the above into the following concrete hypotheses:

Hypothesis 1: Neural ranking methods suffer from ineffective training environments,

which can be mitigated.

The first part of my dissertation examines how neural ranking models training and

modeling, demonstrating how to improve effectiveness. This is covered in Chapters 2

and 3.

Hypothesis 1.1: Relevance signals can be transferred across datasets to overcome

poor training data.

In Section 2.2,I show that existing training resources can be inadequate in scale

and diversity to build effective ranking models. I show that one can easily over-

come this by utilizing sources of weak supervision. Specifically, I demonstrate that

massive amounts of naturally-occurring text pairs (e.g., headlines and news arti-

cles) can effectively replace traditional sources of labeled relevance data. Then,

in Section 3.6, I show how relevance signals can be transferred across datasets to

a new task when contextualized language models are used.

5

Hypothesis 1.2: Utilizing dataset characteristics can improve the effectiveness

of neural ranking models.

Dataset characteristics, such as Inverse Document Frequency (IDF), have long

shown to be effective signals in retrieval models, yet neural ranking methods

largely overlook them. In Section 2.3, I demonstrate that statistics from the

dataset can be effectively incorporated into neural ranking models. Specifically, I

show how structured query information can be used to improve the task of com-

plex answer retrieval. Later, in Section 3.5, I show how dataset characteristics can

be used to weight samples during training to produce more effective models.

Hypothesis 1.3: Enhanced text representations improve the effectiveness of

ranking models.

I demonstrate in Section 3.2 that contextualized text representations (e.g.,

BERT [44]) can replace static word embeddings in neural ad-hoc ranking models,

and they substantially improve ranking performance. Additionally, incorporating

the pretrained classification mechanism from contextualized language models

further improves ranking effectiveness. In Section 3.3, I show that this can be

useful for another ranking task: ranking the degree of discrepancy in revisions of

clinical reports.

Hypothesis 1.4: Relevance training can be effectively transferred across natural

languages.

Most training resources for IR are only in English. In Section 3.4, I demonstrate

that ranking models capable of effectively ranking documents in multiple lan-

guages can be trained using only English relevance pairs. I also show that adding

6

a small amount of in-language training data can further improve ranking perfor-

mance.

Hypothesis 2: Neural rankers can be implemented with low query-time latency.

Chapter 4 of my dissertation examines the computational efficiency of using neural

ranking models. Specifically, I examine the effect that contextualized language models

have on query-time latency, which has the most substantial impact on end-users.

Hypothesis 2.1: Offloading computations to index time reduces query-time

latency of neural rankers.

In Section 4.2, I show that not all calculations necessarily need to be done at

query-time and that offloading these computations to index-time can reduce the

query-time latency of using these models. This approach can improve the efficiency

of any ranker that uses contextualized language models.

Hypothesis 2.2: Specialized ranking architectures can be designed to reduce

query-time latency.

Armed with the knowledge that not all calculations are necessary to rank docu-

ments effectively, I propose a new model that attempts to reduce the query-time

burden as much as possible in Section 4.3. This proposed model builds sparse

document representations built at index-time and scored at query-time using an

inexpensive dot product operation. I find that this model can significantly improve

ranking effectiveness in a re-ranking setting while contributing as little as 5ms to

the total ranking time.

Hypothesis 3: Neural rankers exhibit fundamentally different behaviors than lexical

ranking methods, which can lead to unintended effects.

7

Chapter 5 proposes new probing tasks to understand the behaviors of retrieval models

better. Using these probes, I find that rankers based on contextualized language

models exhibit linguistic biases not present in lexical models. I find that these biases

are non-trivial to overcome without sacrificing the model’s ranking effectiveness.

1.2 Organization

Given the fast pace of progress in this area, results in each section are presented as

they were at the time of original publication. That is, new baselines were not added

retroactively to studies. Particularly influential was shift to large-scale contextualized

language models. In this dissertation, I re-validate the hypotheses that I originally

validated prior to the rise of contextualized language models, albeit using the newer

techniques and resources that are available at the time. For instance, when validating

Hypothesis 1.1, I originally demonstrated relevance transfer across datasets using

the New York Times corpus [176] and non-contextualized models (Section 2.2). I

later re-explore this topic using contextualized language models and the MS-MARCO

collection [19] with a revised methodology (Section 3.6).

The remainder of this dissertation is organized as follows. In Chapters 2 and 3, I

present support for Hypothesis 1. The introduction of contextualized language models

for ranking (e.g., BERT [44]) represents a major shift in the field, and thus approaches

employed prior to contextualization3 are presented in Chapter 2 and those after con-

textualization in Chapter 3. In Chapter 4, I shift focus towards model efficiency

and provide support for Hypothesis 2. Finally, I present support for Hypothesis 3 in
3I refer to the usage of neural contextualized language models for ranking as contextual-

ization, for short, even though prior efforts to introduce context into neural ranking models
exist (e.g., [76]).

8

Chapter 5 through an extensive analysis of model behaviors. In Chapter 6, I draw

final conclusions of my dissertation and place the work in a broader context.

Parts of Chapters 2–5 are reproductions of my jointly authored publications [108,

109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119].

9

Chapter 2

Ranking Effectiveness of Neural Models without Contextualization

There has been considerable effort in the IR community to design neural network

architectures capable of ranking documents for ad-hoc queries effectively [32, 33].

Although seemingly effective, many of these approaches only appeared to improve

ad-hoc ranking due to comparisons against weak baselines [97]. In this chapter, I

demonstrate that these efforts were nevertheless worthwhile by showing that (1) these

neural ranking architectures be trained effectively using weak supervision labels (i.e.,

their utility extends beyond a single dataset), and (2) that these approaches can

easily incorporate task-specific dataset statistics, which can further improve ranking

effectiveness.

The remainder of this chapter is organized as follows. Section 2.1 sets the stage by

going over prior work in neural ranking. Section 2.2 presents work on content-based

weak supervision for neural ranking, addressing Hypothesis 1.1. Section 2.3 details

work on one particular task, complex answer retrieval, and shows how dataset char-

acteristics can easily be incorporated into neural ranking models, addressing Hypoth-

esis 1.2. Section 2.4 briefly summarizes the innovations described in this chapter.

2.1 Background and Preliminaries

The task of ad-hoc ranking involves sorting a collection of textual documents by

relevance to a particular user query. Let q = {q1, q2, ..., qn} be a query consisting of

10

n tokens, and d = {d1, d2, ..., dm} a document consisting of m tokens. Let D be a

collection of documents. The task of ad-hoc ranking is to order the documents in D

such that the documents that are most relevant to the given query are positioned

near the top of the list rq,D = [d1,d2, ...,d|D|]. This is accomplished by assigning a

relevance score rel(q, d) for every d ∈ D, and ordering the documents in descending

order by the score.

Prior to the recent advances in neural information processing, there was a consider-

able amount of work done to predict document relevance scores based on simple term

occurrence statistics (lexical models). Popular lexical models have included vector

space modeling, probabilistic modeling, and language modeling [55]. The two that are

commonly used as baseline methods are Okapi BM25 [81] and the Query Likelihood

model [154]. Others have developed so-called learning-to-rank approaches, which make

use of training data to combine simple features (e.g., inverse document frequency).

The most notable learning-to-rank approach is LambdaMART [17], which builds

a tree ensemble over engineered features such as TF-IDF scores, PageRank [144],

spam scores, etc. Neural ranking approaches are similar in that they are supervised

approaches, but instead relying on engineered features, they operate over the query

and document content itself. Thus, they are able to directly learn what type of content

is important to match and the types of patterns are indicative of relevance. These

models also may incorporate engineered features (e.g., it is common to include IDF

scores), but the main focus is to learn how to encode and process the query and

document content itself.

One can generalize most neural ranking architectures to rel(q,d) = F (Φq(q),Φd(d)).

Φ·(·) is the text encoding function, which encodes the query or document into a par-

ticular representation. Note that Φq(·) and Φd(·) are often (but not necessarily) the

same function. F (·) is the matching combination function which compares the two

11

encodings to produce a final relevance score. This notation can be used demonstrate

the difference between the two major categories of neural matching architectures

proposed by [146]: representation-focused and interaction-focused. Representation-

focused architectures (Section 2.1.3) employ a Siamese network, where Φ(·) is a deep

neural network yielding a dense representation for a given document, and F (·) is

usually a simple similarity measure (e.g., cosine similarity). In contrast, interaction-

focused architectures (Section 2.1.3) use a simple Φ(·) (e.g., the identify function),

mapping the query and document to their corresponding sequence of terms. Here,

F (·) is a deep neural network that determines textual matches over the interaction

matrix of the query and document.

2.1.1 Training and Inference

Based on traditional learning-to-rank techniques, systems can be trained to either

optimize for item-wise loss, pair-wise loss, or list-wise loss. Most work in neural infor-

mation retrieval has rallied around pair-wise loss, which tends to work better than

the others in practice. Specifically, during training a query q is selected along with

a known relevant document d+ and non-relevant document d− for that query. In

practice, d+ simply needs to be more relevant than d−. This means that for graded

relevance, d+ could be considered highly relevant, while d− could be possibly relevant.

Training in this way improves graded relevance scores like nDCG.

There are two common forms of pair-wise loss functions. The first is hinge loss,

employed by several systems [56, 75]:

L(q,d+,d−; Θ) = max(0, 1− rel(q,d+) + rel(q,d−)) (2.1)

12

where Θ are the model parameters. Hinge loss has recently fallen out of vogue, as

cross-entropy loss has been shown to be more effective [43, 76]:

L(q,d+,d−; Θ) = − log
exp(rel(q,d+))

exp(rel(q,d+)) + exp(rel(q,d−))
(2.2)

During training, random training samples are selected and fed through the net-

work, optimizing for the loss in mini-batches for a fixed number of training epochs.

It is common practice to use a validation set to select the optimal trained model

from among the epochs using a validation metric such as Mean Average Precision

(MAP) [76].

Most training datasets can be characterized as being either deep or wide. Deep

datasets, such as TREC Robust 2004 [201], have human-labeled relevance judgments

for a large proportion of the document collection for each query. However, the cost

of building such judgments typically results in only a small number of queries. Deep

datasets are beneficial for evaluation due to a low proportion of unjudged documents

present in the top results. Wide datasets have a large number of queries, but only

a few relevance judgments per query (either manually-labeled from top-scoring doc-

uments, e.g., MS-MARCO [132], or through a labeling heuristic, e.g., CAR [45]).

Datasets based on user interaction data (such as those based on query logs) are also

considered wide, but such datasets are usually unavailable to researchers due to their

proprietary nature. The variety and scale of these datasets make them attractive for

training models, but can be considered insufficient for evaluation because of their high

proportion of unjudged documents for each query.

Some have also proposed approaches for neural pseudo-relevance feedback

(NPRF) [94]. In this strategy, the top-ranked documents by an unsupervised ranker

(e.g., BM25) are fed back into the model as additional query terms. For practical

reasons, only the top terms by IDF in the pseudo-relevant documents are considered.

13

This means that the approach provides less benefit to (and perhaps harms) models

that use n-gram matching (e.g., ConvKNRM [37] and PACRR [76], see Section 2.1.3).

At inference time, using neural rankers is straightforward. Given a ranking of

documents rkq,D for document q for collection D at cutoff k, each document is assigned

the relevance score from the model: rel(q,d) for each d ∈ rkq,D. The use of the

cutoff k is a practical matter: D can be very large (can contain billions of documents

in web search1) which would take a considerable amount of time to run, and the

user will often be able to fully satisfy their information need from at most several

documents. However, the use of a cutoff can remove potentially relevant documents

that do not meet the criteria of the initial ranking. This approach is considered a

telescoping approach (also also referred to as cascading, multi-staged, pipelined, re-

ranking) [123, 207]. In this dissertation, I focus on using a simple ranking function,

such as BM25, to produce the initial candidate list.

Others have proposed doing completely end-to-end neural ranking, by learning

sparse or dense representations [84, 215, 228]. In practice, performing re-ranking atop

these results are often still beneficial. Others have explored using neural networks to

add expansion terms at query-time [136, 138].

Neural rankers are often evaluated on standard benchmark datasets (covered

below), or on proprietary query log information. Note that proprietary datasets make

the replication of results difficult. With recent developments in large-scale datasets

for neural ranking, this problem should hopefully be reduced.

2.1.2 Ranking Datasets

Several ad-hoc retrieval datasets exist, and can be used for both the training and

evaluation of neural ranking approaches. The following are the datasets most com-
1http://lemurproject.org/clueweb09.php/

14

Table 2.1 Comparison of datasets commonly used for evaluating neural
ad-hoc retrieval performance.

Relevance Judgments

Dataset Documents Topics Total Per topic All rel.

TREC Robust 2004 528k 249 311k 1.2k
TREC WebTrack 2009–12 1.0B 200 84k 420
TREC WebTrack 2013–14 733M 100 28k 280
TREC CAR (automatic) 30M 2.2M 5.2M 2.3 X
TREC CAR (manual) 30M 702 30k 23
MS-MARCO (train) 8.8M 809k 533k 0.7 X

The ‘All rel’ column indicates that all the collection contains only positive relevance
judgments (no non-relevance judgments).

monly used for neural information retrieval. Some were designed with data-hungry

neural approaches in mind, whereas others have other desirable qualities which make

them appealing for training or evaluating these approaches. A summary is provided

in Table 2.1.

TREC Robust 2004 [201]. This dataset contains a document collection of 528k

and 249 topics. Its focus on poor-performing topics makes this a challenging task.

This collection also has a remarkably large number of manual relevance judgments,

containing 311k relevance judgments (over 1.2k per topic). This covers a large pro-

portion of documents in the collection for each query, and makes the dataset less

biased towards the original systems that participated in the competition because the

judgment pooling depth was much larger. When training using this dataset, people

often use 5-fold cross-validation, although there is no consensus in the community

about which folds to use.

15

TRECWebTrack 2009–14 [24]. The TRECWebTrack focuses on retrieval from

massive collections, as would be encountered when doing web search. There are 50

topics for each year, and two document collections explored (ClueWeb09 for years

2009–12, and ClueWeb12 for years 2013–14). This dataset is challenging due to its

scale. It is common to perform round-robin evaluation with this dataset, testing on

one year, validating on another, and training on the remaining years [76].

TREC CAR [47]. Inspired by the task of re-creating encyclopedic articles based

on their heading structure, TREC Complex Answer Retrieval (CAR) frames this

task as ad-hoc passage retrieval from Wikipedia. To encourage and facilitate neural

system participation, the task includes ‘automatic’ relevance judgments assumed from

the structure of Wikipedia articles: paragraphs under a particular heading (treated

as a topic) are assumed to be relevant. This is a reasonable assumption due to the

high editorial quality of Wikipedia. Since this only provides a notion of relevance,

non-relevant documents must be assumed using some other technique. The track

organizers also perform manual relevance assessment, which showed a correlation

between performance of systems when evaluated on the automatic judgments and on

the manual judgments.

MS-MARCO [132]. This dataset contains over 800k queries that were collected

as questions found on the Bing query log. Annotators were instructed to write answers

to questions based on passages retrieved from these documents. This dataset is used

for several tasks, one of which is ad-hoc retrieval (passage re-ranking). Passages used

to construct the answers are considered relevant, and all other documents are consid-

ered non-relevant. In this dataset, some topics have no relevant answers, which is thy

the average number of relevance judgment per topic is less than 1. Due to the mas-

sive scale of this dataset, it is the base of the upcoming 2019 TREC Deep Learning

16

track. With the TREC task, a set of manual relevance judgments will be collected,

enhancing the quality of the evaluation dataset.

A few trends can be observed from these datasets. First, the more queries the

collection has, the fewer relevance judgments per topic tend to be available. This

is a serious limitation for deep learning systems because non-scored documents are

typically treated as non-relevant for most evaluations. This means that systems that

identify novel relevant documents may be penalized for doing so. Since neural tech-

niques address the problem of ad-hoc ranking in a new way, this potentially means

that evaluations are biased against them. Furthermore, it could also bias the per-

formance of these systems against finding novel relevant documents because such

documents are not labeled as relevant. This is one reason why the Robust dataset is

so valuable for neural ad-hoc ranking evaluation: it contains relevance judgments for

a much higher proportion of documents in the collection per query than the other

datasets. This, however, comes at the expense of a wide variety of topics and a large

document collection. Because of this, weak supervision approaches for this task may

be particularly valuable [43, 93]; models can be taught on an extensive and varied

dataset (with few relevance judgments), but evaluated on a more robust dataset.

2.1.3 Neural Ranking Architectures

In this section, I present several proposed non-contextualized neural network archi-

tectures designed for the task of ad-hoc ranking.

Representation-Focused Matching

Representation-focused ranking architectures focus on modeling the representation

function Φ(·) using a deep neural network, and rely on a simple similarity function

F (·). The representation function Φ(·) produces two k-length vectors, one for the

17

query and one for the document: rq = Φq(q) ∈ Rk, rd = Φd(d) ∈ Rk. The represen-

tation function can be trained as part of a Siamese network (in this case Φq = Φd),

or with a separate networks for learning the query and document independently. The

similarity function is often just the cosine similarity between the two representations,

i.e.,

F (rq, rd) = cosine(rq, rd) =
rq · rd
|rq||rd|

=

∑k
i=1 rqirdi√∑k

i=1 rq
2
i

√∑k
i=1 rd

2
i

(2.3)

I now present the most notable representation-focused ranking architectures.

DSSM [73]. The Deep Structured Semantic Model (DSSM), proposed in 2013,

was the first representation-focused model for ad-hoc retrieval. It uses identical net-

works to produce rq and rd. They start with a bag of words representation of each

query/document in Nv where v is the size of the vocabulary and each value represents

the count of occurrences of each word in the query/document (without normaliza-

tion). Since this vector is very large and sparse, they reduce the dimensionality using

a technique called word hashing. Each term is broken down into its component char-

acter trigrams (with one padding character on each side). Thus, they reduce their

input space from Nv to Nt, where t is the number of trigrams present in a vocabulary.

For an English vocabulary of size v = 500k, this reduces the size to t = 30k. The

authors show that collisions are rare empirically. Aside from reducing the dimension-

ality, this technique also accounts for some morphological differences in terms (e.g.,

‘cheese’ and ‘cheeses’ contain common trigrams). These representations are further

reduced into a lower-dimensional real-valued space using a 3-layer multi-layered pre-

ceptron. They propose intermediate layers of size 300, and a final layer of size 128.

These representations are then compared using cosine similarity to produce relevance

scores. This structure enables the model to learn the ways in which terms in a given

query or document interact with one another, but does not account for how terms

18

may interact between the query and document (this is covered by interaction-focused

models in Section 2.1.3). Due to the large number of parameters, this model needs

a considerable amount of training data to perform well. Thus, the authors propose

using query log clickthrough information to train this network using log likelihood

loss. They show this is an effective approach, and outperform classical baselines like

BM25 as well as other dimensionality-reduction techniques. However, these results

are not directly replicable due to an evaluation conducted on a proprietary query log.

Recently, DSSMs have also been applied to other natural language processing tasks.2

CDSSM [186]. This model builds upon the DSSM model by including convolu-

tion operations over terms in the document when building representations. Specifi-

cally, rather than treating entire queries/documents as a bag of character n-grams, it

treats each word individually as a bag of character n-grams and performs a convolu-

tion operation over each window of k terms. The word n-gram scores are combined

using max pooling, followed by a multi-layer perceptron to build the dense representa-

tions. As with DSSM, they recommend using cosine similarity to measure the distance

between the query and document representations. The authors report ranking per-

formance improvements compared to DSSM when this approach when using k = 3,

and attribute the improvements to improved semantic understanding of local context.

Their evaluation is conducted using a proprietary dataset based on a query log, so

their results are not directly replicable. The paper also did not provide any analysis

indicating that their model was successfully learning local contextual representations,

rather than doing something else that is valuable but less interesting, e.g., learning
2For instance, Wang et al. [209] claim that DSSMs can be applied to commonsense

reasoning. In this application, the authors replace the word hashing mechanism with word
embeddings, the dense layers that build the representation with bi-directional recurrent
layers (encoding different segments of a given sentence), and the scoring function with a
multi-layer perceptron. Thus, their approach only loosely resembles the original DSSM (if
at all).

19

to filter out stop words. They could have tested this by using smaller windows (e.g.,

k = 1, which would have shown if the model was learning to filter out individual

terms), and by calculating the term similarity of example word n-grams that have

similar meanings.

Interaction-Focused Matching

Interaction-focused ranking architectures focus on modeling the similarity function

F (·) via a deep neural network, rather than the representation function Φ(·). This is

accomplished by using a simple approach to combine the query and document into

interaction matrix M ∈ R|q|×|d| (sometimes called a similarity matrix or a translation

matrix in literature), and learning how to transform this combined representation into

the relevance score. Approaches primarily differ in the way in which they construct

the interaction matrix, and the neural architectures that they use to transform the

interaction matrix into a relevance score. The most common similarity matrix format

is by using the cosine similarity between the word vector of each term in the query

and each term in the document.

There have been a wide variety interaction-focused ranking architectures proposed.

Here, I present the most notable efforts.

DRMM [56]. The Deep Relevance Matching Model made an important step for

interaction-focused matching: it introduced the use of a cosine similarity matrix as the

primary input source. Based on these scores, it proposed summarizing a query term’s

interaction with the document using histograms based on term similarity values.

Buckets are placed between [−1.0, 1.0] at intervals of 0.5, with one special bucket for

exact matches with a similarity score of exactly 1.0. A simple densely-connected net-

work combines this histogram for each query term into a relevance score for the query

term. These term scores are then combined together to produce a final relevance

20

score via weighted summation. Two techniques were explored for term weighting,

including by IDF and by term vector weighting (i.e., using a linear combination of

the term word vectors). The author’s experiments indicated that weighting by IDF

performs better than term vector weighting. They also explored several normalization

techniques for the histogram values itself. These techniques include normalizing by

the document length (resulting in relative occurrence counts, rather than absolute

counts), and by taking the logarithm of each count. They found that the length-

normalized counts performed significantly worse than the other approaches, whereas

the log count value performed marginally better than the raw count. They found

that their approach outperforms the representation-focused approaches on the TREC

Robust and WebTrack datasets. However, this is not a necessarily a fair compar-

ison because it is well-known that representation-focused approaches require mas-

sive amounts of training data (such as query log behavioral information). They also

showed that their approach significantly outperforms a Query Likelihood and BM25

baseline. In these experiments, BM25 and QL appeared to be adequately tuned, with

performance comparable to those reported in [97].

KNRM [214]. The Kernel-based Neural Ranking Model is conceptually similar to

DRMM in several ways. First, and most importantly, it replaces the hard buckets used

by DRMM’s histogram with soft buckets based on Gaussian kernels. These kernels

function like the score histograms, but instead degrade their signals as the score is

farther from the center. The kernel score ki for query term i and document term j is:

ki =
∑
j

exp

(
− (Mi,j − µ)2

2σ2

)
(2.4)

where µ and σ are parameters of the kernel. The authors use a bank of 10 kernels,

evenly-spaced throughout the range of [−0.9, 0.9] (with σ = 0.1), and a final narrow

kernel around the identity (µ = 1.0, σ = 10−3). In their work, they used fixed kernels,

21

and apply back-propagation to the word vectors to shift them into the appropriate

buckets. It was trained using proprietary query log information. In my own experi-

ments on smaller public datasets (e.g., TREC Robust and WebTrack), I have found it

more effective to keep the word vectors fixed and back-propagate to kernel parameters

µ and σ. This results in the widening, narrowing, and shifting of the kernels to fit

typical word similarity distributions. Like DRMM, KNRM use a linear combination

of the scores to produce a relevance score for each query term. It then sums these

individual scores to produce a final query relevance score. In their work, they do not

use DRMM’s approach of weighted score summation. Overall, this paper does an

excellent job showing the effectiveness of the kernels, for instance by demonstrating

how word similarity scores shift during training, and by showing which static values

of µ are effective on their dataset.

ConvKNRM [37]. This model extends KNRM with convolutional filters over

the input word embeddings. Through this mechanism, the model is able to learn n-

gram similarity scores, an important consideration ignored by DRMM and KNRM.

N-gram similarity scores are particularly important for multi-word expressions, such

as ‘New York City’; when each of these terms are treated independently, a document

that describes a new construction project in the English city of York may be consid-

ered just as relevant as a document that mentions New York City itself. The model

runs learned multi-channel 1-dimensional convolutions over the input word embed-

dings to produce n-gram embeddings. These embeddings are then ‘cross-matched’,

meaning that a separate similarity matrix is generated for each n-gram length. For

instance, if the maximum convolution size is 3, there will be 9 similarity matrices gen-

erated: one between unigrams and unigrams, one between unigrams and bigrams, etc.

This allows some multi-word expressions to potentially match shorter variants. For

instance, ‘New York City’ can match ‘NYC’. The remainder of the pipeline is identical,

22

with the generalization of utilizing multiple similarity matrices. The authors demon-

strate substantial gains on both WebTrack and a proprietary query log dataset, but

unfortunately provide little in the way of analysis. Aside from a few case studies,

they provide a strange evaluation in which scores from ConvKNRM are included as

features in RankSVM to determine the relative importance. A much more effective

and convincing way to demonstrate this would be to conduct an ablation study, which

makes me skeptical that all the components are completely necessary.

MatchPyramid [146]. Like ConvKNRM, MatchPyramid also takes a convolu-

tional approach to relevance ranking. However, unlike ConvKNRM, it captures pat-

terns that occur in the similarity matrix itself by performing 2-dimensional convolu-

tion and pooling over the matrix. By stacking these convolutions on top of each other,

the authors claim the model learns to capture larger and broader patterns throughout

the document. Since the image gets smaller after each convolution layer, this forms a

pyramid shape. This approach is borrowed from classic image processing techniques,

which perform similar operations to detect edges, features, and objects in images. At

the top of the pyramid, the scores are combined using a simple dense network into

a final relevance score. The authors also experimented with alternative approaches

for formulating the similarity matrix: using a dot product, and performing Gaus-

sian filtering over the similarity scores. They found that Gaussian filtering was the

most effective technique on the TREC Robust dataset, which severely limits noise

from non-exact matches. They show that this does provide some benefits beyond

only considering exact matches, however. The authors also experiment with various

convolution and pooling sizes, finding that a large pooling size of 3× 10 and a small

convolution size of 1×3 is effective. These settings do not match my intuitions, partic-

ularly the convolution size; I’m not convinced that 1×3 convolutions would introduce

any interesting patterns, besides just term occurrence; interesting patterns can occur

23

for adjacent terms. In related work, the authors also show that this technique is useful

for other text matching tasks, such as paraphrase detection [147].

PACRR [75]. The Position-Aware Convolutional-Recurrent Relevance Matching

model has some similarities to the MatchPyramid model, but aims to more explicitly

model n-gram interactions between the query and document. It uses multiple sizes

of learned square convolutional filters. These square filters are able to capture soft

n-grams, referring to n-grams that may have soft term matches (via similarity scores)

and/or are out-of-order or have skipped terms (e.g., a query of ‘computer science

course’ could match ‘courses in computer science’). The pooling strategy is different

than MatchPyramid as well. Rather than pooling over document region, the model

pools over the filter dimension, thus producing a single n-gram score for each query

n-gram for each position in the document. To account for variable document lengths,

the PACRR model then takes the top k scores along the document dimension for each

query term (k-max pooling). In their experiments on TREC WebTrack, they showed

that different values of k are valuable on different subsets, but reasonable values are

k = 2 or k = 3. These query term n-gram scores are then concatenated with IDF

scores, and aggregated using a recurrent neural network to produce a final relevance

score. In follow-up work, the authors investigated the types of patterns captured

by the model [224]. One such finding was that the model weights larger n-grams

higher during score combination, presumably due to their rarity. One characteristic

that makes this model unique is it‘s focus on top k matching (where k is a low

number). This technique is at odds with conventional wisdom that the more frequently

a term appears in a document, the more relevant it is. Nonetheless, the authors show

encouraging results with their model. This is likely due to the enhanced notion of

term proximity relevance that the model is able to capture.

24

CO-PACRR [76]. The CO-PACRR model is a variant of PACRR which attempts

to better capture COntext. They accomplish this with three components: a query

disambiguation component, cascaded k-max pooling, and a shuffled dense score com-

bination step during training. The query disambiguation component measures the

similarity score between each sliding window in the document and the query as a

whole. This is accomplished by averaging the embeddings of the query, averaging

the embeddings of the document window, and taking the cosine similarity between

these values. These scores are concatenated with the n-gram scores before score com-

bination. The authors claim that this allows the model to account for ambiguity in

the term matches. Since this work was published, contextualized word vectors have

gained popularity (e.g., BERT [44]), which may also be able to address this ambiguity.

The cascaded k-max pooling operates by taking the k maximum values for varying

proportions of terms in the document. The authors suggest using windows of 0-25%,

0-50%, 0-75%, and the full document. This cascading approach enables the model to

identify whether strong term matches occur early in the document, which may indi-

cate higher relevance than those that are only matched near the end of the document.

Finally, they replace the recurrent combination of PACRR with a simple dense layer,

as is done with other models like MatchPyramid. However, unlike other models, they

shuffle the query term positions during training. This reduces the chance of over-

fitting to small training sets. The authors conduct extensive experiments on TREC

WebTrack, and show that each component of their model is valuable via an ablation

study. Overall, this paper contains many valuable insights that are overlooked by

other neural ranking architectures. However, the authors could have strengthened the

case for the modifications by also showing that they are effective on other models.

For instance, perhaps cascaded pooling would also enhance KNRM, by summing the

kernel scores over different document segments.

25

DeepRank [148]. The generically-named DeepRank model is conceptually similar

to PACRR and CO-PACRR (yet it makes no reference to those works). However, it has

some important distinctions. First, it limits the scope to only regions of the document

that have term matches. This may reduce noise from elsewhere in the document. This

is motivated by how humans may evaluate relevance of a document – they first jump

to a particular keyword they are looking for, and then read the surrounding area of

the document to determine if it’s what they are looking for. Within each region, the

authors experiment with both 2D (square) convolution and 2D GRU (recurrent) cells.

They found that the convolution approach is more effective empirically. The scores

are then combined using a recurrent layer that includes an encoding of document

position. Similar to the cascaded pooling done by CO-PACRR, this can allow the

model to prioritize matches that occur early in the document. The authors explore

several ways to encode the position, and find an exponential or reciprocal encoding

of document position is most effective (with tuned hyper-parameters). This is in line

with prior work and intuition that the earlier that mentions occur in a document,

the more important they are to a document’s topic. They also found that including

the word representations as additional input channels alongside the similarity matrix

was more effective than the similarity matrix alone. This might be due to the use

of a larger dataset (LETOR); the authors suggest that deep neural ranking models

cannot be trained effectively on smaller datasets such as TREC Robust or WebTrack.

However, as we know from the prior models covered in this section, neural rankers can

be trained effectively on these datasets. Overall, although this paper shows promising

results and provides some insights into what network characteristics can be valuable,

the authors fail to place their contributions in the context of other related work done

in the area.

26

DeepTileBars [193]. This work challenges the use of a similarity matrix as inter-

action input. Instead, the use a representation based on the TileBars algorithm [64],

a technique for visualizing term occurrences in retrieved documents. The algorithm

splits the document into segments based on topical shift. Thus, a document that goes

on about one particular topic (e.g., spam) may be collapsed into a single segment,

whereas a document that covers several topics or facets about a topic (e.g., a well-

written encyclopedic article) may be represented in several topics. For each topic,

the paper suggests three measurements for each query term: the term frequency of

the topic in the given text segment, the IDF of the term (if it matches exactly any-

where in the segment), and the maximum cosine similarity of any term found in the

segment. Then, 1-dimensional convolution is applied over the segments with varying

lengths. The result of this convolution is combined using a recurrent neural network,

and the final scores are combined using a simple dense layer. While I consider the

intuition of the paper good, there are several ways they could have made their results

more convincing. First, they did not demonstrate that their algorithm was tolerant to

different TileBar parameters. An analysis showing the performance impact in the two

degenerate situations for TileBars (one segment covering the entire document, and

one segment for each document term) would also be valuable to see. Furthermore, the

use of convolution places a heavy importance on query term order. Like CO-PACRR,

the authors should have considered shuffling the query terms to avoid over-fitting to

the training data, given that they evaluated on a dataset with relatively few queries

(TREC WebTrack).

27

Hybrid Approaches

Not all matching architectures conform directly to the representation-interaction

dichotomy. Here I cover notable examples which do not conform easily into the

paradigm.

Duet [127]. The duet architecture combines an interaction model (which they call

a ‘local’ model), and a representation model (which they call a ‘distributed’ model).

Rather than combining existing approaches, they develop their own network topology.

For the interaction model, they use a binary interaction matrix and perform convolu-

tion with a length of 1 over the query dimension, followed by dense score combination.

Unlike other interaction models, this allows for learning exact absolute term occur-

rence positions in the document. Their representation model resembles CDSSM, but

differs in the use of window-based pooling (window of 8 for Φq, and window of 100 for

Φd).3 This results in different sizes of query and document representations, where the

query is represented as a 300-dimensional vector, and the document is represented

as a 300 × 899 matrix, where 899 is derived from the maximum document length

of the model. To compute the distance between the two, a Hadamard (element-wise)

product is employed, followed by a multi-layer perceptron. The model produces a final

relevance score simply by summing the scores of their two models. They train their

system using behavioral information (Bing search engine click-through information),

and evaluate on a subset of these queries that were manually scored for relevance.

They show that their representation model is more effective on it‘s own than their
3The authors suggest that window-based pooling should perform better than global

pooling because it allows for localized matching (e.g., maybe matches early in the docu-
ment are more valuable than matches later in the document). Indeed, they show that the
performance of just representation model slightly outperforms CDSSM. However, since other
differences exist in the structure of the two (e.g., size of representations), it is unclear that
the pooling alone has the effect.

28

interaction model (in fact, the interaction model barely outperforms a BM25 base-

line), but combining the two models improves performance further.

Duet v2 [126]. The authors of the Duet model recently proposed a set of mod-

ifications to the duet model to tune the model for passage retrieval. As a technical

report, the paper leaves much to be desired. However, through an ablation study on

MS-MARCO, they provide evidence that the following changes to the Duet model

can be effective for passage ranking:

1. Use an IDF-weighted binary interaction matrix. That is, rather than a simple

binary indicator for each value, instead use the IDF of the term as the positive

indicator. Among the changes, this improves the results most substantially.

2. Use multi-layer perceptron to combine score from representation and interaction

models, rather than summing the scores.

3. Use relu activation function, rather than tanh. The authors provide no moti-

vation for this change, but empirically show that it performs better.

4. Use pretrained word embeddings rather than character trigrams to build repre-

sentation model.

5. Use bagging to produce an ensemble of Duet models, with different random

seeds and a different sample of training data.

Weak Supervision and Domain Transfer

In IR, weak supervision uses pseudo-relevant information to train a ranking model

in place of human judgments. This is valuable for overcoming the deep/wide dataset

tradeoff and for building ranking models that are not overfit to a particular evaluation

dataset.

29

Early work on weak supervision for IR focused on training learning-to-rank

models [8], using web anchor text [6] and microblog hashtags [12] for weak supervi-

sion. More recently, Dehghani et al. [43] proposed a weak supervision approach that

makes use of the AOL query log and BM25 results as a source of training data. Aside

from limitations surrounding the availability of query logs, their approach suffers

from limitations of BM25 itself: it assumes that documents ranked higher by BM25

are more relevant to the query than documents ranked lower. Others have suggested

using a similar approach, but using news headlines [93], also assuming relevance

from BM25 rankings. Still others have employed Generative Adversarial Networks

(GANs) to build training samples [206], but this limits the generated data to the

types of relevance found in the training samples, Others have demonstrated that one

can transfer relevance signals across domains (e.g., from TREC Microblog to TREC

Robust, as in [220]) making it a complementary approach. In contrast, in Section 2.2

I present an approach uses freely-available text pairs that exhibit both a high quality

and large size.

2.2 Effective Ranking with Content-Based Weak Supervision

Our goal was to evaluate how well one can train neural ranking models on a large,

naturally-occurring dataset of text pairs. The idea is that models successfully trained

in such a way should be able to overcome a lack of adequate relevance training pairs,

and also produce models that do not overfit a particular evaluation dataset. While

others have explored weak supervision approaches for training ad-hoc ranking models,

our work in [108, 112] uses text pairs as relevance signals (such as headlines and

articles from news articles), rather than signals like BM25 (as done by [43]).

30

2.2.1 Methodology

Recall that pairwise training consists of a set of training triples, each consisting of

a query q, relevant document d+, and non-relevant document d−. We describe two

sources of weak supervision training data that replace human-generated relevance

judgments: ranking-based and content-based training sources.

Ranking-based Sources

Ranking-based training sources, first proposed by [43], are defined by a collection of

texts T , a collection of documents D, and an unsupervised ranking function R(q, d)

(e.g., BM25). Training triples are generated as follows. Each text is treated as a query

q ∈ T . All documents in D are ranked using R(·), giving Dq. Relevant documents

are sampled using a cutoff c+, and non-relevant documents are sampled using cutoff

c−, such that d+ ∈ Dq[0 : c+] and d− ∈ Dq[c+ : c−]. This source is referred to as

ranking-based because the unsupervised ranker is the source of relevance.4

Content-based Sources

Content-based training sources are defined as a collection of text pairs P =

{(a1, b1), (a2, b2), ..., (a|P |, b|P |)} and an unsupervised ranking function R(q, d) (e.g.,

BM25). The text pairs should be semantically related pairs of text, where the first

element is similar to a query, and the second element is similar to a document in

the target domain. For instance, they could be heading-content pairs of news articles

(the headline describes the content of the article content). For a given text pair, a

query and relevant document are selected (q, d+) ∈ P . The non-relevant document

4Our formulation of ranking-based sources is slightly different than what was proposed
by Dehghani et al. [43]: we use cutoff thresholds for positive and negative training sam-
ples, whereas they suggest using random pairs. Pilot studies we conducted showed that the
threshold technique usually performs better.

31

is selected from the collection of documents in B = {b1, b2, ..., b|P |}. We employ R(·)

to select challenging negative samples from Bq. A negative cutoff c− is employed,

yielding negative document d− ∈ Bq[0 : c−] − {d+}. We discard positive samples

where d+ is not within this range to eliminate overtly non-relevant documents. In a

re-ranking setting, the neural ranker is unlikely to encounter documents so different

from the query anyway. This approach can yield documents relevant to q, but we

assert that d+ is more relevant.

Although ranking-based and content-based training sources bear some similari-

ties, important differences remain. Content-based sources use text pairs as a source

of positive relevance, whereas ranking-based sources use the unsupervised ranking.

Furthermore, content-based sources use documents from the pair’s domain, not the

target domain. We hypothesize that the enhanced notion of relevance that content-

based sources gain from text pairs will improve ranking performance across domains,

and show this in Section 2.2.2.

Filter Framework

We propose a filtering framework to overcome domain mismatch that can exist

between data found in a weak supervision training source and data found in the target

dataset. The framework consists of a filter function FD(q, d) that determines the suit-

ability of a given weak supervision query-document pair (q, d) to the domain D. All

relevant training pairs (q, d+) ∈ S for a weak supervision source S are ranked using

FD(q, d+) and the cmax maximum pairs are chosen: SD = maxcmax

(q,d+)∈S FD(q, d+). To

tune FD(·) to domain D, a set of template pairs from the target domain are employed.

The set of pairs TD is assumed to be relevant in the given domain.5 We assert that
5Templates do not require human judgments. We use sample queries and an unsupervised

ranker to generate TD. Manual judgments can be used when available.

32

these filters are easy to design and can have broad coverage of ranking architectures.

We present two implementations of the filter framework: the kmax filter, and the

Discriminator filter.

k-Maximum Similarity (kmax) filter. This heuristic-based filter consists

of two components: a representation function rep(q, d) and a distance function

dist(r1, r2). The representation function captures some matching signal between

query q and document d as a vector. Since many neural ranking models consider

similarity scores between terms in the query and document to perform soft term

matching [37, 56, 75, 214], this filter selects the k maximum cosine similarity scores

between the word vectors of each query term and all terms in the document:

maxkdj∈d sim(qi, dj) : ∀qi ∈ q.

Since neural models can capture local patterns (e.g., n-grams), we use an aligned

mean square error. The aligned MSE iterates over possible configurations of ele-

ments in the representation by shifting the position to find the alignment that yields

the smallest distance. In other words, it represents the minimum mean squared

error given all rotated configurations of the query. Based on the shift operation and

given two interaction representation matrices r1 and r2, the aligned distkmax(r1, r2)

is defined as the minimum distance when shifting r1 for s ∈ [1, |r1|). More formally:

distkmax(r1, r2) = min
|r1|
s=1 MSE

(
shift(r1, s), r2

)
.

Using these two functions, the filter is simply defined as the minimum distance

between the representations of it and any template pair from the target domain:

FD(q, d) = min
(q′,d′)∈TD

dist(rep(q, d), rep(q′, d′)) (2.5)

Discriminator filter. A second approach to interaction filtering is to use the

ranking architecture R itself. Rather than training R to distinguish different degrees

of relevance, here we use R to train a model to distinguish between samples found

33

in the weak supervision source and TD. This technique employs the same pairwise

loss approach used for relevance training and is akin to the discriminator found in

generative adversarial networks. Pairs are sampled uniformly from both templates

and the weak supervision source. Once RD is trained, all weak supervision training

samples are ranked with this model acting as FD(·) = RD(·).

The intuition behind this approach is that the model should learn characteris-

tics that distinguish in-domain pairs from out-of-domain pairs, but it will have diffi-

culty distinguishing between cases where the two are similar. One advantage of this

approach is that it allows for training an interaction filter for any arbitrary ranking

architecture, although it requires a sufficiently large TD to avoid overfitting.

2.2.2 Experiment

We now evaluate the effectiveness of models trained with ranking-based, content-

based, and filtered weak supervision.

Experimental Setup

Training sources. We use the following four sources of training data to verify the

effectiveness of our methods:

- Query Log (AOL, ranking-based, 100k queries). This source uses the AOL

query log [149] as the basis for a ranking-based source, following the approach

of [43].6 We retrieve ClueWeb09 documents for each query using the Indri7 query

6Distinct non-navigational queries from the AOL query log from March 1, 2006 to May
31, 2006 are selected. We randomly sample 100k of queries with length of at least 4. While
Dehghani et al. [43] used a larger number of queries to train their model, the state-of-the-art
relevance matching models we evaluate do not learn term embeddings (as [43] does) and
thus converge with fewer than 100k training samples.

7https://www.lemurproject.org/indri/

34

likelihood (QL) model. We fix c+ = 1 and c− = 10 due to the expense of sampling

documents from ClueWeb.

- Newswire (NYT, content-based, 1.8m pairs). We use the New York Times

corpus [176] as a content-based source, using headlines as pseudo queries and the

corresponding content as pseudo relevant documents. We use BM25 to select the

negative articles, retaining top c− = 100 articles for individual headlines.

- Wikipedia (Wiki, content-based, 1.1m pairs). Wikipedia article heading hier-

archies and their corresponding paragraphs have been employed as a training set

for the Trec Complex Answer Retrieval (CAR) task [129]. We use these pairs

as a content-based source, assuming that the hierarchy of headings is a relevant

query for the paragraphs under the given heading. Heading-paragraph pairs from

train fold 1 of the Trec CAR dataset [47] (v1.5) are used. We generate negative

heading-paragraph pairs for each heading using BM25 (c− = 100).

- Manual relevance judgments (WT10). We compare the ranking-based and

content-based sources with a data source that consists of relevance judgments gen-

erated by human assessors. In particular, manual judgments from 2010 Trec Web

Track ad-hoc task (WT10) are employed, which includes 25k manual relevance judg-

ments (5.2k relevant) for 50 queries (topics + descriptions, in line with [56, 75]).

This setting represents a new target domain, with limited (yet still substantial)

manually-labeled data.

Training neural IR models. We test our method using several state-of-the-

art neural IR models: PACRR [75], Conv-KNRM [37], and KNRM [214].8 We use

8By using these state-of-the-art architectures, we are using stronger baselines than those
used in [43, 93].

35

the model architectures and hyper-parameters (e.g., kernel sizes) from the best-

performing configurations presented in the original papers for all models. All models

are trained using pairwise loss for 200 iterations with 512 training samples each itera-

tion. We use Web Track 2011 (WT11) manual relevance judgments as validation data

to select the best iteration via nDCG@20. This acts as a way of fine-tuning the model

to the particular domain, and is the only place that manual relevance judgments are

used during the weak supervision training process. At test time, we re-rank the top

100 Indri QL results for each query.

Interaction filters. We use the 2-maximum and discriminator filters for each

ranking architecture to evaluate the effectiveness of the interaction filters. We use

queries from the target domain (Trec Web Track 2009–14) to generate the template

pair set for the target domain TD. To generate pairs for TD, the top 20 results from

query likelihood (QL) for individual queries on ClueWeb099 and ClueWeb12,10 are

used to construct query-document pairs. Note that this approach makes no use of

manual relevance judgments because only query-document pairs from the QL search

results are used (without regard for relevance). We do not use query-document pairs

from the target year to avoid any latent query signals from the test set. The super-

vised discriminator filter is validated using a held-out set of 1000 pairs. To prevent

overfitting the training data, we reduce the convolutional filter sizes of PACRR and

ConvKNRM to 4 and 32, respectively. We tune cmax with the validation dataset

(WT11) for each model (100k to 900k, 100k intervals).

Baselines and benchmarks. As baselines, we use the AOL ranking-based source

as a weakly supervised baseline [43], WT10 as a manual relevance judgment baseline,

and BM25 as an unsupervised baseline. The two supervised baselines are trained
9https://lemurproject.org/clueweb09.php

10https://lemurproject.org/clueweb12.php

36

using the same conditions as our approach, and the BM25 baselines is tuned on each

testing set with Anserini [217], representing the best-case performance of BM25.11

We measure the performance of the models using the Trec Web Track 2012–2014

(WT12–14) queries (topics + descriptions) and manual relevance judgments. These

cover two target collections: ClueWeb09 and ClueWeb12. Akin to [43], the trained

models are used to re-rank the top 100 results from a query-likelihood model (QL,

Indri [190] version). Following the Trec Web Track, we use nDCG@20 and ERR@20

for evaluation.

Results

In Table 2.2, we present the performance of the rankers when trained using content-

based sources without filtering. In terms of absolute score, we observe that the two

n-gram models (PACRR and ConvKNRM) always perform better when trained on

content-based sources than when trained on the limited sample of in-domain data.

When trained on NYT, PACRR performs significantly better. KNRM performs worse

when trained using the content-based sources, sometimes significantly. These results

suggest that these content-based training sources contain relevance signals where n-

grams are useful, and it is valuable for these models to see a wide variety of n-gram

relevance signals when training. The n-gram models also often perform significantly

better than the ranking-based AOL query log baseline. This makes sense because

BM25’s rankings do not consider term position, and thus cannot capture this impor-

tant indicator of relevance. This provides further evidence that content-based sources

do a better job providing samples that include various notions of relevance than

ranking-based sources.
11Grid search: b ∈ [0.05, 1] (0.05 interval), and k1 ∈ [0.2, 4] (0.2 interval)

37

Table 2.2 Ranking performance when trained using content-based sources
(NYT and Wiki).

nDCG@20

Model Training WT12 WT13 WT14

BM25 (tuned w/ [217]) 0.1087 0.2176 0.2646

PACRR WT10 B↑ 0.1628 0.2513 0.2676
AOL 0.1910 0.2608 0.2802

NYT W↑ B↑ 0.2135 A↑ W↑ B↑ 0.2919 W↑ 0.3016
Wiki W↑ B↑ 0.1955 A↑ B↑ 0.2881 W↑ 0.3002

Conv-KNRM WT10 B↑ 0.1580 0.2398 B↑ 0.3197
AOL 0.1498 0.2155 0.2889

NYT A↑ B↑ 0.1792 A↑ W↑ B↑ 0.2904 B↑ 0.3215
Wiki 0.1536 A↑ 0.2680 B↑ 0.3206

KNRM WT10 B↑ 0.1764 0.2671 0.2961
AOL B↑ 0.1782 0.2648 0.2998

NYT W↓ 0.1455 A↓ 0.2340 0.2865
Wiki A↓ W↓ 0.1417 0.2409 0.2959

Significant differences compared to the baselines ([B]M25, [W]T10, [A]OL) are indi-
cated with ↑ and ↓ (paired t-test, p < 0.05).

38

When comparing the performance of the content-based training sources, we

observe that the NYT source usually performs better than Wiki. We suspect that

this is due to the web domain being more similar to the newswire domain than the

complex answer retrieval domain. For instance, the document lengths of news articles

are more similar to web documents, and precise term matches are less common in

the complex answer retrieval domain.

We present filtering performance on NYT and Wiki for each ranking architecture

in Table 2.3. In terms of absolute score, the filters almost always improve the content-

based data sources, and in many cases this difference is statistically significant. The

one exception is for Conv-KNRM on NYT. One possible explanation is that the filters

caused the training data to become too homogeneous, reducing the ranker’s ability to

generalize. We suspect that Conv-KNRM is particularly susceptible to this problem

because of language-dependent convolutional filters; the other two models rely only

on term similarity scores. We note that Wiki tends to do better with the 2max filter,

with significant improvements seen for Conv-KNRM and KNRM. In thse models, the

discriminator filter may be learning surface characteristics of the dataset, rather than

more valuable notions of relevance. We also note that cmax is an important (yet easy)

hyper-parameter to tune, as the optimal value varies considerably between systems

and datasets.

2.2.3 Summary

We presented an approach for employing content-based sources of pseudo relevance

for training neural IR models. We demonstrated that our approach can match (and

even outperform) neural ranking models trained on manual relevance judgments and

existing ranking-based weak supervision approaches using two different sources of

data. We also showed that performance can be boosted using two filtering techniques:

39

Table 2.3 Ranking performance using filtered NYT and Wiki.

WebTrack 2012–14

Model Training kmax nDCG@20 ERR@20

PACRR NYT 0.2690 0.2136
w/ 2max 200k 0.2716 0.2195
w/ discriminator 500k ↑ 0.2875 0.2273

Wiki 0.2613 0.2038
w/ 2max 700k 0.2568 0.2074
w/ discriminator 800k 0.2680 0.2151

Conv-KNRM NYT 0.2637 0.2031
w/ 2max 100k ↓ 0.2338 0.2153
w/ discriminator 800k 0.2697 0.1937

Wiki 0.2474 0.1614
w/ 2max 400k 0.2609 ↑ 0.1828
w/ discriminator 700k 0.2572 0.1753

KNRM NYT 0.2220 0.1536
w/ 2max 100k 0.2235 ↑ 0.1828
w/ discriminator 300k 0.2274 ↑ 0.1671
Wiki 0.2262 0.1635
w/ 2max 600k ↑ 0.2389 ↑ 0.1916
w/ discriminator 700k 0.2366 0.1740

Significant improvements and reductions compared to unfiltered dataset are marked
with ↑ and ↓ (paired t-test, p < 0.05).

40

one heuristic-based and one that re-purposes a neural ranker. By using our approach,

one can effectively train neural ranking models on new domains without behavioral

data and with only limited in-domain data. This demonstrates that one can use

alternative data sources to overcome poor training data.

2.3 Employing Dataset Characteristics

It is common to use search technologies to find answers to questions. While consider-

able work has investigated techniques to answer questions that have factoid answers,

there has been less focus on open-ended questions that cannot be answered with

simple, standalone facts. The information need of these open-ended questions are

fulfilled with complex answers, which contain comprehensive details and context per-

taining to the question. Thus, Complex Answer Retrieval (CAR) is the process of

finding answers to questions that have complex answers [47].12 More formally, given a

question and a large collection of candidate answers, a CAR engine retrieves and ranks

the answers by relevance to the question. Since candidate answers include details and

context, they can be formulated as paragraphs of text. In this work, we propose and

evaluate approaches for improving CAR by using structural and frequency informa-

tion from the query and information from a knowledge graph constructed from CAR

training data.

CAR queries can be broken down into two components: the topic and facet. The

topic is the main entity of the question. For the query ‘Is cheese healthy?’, the topic
12Note that CAR queries are not necessarily complex. A question as simple as ‘Is cheese

healthy?’ requires a complex answer: a detailed and nuanced description of positive and
negative health effects of cheese consumption is required to satisfy the information need.
In contrast, a question such as ‘How much Mozzarella cheese do I need to eat to satisfy my
daily requirement of calcium?’ is a complex question with a simple factoid answer because
it involves advanced reasoning that goes beyond what is typically captured by a knowledge
graph.

41

is the entity ‘Cheese’ (see Figure 2.1). All answers to the question must be about this

entity, otherwise the answer is not valid. The facet is the particular detail about which

the question inquires. Question facets differentiate CAR queries from topical queries

by inquiring about a specific detail about the topic. In the example, the facet can be

described as ‘Health effects’. For an answer to be considered valid to the question,

it must refer to health effects of cheese—information such as nutrition, health risks,

etc. These answers can come from multiple sources. For instance, an article about

cardiovascular disease may claim that diets containing foods such as cheese that are

high in saturated fat increase one’s risk of heart disease (Answer 2 in Figure 2.1).

Such a paragraph would be valuable to include in a complete answer because it

Question: Is cheese healthy?
Topic: Cheese
Facet: Health effects

A1: Although nutrient levels vary by type of cheese, most cheese are a
rich source of calcium, protein, and sodium. Because the primary
ingredient of cheese is milk, most of most of the nutritional...

A2: Consumption of foods that are high in saturated fat such as cheese
are linked with an increase risk of cardiovascular disease.
This is due to adverse effects to blood lipids and circulating...

A3: Cheese has the potential for promoting the growth of Listeria
bacteria. This can cause serious infection in an infant and
woman and can be transmitted to her infant in utero or after...

A4: Wisconsin is known as "America’s Dairyland" because it is one of
the nation’s leading dairy producers, particularly famous for its
cheese. Manufacturing, health care, information technology, and...

Figure 2.1 Hypothetical CAR query. Includes three relevant answers (1-3) and
one non-relevant answer (4). Term matches from the topic and facet are underlined.

42

contains contextual information about why cheese consumption can increase one’s

risk of heart disease. Thus, it follows to frame CAR as retrieval of paragraphs of text

from authoritative sources given a topic and facet. CAR queries with various facets

about a single topic can be combined to produce a detailed article about a topic.

A straightforward approach for CAR is to use an existing IR technique as-is,

concatenating the topic and facet information to build the query. Indeed, previous

results showed that this basic approach can be effective [129], particularly when neural

models are employed. However, such an approach is limited by several factors specific

to CAR. We observe that facets are not necessarily mentioned verbatim in relevant

paragraphs. In Figure 2.1, the relevant answers (1-3) never include ‘health’ because the

context is clear from the other entities mentioned in the answer. On the other hand,

non-relevant answers sometimes do include the facet term (e.g., answer 4). An effective

CAR engine needs to account for this. Not all facets exhibit this general behavior.

Let’s consider another query: “What is the effect of curdling in cheese production?”

(topic: cheese, facet: curdling). Since ‘curdling’ is not a general-language term, relevant

answers probably need to use the term itself; related entity mentions are probably

inadequate and would result in confusing text. We refer to this distinction as facet

utility : high-utility facets use language that is specific to the topic and can be found

directly in relevant answers (e.g., ‘curdling’), whereas low-utility facets use general

language and requires additional domain knowledge to identify relevant paragraphs

(e.g., ‘health effects’).

Given these observations, we propose a two-pronged approach to CAR. First, we

attempt to predict facet utility. For this, we use both structural information about

the query itself, and corpus statistics about how frequently facets are used. Then,

to better accommodate low-utility facets, we utilize entity mentions in the candidate

answer. To this end, we construct a knowledge graph embeddings that contain facet

43

context using a training corpus, and measure distances between the topic entity and

the entity mentions. We incorporate both the facet utility estimators and the entity

scores into a neural ranking model, and use the model to retrieve complex answers.

These approaches yield significant improvements over the unmodified neural ranker,

and up to 26% improvement over the next best approach. We then provide a detailed

analysis of our results, which shows that low-utility facets are indeed more difficult to

match, and that our approach improves these results. In summary, our contributions

are as follows:

2.3.1 Background

Complex answer retrieval is a new area of research in IR. In 2017, the TREC con-

ference ran a new shared task focused on CAR [47]. The goal of this task is to rank

answer paragraphs corresponding to a complex question. The shared task frames CAR

in terms of Wikipedia content generation. This is appropriate because the editorial

guidelines and strong role of moderators makes Wikipedia an authoritative source

of information [65]. Paragraphs from articles meeting topic criteria13 are selected

as a source of answers for retrieval. The task goes one step farther by asserting that

Wikipedia is also a good source of CAR queries and relevance judgments. CAR queries

are formed from article titles (the query topic, an entity), and headings (query facets

of that particular topic). Figure 2.2 shows an article’s heading hierarchy, including

the question topic and an example facet. Furthermore, paragraphs found under each

heading are treated as automatically relevant to that particular topic, yielding a large

amount of training data [45]. This makes it practical to train data-hungry neural IR

models for CAR.
13E.g., templates, talk pages, portals, lists, references, and pages representing people,

organizations, music, books, and others are discarded [47].

44

Table 2.4 Example CAR queries from Wikipedia by heading position.

Title (Q1) Intermediate Heading(s) Target Heading (Qn) n

Cheese » (none) » Nutrition and health 2
Green sea turtle » Ecology and behavior » Life cycle 3
History of the United States » 20th Century » Imperialism 3
Disturbance (ecology) » (none) » Cyclic disturbance 2
Medical tourism » Destinations » Europe » Finland 4

Queries vary in the number of headings included, because some queries have a different
number of intermediate headings.

TREC CAR exploits the hierarchical nature of headings by using multiple

headings to form each query. Let Q be a CAR query, consisting of n headings

{Q1, Q2, ..., Qn}. Let Qn be the target heading of the query (that is, the primary

facet of the query), Q1 be the title of the article containing the heading (representing

the topic entity of the query), and {Q2, Q3, ..., Qn−1} be any intermediate headings

along the shortest path between the title and target heading in the heading hierarchy.

Intermediate headings are important to provide adequate context for target heading.

For instance, in Figure 2.2, heading 7.3 refers specially to the pasteurization of cheese

as it relates to nutrition and health. Table 2.4 provides example queries using this

terminology. Note that a given query does not necessarily have any intermediate

headings, and that a target heading in one query (Cheese » Nutrition and health)14

can appear as an intermediate heading in another query (Cheese » Nutrition and

health » Pasteurization) because all headings containing paragraphs directly are

treated as the target heading of a query.
14We use the symbol » to separate heading components of a query.

45

topic entity (title)

facet (heading)

Figure 2.2 Sample headings found in a Wikipedia article. The article is titled
Cheese, and it includes labels for the question “Is cheese healthy? ”.

Existing work in CAR is relatively limited. Prior to TREC, Nanni et al. [129]

investigated baseline approaches using the automatic relevance judgments (assuming

only paragraphs found under a heading are relevant to that query). Their approaches

include BM25, cosine similarity (both with TF-IDF vectors and word embeddings), a

baseline learning-to-rank approach, query expansion, and a deep neural model. They

found that the deep neural model Duet [127] outperforms the others.

The 2017 TREC CAR task inspired several new approaches to CAR. A top-

performing submission uses a Sequential Dependence Model (SDM [125]) for answer

retrieval [100]. They modified the SDM for CAR by considering ordered n-grams

that occur within an individual heading component, and unordered n-grams to terms

in different headings. This results in a bias toward matching partial phrases that

appear in individual headings, and reduces processing time for long queries. Another

approach uses a Siamese attention network [122]. Features incorporated into this

network include abbreviated entity names and lead paragraph entity mentions from

46

DBPedia [7]. Yet another approach uses reinforcement learning query reformulation

for CAR [134, 137]. The query reformulation step helps the model add terms that

make up for low-utility facets. Our approach differs from these by (1) explicitly mod-

eling facet utility to predict which headings are unlikely to appear in relevant docu-

ments, and (2) incorporating contextualized entity relatedness measures to improve

performance on low-utility facets.

Wikipedia and Knowledge Graphs

Since knowledge graphs encode which entities are related to one another, they may be

valuable when identifying paragraphs with low-utility facets. There have been many

efforts to organize Wikipedia information into a knowledge graph. Prominent efforts

have been the DBPedia [7] and Freebase [13]. Researchers have found that query

expansion using knowledge bases can improve ad-hoc retrieval [40, 212]. Others have

investigated how to include knowledge graph features directly in learning-to-rank

approaches [180]. More recently, Xiong et al. [213] explored an approach for including

entity information in interaction-focused neural rankers by including additional entity-

term and entity-entity similarity scores during matching, and an attention mechanism

to deal with entity uncertainty. In contrast, in this work we exploit the topic and facet

context information provided by CAR queries when modeling entity-entity similarity,

and propose an approach for generating a knowledge graph suitable for training these

embeddings.

Other efforts have been in how to train embeddings for entities and rela-

tions in knowledge graphs. Prominent approaches include translational embeddings

(TransE) [14], translational hyperplane embeddings (TransH) [210], and holographic

embeddings (HolE) [133]. Knowledge graphs have also been employed extensively

for general question answering tasks [187, 226]. In this work, we observe that entity

47

similarity act as a signal for answers that are otherwise difficult to match (i.e., when

facets are low-utility). We build a knowledge graph from Wikipedia articles using

entity mentions and heading labels. We then train embeddings, and use embedding

similarities when ranking answers.

2.3.2 Methodology

As mentioned in Section 2.3.1, complex answer retrieval (CAR) is a new IR task

focused on retrieving complex answers to questions that include a topic and facet.

Paragraphs from authoritative resources (e.g., Wikipedia) are considered partial

answers for these questions. Identifying and overcoming low-utility facets is a central

challenge to CAR. Here, we propose approaches based on the Wikipedia-focused

CAR problem:

• High-utility facets. We find that high-utility facets correspond to headings that

relate to specific details of an article’s topic: topical headings. Thus, a given

topical heading is unlikely to appear in most articles. However, we predict that

terms found in topical headings are more likely to appear in relevant para-

graphs because people are less likely to have the existing knowledge to deter-

mine meaning from the mentioned entities. Since the title of an article is the

article’s topic, it is necessarily topical.

• Low-utility facets. We identify that low-utility facets often correspond to struc-

tural headings in Wikipedia. These headings provide coherence across articles

by enforcing a predictable document structure. As a result, these headings occur

frequently. Furthermore, they often appear as intermediate headings by orga-

nizing topical headings below them. Since the terminology is necessarily more

general, we predict that terms in structural headings are less likely to appear

48

q0
q2
q3
q4
q5
q6
q7
q8
q9

d0 ...d1 d2 d3 dn

document

query

m
ai

n
in

te
r.

tit
le

q0
q2
q3
q4
q5
q6
q7
q8
q9

matching
(e.g. CNN)

d0 ...d1 d2 d3 dn

document

query
m

ai
n

in
te

r.
tit

le

combination
(e.g. dense)

rel. score
+

contextual
vectors

(a) general neural ranker (b) contextual vectors

matching
(e.g. CNN)

combination
(e.g. dense)

rel. score

q0
q2
q3

q4
q5
q6

q7
q8
q9

d0 ...d1 d2 d3 dn

document

m
ai

n
in

te
r.

tit
le

(c) heading independence

combination
(e.g. dense)

matching
(e.g. CNN)

matching
(e.g. CNN)

matching
(e.g. CNN)

rel. score

query

q0
q2
q3
q4
q5
q6
q7
q8
q9

matching
(e.g. CNN)

d0 ...d1 d2 d3 dn

document

query

m
ai

n
in

te
r.

tit
le

combination
(e.g. dense)

rel. score

(d) knowledge graph scores

doc. entities
e0 ...e1 e2 e3 en

Figure 2.3 Example ranking architecture adaptations for CAR. (a) General
ranking architecture, with matching and combination phases (unmodified). (b) Modi-
fied architecture, including contextual vectors for combination. (c) Modified architec-
ture, splitting for heading independence. (d) Modified architecture, including knowl-
edge graph scores in the combination layer.

in relevant paragraphs because readers can figure out the context by related

entities. Thus, we propose including additional entity similarity information to

accommodate these cases.

Recall that an interaction-focused neural ranker (Figure 2.3a) involves two phases:

a matching phase that identifies places in the document in which query terms are used

(e.g., convolution), and a combination phase in which the scores for each query term

are combined to produce a final relevance score (e.g., dense). In the remainder of this

section, we present two approaches to inform an arbitrary interaction-focused neural

49

Table 2.5 Sample contextual vectors for CAR.

green sea turtle ecology and behavior life cycle

position_title 1 1 1 0 0 0 0 0
position_intermediate 0 0 0 1 1 1 0 0
position_target 0 0 0 0 0 0 1 1

heading_frequency 0 0 0 3 3 3 3 3

Example is for the query “green sea turtle » ecology and behavior » life cycle”.

ranker of facet utility (Section 2.3.2-2.3.2, Figure 2.3b-c), and one approach to include

entity similarity signals to inform the model of relevance for low-utility facets using

knowledge base embedding similarity scores (Section 2.3.2, Figure 2.3d). Finally, we

describe our implementation strategy for two concrete neural rankers (PACRR and

K-NRM, Section 2.3.2).

Contextual Vectors

Many information retrieval approaches use the simple (yet powerful) term IDF value

as a signal for query term importance. Neural models incorporate this signal, too. For

instance, DRMM [56] and PACRR [75] use an IDF vector in the combination phase.

We generalize this approach by allowing an arbitrary number of contextual vectors to

be included in the model alongside term interaction signals (Figure 2.3b). Here, we

use contextual vectors to provide an estimation of facet utility, understanding that

the models can learn how to use these values when making relevance judgments. We

propose two such estimators: heading position (HP) and heading frequency (HF).

50

Heading position Recall that CAR queries consist of a title, intermediate headings,

and a target heading. When estimating heading utility, the position of the heading

in the list intuitively provides a signal of heading utility. For instance, the title is

necessarily topical; it is the topic itself. Furthermore, any intermediate headings are

likely structural because they provide categorizations for the target heading. Finally,

the target heading may be either topical or structural; its position inherently tells the

model nothing about whether or not to expect the term to appear. Thus, we encode

three vectors to encode query term position information: one that indicates if the

term exists in the title, and intermediate heading, or the target heading. An example

of these vectors is given in Table 2.5. We also considered using query depth to capture

the hierarchical information (i.e., title, level 1 heading, level 2 heading, etc.). However,

the drawback of using depth information is that it is variable by article. For example,

while some articles use level 1 headings as purely structural components, others use

content-based level 1 headings. By using the heading position approach, all structural

intermediate headings are grouped together, allowing the model to more easily learn

to always treat them as context for the target heading.

The benefits of including heading position information can extend beyond simply

distinguishing whether a term is likely in a topical or structural heading. For instance,

the topic of a question may be abbreviated in relevant paragraphs to avoid excessive

repetition. By including heading position information in this way, the model can

distinguish when certain matching patterns are important to capture.

Heading frequency Another possible estimator of heading utility is the frequency

that a heading appears in a sufficiently representative dataset. For instance, because

structural headings such as ‘Nutrition and health’ are general and can accommodate

a variety of topics, one would expect to find the heading in many food-related articles.

51

Indeed, the heading appears in Wikipedia articles such as Cheese, Beef, Raisin, and

others. On the other hand, one would expect topical headings to use less general

language, and thus be less likely to appear in other articles. For instance the heading

‘After the Acts of Union of 1707’ only appears in the article United Kingdom.

To represent this value, we use the document frequency of each heading: the

heading frequency. Thus, frequent headings (e.g., ‘History’) have a large heading fre-

quency value, and infrequent headings (e.g., ‘After the Acts of Union of 1707’) have

a low value. For heading matching, we require a complete, case-insensitive match of

the text as a heading in an article. Thus, ‘Health effects’ and ‘Health Effects’ are con-

sidered the same heading (capitalization), but not ‘Health effects’ and ‘Health’ (sub-

string), ‘Health effect’ (difference in pluralization), or ‘Health affects’ (typographical

error). To group similarly-frequent headings together, we stratify the heading fre-

quency value when used as a contextual vector in a range of [0, 3], which allows easy

incorporation into neural models. Based on tuning conducted in pilot studies, we

found effective breakpoints to be the 60th, 90th, and 99th percentiles.15 An example

of the heading frequency vector is given in Table 2.5.

When the model encounters the heading frequency value, we expect it to learn to

value high-frequency headings less than low-frequency headings (i.e., assign a negative

weight). This results in similar behavior to IDF, but with the important distinction

that it operates over entire headings, rather than terms. For instance, most terms in

‘After the Acts of Union of 1707’ have a low IDF (i.e., they appear frequently), but

as a whole heading, it appears infrequently and is likely important to match.
15For reference, the 60th percentile is approximately the cutoff for headings that only

appear a few times such as Red Hot Chili Peppers; the 90th percentile is approximately the
cutoff of moderately frequent headings such as Finland ; and the 99th percentile is approxi-
mately the cutoff of frequent headings such as Family and personal life.

52

Combining contextual vectors The two contextual vectors capture different notions

of heading utility. Heading position contextual vectors are able to discriminate other-

wise identical headings based on where they appear in the query. This can be valuable

in some situations: for instance, ‘Imperialism’ and ‘Finland’ in Table 2.4 appear as

target headings, but they could also appear as the topic of other queries. Heading

frequency contextual vectors treat headings with the same text identically, regardless

of their position in the query. However, their power comes from informing the model

about the nature of the specific heading, and can help identify the utility of target

headings (which are otherwise ambiguous), or headings that do not match the typ-

ical characteristics in other heading positions. By including both vectors, the model

should be able to learn a better sense of heading utility by combining the two notions.

Heading Independence

Although contextual vectors can help inform a trained ranker about which headings

are structural and topical, they cannot directly affect which types of interactions

are identified and how these interactions are scored because this occurs earlier in

the pipeline of the neural model considered (matching phase). We hypothesize that

heading utility can actually affect which signals are important. For instance, a low-

utility structural heading might be more tolerant to weak term similarities (i.e., ‘colo-

nial’ or ‘ancient’ might be acceptable matches for ‘History’), or a high-utility topical

heading might have stricter requirements for maintaining the order of terms. Thus,

we propose a general approach to modify a neural ranking architecture to adjust

matching based on heading utility: heading independence.

Heading independence involves splitting the matching phase of a neural ranker

into multiple segments, each responsible for processing a segment of the query. Here,

we split the query by heading position: title, intermediate, and target headings (see

53

Figure 2.3c). The processing of each heading position is independent of the others,

so a different set of parameters can be learned for each component. The results of

the matching layers are then concatenated and sent to the combination layer of the

unmodified model (e.g., a dense layer) for the calculation of the final relevance score.

This approach makes intuitive sense because one would expect the title to interact

differently in the document than a structural or topical heading. For instance, abbre-

viated versions of the topic often are used to improve readability. Furthermore, this

approach enforces alignment of headings during combination (see Figure 2.4). When

all query terms are simply concatenated, the alignment of each query position will

change among queries due to differences in query length. Thus, the model will need

to learn and accommodate multiple tendencies in a wider variety of positions of the

query, rather in just certain areas.

Knowledge Graph

Although interaction-focused neural rankers often employ word embedding similari-

ties, word embeddings do not always capture similarities within contexts. This results

Q1: Cheese (Q1) > Nutrition (Qn) and (Qn) health (Qn)
Q2: Medical (Q1) tourism (Q1) > Destinations (Q2) > Europe (Q2) > Finland (Qn)

Unaligned Aligned
-------------------------- --------------------------

Q1: Q1 Qn Qn Qn __ __ __ __ __ Q1 __ __ __ __ __ Qn Qn Qn
Q2: Q1 Q1 Q2 Q2 Qn __ __ __ __ Q1 Q1 __ Q2 Q2 __ Qn __ __

Figure 2.4 Example term alignment benefits of using heading independence
with two sample queries. Q1: query title. Q2: intermediate heading. Qn: target
heading. __ indicates padding.

54

enwiki:Cheese

enwiki:Archaeology enwiki:Egyptian_cheese

enwiki:Ancient_Egypt

enwiki:Milk

enwiki:United_Statesenwiki:Tonne

section:HISTORY

section:PRODUCTION

Figure 2.5 Example graph construction strategy from a Wikipedia article
excerpt. Blue boxes are nodes representing the corresponding entity, and red boxes
are edge labels. Adapted from https://en.wikipedia.org/wiki/Cheese.

in individual term being close to many topically-similar terms [92]. Within the con-

text of CAR, we are only concerned with topics that are similar given a particular

context (i.e., the question facet). Furthermore, we know that the most salient contex-

tual information comes from entity mentions. Since article titles also correspond to

entities, and headings can be considered the context, we use the following approach

employing knowledge graph embeddings.

Before we can train these embeddings, we must have a knowledge graph. Since the

evaluation topics we use come fromWikipedia, we cannot use a freely-available knowl-

edge graph based on all of Wikipedia data (e.g., Freebase or DBPedia)—this could

55

artificially improve results by including information from the relevant paragraphs

themselves.16 Instead, we construct our own knowledge graph from the available CAR

training data. Our approach is based on the observation made by WikiLinks [188]:

a knowledge graph can be constructed using links in Wikipedia articles between the

article’s entity and entities that the page links to. Unlike WikiLinks, we enrich our

knowledge graph by labeling the edges using heading information. This contextualizes

the relations between entities with respect to CAR, a quality that existing resources

do not provide.

More formally, let knowledge graph G = (E,R), where E is the set of entities,

and R is the set of relations. Let E be of the union of the set of all article topic

entity and the set of all entities found in links. The set of directed relations R is

defined as any pair of entities for (t,m) where t is an article topic, and m is an

entity mention in a paragraph relevant to the query. The edges are labeled using the

highest-level (non-title) heading of the paragraph. An illustration of this process is

shown in Figure 2.5. To address the data sparsity problem caused by the large number

of low-frequency headings, we only use the lemmatized syntactic head of the target

heading. Furthermore, we combine any edge label that doesn’t appear in the emax

most frequent headings into a single edge label. By using this approach, we are able

to encode entity relations in a way that maintains relations between high-frequency

headings—precisely the headings in most need of entity contextual hints.

We use the knowledge graph G to construct HolE embeddings for the entities and

relations. HolE embeddings have been shown to be effective at entity link prediction

by capturing rich interactions [133]. HolE embeddings produce a collection of entity

embeddings and relation embeddings that provide similarity via circular correlation.
16We also cannot remove the evaluation topics when training the graph because that

defeats the purpose; without target entities encoded in the embeddings, there is no way to
find similar entities when ranking.

56

First, we collect all entity mentions in the paragraph being ranked. We us entities

from links that appear in Wikipedia paragraphs that target other articles. However,

because Wikipedia guidelines suggest only linking an entity on its first occurrence

in an article17, we also explore using an entity extractor to find entity mentions

(DBPedia Spotlight [39]). For each entity mention, we calculate the entity similarity

score, given the current query topic entity and the current heading label. We include

the top nentscores from the paragraph during the combination phase of the model

(see Figure 2.3d). This is similar to how some models (e.g., PACRR) perform k-max

pooling of query term results. This approach differs from contextual vectors because

these signals refer to the entire query-document combination, and not specific query

terms.

Implementation Details

We apply our methods for altering the generalized interaction-focused neural ranking

model to the PACRR [75] and K-NRM [214] models. Both of these models are

described in Section 2.1, and have been demonstrated to be a strong approaches

for ad-hoc retrieval.

For PACRR, we include contextual vectors after the query term pooling. The vec-

tors are simply concatenated alongside the query term matching scores. For heading

independence, we split out the work up through the query term pooling. That is,

we perform the CNN and pooling independently by heading position. We add an

additional dense layer here to further consolidate heading position information before

the final combination phase. We include knowledge graph embedding scores in the

combination phase, alongside the matching scores and contextual vectors.
17https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

57

Table 2.6 Dataset characteristics from the CAR v1.5 data release.

Relevance

Dataset Articles Queries Auto. Man.

train.fold1-2 (train) 114,387 873,746 2.2M -
test200 (validation) 198 1,860 4.7k -
benchmarkY1test (test) 133 2,125 5.8k 30k

Includes counts of automatic (Auto.) and Manual (Man.) relevance judgments.

For K-NRM, we include contextual vectors alongside the kernel scores before

combination. We split out kernel matching by heading position to achieve heading

independence. Knowledge graph embedding scores are concatenated to the matching

scores prior to combination.

2.3.3 Experiment

In this section, we describe our primary experiment using the approaches described

in Section 2.3.2 and present our results using the CAR dataset.

Experimental Setup

Dataset We use the official TREC CAR dataset (version 1.5) for both training

and evaluating our approach [45, 47]. This dataset was constructed from Wikipedia

articles that represent topics (that is, it does not include meta or talk pages). The

main datasource for retrieval consists of all the paragraphs, disassociated with their

articles and surrounding content (30M paragraphs, paragraphcorpus). The dataset

also includes queries, which were automatically generated from the article structure.

58

Table 2.7 Manual relevance judgment counts and occurrence frequencies
for the CAR test dataset, benchmarkY1test.

Relevance Label Count % Value

Must be mentioned 2,461 8.3% 3
Should be mentioned 1,970 6.7% 2
Can be mentioned 3,094 10.5% 1
Roughly on topic 9,219 31.2% 0
Non-relevant 12,785 43.2% -1
Trash 42 0.1% -2

For each query, the dataset also provides automatic relevance judgments based on the

assumption that paragraphs under a particular heading are all valid answers to the

corresponding query.

The dataset is split into subsets suitable for training and testing of systems (sum-

mary in Table 2.6). For a randomly-selected half of Wikipedia, all data are provided

for training (split into 5 folds, train.fold0-4). We use folds 1 and 2 for training

our models. A subset of approximately 200 articles from train.fold0 is an eval-

uation dataset provided by [129] (test200). Finally, 133 articles from the second

half of Wikipedia (the half that was not designated for training) serve as evaluation

articles (benchmarkY1test). The TREC CAR 2017 task released manual relevance

judgments in addition to the automatic judgments available for the other datasets [47].

The manual relevance judgments are graded on a scale from Must be mentioned (3)

to Trash (-2). We provide a summary of the frequency of these labels in Table 2.7.

While the manual relevance judgments are considered gold standard and are capable

of matching relevant paragraphs from other articles, they only cover a subset of queries

(702 of the 2,125 queries).

59

Knowledge graph embeddings We first generate a knowledge graph using the method

described in Section 2.3.2. We use the entire train.fold0-4 dataset to crease as

extensive of a graph as possible. We generate two versions of the graph: one using

hyperlinks as entity mentions, and one using entity mentions extracted using the

automatic entity extractor DBPedia Spotlight [39] with a confidence setting of 0.5.

Although this tool is less accurate than manually-created links, it captures entities

that are not linked (e.g., the Wikipedia guidelines suggest only linking the first men-

tion of an entity in an article, leaving out subsequent mentions from the graph).

Edge labels are limited to only the emax = 1000 most frequently-used labels. We

test both versions of the graph when evaluating the performance of using knowledge

graph embedding scores. We set the embedding length to 100, and train on the link

graph using the pairwise stochastic trainer with random sampling for 5,000 training

iterations (we found this to be enough iterations for the training to converge). When

picking which entity scores to include in the model, we use top nsent_scores = 2 simi-

larities (this matches the document term pooling parameter k in PACRR).

Training and evaluation We train and evaluate several variations of the PACRR and

K-NRM models to explore the effectiveness of each approach. For both models, we

use the model configurations proposed in [75] and [214], with some modifications to

better suit the task. We increase the maximum query length to 18 to accommodate

the longer queries often found in the CAR dataset, while shortening the maximum

document length to 150 to reduce processing time (the CAR paragraphs are usually

much shorter than the documents found in ad-hoc retrieval). For the PACRR model,

we use an extended set of kernel sizes: up to 5 × 5. We made no changes to the

Gaussian kernels for K-NRM proposed in [214]. We train the PACRR model for 80

60

iterations of 2048 samples on train.fold1-2, and K-NRM for 200 iterations. We

found that this was long enough for each of the models to converge.

Automatic relevance judgments serve as a source of relevant documents, and we

use the top non-relevant BM25 documents as negative training examples. Negative

samples are used for the pairwise loss function used to train PACRR, and BM25 results

offer higher-quality negative samples than random paragraph would (e.g., these exam-

ples have matching terms, whereas random paragraphs likely would not).18 For each

positive sample, we include 6 negative samples. To a point, including more negative

samples has been shown to improve the performance of PACRR at the expense of

training time; we found 6 negative samples to be an effective balance between the two

considerations. The training iteration that yields the highest R-Precision value on the

validation dataset (test200) is selected for evaluation on the test dataset. We then

rerank the top 100 BM25 results for each query in benchmarkY1test, and test using

the manual and automatic relevance judgments. For each configuration, we report

the 4 official TREC CAR metrics: Mean Average Precision (MAP), R-Precision (R-

Prec), Mean Reciprocal Rank (MRR), and normalized Discounted Cumulative Gain

(nDCG). We compare the results to an unmodified version of PACRR trained using

the same approach, the initial BM25 ranking, and the other top approaches submitted

to TREC.
18We acknowledge that some paragraphs included as negative training samples, if

inspected manually, would be found relevant due to the limitations of the automatic rel-
evance judgments. We deem this as okay, considering the high occurrence of non-relevant
documents in the manual relevance judgments, and the comparatively poor performance of
BM25 at CAR.

61

Table 2.8 CAR performance results under various models.

Approach MAP R-Prec MRR nDCG

Manual (including unjudged)
PACRR (no modification) 0.208 0.219 0.445 0.403

+ CV* N 0.211 0.221 0.453 N 0.408
+ HI 0.205 0.213 0.442 0.403
+ HI + CV 0.204 0.214 0.440 0.401
+ HI + CV + KG (links) H 0.198 H 0.206 0.429 0.395
+ HI + CV + KG (extr.) 0.200 H 0.206 0.433 0.396

K-NRM (no modification) 0.161 0.170 0.346 0.350
+ CV M 0.171 0.176 0.354 M 0.360
+ HI M 0.192 M 0.200 M 0.414 M 0.386
+ HI + CV M 0.194 M 0.203 M 0.411 M 0.388
+ HI + CV + KG (links) M 0.193 M 0.201 M 0.411 M 0.387
+ HI + CV + KG (extr.) M 0.192 M 0.203 M 0.408 M 0.384

Sequential dependence model* [100] H M 0.172 H M 0.186 H M 0.393 H 0.350
Siamese attention network* [122] H O 0.137 H 0.171 H 0.345 H O 0.274
BM25 baseline* H O 0.138 H 0.158 H 0.317 H O 0.296

Manual (excluding unjudged)
PACRR (no modification) 0.471 0.496 0.774 0.583

+ CV* N 0.480 N 0.509 N 0.794 N 0.592
+ HI N 0.479 N 0.505 N 0.795 N 0.593
+ HI + CV N 0.479 0.499 0.782 N 0.590
+ HI + CV + KG (links) N 0.482 N 0.505 0.787 N 0.592
+ HI + CV + KG (extr.) N 0.485 N 0.505 N 0.792 N 0.594

K-NRM (no modification) 0.446 0.474 0.732 0.556
+ CV M 0.453 0.481 0.732 0.562
+ HI M 0.470 M 0.492 M 0.771 M 0.578
+ HI + CV M 0.473 M 0.497 M 0.774 M 0.582
+ HI + CV + KG (links) M 0.467 M 0.493 M 0.755 M 0.577
+ HI + CV + KG (extr.) M 0.469 M 0.490 M 0.763 M 0.577

BM25 baseline* H 0.452 H 0.476 H M 0.747 H 0.566

Manual is evaluated both including and excluding documents without relevance judgments.
The top value in each section is in bold. Records marked with * were included in the
TREC document pool. Significant results compared to the unmodified PACRR and K-NRM
models within each section are marked with N/H and M/O, respectively (paired t-test, 95%
confidence). Baselines are compared with both both models. CV: contextual vector. HI:
heading independence. KG: knowledge graph. links: entities from Wikipedia links. extr.:
automatic entity extraction.

62

Table 2.9 CAR performance results under various models with automatic
relevance judgments.

Approach MAP R-Prec MRR nDCG

Automatic
PACRR (no modification) 0.164 0.131 0.247 0.254

+ CV* N 0.170 0.134 N 0.255 N 0.259
+ HI N 0.171 0.139 N 0.256 N 0.260
+ HI + CV N 0.176 N 0.146 N 0.263 N 0.265
+ HI + CV + KG (links) N 0.174 N 0.141 N 0.260 N 0.263
+ HI + CV + KG (extr.) N 0.173 N 0.140 N 0.260 N 0.262

K-NRM (no modification) 0.117 0.086 0.177 0.209
+ CV M 0.129 M 0.095 M 0.191 M 0.221
+ HI M 0.156 M 0.125 M 0.234 M 0.246
+ HI + CV M 0.158 M 0.124 M 0.235 M 0.247
+ HI + CV + KG (links) M 0.156 M 0.121 M 0.233 M 0.245
+ HI + CV + KG (extr.) M 0.154 M 0.124 M 0.230 M 0.243

Sequential dependence model* [100] H M 0.130 H M 0.101 H M 0.196 H 0.207
Siamese attention network* [122] H 0.105 H 0.083 H 0.161 H O 0.152
BM25 baseline* H 0.106 H 0.085 H 0.159 H O 0.170

The top value in each section is in bold. Records marked with * were included in the
TREC document pool. Significant results compared to the unmodified PACRR and K-NRM
models within each section are marked with N/H and M/O, respectively (paired t-test, 95%
confidence). Baselines are compared with both both models. CV: contextual vector. HI:
heading independence. KG: knowledge graph. links: entities from Wikipedia links. extr.:
automatic entity extraction.

63

Results

We present the performance of our methods in Tables 2.8 and 2.9. Overall, the results

show that our methods perform favorably compared to the unmodified PACRR and K-

NRM models, the other top submissions to TREC CAR 2017 (sequential dependency

model [100] and the Siamese attention network [122]), and the BM25 baseline (which

our method re-ranks).

Due to the relatively low number of manual relevance judgments per query,19

we report manual relevance judgments both including and excluding unjudged para-

graphs. When unjudged paragraphs are included, they are assumed to be irrelevant.20

When unjudged documents are excluded, we filter unjudged paragraphs from the

ranked lists (i.e., we perform a condensed list evaluation). The condensed list eval-

uation is a better comparison for methods that were not included in the evaluation

pool [173]. Indeed, PACRR with the heading position and heading frequency contex-

tual vectors outperforms the all other approaches, and significantly outperforms the

unmodified PACRR model in terms of MAP and nDCG. Interestingly, the knowledge

base approaches perform significantly worse than the unmodified PACRR in terms of

R-Prec when unjudged paragraphs are included. However, when unjudged paragraphs

are not included, it performs significantly better in every case. In fact, the version that

uses entity extraction when calculating entity scores performs best overall in terms

of MAP and nDCG. This shows that these approaches are effective, and likely rank

paragraphs that are relevant yet unjudged high (reducing the score when unjudged

documents are included).

19On average, there are 42 manual relevance judgments for the 702 queries that were
manually assessed.

20Unjudged evaluation is unavailable for the sequential dependency model and Siamese
attention network.

64

When considering automatic relevance judgments, heading independence and the

heading frequency contextual vector significantly outperforms unmodified PACRR,

and performs best overall in every metric. By R-Prec, this configuration outperforms

the next best approach (sequential dependence model) by 26%. However, the per-

formance when evaluating with manual judgments does not significantly outperform

unmodified PACRR. Since training is also conducted using automatic relevance judg-

ments, this may be caused by PACRR overfitting to this sense of relevance. Interest-

ingly, when the knowledge graphs features are added to this approach, performance

drops with automatic judgments, but increases with manual judgments. This suggests

that these features are useful for determining human-classified relevance.

Although the K-NRM does not outperform the PACRR model in our experiments,

it is worth noting that our approach yields significant improvements for K-NRM

compared to the unmodified model. Specifically, contextual vectors yield significant

improvements when evaluating using both with manual and automatic relevance judg-

ments three environments. Beyond that, using heading independence significantly

improves on the contextual vector results. This indicates that our approaches are

generally applicable to interaction-based neural ranking models for CAR.

2.3.4 Analysis

In this section, we investigate several questions surrounding the results to gain more

insights into the behavior and functionality of the approaches to CAR detailed in

Section 2.3.2.

Characteristics of Heading Positions

Our approaches assert that heading positions (i.e., title, intermediate, and target

heading) act as a signal for heading utility. In Section 2.3.3 we showed that including

65

the heading position as either the heading position contextual vector or via and

heading independence improves performance beyond the baseline neural architecture.

Here, we test the hypothesis that terms found in different heading positions exhibit

different behaviors in relevant documents.

We use the term occurrence rate to assist in this analysis. Let the term occurrence

rate occ(h) for a given heading h be the probability that any term in a given heading

appears in relevant paragraphs. More formally:

occ(h) =

∑
p∈rel(h) I(∃t ∈ p|t ∈ h)

|rel(h)|

where rel(h) is the set of relevant paragraphs for p and I is the indicator function.

Although the term occurrence rate only accounts for a single binary term match

within relevant documents, this assumption is justified by the fact that headings are

usually terse, and the PACRR model only considers the top 2 matches for each query

term for ranking purposes (query term pooling). Here, we use the term occurrence

rate as a proxy for heading utility.

In Figure 2.6, we plot a kernel density estimation of term occurrence distributions

for each heading position. We use all topics from the training dataset, and calculate

term occurrence rates using automatic relevance judgments. The figure shows that

target headings are much more likely to appear in relevant documents than titles and

intermediate headings, with a much higher density at the term occurrence rate of 1.

This matches our prediction that target headings are more likely to be topical, and

therefore appear in relevant documents. Furthermore, the distributions of interme-

diate and title headings are roughly opposite each other, with titles more likely to

occur than intermediate headings. Note that, due to the hierarchical nature of CAR

queries, intermediate headings also appear as target headings in other queries for the

same topic. This contributes to the high frequency of target headings with a term

66

Figure 2.6 Kernel density estimation for target (solid), intermediate
(dashed), and title (dotted) heading term occurrence rates Results are based
on automatic judgments in train.fold0.

occurrence rate of 0. Furthermore, many target headings are only used in a single

article (i.e., only appear once in the Wikipedia collection), with only a handful of

paragraphs associated with them. This explains the multi-modal distribution seen for

target headings; the small denominators result in local maxima near 1
3
, 1

2
, and 2

3
.

Characteristics of High-frequency Headings

In Section 2.3.3, we showed that including the heading frequency contextual vector

improved retrieval performance. We predicted that the model is able to use this

information to predict which query terms are likely to appear in relevant documents.

To investigate this behavior, we look at whether heading frequency is correlated with

term occurrence rates, and whether there is a performance gap between low- and

high-frequency headings.

67

0 1000 2000 3000 4000 5000
Heading frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
rm

 o
cc

ur
re

nc
e

ra
te

Figure 2.7 Term occurrence rate plotted by heading frequency. Heading
frequency is grouped and averaged by 100 for clarity. The area of each point is pro-
portional to the number of heading instances used to calculate the term occurrence
rate. One very high frequency heading (History) was omitted for readability (heading
frequency: 15,220, term occurrence rate: 0.035).

In Figure 2.7, we plot term occurrence rates by heading frequency. The figure only

includes headings that occur at least twice in train.fold0. We remove the extremely-

frequent heading ‘History’ and bin frequencies by 100 to improve readability. The area

of each point is proportional to the number of heading instances in the bin. It is clear

from the figure that the less frequent a heading is, the higher the term occurrence

rate. In general, headings with a frequency less than 1,000 have an average heading

frequency 10-20 points higher than higher-frequency headings. This indicates that

heading frequency is a valuable signal for estimating the utility of a heading during

ranking.

68

Table 2.10 MAP scores stratified by heading frequency of target heading
for each query

Model Infrq. 0-20% 20-40% 40-60% 60-80% 80-100%

PACRR (unmod.) 0.503 0.521 0.453 0.388 0.412 0.366
+ HP 0.509 0.520 0.464 0.400 0.430 0.377
+ HP + HF 0.511 0.519 0.470 0.406 0.417 0.383
+ HI 0.509 0.525 0.479 0.382 0.417 0.391
+ HI + HF 0.509 0.519 0.474 0.403 0.409 0.379
+ HI + HF + KG (links) 0.511 0.529 0.475 0.412 0.408 0.376
+ HI + HF + KG (extr.) 0.513 0.535 0.477 0.416 0.407 0.380

BM25 0.482 0.480 0.429 0.378 0.420 0.373

Query count 349 89 96 81 43 44
Max. % increase (to unmod.) +2.0% +2.7% +5.7% +7.2% +4.3% +6.8%

Uses manual relevance judgments, excluding unjudged. Infrequent headings that do not
appear in the training dataset are included in the ‘Infrq.’ column. The approaches yield the
highest performance improvement on the high-frequency (low-utility) queries.

Difficultly Matching High-frequency Headings

Given the knowledge that high-frequency headings generally exhibit a low term occur-

rence rate, we are interested in measuring whether there exists a discrepancy between

the performance at different heading frequencies. Table 2.10 shows a MAP21 per-

formance breakdown on the test dataset (manual relevance judgments, unjudged

excluded) stratified by the heading frequency of the target heading found in the

training dataset. The number of queries in each stratum varies because the strata

were selected from equally-spaced breakpoints in the training data, and the test set

does not represent a uniform selection of Wikipedia articles. The most frequent head-
21We observed similar behavior for MAP, R-Prec, MRR, and nDCG, so we only report

MAP here.

69

ings (80-100%, e.g., ‘History’ and ‘Early Life’) exhibit the worst performance among

all strata. This matches our intuition that these low-utility headings are difficult to

match. The low frequency headings exhibit the highest performance by all models.

Notice that the gains compared to the unmodified PACRR model are higher for high-

frequency headings than the low-frequency headings, despite having a worse perfor-

mance overall. This validates our claims that low-utility headings are harder to match

than high-utility headings, and that our approaches are able to improve performance

for these queries.

Qualitative Query Analysis

To gain a more thorough understanding of how our methods enhance ranking tech-

niques for CAR, we perform qualitative analysis. Table 2.11 gives example answers

and rankings by various configurations. Query 1 in the table (Instant Coffee » His-

tory) saw an improvement from a MAP of 0.4468 (PACRR no modification) to 0.6987

(PACRR + HI + CV + KG (extr.)) when considering manually-judged answers. Both

the unmodified model and the model with heading independence ranked the highly-

relevant paragraph low (rank 10 and 9), and a non-relevant answer high (rank 1),

while the knowledge graph approach did the reverse (rank 1 and 18, respectively).

This is likely due to the difference in entities encountered in the answer. The rele-

vant answer has historic and political entities such as World War II and the United

Kingdom, while the non-relevant answer includes artists such as Jenifer Papararo.

We notice that in other situations, however, the knowledge base approach fails.

In Query 2 of Table 2.11 (Taste » Basic tastes » Sweetness), the unmodified PACRR

model performs better than all variations we explore, with a MAP of 0.7444, com-

pared to 0.4221 for the knowledge graph approach. In this case, the top-level heading

is not common enough to be included in the knowledge graph embeddings, so it

70

Table 2.11 Concrete ranking examples in case where knowledge graph
method work well (Query 1), and case where knowledge graph method
does not work well (Query 2).

Rele-
vance Answer Rank

(no mod.)
Rank
(HI) Rank

(extr.)

Query 1: Instant Coffee » History

3
(must)

In some countries, such as Portugal, Spain, and India, instant
coffee is commonly mixed with hot milk instead of boiling
water. In other countries, such as South Korea, instant coffee
commonly comes pre-mixed with non-dairy creamer and sugar
and is called “coffee mix”. Said to have been popularised in the
UK by GIs during World War II, instant coffee still accounts
for over 75 percent of coffee bought to drink in British homes,
as opposed to well under 10 percent in the U.S. and France
and one percent in Italy.

10 9 1

-1
(non-rel)

“Instant Coffee” is a Canadian artist collective based in Van-
couver and Toronto. Formed in 2000, the collective’s mem-
bership has undergone a number of changes. Instant Coffee’s
most active members have included Cecilia Berkovic, Jinhan
Ko, Kelly Lycan, Jenifer Papararo, and Khan Lee.

1 1 18

Query 2: Taste » Basic tastes » Sweetness

3
(must)

Sweetness, usually regarded as a pleasurable sensation, is pro-
duced by the presence of sugars and a few other substances.
Sweetness is often connected to aldehydes and ketones, which
contain a carbonyl group. Sweetness is detected by a variety
of G protein coupled receptors coupled to the G protein gust-
ducin found on the taste buds. At least two different variants
of the "sweetness receptors" must be activated for the brain
to register sweetness. Compounds the brain senses as sweet
are thus compounds...

5 4 11

0
(topic)

“Umami”, or “savory” taste, is one of the five basic tastes
(together with sweetness, sourness, bitterness, and saltiness).
It has been described as brothy or meaty.

9 13 6

The ranks are provided by the PACRR model with: no modification (no mod.);
heading independence (HI); and heading independence, heading frequency, and knowl-
edge graph using automatic entity extraction (extr.).

71

was collapsed into the remainder class. This explains why it ranked the non-relevant

answer listing other tastes high, while pushing down the relevant answer that includes

more specific language pertaining to the reception of sweetness. This demonstrates

the need in future work to better address low-frequency headings.

2.3.5 Summary

In this section, we proposed an approach for utilizing the characteristics of a dataset

(namely, the CAR dataset) to improve neural semantic ranking performance. Specifi-

cally, we incorporated information about the structured query, contextual information

about the frequency of query components, and entity mentions within the query and

text.

2.4 Discussion and Conclusions

In this chapter, I first demonstrated that neural rankers can be effectively trained

using large sources of naturally-occurring text pairs, such as headline-article pairs

from news articles. This approach can yield ranking models that significantly outper-

form a tuned baseline model, models trained using the prior best weak supervision

technique, and even models trained using in-domain data. This validates Hypoth-

esis 1.1. I then demonstrated that neural ranking architectures can easily incorporate

task-specific dataset characteristics. I showed this using the TREC Complex Answer

Retrieval dataset. Neural rankers for this task benefit from characteristics about the

structured query and entity mentions in two leading neural ranking architectures.

This validates Hypothesis 1.2.

These works were done prior to the widespread availability and adoption of large-

scale contextualized language models, such as BERT [44]. In the following chapter, I

72

demonstrate that these models are effective for ranking. As such, I re-visit the topic of

transferring relevance signals across datasets in the context of contextualized language

models, further validating Hypothesis 1.1. I also explore how dataset statistics can

be used to improve the training process with contextualized language models, further

validating Hypothesis 1.2.

73

Chapter 3

Ranking Effectiveness of Neural Models with Contextualization

It is no exaggeration to suggest that large-scale pre-trained contextualized language

models such as BERT [44] have been transformative in the field of NLP. These models

take advantage of massive amounts of text to build contextualized word representa-

tions, i.e., representations that consider the surrounding words. These models can be

effectively fine-tuned to a variety of tasks. Many soon observed that these models are

beneficial for the task of ad-hoc ranking [135, 156, 220]. In this section, I present my

contributions in this area, which include (1) showing that these models can be incor-

porated into prior neural ranking architectures, (2) that their benefits for ranking

extend beyond ad-hoc search, (3) that these models can allow for effective transfer of

relevance signals across natural languages and domains, and (4) that incorporating

dataset statistics in the training process can improve effectiveness.

The remainder of this chapter is organized as follows. First, I present background

information in Section 3.1. I then show how contextualized language models can be

effectively incorporated into existing neural ranking models in Section 3.2, validating

Hypothesis 1.3. I then move beyond ad-hoc ranking in Section 3.3 and show that

these models can also be effective in another ranking task: ranking of clinical report

versions by the degree of discrepancy. This further validates Hypothesis 1.3. In Sec-

tion 3.4, I show that contextualized language models allow for the effective transfer

of relevance signals to languages other than English with limited training data, vali-

dating Hypothesis 1.4. I then re-visit Hypotheses 1.1 and 1.2 by showing that dataset

74

statistics can be incorporated into the training process to improve effectiveness (Sec-

tion 3.5) and that relevance signals can be transferred across tasks (Section 3.6).

Finally, in Section 3.7, I recap the conclusions of this chapter.

3.1 Background and Preliminaries

Static word embeddings (i.e., word representations) are inherently limited by the fact

that they only represent a single word. While in some cases this is appropriate, in

many others this can yield unsatisfactory results. For instance, the term bats has

many senses with considerably different meanings: nocturnal mammals, long wooden

implements, and a fluttering motion, to name a few. In many cases, the sense can be

reasonably disambiguated by the surrounding context, e.g., “the bats flew right past

me”, “the baseball bats are there in the bin”, and “she bats her eyes”. This intuition

lead many to pursue building word representations that incorporate the surrounding

context, which has generally been successful in improving downstream NLP tasks.

Early work in this area, such as ECO embeddings [48], focused on building con-

textualized representations of n-grams by better modeling composition. For the pur-

poses of ranking, this is conceptually similar to ConvKNRM, which builds models of

n-grams (albeit via a convolutional neural network). Peters et al. presented a con-

textualized language model built from a multi-layer bi-directional recurrent neural

network (ELMo), and demonstrated that it can simply replace the embedding layer

of other models [153]. This model is trained to predict missing terms in sentences as a

pre-training task. This yields embeddings that consistently improve the effectiveness

of various natural language processing tasks. However, it is limited by the underlying

bi-directional recurrent structure both in time (expensive to run for long sequences),

and in context (each direction can only provide context from that side).

75

Devlin et al. address some of these issues in BERT, which applies a similar idea

but uses a self-attentive [198] transformer network instead of a recurrent network [44].

This work also introduced a new pre-training objective in addition to masked language

modeling: next sentence prediction. This objective allows the pre-trained model to be

easily tuned for tasks the operate on text pairs. For information retrieval, this has

been very successful when applied to query and document pairs [135, 156, 220]. Due to

the wild success of BERT on various NLP tasks, others have investigated alternative

pre-training settings and architectures, notably Transformer-XL [38], XLNet [222],

XLM [89], RoBERTa [105], and ALBERT [90]. Other models focus on textual gener-

ation, such as GPT-2 [158], and T5 [159].

3.2 Effective Ranking using Contextualized Language Models

With the availability of pretrained contextualized language models, we wondered

whether these resources would be more effective than the static word embedding rep-

resentations used in prior work for ranking. In this section, we examine the utilization

of pretrained contextualized term representations on ad-hoc document ranking.

3.2.1 Methodology

Contextualized Similarity Tensors

Pretrained contextual language representations (such as those from ELMo [153] and

BERT [44]) are context sensitive; in contrast to more conventional pretrained word

vectors (e.g., GloVe [151]) that generate a single word representation for each word

in the vocabulary, these models generate a representation of each word based on its

context in the sentence. For example, the contextualized representation of word bank

would be different in bank deposit and river bank, while a pretrained word embedding

76

model would always result in the same representation for this term. Given that these

representations capture contextual information in the language, we investigate how

these models can also benefit general neural ranking models.

Although contextualized language models vary in particular architectures, they

typically consist of multiple stacked layers of representations (e.g., recurrent or trans-

former outputs). The intuition is that the deeper the layer, the more context is incor-

porated. To allow neural ranking models to learn which levels are most important,

we choose to incorporate the output of all layers into the model, resulting in a three-

dimensional similarity representation. Thus, we expand the similarity representation

(conditioned on the query and document context) to SQ,D ∈ RL×|Q|×|D| where L

is the number of layers in the model, akin to the channel in image processing. Let

contextQ,D(t, l) ∈ RD be the contextualized representation for token t in layer l, given

the context of Q and D. Given these definitions, let the contextualized representation

be:

SQ,D[l, q, d] = cos(contextQ,D(q, l), contextQ,D(d, l)) (3.1)

for each query term q ∈ Q, document term d ∈ D, and layer l ∈ [1..L]. Note that

when q and d are identical, they will likely not receive a similarity score of 1, as their

representation depends on the surrounding context of the query and document. The

layer dimension can be easily incorporated into existing neural models. For instance,

soft n-gram based models, like PACRR, can perform convolutions with multiple input

channels, and counting-based methods (like KNRM and DRMM) can count each

channel individually.

Joint BERT Approach

Unlike ELMo, the BERT model encodes multiple text segments simultaneously,

allowing it to make judgments about text pairs. It accomplishes this by encoding two

77

meta-tokens ([SEP] and [CLS]) and using text segment embeddings (Segment A and

Segment B). The [SEP] token separates the tokens of each segment, and the [CLS]

token is used for making judgments about the text pairs. During training, [CLS] is

used for predicting whether two sentences are sequential – that is, whether Segment

A immediately precedes Segment B in the original text. The representation of this

token can be fine-tuned for other tasks involving multiple text segments, including

natural language entailment and question answering [219].

We explore incorporating the [CLS] token’s representation into existing neural

ranking models as a joint approach. This allows neural rankers to benefit from deep

semantic information from BERT in addition to individual contextualized token

matches.

Incorporating the [CLS] token into existing ranking models is straightforward.

First, the given ranking model produces relevance scores (e.g., n-gram or kernel scores)

for each query term based on the similarity matrices. Then, for models using dense

combination (e.g., PACRR, KNRM), we propose concatenating the [CLS] vector to

the model’s signals. For models that sum query term scores (e.g., DRMM), we include

the [CLS] vector in the dense calculation of each term score (i.e., during combination

of bin scores).

We hypothesize that this approach will work because the BERT classification

mechanism and existing rankers have different strengths. The BERT classifica-

tion benefits from deep semantic understanding based on next-sentence prediction,

whereas ranking architectures traditionally assume query term repetition indicates

higher relevance. In reality, both are likely important for relevance ranking.

78

3.2.2 Experiment

Experimental Setup

Datasets. We evaluate our approaches using two datasets: Trec Robust 2004 and

WebTrack 2012–14. For Robust, we use the five folds from [77] with three folds used

for training, one fold for testing, and the previous fold for validation. For WebTrack,

we test on 2012–14, training each year individually on all remaining years (including

2009–10), and validating on 2011. (For instance, when testing on WebTrack 2014, we

train on 2009–10 and 2012–13, and validate on 2011.) Robust uses Trec discs 4 and

51, WebTrack 2009–12 use ClueWeb09b2, and WebTrack 2013–14 uses ClueWeb123

as document collections. We evaluate the results using the nDCG@20 / P@20 metrics

for Robust04 and nDCG@20 / ERR@20 for WebTrack.

Models. Rather than building new models, in this work we use existing model

architectures to test the effectiveness of various input representations. We evaluate our

methods on three neural relevance matching methods: PACRR [76], KNRM [214], and

DRMM [56]. Relevance matching models have generally shown to be more effective

than semantic matching models, while not requiring massive amounts of behavioral

data (e.g., query logs). For PACRR, we increase kmax = 30 to allow for more term

matches and better back-propagation to the language model.

Contextualized language models. We use the pretrained ELMo (Original,

5.5B) and BERT (BERT-Base, Uncased) language models in our experiments. For

ELMo, the query and document are encoded separately. Since BERT enables encoding

multiple texts at the same time using Segment A and Segment B embeddings, we

encode the query (Segment A) and document (Segment B) simultaneously. Because

1520k documents; https://trec.nist.gov/data_disks.html
250M web pages, https://lemurproject.org/clueweb09/
3733M web pages, https://lemurproject.org/clueweb12/

79

the pretrained BERT model is limited to 512 tokens, longer documents are split

such that document segments are split as evenly as possible, while not exceeding

the limit when combined with the query and control tokens. (Note that the query is

always included in full.) BERT allows for simple classification fine-tuning, so we also

experiment with a variant that is first fine-tuned on the same data using the Vanilla

BERT classifier (see baseline below), and further fine-tuned when training the ranker

itself.

Training and optimization. We train all models using pairwise hinge loss [43].

Positive and negative training documents are selected from the query relevance

judgments (positive documents limited to only those meeting the re-ranking cutoff

threshold k using BM25, others considered negative). We train each model for 100

epochs, each with 32 batches of 16 training pairs. Gradient accumulation is employed

when the batch size of 16 is too large to fit on a single GPU. We re-rank to top k

BM25 results for validation, and use P@20 on Robust and nDCG@20 on WebTrack

to select the best-performing model. We different re-ranking functions and thresholds

at test time for each dataset: BM25 with k = 150 for Robust04, and QL with k = 100

for WebTrack. The re-ranking setting is a better evaluation setting than ranking all

qrels, as demonstrated by major search engines using a pipeline approach [170]. All

models are trained using Adam [86] with a learning rate of 0.001 while BERT layers

are trained at a rate of 2e-5.4 Following prior work [76], documents are truncated to

800 tokens.

Baselines. We compare contextualized language model performance to the fol-

lowing strong baselines:
4Pilot experiments showed that a learning rate of 2e-5 was more effective on this task

than the other recommended values of 5e-5 and 3e-5 by [44].

80

Table 3.1 Ranking performance of contextualized models on Robust04.

Robust04

Ranker Input Representation P@20 nDCG@20

BM25 n/a 0.3123 0.4140
SDM [125] n/a 0.3749 0.4353
TREC-Best n/a 0.4386 0.5030
ConvKNRM GloVe 0.3349 0.3806
Vanilla BERT BERT (fine-tuned) [BC] 0.4042 [BC] 0.4541

PACRR GloVe 0.3535 [C] 0.4043
PACRR ELMo [C] 0.3554 [C] 0.4101
PACRR BERT [C] 0.3650 [C] 0.4200
PACRR BERT (fine-tuned) [BCVG] 0.4492 [BCVG] 0.5135
CEDR-PACRR BERT (fine-tuned) [BCVG] 0.4559 [BCVG] 0.5150

KNRM GloVe 0.3408 0.3871
KNRM ELMo [C] 0.3517 [CG] 0.4089
KNRM BERT [BCG] 0.3817 [CG] 0.4318
KNRM BERT (fine-tuned) [BCG] 0.4221 [BCVG] 0.4858
CEDR-KNRM BERT (fine-tuned) [BCVGN] 0.4667 [BCVGN] 0.5381

DRMM GloVe 0.2892 0.3040
DRMM ELMo 0.2867 0.3137
DRMM BERT 0.2878 0.3194
DRMM BERT (fine-tuned) [CG] 0.3641 [CG] 0.4135
CEDR-DRMM BERT (fine-tuned) [BCVGN] 0.4587 [BCVGN] 0.5259

Significant improvements to [B]M25, [C]onvKNRM, [V]anilla BERT, the model trained with
[G]lOve embeddings, and the corresponding [N]on-CEDR system are indicated in brackets
(paired t-test, p < 0.05).

81

Table 3.2 Ranking performance on WebTrack 2012–14.

WebTrack 2012–14

Ranker Input Representation nDCG@20 ERR@20

BM25 n/a 0.1970 0.1472
SDM [125] n/a - -
TREC-Best n/a 0.2855 0.2530
ConvKNRM GloVe [B] 0.2547 [B] 0.1833
Vanilla BERT BERT (fine-tuned) [BC] 0.2895 [BC] 0.2218

PACRR GloVe 0.2101 0.1608
PACRR ELMo [BG] 0.2324 [BG] 0.1885
PACRR BERT 0.2225 0.1817
PACRR BERT (fine-tuned) [BCG] 0.3080 [BCG] 0.2334
CEDR-PACRR BERT (fine-tuned) [BCVGN] 0.3373 [BCVGN] 0.2656

KNRM GloVe [B] 0.2448 0.1755
KNRM ELMo 0.2227 0.1689
KNRM BERT [B] 0.2525 [B] 0.1944
KNRM BERT (fine-tuned) [BCVG] 0.3287 [BCVG] 0.2557
CEDR-KNRM BERT (fine-tuned) [BCVG] 0.3469 [BCVG] 0.2772

DRMM GloVe 0.2215 0.1603
DRMM ELMo [B] 0.2271 0.1762
DRMM BERT [BG] 0.2459 [BG] 0.1977
DRMM BERT (fine-tuned) [BG] 0.2598 [B] 0.1856
CEDR-DRMM BERT (fine-tuned) [BCVGN] 0.3497 [BCVGN] 0.2621

Significant improvements to [B]M25, [C]onvKNRM, [V]anilla BERT, the model trained with
[G]lOve embeddings, and the corresponding [N]on-CEDR system are indicated in brackets
(paired t-test, p < 0.05).

82

- BM25 and SDM [125], as implemented by Anserini [217]. Fine-tuning is conducted

on the test set, representing the maximum performance of the model when using

static parameters over each dataset.5 We do not report SDM performance on Web-

Track due to its high cost of retrieval on the large ClueWeb collections.

- Vanilla BERT ranker. We fine-tune a pretrained BERT model (BERT-Base,

Uncased) with a linear combination layer stacked atop the classifier [CLS] token.

This network is optimized the same way our models are, using pairwise cross-

entropy loss and the Adam optimizer. We use the approach described above to

handle documents longer than the capacity of the network, and average the [CLS]

vectors from each split.

- TREC-best: We also compare to the top-performing topic TREC run for each

track in terms of nDCG@20. We use uogTrA44xu for WT12 ([96], a learning-to-

rank based run), clustmrfaf for WT13 ([160], clustering-based), UDInfoWebAX

for WT14 ([104], entity expansion), and pircRB04t3 for Robust04 ([88], query

expansion using Google search results).6

- ConvKNRM [37], our implementation with the same training pipeline as the eval-

uation models.

- Each evaluation model when using GloVe [151] vectors.7

Results and Analysis

Tables 3.1 and 3.2 show the ranking performance using our approach. We first note

that the Vanilla BERT method significantly outperforms the tuned BM25 [B] and

ConvKNRM [C] baselines on its own. This is encouraging, and shows the ranking

5k1 in 0.1–4 (by 0.1), b in 0.1–1 (by 0.1), SDM weights in 0–1 (by 0.05).
6We acknowledge limitations of the TREC experimentation environment.
7glove.42B.300d, https://nlp.stanford.edu/projects/glove/

83

power of the Vanilla BERT model. When using contextualized language term repre-

sentations without tuning, PACRR and DRMM performance is comparable to that of

GloVe [G], while KNRM sees a modest boost. This might be due to KNRM’s ability to

train its matching kernels, tuning to specific similarity ranges produced by the models.

(In contrast, DRMM uses fixed buckets, and PACRR uses maximum convolutional

filter strength, both of which are less adaptable to new similarity score ranges.) When

fine-tuning BERT, all three models see a significant boost in performance compared

to the GloVe-trained version. PACRR and KNRM see comparable or higher perfor-

mance than the Vanilla BERT model. This indicates that fine-tuning contextualized

language models for ranking is important. This boost is further enhanced when using

the CEDR (joint) approach, with the CEDR models always outperforming Vanilla

BERT [V], and nearly always significantly outperforming the non-CEDR versions [N].

This suggests that term counting methods (such as KNRM and DRMM) are com-

plementary to BERT’s classification mechanism. Similar trends for both Robust04

and WebTrack 2012–14 indicate that our approach is generally applicable to ad-hoc

document retrieval tasks.

To gain a better understanding of how the contextual language model helps

enhance the input representation, we plot example similarity matrices based on GloVe

word embeddings, ELMo representations (layer 2), and fine-tuned BERT representa-

tions (layer 5) in Figure 3.1. In these examples, two senses of the word curb (restrain,

and edge of street) are encountered. The first is relevant to the query (it’s discussing

attempts to restrain population growth). The second is not (it discusses street con-

struction). Both the ELMo and BERT models give a higher similarity score to the

correct sense of the term for the query. This ability to distinguish different senses of

terms is a strength of contextualized language models, and likely can explain some of

the performance gains of the non-joint models.

84

cu
rb

in
g

po
pu

la
tio

n
gr

ow
th

cu
rb

in
g

po
pu

la
tio

n
gr

ow
th

cu
rb

in
g

po
pu

la
tio

n
gr

ow
th

cu
rb

##
in

g
po

pu
la

tio
n

gr
ow

th

cu
rb

in
g

po
pu

la
tio

n
gr

ow
th

cu
rb

##
in

g
po

pu
la

tio
n

gr
ow

th

Relevant (FT934-7698) Non-relevant (LA032990-0138)
BERT (ft) GloVe BERT (ft)

0.7

0.5

try
curb

growth
population

order
raise

tuesday
abandoned

plan
citywide

curb
construction

GloVe ELMo ELMo

0.2

0.30.6

0.6

Figure 3.1 Example similarity matrix excerpts. Embedding sources include
GloVe, ELMo, and BERT. Both a relevant and non-relevant document are shown.
The example is for Robust query 435. Lighter values have higher similarity.

3.2.3 Summary

We demonstrated that contextualized word embeddings can be effectively incorpo-

rated into existing neural ranking architectures. This supports the hypothesis that

contextualized representations are beneficial for ad-hoc ranking. We see that this

approach outperforms prior ranking models. Finally, we see that even the Vanilla

BERT strategy, i.e., using the classification mechanism of the contextualized language

model itself, is an effective approach.

3.3 Ranking Significant Discrepancies in Clinical Reports

With the effectiveness of contextualized language models demonstrated in Section 3.2,

we wondered whether these resources could benefit other IR tasks. In this section,

we explored one such task: ranking the level of discrepancy of clinical reports. This

presented new challenges, and led us to propose a new model for this task that employs

contextualized representations.

85

3.3.1 Background

Medical errors are a pervasive problem in healthcare that can result in serious patient

harm [121]. To identify and reduce the occurrence of preventable errors, many medical

centers use reporting systems to document cases. Initial reports are often reviewed

and revised by more experienced physicians. The revisions could be due to stylistic

reasons or (more importantly) misinterpretations/errors in the initial report. In such

cases, to prevent recurrence of the errors, is crucial to identify reports with substantive

differences between the original and final report and discuss them with the clinician

who wrote the initial report. It is often challenging to manually identify such cases

among the large number of daily written reports in a timely manner. In this work, we

propose an approach for ranking revisions of medical reports by the degree of discrep-

ancy between the different versions of the report. This allows medical practitioners

to easily find the reports in which they made an error, which helps them learn from

their mistakes and prevent future similar errors.

This is a challenging task to automate because the edits that an attending physi-

cian makes to a report can range from stylistic differences to significant discrepancies

that may have a major effect on the patient (e.g., an unobserved mass). See Figure 3.2

for an example of significant and non-significant discrepancies from radiology reports.

As we can see, differences between the significant and non-significant discrepancies

are often not trivial to identify and requires more than just comparing surface word

changes in the versions of the reports. Furthermore, significant discrepancies can occur

relatively frequently in practice; in our dataset collected from a large urban hospital,

around 7% of reports contained significant errors. With hundreds of reports gener-

ated a week at some hospitals, this can amount to a considerable number of errors.

We address this problem by proposing a supervised ranking approach for clinician’s

86

...with imaging features strongly sug-
gestive of hepatocellular carcinoma
(LI-RADS 4) not well discernible
probably present but not conspicuous on
prior examination...

... 3. Left renal artery: Single with a
slightly early branching first branch point
averaging averages 1.9 cm from the left lat-
eral margin of the aorta. Left renal vein:
Single without late confluence...

Significant discrepancy Non-Significant discrepancy

Figure 3.2 Example radiology impression revisions. Strikeout indicates
removed content and underline indicates added content. We aim to rank report revi-
sions by the significance of the discrepancy.

revised reports by the degree that there are significant discrepancies between their

preliminary report and the final corrected report. I.e., our goal is to rank revisions

that are more likely due to errors higher than revisions that are merely due to stylistic

changes.

Prior works have investigated significant discrepancies in medical reports through

comparison of surface textual features [171, 205], semantic similarity features [25],

and word frequencies [82]. These works often treat the problem as classification and

the most successful ones leverage a variety of textual similarity measures. Viewing

this problem as ranking is a more suitable and practical form of evaluation; given a

doctor’s limited time, it is important for them to be presented with the reports that

have the most significant discrepancies.

Document ranking in the broad medical domain have received extensive interest

of researchers [87, 165, 174, 178, 189, 225]. However, these efforts focus on conven-

tional query-document retrieval. Our goal is to rank significant discrepancies by mea-

suring the semantic overlap between the initial and final report. There have also been

efforts to identify semantic similarity between two texts, e.g., for paraphrase identifi-

cation [54, 102, 162, 196], but these approaches operate on the sentence-level, making

them unsuitable for documents (e.g., radiology reports).

87

3.3.2 Methodology

We propose a supervised model that measures the overlap between the preliminary

and final report for the purpose of ranking pairs of preliminary and final reports based

on their significance over a given period of time. We observe that the central challenge

of this task is being permissive of surface-level changes (which may be considerable),

while emphasizing changes of substance, which may be subtle (see Figure 3.2 for

examples of such changes). To address this, we incorporate importance and similarity

scores. The importance score weights each term/phrase and is learned during training.

This score allows for terms that are not important to have less of an impact on the

ranking score of the report (e.g., words like well and but). Note that this is a special

application in which some function words that are often ignored actually have a big

impact on the meaning of a report (e.g., not is often considered a stop word and

removed). We let the model learn which terms are important during training. The

matching score allows for the model to account for the replacement of similar terms

using the cosine distance of word vectors (e.g., averaging and averages are similar)

and synonym information from a domain-specific ontology (chauffeur fracture and

Hutchinson fracture are synonymous). This allows the replacement of semantically-

similar terms to have little impact on the ranking score. We calculate three similarity

scores (addition, deletion, and overlap) using the importance and matching scores,

and linearly combine them as a ranking score.

Notation and task definition. Let R be a set of clinical reports. Each report

r ∈ R consists of a preliminary and final version of the report (p and f , respectively),

and a label l ∈ {0, 1, ..., L} indicating the degree of discrepancy between p and f .

Each version of the report consists of a sequence of tokens, denoted by pi and fi. The

significant discrepancy ranking task produces a ranking score s ∈ R for each report

88

r ∈ R such that the reports with higher degrees of discrepancy are assigned a higher

ranking score.

Similarity scores. Our approach combines several similarity scores to produce

a ranking score. Specifically, we measure the weighted soft additions, deletions, and

overlap of unigrams, n-grams, and ontological entities. The addition score (Sa, Eq. 3.2)

defines weighted soft similarity as the ratio between the similarity score (weighted by

a learned importance score) and the total importance of all terms in the final report.

Thus, terms from the final report that do not appear in the preliminary report (i.e.,

additions) yield a higher score. The deletion score (Sd, Eq. 3.3) is defined similarly,

but in terms of the preliminary report; terms from the preliminary report that do

not appear in the final report (deletions) yield a higher score. The overlap score (So,

Eq. 3.4) combines the addition and deletion scores into one succinct measure. We use

all three scores to measure term unigram, n-gram, and ontological differences (defined

below). We define the similarity functions (where MX(y) ∈ [0, 1] is a matching score

of term y in X, and I(y) ∈ [0, 1] is the importance score of term y) as:

Sa(p, f) = −
∑

fi∈f Mp(fi)I(fi)∑
fi∈f I(fi)

(3.2)

Sd(p, f) = −
∑

pi∈pMf (pi)I(pi)∑
pi∈p I(pi)

(3.3)

So(p, f) = −
∑

pi∈pMf (pi)I(pi) +
∑

fi∈f Mp(fi)I(fi)∑
pi∈p I(pi) +

∑
fi∈f I(fi)

(3.4)

Unigram and n-gram matching. Unigram matching can provide valuable sig-

nals for significance in radiology reports. For instance, the addition no (e.g., fracture

vs. no fracture) could change the meaning of the report considerably. We define the

matching function for unigrams as the maximum cosine similarity between the word

embeddings (emb(·)) of the term and any term in the other report, and a unigram

89

importance function using a simple feed-forward layer with sigmoid activation (Wimp

and bimp as model parameters):

MX(y) = max
x∈X

(cos(emb(x), emb(y))) (3.5)

I(y) = σ(emb(y)Wimp + bimp) (3.6)

N-gram matching provides another important view of similarity, since there are

many multi-word noun phrases in radiological notes. For instance, right arm and left

arm represent completely different parts of the body, and should be treated differently.

We handle n-grams by first taking the average of the embeddings over sliding windows.

This is a simple and effective way to combine the representations. We use bi-grams

and tri-grams in our experiments.

Ontological matching. Since medical knowledge is broad and extensive, the

model may never encounter certain medical entities during training. This knowledge

may also not be captured effectively by embeddings. Thus, it is valuable to explicitly

encode domain information into the model using an ontology. We use a mapping func-

tion that matches any exact ontological name to the corresponding concept, a constant

similarity for exact entity matches, and constant weight for all ontology concepts. We

use RadLex (v4.0, http://radlex.org/), an ontology of radiology concepts (e.g.,

procedures, diagnoses, etc.).

3.3.3 Experiment

Dataset.We train and evaluate using a dataset of 3,368 radiology reports from a large

urban hospital. Each sample consists of a preliminary report written by a resident,

and a final report revised by the attending radiologist, who labeled the edit by the

degree of discrepancy between the two reports. The labels are 0 (attending doctor

fully agrees with assessment of the resident, 81% of reports), 1 (errors exist, but they

90

are insignificant to the overall impression, 12%), 2 (subtle, yet important, error exists,

6%), 3 (an obvious error exists, 1%). We split the dataset into 122 sets based on the

combination of resident and week (ranking sets, average 27.6 reports per ranking set,

min 5, max 148). Since residents often work weekly shifts, this is a valuable setting

because it allows residents to review report discrepancies from the past week. We

randomly split the ranking sets into 60-20-20 train-dev-test set splits. Each ranking

set consists of at least 5 reports, each with at least one report discrepancy. Radiology

reports contain several sections; we primarily concern ourselves with the summary

section of the reports (called the impression) because it contains the main findings.

Baselines. To evaluate the effectiveness of the model, we compare with the variety

of methods in the state-of-the-art, including ranking models, domain specific models

and textual similarity models, briefly described below:

- Vector space model (VSM). We use the traditional TFIDF-weighted vector space

similarity score between the preliminary and final report (from lucene).

- BiPACRR. We test the PACRR [75] neural IR model because it learns to identify

n-gram similarity between two texts. We modify the architecture to learn two scores

(one with the preliminary report as the query and the other with the final report

as the query), and linearly combine them to produce a final ranking score. We

call this variant BiPACRR. We also experimented with other neural rankers (e.g.,

KNRM [214]), but BiPACRR was the most effective.

- Textual similarity regression (SimReg) [25]. This approach uses logistic regres-

sion to combine several hand-crafted features (mostly consisting of textual simi-

larity measures and lexical features) to identify significant discrepancies in radiology

reports. Since this approach performs classification, we use the label score as the

ranking score. Our experiments used the authors’ implementation.

91

- (Sci)BERT classification. We use the standard fine-tuned BERT textual simi-

larity method on both the pretrained BERT [44] (base-uncased) and SciBERT [10]

(scivocab-uncased) models. Based on preliminary parameter tuning, we use a

learning rate of 10−5 for fine-tuning these models.

Evaluation metrics. Given the time constraints of doctors, we choose evalua-

tion metrics that emphasize placing reports with higher discrepancies at the top. We

evaluate using nDCG@1, nDCG@5, nDCG (without cutoff), P@1, P@5, and R-Prec

(binary labels test any degree of discrepancy higher than label 0).

Parameters and training. We train the neural models using pairwise cross-

entropy loss [43]. Hyper-parameters are tuned using nCDG@5 on the dev set. We

use SciBERT term embeddings [10] in our model and BiPACRR and tune for the

optimal layer’s embeddings akin to [110]. SciBERT is an adaptation of BERT to the

biomedical and scientific domains, making it suitable for radiology notes.

Results. Test set performance of our best model configuration are shown in

Table 3.3. Our optimal model consists of unigram, bi-gram, tri-gram, and RadLex

scores. When compared to the best prior work (SimReg [25]), our model typically

yields a considerable improvement in ranking performance. Our method improves R-

Prec by 7.4%, nDCG@1 and nDCG@5 performance by 4.5%, and P@5 performance

by 4.7%. In 54% of the test cases, our approach improves the nDCG@5 score over

SimReg (decreases performance in only 27% of cases). Our model also outperforms

leading language model classification approaches (BERT and SciBERT) and a leading

neural ranking approach tuned for this task in most metrics (BiPACRR) by up to

15.4% in nDCG@1. We attribute this improved effectiveness of our approach to the

explicit modeling of term importance and overlap, which are critical for the task.

Ablations. Table 3.4 shows the ablation study examining the importance of dif-

ferent components in our system. We observe that both contextualization and domain-

92

Table 3.3 Radiology ranking performance of our method and baselines.

Model nDCG@1 nDCG@5 nDCG P@1 P@5 R-Prec

VSM 48.1 54.0 70.9 65.4 42.3 49.4
BERT 59.0 69.8 78.7 69.2 53.8 53.9
SciBERT 62.2 68.2 79.3 76.9 51.5 58.3
BiPACRR 64.1 68.6 77.5 69.2 56.2 55.3
SimReg 69.9 70.7 81.1 80.8 51.5 51.8
Our Method 74.4 75.2 83.7 80.8 56.2 59.2

Table 3.4 Ablation study of our radiology ranking method.

Model nDCG@5

Full Model 75.2
- replace SciBERT with BERT 64.7
- replace SciBERT with BioNLP (pubmed-pmc, bio.nlplab.org) 62.2
- replace SciBERT with FastText (wiki-news-300d-1M, fasttext.cc) 59.1
- without term importance 68.3
- without ontology similarity 65.4
- only overlap score (So) 70.8
- only addition/deletion scores (Sa and Sd) 61.5

specificity of the word embeddings improve the performance of our approach. The

term importance mechanism improves nDCG@5 by 6.9% and the ontology similarity

improves performance by 9.8%. All three similarity measures appear to be important,

however the overlap score alone can account for most of the performance (last row in

table). This may be because it succinctly accounts for both additions and deletions.

Term importance. To better understand the term importance mechanism of our

approach, we present an example report in Figure 3.3 (slightly altered for privacy).

This report contains highly significant discrepancies and was ranked at position 3 by

93

anteroinferior dislocation of the left shoulder. mild hill- sachs deformity
without associated bankart lesion. no evidence of acute fracture or
dislocation of the humerus.

Figure 3.3 Example unigram importance scores from our radiology model.
Results are the mean of the scores from the preliminary and final report. Darker colors
indicates higher importance scores. Underlines indicate additions to the final report;
strikeouts indicate deletions.

our approach and position 9 by SimReg (below several non-significant discrepancies).

We observe that our model considers many radiological conditions as important, both

when unmodified between the reports and when added/deleted (e.g., fracture, disloca-

tion, bankart). Judging by the low textual similarity in this example, we conclude that

the SimReg model may be relying too heavily on lexical features. We check the terms

that are assigned high importance scores across all reports and find the most common

are no (12% of reports), cardiopulmonary (3%), process (3%), and abnormality (3%).

3.3.4 Summary

We presented a supervised ranking model based on lexical and ontological overlaps

to rank medical reports by their discrepancy significance. On a real-world dataset of

medical reports, we demonstrated that our approach outperforms existing approaches

by large margins. This direction is a critical step towards addressing the problem of

medical errors. By allowing medical practitioners to more easily find and learn from

their previous errors, the chance of recurrent errors will be reduced, improving the

well-being of patients.

94

3.4 Addressing the Lack of Multi-lingual Training Data

We recognize the fact that the majority of ad-hoc retrieval research is done using

English data. This is largely due to the fact that most training and evaluation

resources are in English. Here, we study how effective neural ranking methods are

when trained on abundant English data, and evaluated on data in other languages.

Furthermore, we evaluated the effect of introducing a small amount of in-language

training data.

3.4.1 Background

Every day, billions of non-English speaking users [169] interact with search engines;

however, commercial retrieval systems have been traditionally tailored to English

queries, causing an information access divide between those who can and those who

cannot speak this language [227]. Non-English search applications have been equally

under-studied by most information retrieval researchers. Historically, ad-hoc retrieval

systems have been primarily designed, trained, and evaluated on English corpora (e.g.,

[4, 20, 21, 125]). More recently, a new wave of supervised state-of-the-art ranking

models have been proposed by researchers [56, 75, 128, 141, 214, 220]; these models

rely on neural architectures to rerank the head of search results retrieved using a tra-

ditional unsupervised ranking algorithm, such as BM25. Like previous ad-hoc ranking

algorithms, these methods are almost exclusively trained and evaluated on English

queries and documents.

The absence of rankers designed to operate on languages other than English can

largely be attributed to a lack of suitable publicly available data sets. This aspect

particularly limits supervised ranking methods, as they require samples for training

and validation. For English, previous research relied on English collections such as

95

TREC Robust 2004 [202], the 2009-2014 TREC Web Track [27], and MS MARCO

[9]. No datasets of similar size exist for other languages.

While most of recent approaches have focused on ad hoc retrieval for English, some

researchers have studied the problem of cross-lingual information retrieval. Under this

setting, document collections are typically in English, while queries get translated to

several languages; sometimes, the opposite setup is used. Throughout the years, sev-

eral cross lingual tracks were included as part of TREC. TREC 6, 7, 8 [16] offer

queries in English, German, Dutch, Spanish, French, and Italian. For all three years,

the document collection was kept in English. CLEF also hosted multiple cross-lingual

ad-hoc retrieval tasks from 2000 to 2009 [15]. Early systems for these tasks leveraged

dictionary and statistical translation approaches, as well as other indexing optimiza-

tions [152]. More recently, approaches that rely on cross-lingual semantic represen-

tations (such as multilingual word embeddings) have been explored. For example,

Vulic and Moens [204] proposed BWESG, an algorithm to learn word embeddings on

aligned documents that can be used to calculate document-query similarity. Sasaki

et al [179] leveraged a data set of Wikipedia pages in 25 languages to train a learning

to rank algorithm for Japanese-English and Swahili-English cross-language retrieval.

Litschko et al [101] proposed an unsupervised framework that relies on aligned word

embeddings. Ultimately, while related, these approaches are only beneficial to users

who can understand documents in two or more languages instead of directly tackling

non-English document retrieval.

A few monolingual ad-hoc data sets exist, but most are too small to train a super-

vised ranking method. For example, TREC produced several non-English test collec-

tions: Spanish [60], Chinese Mandarin [199], and Arabic [140]. Other languages were

explored, but the document collections are no longer available. The CLEF initiative

includes some non-English monolingual datasets, though these are primarily focused

96

on European languages [15]. Recently, Zheng et al. [229] introduced Sogou-QCL, a

large query log dataset in Mandarin. Such datasets are only available for languages

that already have large, established search engines.

Inspired by the success of neural retrieval methods, this work focuses on studying

the problem of monolingual ad-hoc retrieval on non English languages using super-

vised neural approaches. In particular, to circumvent the lack of training data, we

leverage transfer learning techniques to train Arabic, Mandarin, and Spanish retrieval

models using English training data. In the past few years, transfer learning between

languages has been proven to be a remarkably effective approach for low-resource

multilingual tasks (e.g. [80, 85, 181, 221]). Our model leverages a pre-trained multi-

language transformer model to obtain an encoding for queries and documents in

different languages; at train time, this encoding is used to predict relevance of query

document pairs in English. We evaluate our models in a zero-shot setting; that is, we

use them to predict relevance scores for query document pairs in languages never seen

during training. By leveraging a pre-trained multilingual language model, which can

be easily trained from abundant aligned [89] or unaligned [29] web text, we achieve

competitive retrieval performance without having to rely on language specific rele-

vance judgements.

3.4.2 Methodology

Zero-shot Multi-Lingual Ranking. Because large-scale relevance judgments are

largely absent in languages other than English, we propose a new setting to evaluate

learning-to-rank approaches: zero-shot cross-lingual ranking. This setting makes use

of relevance data from one language that has a considerable amount of training data

(e.g., English) for model training and validation, and applies the trained model to a

different language for testing.

97

More formally, let S be a collection of relevance tuples in the source language, and

T be a collection of relevance judgments from another language. Each relevance tuple

〈q,d, r〉 consists of a query, document, and relevance score, respectively. In typical

evaluation environments, S is segmented into multiple splits for training (Strain) and

testing (Stest), such that there is no overlap of queries between the two splits. A

ranking algorithm is tuned on Strain to define the ranking function RStrain(q,d) ∈ R,

which is subsequently tested on Stest. We propose instead tuning a model on all data

from the source language (i.e., training RS(·)), and testing on a collection from the

second language (T).

3.4.3 Experiment

Experimental Setup

Datasets. We evaluate on monolingual newswire datasets from three languages:

Arabic, Mandarin, and Spanish. The Arabic document collection contains 384k doc-

uments (LDC2001T55), and we use topics/relevance information from the 2001–02

TREC Multilingual track (25 and 50 topics, respectively). For Mandarin, we use

130k news articles from LDC2000T52. Mandarin topics and relevance judgments are

utilized from TREC 5 and 6 (26 and 28 topics, respectively). Finally, the Spanish

collection contains 58k articles from LDC2000T51, and we use topics from TREC 3

and 4 (25 topics each). We use the topics, rather than the query descriptions, in all

cases except TREC Spanish 4, in which only descriptions are provided. The topics

more closely resemble real user queries than descriptions.8 We test on these collections

because they are the only document collections available from TREC at this time.9

8Some have observed that the context provided by query descriptions are valuable for
neural ranking, particularly when using contextualized language models [36].

9https://trec.nist.gov/data/docs_noneng.html

98

We index the text content of each document using a modified version of Anserini

with support for the languages we investigate [217]. Specifically, we add Anserini

support for Lucene’s Arabic and Spanish light stemming and stop word list (via

SpanishAnalyzer and ArabicAnalyzer). We treat each character in Mandarin text

as a single token.

Modeling. We explore the following ranking models:

• Unsupervised baselines. We use the Anserini [217] implementation of BM25,

RM3 query expansion, and the Sequential Dependency Model (SDM) as unsuper-

vised baselines. In the spirit of the zero-shot setting, we use the default parameters

from Anserini (i.e., assuming no data of the target language).

• PACRR [75] models n-gram relationships in the text using learned 2D convolutions

and max pooling atop a query-document similarity matrix.

• KNRM [214] uses learned Gaussian kernel pooling functions over the query-

document similarity matrix to rank documents.

• Vanilla BERT, as introduced in Section 3.2, uses the BERT [44] transformer

model, with a dense layer atop the classification token to compute a ranking score.

To support multiple languages, we use the base-multilingual-cased pretrained

weights. These weights were trained on Wikipedia text from 104 languages.

We use the embedding layer output from base-multilingual-cased model for

PACRR and KNRM. In pilot studies, we investigated using cross-lingual MUSE vec-

tors [29] and the output representations from BERT, but found the BERT embeddings

to be more effective.

Experimental Setup. We train and validate models using TREC Robust 2004 col-

lection [202]. TREC Robust 2004 contains 249 topics, 528k documents, and 311k

99

relevance judgments in English (folds 1-4 from [77] for training, fold 5 for valida-

tion). Thus, the model is only exposed to English text in the training and validation

stages (though the embedding and contextualized language models are trained on

large amounts of unlabeled text in the languages). The validation dataset is used for

parameter tuning and for the selection of the optimal training epoch (via nDCG@20).

We train using pairwise softmax loss with Adam [86].

We evaluate the performance of the trained models by re-ranking the top 100 doc-

uments retrieved with BM25. We report MAP, Precision@20, and nDCG@20 to gauge

the overall performance of our approach, and the percentage of judged documents in

the top 20 ranked documents (judged@20) to evaluate how suitable the datasets are

to approaches that did not contribute to the original judgments.

Results

We present the ranking results in Tables 3.5 and 3.6. We first point out that there

is considerable variability in the performance of the unsupervised baselines; in some

cases, RM3 and SDM outperform BM25, whereas in other cases they under-perform.

Similarly, the PACRR and KNRM neural models also vary in effectiveness, though

more frequently perform much worse than BM25. This makes sense because these

models capture matching characteristics that are specific to English. For instance,

n-gram patterns captured by PACRR for English do not necessarily transfer well to

languages with different constituent order, such as Arabic (VSO instead of SVO).

An interesting observation is that the Vanilla BERT model (which recall is only

tuned on English text) generally outperforms a variety of approaches across three

test languages. This is particularly remarkable because it is a single trained model

that is effective across all three languages, without any difference in parameters. The

exceptions are the Arabic 2001 dataset, in which it performs only comparably to BM25

100

Table 3.5 Zero-shot multi-lingual results for various baseline and neural
methods in Arabic and Mandarin.

Ranker P@20 nDCG@20 MAP judged@20

Arabic (TREC 2002) [140]
BM25 0.3470 0.3863 0.2804 99.0%
BM25 + RM3 0.3320 0.3705 ↓ 0.2641 95.1%
SDM 0.3380 0.3775 ↓ 0.2572 98.1%
PACRR multilingual 0.3270 0.3499 ↓ 0.2517 96.4%
KNRM multilingual 0.3210 ↓ 0.3415 ↓ 0.2503 95.2%
Vanilla BERT multilingual ↑ 0.3790 0.4205 0.2876 97.4%

Arabic (TREC 2001) [140]
BM25 0.5420 0.5933 0.3462 97.2%
BM25 + RM3 ↓ 0.4700 0.5458 ↓ 0.2903 85.6%
SDM 0.5140 0.5843 0.3213 96.2%
PACRR multilingual ↓ 0.3880 ↓ 0.3933 ↓ 0.2724 90.6%
KNRM multilingual ↓ 0.4140 ↓ 0.4327 ↓ 0.2742 91.0%
Vanilla BERT multilingual 0.5240 0.5628 0.3432 91.0%

Mandarin (TREC 6) [199]
BM25 0.5962 0.6409 0.3316 89.6%
BM25 + RM3 ↓ 0.5019 ↓ 0.5571 0.2696 75.6%
SDM 0.5942 0.6320 0.3472 92.1%
PACRR multilingual ↓ 0.4923 ↓ 0.5238 0.2856 79.0%
KNRM multilingual ↓ 0.5308 ↓ 0.5497 ↓ 0.3107 80.8%
Vanilla BERT multilingual ↑ 0.6615 ↑ 0.6959 ↑ 0.3589 92.7%

Mandarin (TREC 5) [203]
BM25 0.3893 0.4113 0.2548 85.4%
BM25 + RM3 ↓ 0.2768 ↓ 0.3021 ↓ 0.1698 64.6%
SDM ↑ 0.4536 ↑ 0.4744 ↑ 0.2855 94.1%
PACRR multilingual 0.3786 0.3998 0.2331 83.2%
KNRM multilingual ↓ 0.3232 ↓ 0.3449 ↓ 0.2223 77.5%
Vanilla BERT multilingual ↑ 0.4589 ↑ 0.5196 ↑ 0.2906 92.0%

Significant improvements and reductions in performance compared with BM25 are indicated
with ↑ and ↓, respectively (paired t-test by query, p < 0.05).

101

Table 3.6 Zero-shot multi-lingual results for various baseline and neural
methods in Spanish.

Ranker P@20 nDCG@20 MAP judged@20

Spanish (TREC 4) [60]
BM25 0.3080 0.3314 0.1459 83.8%
BM25 + RM3 0.3360 0.3358 ↑ 0.2024 85.2%
SDM 0.2780 0.3061 0.1377 78.6%
PACRR multilingual 0.2440 0.2494 0.1294 69.4%
KNRM multilingual 0.3120 0.3402 0.1444 79.2%
Vanilla BERT multilingual ↑ 0.4400 ↑ 0.4898 ↑ 0.1800 85.6%

Spanish (TREC 3) [61]
BM25 0.5220 0.5536 0.2420 84.8%
BM25 + RM3 ↑ 0.6100 0.6236 ↑ 0.3887 93.0%
SDM 0.4920 0.5178 0.2258 83.8%
PACRR multilingual ↓ 0.4140 ↓ 0.4092 0.2260 76.0%
KNRM multilingual 0.5560 0.5700 0.2449 85.2%
Vanilla BERT multilingual ↑ 0.6400 ↑ 0.6672 ↑ 0.2623 90.8%

Significant improvements and reductions in performance compared with BM25 are indicated
with ↑ and ↓, respectively (paired t-test by query, p < 0.05).

102

Table 3.7 Zero-Shot (ZS) and Few-Shot (FS) comparison for Vanilla BERT
(multilingual) on each dataset.

P@20 nDCG@20 MAP

Dataset ZS FS ZS FS ZS FS

Arabic 2002 0.3790 0.3690 0.4205 0.3905 0.2876 0.2822
Arabic 2001 0.5240 ↑ 0.6020 0.5628 ↑ 0.6405 0.3432 0.3529
Mandarin 6 0.6615 0.6808 0.6959 0.7099 0.3589 0.3537
Mandarin 5 0.4589 0.4643 0.5196 0.5014 0.2906 0.2895
Spanish 4 0.4400 ↑ 0.5060 0.4898 ↑ 0.5636 0.1800 ↑ 0.2020
Spanish 3 0.6400 0.6560 0.6672 0.6825 0.2623 0.2684

Within each metric and dataset, the top result is listed in bold. Significant increases from
using FS are indicated with ↑ (paired t-test, p < 0.05).

and the MAP results for Spanish. For Spanish, RM3 is able to substantially improve

recall (as evidenced by MAP), and since Vanilla BERT acts as a re-ranker atop BM25,

it is unable to take advantage of this improved recall, despite significantly improving

the precision-focused metrics. In all cases, Vanilla BERT exhibits judged@20 above

85%, indicating that these test collections are still valuable for evaluation.

To test whether a small amount of in-language training data can further improve

BERT ranking performance, we conduct an experiment that uses the other collection

for each language as additional training data. The in-language samples are inter-

leaved into the English training samples. Results for this few-shot setting are shown

in Table 3.7. We find that the added topics for Arabic 2001 (+50) and Spanish 4

(+25) significantly improve the performance. This results in a model significantly

better than BM25 for Arabic 2001, which suggests that there may be substantial dis-

tributional differences in the English TREC 2004 training and Arabic 2001 test col-

lections. We further back this up by training an “oracle” BERT model (training on the

103

test data) for Arabic 2001, which yields a model substantially better (P@20=0.7340,

nDCG@20=0.8093, MAP=0.4250).

3.4.4 Summary

We introduced a zero-shot multilingual setting for evaluation of neural ranking

methods. This is an important setting due to the lack of training data available in

many languages. We found that contextualized languages models (namely, BERT)

have a big upper-hand, and are generally more suitable for cross-lingual perfor-

mance than prior models (which may rely more heavily on phenomena exclusive to

English). We also found that additional in-language training data may improve the

performance, though not necessarily.

3.5 Choosing Good Training Samples

In Section 2.3, we demonstrated that dataset statistics can be used Incorporated as

features and signals in non-contextualized neural rankers. In this section, we explore

whether dataset statistics can be applied to contextualized models during the training

process, rather than as model features. This is formulated as a Curriculum Learning

problem, i.e., focusing on approaches for selecting better training samples.

We motivate our approach with the simple intuition that some answers are easier

to assess the relevance of than others. For instance, consider a question about the

health impacts of vegetarianism (see Figure 3.4). A passage written explicitly about

this topic (e.g., (a)) should be relatively straightforward to identify, as it uses many of

the terms in the question. This likely yields a high ranking position using conventional

probabilistic approaches, such as BM25. A passage written about the health benefits

of veganism (a more strict version of vegetarianism) may also answer the question (b).

104

health benefits of eating vegetarian

Relevance:

BM25 score:

Difficulty:

✘

✔
(a)

(b)

(c)

(d)

 Eating nuts and whole grains, while eliminating
dairy products and meat, will improve your
cardiovascular health. A British study indicates
that a vegan diet reduces the risk for heart disease
and Type 2 diabetes. Vegan diets go far in...

In summary there is evidence that a vegetarian
diet protects against cardio-vascular disease,
particularly heart disease, and there may be some
health benefits related to diabetes and colon
cancer. Evidence is lacking, however, for any...

➜➜

You may also like to read: 10 reasons to eat this
fruit! 10 health benefits of oranges (Gallery) 8
health benefits of turning vegetarian. 10 health
benefits of strawberries. 11 health benefits of
papayas. 8 reasons why you should start eating...

Ovo-vegetarian refers to people who do not eat
meat or dairy products but do eat eggs. Lacto-ovo
vegetarian,...MORE that is, a vegetarian who
eats both eggs and dairy products, is the most
common kind of vegetarian. Learn more about...

Relevance:

BM25 score:

Difficulty:

✔➜

➜

Relevance:

BM25 score:

Difficulty:

➜
➜

Relevance:

BM25 score:

Difficulty:

➜
➜

✘

Figure 3.4 Example of curriculum approach from MS-MARCO dataset. In
this example, we predict (a) is ‘easy’ because it is relevant and has a high BM25 score.
(d) is likewise ‘easy’ weight because it is non-relevant and has a low score. (b) is a
‘difficult’ sample because is relevant, yet has a low score due to the few term matches.
We also predict (c) to be ‘difficult’ because it is non-relevant, yet it has a high score.
Our approach begins by weighting ‘easy’ training samples high and ‘difficult’ training
samples low.

However, it involves more complicated reasoning and inference (such as the under-

standing of the relationship between the two diets) and semantic understanding of the

way in which the content is presented. Similarly, consider two non-relevant answers:

one that matches most of the query terms (c) and one that does not (d). We argue

that the former is more difficult for the ranking model to identify as non-relevant due

to the large number of matching terms, and the latter is easier due to critical missing

terms (e.g., health benefits).

105

While an ideal ranker would rank both (a) and (b) high, doing so we may add noise

and complexity to the model that reduces the overall quality of ranking. Specifically,

ranking (b) high may make it more difficult to identify (c) and (d) as non-relevant.

Our method attempts to overcome this issue by forcing the ranker to focus primarily

on the “easy” training samples before gradually moving on to learning to rank all

training samples via training sample weighting.

We formulate this idea using the curriculum learning (CL) framework [11].

Learning through a curriculum is an idea borrowed from cognitive sciences according

to which the learning process follows a multi-step training path. Initially, the learning

algorithm is trained by using simple examples and smooth loss functions. Then it is

progressively fine-tuned so as to deal with examples and loss functions of increasing

complexity. We instantiate the CL framework in the learning to rank domain by

assigning different weights to training samples through a heuristic. In early stages

of training, high weights are assigned to easy training pairs while difficult samples

are given low weights. As training progresses, we gradually smooth this imbalance.

Eventually, all training samples are weighted equally, regardless of the estimated

difficulty.

To estimate the difficulty of question-answer pairs and to choose the training

weight accordingly, we consider both information from an unsupervised baseline

ranker (e.g., BM25) and the human-assessed relevance of the answer to the given ques-

tion (see Figure 3.4). When an unsupervised ranker is able to identify the example

effectively (i.e., it ranks a relevant document high or a non-relevant document low)

the training sample is considered as “easy”. On the other hand, when the unsupervised

ranker fails to correctly score them, the sample is considered as “difficult”.

We show that our approach can be easily integrated into a neural ranking pipeline.

We validate our approach using three weighting heuristics based on an unsupervised

106

ranker using two leading neural ranking methods (BERT [44] and ConvKNRM [37]).

Our results show significant ranking improvements when tested on three open-domain

(i.e., not domain-specific) answer ranking benchmarks: TREC Deep Learning (DL),

TREC Complex Answer Retrieval (CAR), and ANTIQUE. These datasets vary in

scale (hundreds of thousands of answers to tens of millions) and source of relevance

information (graded or positive-only, human-annotated or inferred from document

structure). We test using both pointwise and pairwise losses.

3.5.1 Background

Curriculum Learning (CL) can be considered a particular case of Continuation

Methods, generally used when the target objective function is non-convex and its

direct optimization may lead the training to converge to a poor local minimum [11, 26].

The basic idea to overcome this problem through a curriculum approach is to organize

the learning process as a path where the easiest training samples are presented first

and the complexity of the following ones is gradually increased. This strategy allows

the learner to exploit previously seen concepts to ease the acquisition of subsequent

more difficult ones. CL approaches are proved successful for training neural networks

in different domains such as NLP [28, 72], language models (not used for ranking

tasks) [11], image representation [22], network representation [157]. To our knowl-

edge, the only attempt to explore how CL methods can be exploited in the document

ranking domain is the one by Ferro et al. [53] where authors exploit the curriculum

learning strategy in a gradient boosting algorithm that learns ranking models based

on ensembles of decision trees. The results reported by Ferro et al. show that a cur-

riculum learning strategy gives only a limited boost to the ranking performance of an

ensemble of decision trees. Similar to our approach, Fidelity-weighted learning [42]

applies weights to training samples for learning ranking models. However, this

107

approach focuses on estimating the quality of weak labels (namely, treating BM25

scores as labels), rather than the difficulty of training samples with higher-quality

labels (e.g., human-annotated labels).

Sachan and Xing [172] propose curriculum learning approaches for question

answering, but in a closed-domain setting. In open-domain question answering, there

are several challenges encountered, including that there is a much larger collection

of answers to draw from (millions of answers) and multiple correct answers to a

given question. Thus, we tackle this problem from an IR-perspective, utilizing signals

from ranking models. Recently, Penha and Hauff [150] propose approaches for using

curriculum learning to rank conversational responses, yielding up to a 2% improve-

ment in ranking effectiveness. The curricula proposed are specific to the domain of

conversational responses and are non-trivial to apply to other domains. In contrast,

we propose simple heuristics based on initial retrieval ranks and scores, and we show

their effectiveness across multiple ranking models, loss functions, and answer ranking

datasets in an open-domain setting.

3.5.2 Methodology

We present our approach for applying curriculum learning to the training of neural

rankers. At a high level, our approach applies a heuristic to determine the difficulty

of a particular training sample. This difficulty estimation is then used for weighting

training samples. In early stages of training, samples that the heuristic predicts as

easy are given a higher weight, while samples predicted to be difficult are given a

lower weight. Gradually, our approach eases off this crutch (controlled by a new

hyper-parameter). Eventually, all training samples are weighted equally, regardless of

the estimated difficulty.

108

Table 3.8 Table of symbols for curriculum learning.

Symbol Definition

Rθ Neural ranking function with parameters θ
L Loss function
D Training sample difficulty function
W Training sample weight function
q Query (i.e., question)
d Document (i.e., answer)
d+ Relevant document
d− Non-relevant document
D Set of ranked documents
s Manual relevance assessment score
T Collection of training data
t Training sample from T
i Training iteration (epoch)
m End of curriculum iteration (hyperparameter)

Our approach allows for fair comparisons to an unmodified training process

because no changes are made to the selection of the training data itself; the effect

is only on the weight of the sample during training. Furthermore, this allows for an

easy integration of our approach into existing training pipelines; no changes to the

data selection technique are required, and the heuristics rely on information readily

available in most re-ranking settings.

Our approach degrades into the typical training process in two ways: either (1)

a heuristic can be used that gives every sample a weight of 1, or (2) the hyper-

parameter that drives the degradation of the approach to equal weighting can be set

to immediately use equal weights.

109

Notation and Preliminaries

A summary of the symbols used is given in Table 3.8. Let an ad-hoc neural ranking

model be represented as Rθ(q,d) ∈ R, which maps a given query-document pair

(q,d) to a real-valued relevance score given the model parameters θ. For simplicity,

we refer to questions as queries and answers as documents. Through a set of training

data points t ∈ T and a loss function L(t), the model parameters θ are optimized to

maximize the ranking performance. The training data sample t ∈ T depends on the

type of loss employed. Two common techniques employed for training neural rankers

rely on pointwise or pairwise loss. For pointwise loss, training data consists of triples

tpoint = 〈q,d, s〉, where q is a query, d is a document, and s is its relevance score, e.g.,

the relevance score given to the query-document pair by a human assessor. The loss

for this sample often uses squared error between the predicted score and the relevance

score s:

Lpoint(q,d, s) =
(
s−Rθ(q,d)

)2 (3.7)

On the other hand, pairwise loss uses two document samples for the same query

(one relevant and one non-relevant), and optimizes to assign a higher score to the

relevant document than the non-relevant one. Training triples for pairwise loss are

represented as tpair = 〈q,d+,d−〉, where q is the query, d+ is the relevant document,

and d− is the non-relevant document. One common pairwise loss function is the

softmax cross-entropy loss:

Lpair(q,d+,d−) =
exp

(
Rθ(q,d

+)
)

exp
(
Rθ(q,d+)

)
+ exp

(
Rθ(q,d−)

) (3.8)

Curriculum Framework for Answer Ranking

Let a difficulty function D : T 7→ [0, 1] define a weight D(t) for the training sample

t ∈ T . Without loss of generality we now assume that a high value of D(t), i.e.,

110

a value close to 1, represents an easy sample, while a low value, i.e., a value close

to 0, represents a difficult sample. Note that the heuristic D(t) necessarily depends

on the type of loss function employed: for pointwise loss, it estimates the difficulty

for assigning the relevance score s to 〈q,d〉, while, for pairwise loss, it estimates the

difficulty of scoring the relevant document pair 〈q,d+〉 above the non-relevant pair

〈q,d−〉.

In our CL framework, during the first learning iteration, training samples are

weighted according only to the difficulty function. To ease into the difficult samples, we

employ a hyper-parameterm, which represents the training iteration at which to start

to give every training sample equal weights.10 Between the start of training and the

mth training iteration, we linearly degrade the importance of the difficulty heuristic.

More formally, we define the iteration-informed training sample weightWD(t, i) given

the training iteration i (0-based) as:

WD(t, i) =


D(t) + i

m

(
1−D(t)

)
i < m

1 i ≥ m

(3.9)

We then define a new D-informed loss function by including the iteration-informed

weight into the standard pointwise or pairwise loss function:

LD(t, i) = WD(t, i)L(t) (3.10)

Difficulty Heuristics

In a re-ranking setting, a simple source of difficulty information can come from the

initial ranking of the documents. Probability ranking models like BM25 rely on term

frequency and inverse document frequency to score documents. These characteristics

should generally be easy for models to learn because they can learn to identify term
10We explore the importance of eventually converging to equal weights in Section 3.5.3.

111

frequency information (either directly, as is done by models like DRMM and KNRM,

or implicitly, as is done by models like BERT through self-attention) and inverse

document frequency, e.g., by down-weighting the importance of frequent terms. We

postulate that it is inherently more difficult to perform semantic matching needed

for identifying documents that have lower initial ranking scores. These scores are also

easy to obtain, as they are readily available in a re-ranking setting. Thus, we use

unsupervised ranking scores as the basis for our curriculum learning heuristics.

Reciprocal rank heuristic We define Drecip as a measure of difficulty from the recip-

rocal of the rank at which answers appear in a ranked list. We assume that an answer

placed higher compared to the other retrieved answers is “easier” for the ranker to

place in that position. A high rank makes relevant documents easier and non-relevant

documents harder. In the pointwise setting, relevant documents with a high recip-

rocal rank are considered “easier” than relevant documents with a low reciprocal rank

because the unsupervised ranker assigned a higher score. Conversely, non-relevant

documents with a high rank are considered “harder” than samples that are assigned

a low rank. Given d from a set of ranked documents D for query q we have:

recipq,D(d) =
1

rankq,D(d)
(3.11)

With these conditions in mind, we define Drecip for pointwise loss as:

Dpointrecip (q,d, s) =


recipq,D(d) s > 0 . relevant

1− recipq,D(d) s ≤ 0 . non-relevant
(3.12)

For pairwise loss, we define pairs that have a large difference between the reciprocal

ranks to be very difficult (when the non-relevant document is higher) or very easy

(when the relevant document is higher). When the reciprocal ranks are similar, we

define the difficulty as moderate, with a difficulty close to 0.5. This is accomplished

112

by taking the difference between the scores and scaling the result within the range

[0, 1]:

Dpairrecip(q,d
+,d−) =

recipq,D(d+)− recipq,D(d−) + 1

2
(3.13)

Normalized score heuristic An alternative to using the ranks of documents by an

unsupervised ranker is to use the scores from these rankers. We define Dnorm as a

measure of difficulty that uses the ranking score information. This allows documents

that receive similar (or identical) scores to be considered similarly (or identically)

in terms of difficulty. In the case of identical scores, Dnorm allows to improve the

reproducibility of the CL approach compared to curricula that rely on rank [99]. To

account for various ranges in which ranking scores can appear, we apply min-max

normalization by query to fit all scores into the [0, 1] interval, eliminating per-query

score characteristics. The integration of the normalized score normq,D(d) into both

pointwise and pairwise rankers are similar to that of the reciprocal rank curriculum:

Dpointnorm(q,d, s) =


normq,D(d) s > 0 . relevant

1− normq,D(d) s ≤ 0 . non-relevant
(3.14)

Dpairnorm(q,d+,d−) =
normq,D(d+)− normq,D(d−) + 1

2
(3.15)

Kernel Density Estimation (KDE) heuristic The normalized score heuristic provides

weighting based on ranking score, but it fails to acknowledge an important charac-

teristic of ranking score values: they are often non-linear. For example, it is common

for a handful of scores to be comparatively very high, with a long tail of lower scored

answers (e.g., with fewer query term matches, see Figure 3.5(a)). We hypothesize that

it may be valuable to provide a greater degree of value distinction between scores in

areas of high score density (e.g., in the long tail, around a score of 16 and below in

113

20 40 60 80 100

rank

15.0

17.5

20.0

22.5

25.0

B
M

2
5

sc
o
re

(a)

10 15 20 25 30

BM25 score

0.0

0.2

0.4

0.6

0.8

1.0

d
iffi

cu
lt

y

(b)

Dnorm
Dkde

Figure 3.5 Illustration of intuition for using the KDE difficulty heuristic. (a)
Example of BM25 scores exhibiting non-linear behavior; there are several answers with
a much higher score than others and a long tail of lower-scored answers. (b) Compar-
ison between normalized score (solid blue) and KDE (dashed green) heuristic values by
BM25 score. The grey vertical lines indicate the values from the initial ranking (from
(a)). Scores are from MS-MARCO query 1000009 retrieved using Anserini’s [217]
BM25 implementation.

Figure 3.5(a)) and areas with relatively low score density (e.g., around a score of 20).

To this end, we construct a Gaussian Kernel Density Estimation (KDE), with the

bandwidth selected using Scott’s Rule [182]. We then define Dkde by using the CDF

of the kernel as the basis of difficulty measure:

Dpointkde (q,d, s) =


KDEq,D(d) s > 0 . relevant

1−KDEq,D(d) s ≤ 0 . non-relevant
(3.16)

Dpairkde (q,d+,d−) =
KDEq,D(d+)−KDEq,D(d−) + 1

2
(3.17)

where KDEq,D(d) yields the CDF score of the kernel density estimation for d. An

example of the difference between Dnorm and Dkde for a particular query is shown in

114

Table 3.9 Dataset statistics for curriculum learning experiments
Dataset # Answers Train Queries Validation Queries Test Queries Test Judgments

(judg. per query) (judg. per query) (judg. per query)

TREC DL [132] 8.8M 504k (1.1) 200 (0.7) 43 (215.3) Human (graded)
TREC CAR [46] 30M 616k (4.8) 2.2k (5.5) 2.4k (6.7) Inferred (positive only)
ANTIQUE [62] 404k 2.2k (11.3) 200 (11.0) 200 (33.0) Human (graded)

The values in parentheses indicate the average number of relevance judgments per query.

Figure 3.5(b). This approach has the added benefit of allowing a non-zero difficulty

for positive samples that are not retrieved in the ranking list.

In summary, we propose a curriculum learning approach for answer ranking. The

approach weights training samples by predicted difficulty. We propose three heuristics

for estimating training sample difficulty, based on the rank or score of an unsupervised

ranking model.

3.5.3 Experiment

We conduct experiments on three large-scale answer ranking datasets — namely

TREC Deep Learning (DL) [34] (Section 3.5.3), TREC Complex Answer Retrieval

(CAR) [46] (Section 3.5.3), and ANTIQUE [62] (Section 3.5.3) — and two neural

rankers (Vanilla BERT and ConvKNRM) to answer the following research questions:

RQ1 Are the proposed training curricula effective for training neural rankers for

answer ranking? (Sections 3.5.3–3.5.3)

RQ2 Under which conditions is each curriculum more effective (e.g., amount and

quality of training data, type of neural ranker trained, etc.)? (Sections 3.5.3–

3.5.3)

115

RQ3 Is it important to shift to difficult samples, or can a ranker be successfully

trained focusing only on easy samples? (Section 3.5.3)

RQ4 Is focusing on the easy samples first more beneficial to training than focusing

on the hardest samples first? (Section 3.5.3)

Each dataset exhibits different characteristics (summarized in Table 3.9). We test

using the the Vanilla BERT ranker (from Section 3.2) and ConvKNRM [37]. Based on

preliminary experiments that showed that the ConvKNRM model fails to converge

when trained using pointwise loss, we only test using pairwise loss. We train both

models using the Adam optimizer and a learning rate of 2×10−5 for Vanilla BERT and

10−3 for ConvKNRM. Furthermore, we use the score additivity technique from [218].

We train each model using training iterations consisting of 32 batches of 16 training

samples uniformly selected over the re-ranking pool. We employ gradient accumula-

tion when a training batch is unable to fit on a GPU (e.g., Vanilla BERT models).

After each training iteration, the validation performance is assessed. We employ early

stopping after 15 consecutive epochs with no improvement to the dataset-dependent

validation metric. When training is early stopped, the model is rolled back to the

version of that achieved a performance improvement. This yielded up to 130 training

iterations. We test our three proposed training curricula (Drecip, Dnorm, and Dkde)

on each of the datasets and neural rankers. We optimize the parameter m i.e., end

of curriculum learning epoch, by fine-tuning on the validation set. For each dataset,

ranker, and loss combination, we test m ∈ {1, 5, 10, 20, 50, 100}. To put performance

of the neural rankers in context, we include the ranking effectiveness of Anserini’s [217]

implementation of BM25 and SDM [125], both with default parameters, tuned on the

validation set (‘Tuned’), and tuned on the test set (representing the optimal settings

116

of parameters for this model, ‘Optimized’).11 We also include relevant prior reported

results and the optimal re-ranking of the results (i.e., sorting the original ranking list

by relevance score, serving as an upper bound to re-ranking performance).

Web Passage Answer Ranking

We first demonstrate the effectiveness of our training curricula on the TREC Deep

Learning (DL) 2019 answer passage ranking dataset, which uses the MS-MARCO

collection and queries [132]. The training data for this dataset consists of over a

million questions collected from the Bing query log. A human annotator was presented

a question and a list of 10 candidate answer passages. The annotator was asked to

produce a written answer to these questions based on the passages and to indicate the

passages that were most valuable in the production of this answer. For the purposes of

passage ranking, these passages are considered relevant to the corresponding question.

We note that this does not necessarily mean that all correct passages are annotated as

relevant, nor it means that the best passage is annotated (better answers could exist

beyond the 10 shown to the annotator). To overcome this limitation, the TREC DL

track manually judged the top retrieved passages for a subset of the test collection.

This evaluation setting, which uses manual relevance judgments, is more suitable for

evaluation than prior works that relied on incomplete relevance judgments (e.g., [135]).

These incomplete training relevance labels also make this dataset suitable for our

curriculum learning approach; answers ranked highly by an unsupervised ranker may

be relevant, so down-weighting these samples during training may be beneficial.

We train our models using the official MS-MARCO list of training positive and

negative relevance judgments. We use a held-out set of 200 queries for validation. We
11Models tuned using a grid search: BM25 k1 ∈ [0.1, 4.0] by 0.1 and b ∈ [0.0, 1.0] by 0.05;

SDM term, ordered and unordered weights ∈ [0, 1] by 0.1.

117

re-rank the official initial test set ranking,12 and we use the official TREC DL manual

relevance judgments for our evaluation and analysis. Statistics about the training,

development, and test sets are given in Table 3.9.

Since this work focuses on re-ranking, we evaluate using precision-oriented metrics,

and leave recall to future work. We use mean reciprocal rank at 10 (MRR@10) as the

validation metric, as it is the official task evaluation metric. Although not included

as an official task metric, we also evaluate using P(recision)@1, which indicates the

performance of the ranker in a realistic setting in which a single answer is given to a

question.

We present the ranking performance for TREC DL in Table 3.10. We observe

that under all conditions, our proposed curricula out-perform the ranker when trained

without a curriculum for both MRR and P@1 metrics. Drecip outperforms the other

curricula for ConvKNRM and pointwise Vanilla BERT, while Dkde outperforms the

other curricula for pairwise Vanilla BERT.

When the model significantly under-performs well-tuned BM25 and SDM (Con-

vKNRM), we observe that the curricula can improve the ranking performance to

approximately the level of these baselines. When the model is already doing substan-

tially better (Vanilla BERT), our training curricula also yield a considerable boost

to ranking effectiveness. The observation that our approach can improve the ranking

effectiveness in both these cases is encouraging, and suggests that the approach is

generally beneficial. When compared to the top TREC DL re-ranking results [34],

our approach performs favorably. Specifically, the top approach, namely pointwise

Vanilla BERT with Drecip, ranks second among the submissions. It is only narrowly

12Another evaluation setting for TREC DL is “full ranking”, in which systems perform ini-
tial retrieval in addition to re-ranking. Since this work focuses on improving the effectiveness
of re-ranking models rather than initial stage retrieval, we compare with other re-ranking
submissions.

118

exceeded by a much more expensive and complicated approach of pretraining a new

Table 3.10 Ranking performance on the TREC DL 2019 answer passage
ranking task.

Ranker Training MRR@10 P@1

ConvKNRM
Pairwise 0.6159 0.4419
w/ Drecip 0.6834 0.5581
w/ Dnorm 0.6514 0.5116
w/ Dkde 0.6475 0.5116

Vanilla BERT
Pointwise 0.8740 0.7907
w/ Drecip 0.8942 0.8372
w/ Dnorm 0.8895 0.8140
w/ Dkde 0.8857 0.8140

Vanilla BERT
Pairwise 0.8477 0.7442
w/ Drecip 0.8624 0.7674
w/ Dnorm 0.8581 0.7907
w/ Dkde 0.8837 ↑ 0.8372

B
as
el
in
es

BM25
Default 0.7024 0.5814
Tuned 0.6653 0.5349
Optimized 0.7555 0.6744

SDM
Default 0.6276 0.4884
Tuned 0.6243 0.4884
Optimized 0.6667 0.5814

1. 0.907 -
Top TREC Re-Ranking runs [34] 2. 0.882 -

3. 0.870 -

Optimal Re-Ranker 0.9767 0.9767

Significant improvements in performance when using the training curricula (as com-
pared to no curriculum) are indicated with ↑ (paired t-test p < 0.05). There are no
statistically-significant differences among the curricula. The top result for each model
are listed in bold.

119

0 10 20 30 40 50 60

epoch

0.20

0.25

0.30

0.35

0.40

M
R

R

m = 5

No Curriculum

Dkde

Figure 3.6 Validation performance comparison between Vanilla BERT
model trained with and without a curriculum. Training conducted using point-
wise loss without a curriculum (black x) and with the Dkde curriculum (blue circle)
for TREC DL. The tuned m parameter for the Dkde curriculum used here is marked
with a vertical line. While the variant without a curriculum quickly reaches optimal
performance, the curriculum approach reaches a higher performance faster and offers
a stronger foundation on which to continue training after the curriculum terminates.

BERT model from scratch using a different training objective. Our results indicate

that this can be avoided by simply doing a better job weighting the training samples.

To gain a better understanding of how the curriculum benefits the training pro-

cess, we compare the validation performance of the pointwise Vanilla BERT model

with the Dkde training curriculum to the same model when trained without a cur-

riculum (Figure 3.6). This reveals that when not using a curriculum, the validation

performance peaks early, suggesting that it is overfitting to difficult examples. The

curriculum, however, has even stronger early performance and is in a better position

to incorporate difficult samples as training continues. Note that the tuned end of cur-

riculum epoch is m = 5 for this example, showing that the curriculum does not need

to be in place for long to get these benefits. Also note that the training data were

120

presented in the exact same order in both cases, showing the importance of weighting

the loss effectively.

Complex Answer Passage Ranking

We also evaluate our curriculum learning framework on the TREC Complex Answer

Retrieval (CAR) dataset [46]. To compare with prior work, we use version 1.0 of

the dataset. This dataset consists of topics in the form of a hierarchy of article

headings (e.g., Green Sea Turtle » Ecology and behavior » Diet). A standard set of

automatically-generated relevance judgments are provided by assuming paragraphs

(passages) under a heading are relevant to the query corresponding to the heading.

The automatic relevance assessments provide a large amount of training data, but

can suffer from variable quality (e.g., some paragraphs are very difficult to match as

they provide little context). This makes TREC CAR a good application of training

curricula; it contains many positive relevance samples that are difficult to match.

A set of manually-graded relevance assessments are also provided by TREC asses-

sors. However, due to the shallow assessment pool used (due to the large number of

topics), we opt to only evaluate our approach using the automatic judgments.13 We

use TREC 2017 (Y1) training data with hierarchical relevance judgments. We also

compare our results to the performance reported by [135] and [111], which use BERT

and the PACRR neural ranking architecture augmented with entity embeddings for

classification, respectively.

Following previous work [135], we train and validate our models using the top 10

results retrieved by BM25 and test on the top 1000 results. We use the official task

metric of R-Prec(ision) to validate our model. We also report MAP, another official

13The track report suggests that the automatic judgments are a reasonable proxy for
manual judgments as there is a strong correlation between the automatic and manual per-
formance among the TREC submissions [46].

121

Table 3.11 Ranking performance on the TREC CAR complex answer pas-
sage ranking task.

Ranker Training R-Prec MAP

ConvKNRM
Pairwise 0.1081 0.1412
w/ Drecip ↑ 0.1174 ↑ 0.1493
w/ Dnorm ↑ 0.1258 ↑ 0.1572
w/ Dkde ↑ 0.1227 ↑ 0.1553

Vanilla BERT
Pointwise 0.2026 0.2490
w/ Drecip ↑ 0.2446 ↑ 0.2864
w/ Dnorm ↑ 0.2370 ↑ 0.2764
w/ Dkde ↑ 0.2370 ↑ 0.2795

Vanilla BERT
Pairwise 0.2731 0.3207
w/ Drecip ↑ 0.2914 ↑ 0.3298
w/ Dnorm ↑ 0.2921 ↑ 0.3307
w/ Dkde ↑ 0.2844 0.3254

B
as
el
in
es

BM25
Default Settings 0.1201 0.1563
Tuned 0.1223 0.1583
Optimized 0.1231 0.1588

SDM
Default Settings 0.1154 0.1463
Tuned 0.1099 0.1420
Optimized 0.1155 0.1459

BERT Large [135] - 0.335
BERT Base [135] - 0.310
PACRR [111] 0.146 0.176

Optimal Re-Ranker 0.6694 0.6694

Significant improvements in performance when using the training curricula (as com-
pared to no curriculum) for each model are indicated with ↑ (paired t-test p < 0.05, no
significant reductions observed). For Pointwise loss, Drecip significantly outperforms
Dnorm in terms of MAP. There are no other significant differences among the training
curricula. The top results in each section are indicated in bold.

122

metric for the task. We use these metrics rather than MRR and P@1 because CAR

queries often need many relevant passages to answer the question, not just one.

We present the performance of our training curricula on TREC CAR in Table 3.11.

We observe that in all cases, the training curricula significantly improve the ranking

effectiveness. When training rankers using pairwise loss, the Dnorm curriculum is most

effective, and when training with pointwise loss, theDrecip curriculum is most effective.

In the case of ConvKNRM, without the curriculum, the ranker under-performs the

unsupervised BM25 and SDM baselines; with the curricula, it performs on-par with

them. For Vanilla BERT, both when trained with pairwise and pointwise losses, the

ranker outperforms the unsupervised baselines without the curricula, and improves

significantly when using the curricula.

When compared with the supervised baselines, i.e., BERT and PACRR, the

Vanilla BERT model trained with pairwise loss and Dnorm curriculum ends up per-

forming about as well as the large BERT baseline reported by [135] (0.3307 versus

0.335 in terms of MAP, no statistically significant difference). This is a considerable

achievement because the Vanilla BERT model is half the size and about twice as fast

to execute. This observation strengthens the case for using curricula when training

because it can allow for similar gains as using a much larger model.

The remaining gap between our trained models and the optimal re-ranker on

the CAR dataset, however, indicates that there is still room for improvement in this

task. In particular, a considerable challenge is ranking passages without much context

highly without adding too much noise to the model.

Non-factoid Question Answering

We also test our approach on the ANTIQUE non-factoid question answering

dataset [62]. Unlike TREC DL and CAR, ANTIQUE has more thoroughly anno-

123

Table 3.12 Ranking performance on the ANTIQUE non-factoid question
answering task.

Ranker Training MRR P@1

ConvKNRM
Pairwise 0.4920 0.3650
w/ Drecip ↑ 0.5617 ↑ 0.4550
w/ Dnorm ↑ 0.5523 ↑ 0.4450
w/ Dkde ↑ 0.5563 ↑ 0.4500

Vanilla BERT
Pointwise 0.6694 0.5550
w/ Drecip 0.6858 0.5850
w/ Dnorm 0.6888 0.5800
w/ Dkde 0.6953 0.6000

Vanilla BERT
Pairwise 0.6999 0.5850
w/ Drecip ↑ 0.7335 ↑ 0.6450
w/ Dnorm 0.7237 0.6250
w/ Dkde 0.7244 0.6250

B
as
el
in
es

BM25
Default Settings 0.5464 0.4450
Tuned 0.5802 0.4550
Optimized 0.6035 0.4950

SDM
Default Settings 0.5229 0.4050
Tuned 0.5377 0.4400
Optimized 0.5491 0.4700

Best prior published (BERT) [62] 0.7968 0.7092

Optimal Re-Ranker 0.9400 0.9400

Significant improvements in performance when using the training curricula (as com-
pared to no curriculum) are indicated with ↑ (paired t-test p < 0.05). There are no
statistically-significant differences among the curricula. The top results in each section
are indicated in bold.

124

tated training queries, with an around 11 graded relevance judgments per query in

the training and validation collections (crowdsourced) (see Table 3.9). Furthermore,

these include explicit labels for non-relevant answers, which are not present in the

other two datasets. This more extensive annotation comes at the expense of scale,

however, with far fewer queries to train upon. Nevertheless, ANTIQUE represents

another valuable set of conditions under which to evaluate our curricula. We ran-

domly sample from the top 100 BM25 results for additional negative samples during

training. We validate and test by re-ranking the top 100 BM25 results, and MRR as

the validation metric and P@1 as a secondary metric. We use these two official task

metrics (at relevance level of 3 or higher, as specified in [62]) because the answers in

ANTIQUE are self-contained, and these metrics emphasize correct answers that are

ranked highly and first, respectively.

We report the curricula performance on ANTIQUE in Table 3.12. Similar to TREC

DL, we observe that the Drecip and Dkde curricula are the most effective. For Con-

vKNRM, the curricula were able to overcome what would otherwise be a model that

under-performs w.r.t. the BM25 and SDM unsupervised baselines. For the pointwise

and pairwise Vanilla BERT models (which are already very effective), we observe gains

beyond. In the case of pairwise-trained Vanilla BERT, the Drecip curriculum signifi-

cantly boosted ranking performance. Despite our efforts to reproduce the effectiveness

of BERT reported in [62], we were unable to do so using the experimental settings

described in that work. These results are still below that of an optional re-ranking,

suggesting that there is still considerable room for improvement when ranking these

non-factoid answers.

To answer RQ1 (whether the training curricula are effective), we observed that

for three answer ranking datasets (TREC DL, TREC CAR, and ANTIQUE) these

curricula can improve the ranking effectiveness across multiple neural rankers and

125

loss functions. We observe that when a ranker initially underperforms standard base-

lines (e.g., ConvKNRM), the performance is effectively boosted to the level of those

baselines. When the ranker already exceeds these baselines (e.g., Vanilla BERT), we

also observe a boost to ranking effectiveness, often comparable to or approaching

the state-of-the-art while being considerably faster (e.g., using BERT Base instead of

BERT Large) or less complicated (e.g., not requiring an expensive pre-training step).

The observation that the curricula are effective in these various conditions suggests

that these curricula are generally effective. To answer RQ2 (under what conditions

each curriculum is effective), we observe that Drecip and Dkde are generally more effec-

tive for natural-language questions (TREC DL and ANTIQUE), while Dnorm is more

effective for keyword/structured questions (TREC CAR). One possible alternative

explanation may be that the latter is better with weak relevance labels, as TREC

CAR’s relevance labels are obtained through a heuristic, rather than human anno-

tators. It does not appear as if the amount of training data has an effect, as TREC

DL and ANTIQUE exhibit similar characteristics, while having drastically different

amounts of training data.

End of Curriculum Evaluation

We already observed in Figure 3.6 that when using a training curriculum, ranking

performance not only peaks higher sooner, but also leaves the model in a better

starting point for when all samples are weighted equally. However, an important

question remains: Is it important to train with equal weight for all samples or can

the difficulty weights be used exclusively? To this end, we perform a test that forgoes

the curriculum convergence parameter m, directly using D(·) as the training sample

weight, regardless of training iteration (i.e., m = ∞, or equivalently W = D instead

of Eq. 3.9).

126

Table 3.13 Ranker performance when the curriculum always uses difficulty
scores, and when employing the anti-curriculum.

TREC DL

Ranker Curriculum m MRR@10 P@1

ConvKNRM
Dpairrecip 20 0.6834 0.5581

Dpairrecip ∞ 0.6744 0.5581
D̂pairrecip 20 ↓ 0.5414 ↓ 0.3721

Vanilla BERT
Dpointrecip 10 0.8942 0.8372

Dpointrecip ∞ 0.8205 0.7209
D̂pointrecip 10 0.8527 0.7442

Vanilla BERT
Dpairkde 20 0.8837 0.8372

Dpairkde ∞ ↓ 0.7752 ↓ 0.6279
D̂pairkde 20 0.8314 0.7209

TREC CAR

Ranker Curriculum m R-Prec MAP

ConvKNRM
Dpairnorm 50 0.1258 0.1572
Dpairnorm ∞ 0.1250 0.1579

D̂pairnorm 50 ↓ 0.1030 ↓ 0.1324

Vanilla BERT
Dpointrecip 20 0.2446 0.2864
Dpointrecip ∞ 0.2475 0.2894

D̂pointrecip 20 ↓ 0.2258 ↓ 0.2709

Vanilla BERT
Dpairnorm 10 0.2921 0.3307

Dpairnorm ∞ ↓ 0.2669 ↓ 0.3103
D̂pairnorm 10 0.2837 0.3276

ANTIQUE

Ranker Curriculum m MRR P@1

ConvKNRM
Dpairrecip 100 0.5617 0.4550

Dpairrecip ∞ 0.5368 0.4100
D̂pairrecip 100 0.5366 0.4200

Vanilla BERT
Dpointkde 10 0.6953 0.6000

Dpointkde ∞ ↓ 0.6139 ↓ 0.4750
D̂pointkde 10 0.6677 0.5500

Vanilla BERT
Dpairrecip 5 0.7335 0.6450

Dpairrecip ∞ 0.7158 0.6150
D̂pairrecip 5 0.7193 0.6200

Significant reductions in performance are indicated with ↓ (paired t-test, p < 0.05).

127

We report the performance for this experiment on each dataset for each top-

performing curriculum in Table 3.13 (m = ∞ setting). We observe that for all

models on the TREC DL and ANTIQUE datasets, this approach leads to a drop

in ranking effectiveness, suggesting that it is important to eventually perform equal

sample weighting. Intuitively, this is important because if easy samples are always

weighted higher than difficult samples, the model will be hindered in learning the

more complicated function to rank difficult samples. Curiously, for TREC CAR, this

setting sometimes leads to improved ranking effectiveness (though not a statistically

significant improvement). One possible explanation is that in situations where weak

labels are used (rather than human-judged labels from top retrieved results), it may

be better to always apply the weighting, as some inferred positive labels may be too

distant from what the model will typically encounter at inference time.

To answer RQ3 (whether shifting to difficult samples is important), we find that

it is indeed beneficial to use our proposed weighting technique given in Eq. 3.9, rather

than always applying the difficulty weighting when using manually-assessed relevance

labels.

Anti-curriculum: Hardest Samples First

To test whether our intuitions that “difficult” samples are harmful during early phases

of training, we conduct a study using an anti-curriculum, i.e., we train our models by

weighting the more difficult samples higher than the easier samples. This was applied

by swapping out the difficulty function D with D̂(·) = 1 − D(·). This has the effect

of assigning high weights to samples that previously had low weights and vice versa.

All usage of the difficulty function remains unchanged (e.g., the integration of the

difficulty function into the weight function).

128

Table 3.13 (D̂ setting)presents a ranking performance comparison when using the

anti-curriculum. We observe that the anti-curriculum always reduces ranking effec-

tiveness, sometimes significantly. In some cases, this can be rather severe; on TREC

DL for Vanilla BERT (pairwise), the MRR is reduced by 0.0523 and P@1 is reduced

by 0.1163, resulting in a model that underperforms one without any weighting at all.

To answer RQ4, these results suggest that there is benefit to weighting the easiest

samples higher first, rather than the more difficult samples.

3.5.4 Summary

In this section, we demonstrated that dataset statistics can be incorporated into

the ranking model training process. Specifically, we use statistics from unsupervised

lexical models to estimate difficulty, and use this estimated difficulty to weight training

samples. This approach is in contrast with using dataset statistics as model features

(as was shown in Section 2.3), and provides further evidence in support of Hypothesis

1.2. There are practical advantages to using dataset statistics in the training process

rather than as model features. As we discussed in Section 2.2 and Section 3.4, it can

be beneficial to transfer relevance signals across datasets and tasks. Models that do

not rely on dataset-specific features can more easily be used in this setting. We further

explore the task of relevance transfer in the following section.

3.6 Searching COVID-19 Literature

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) prompted a worldwide research response. In the first 120 days of 2020, researchers

published over 10,000 articles related to SARS-CoV-2 or COVID-19. Together with

articles about similar viruses researched before 2020, the body of research approaches

129

60,000 articles. Such a large body of research results in a considerable burden for those

seeking information about various facets of the virus, including researchers, clinicians,

and policy-makers.

In this section, we explore techniques for transferring relevance signals across

domains to improve the search over COVID-19 literature. These experiments differ

from those explored in Section 2.2 in that we perform tests using rankers that use

contextualized language models. Furthermore, we use the MS-MARCO dataset for

training, rather than the New York Times Corpus or Wikipedia, as this resource is

widely available and is more similar to the target task. Similar to Section 2.2, we

find that techniques for filtering the training data are effective. Finally, this differs

from the cross-lingual work explored in Section 3.4 because the domains are different

and the language is the same; Section 3.4 explored transferring between different lan-

guages (English to Chinese, Arabic, and Spanish) on the same domain (news content),

whereas this section explores transferring between different domains (web passages

and scientific literature).

In this section, we introduce an approach called SLEDGE: a simple yet effective

zero-shot baseline for coronavirus Scientific knowLEDGE search. SLEDGE builds

upon the Vanilla BERT model introduced in Section 3.2 for COVID-19 search with

three simple techniques. First, we propose a training data filtering technique to help

the ranking model learn relevance signals typical in medical text. The training data we

use comes entirely from another dataset (MS-MARCO, Campos et al. [19]), resulting

in our model being zero-shot. Since MS-MARCO is a large collection of real user

queries (over 800,000), it allows us to filter aggressively and still have adequate

training data. Second, we replace the general contextualized language model BERT

with one pre-trained on scientific literature (SciBERT, Beltagy et al. [10]). This pre-

training prepares the model for the type of language typically seen in scientific articles.

130

What are the
initial symptoms

of COVID-19?

COVID-19
subset

Health Filter
Date Filter

Standard ranking pipeline

Model Training

Tune for Relevance Ranking

Source Collection

BM25 Re-Ranker

SciBERT

CORD-19

Query

MS-MARCO

Med-MARCO

Ranked
Results

Figure 3.7 Overview of SLEDGE.

Since the document collection (CORD-19, Wang et al. [208]) contains articles about

prior viruses, we filter out articles published before 2020 to eliminate less pertinent

articles. An overview of this process is shown in Figure 3.7.

We show that each of the techniques mentioned above positively impacts the

ranking effectiveness of SLEDGE through an ablation analysis. Our zero-shot

approach performs comparably to (or outperforms) top-scoring submissions to the

TREC-COVID document ranking shared task [166], a new testbed for evaluating of

search methods for COVID-19.

131

3.6.1 Methodology

To build a ranking model for COVID search, we modify the standard zero-shot Vanilla

BERT document re-ranking pipeline [3, 110]. We find that while these modifications

are simple, they are effective for maximizing ranking performance. We note that

this process neither requires COVID relevance training data nor involves a priori

inspection of the queries and their characteristics. Thus, we consider our method

zero-shot.

To train in a zero-shot setting, we employ a large dataset of general-domain natural

language question and answer paragraphs: MS-MARCO [19]. However, naïve domain

transfer is not optimal since most questions in the dataset are not medical-related,

causing a domain mismatch between the training and evaluation data. To overcome

this challenge, we apply a heuristic to filter the collection to only medical-related

questions. The filter removes questions that do not contain terms appearing in the

MedSyn [223], a lexicon of layperson and expert terminology for various medical con-

ditions. We manually remove several common terms from the lexicon that commonly

introduce queries that are not medical-related. For example, MedSyn includes the

term gas (referring to the medical concept of flatulence in North American English),

commonly also refers to gasoline or natural gas. Note that we made these decisions

without considering COVID-19 specifically—only a broad relation to the medical

domain. MS-MARCO originally consists of 809K questions. After filtering, 79K of

the original questions remain (9.7%). We refer to this subset of MS-MARCO as Med-

MARCO. From a random sample of 100 queries fromMed-MARCO, 78 were judged by

the authors as medical-related, suggesting the filter has reasonable precision. Exam-

ples questions from this process include causes of peritoneal cancer prognosis and

132

what is squalene anthrax sleep apnea. We make a list of the query IDs corresponding

to Med-MARCO available,14.

Second, we replace the general-language BERT model with a variant tuned on

scientific literature (including medical literature). Specifically, we use SciBERT [10],

which has an identical structure as BERT, but was trained on a multi-domain corpus

of scientific publications. It also uses a WordPiece lexicon based on the training

data, allowing the model to better account for subwords commonly found in scien-

tific text. During model training, we employ the pairwise cross-entropy loss function

from Nogueira and Cho [135]. Relevant and non-relevant documents are sampled

in sequence from the official MS-MARCO training pair list (filtered down to Med-

MARCO queries).

Third, we apply a filter to the document collection that removes any articles

published before January 1, 2020. This filter aims to improve the retrieval system’s

precision by eliminating articles that may discuss other topics. The date was chosen

because little was known about COVID-19 prior to 2020, and some documents do

not include a full publication date (only a year), making this filter simple to apply.

In real-life search engines, date filtering can often be applied at the discretion of the

user.

3.6.2 Experiment

We now explore the ranking effectiveness of our approach. We evaluate the perfor-

mance of SLEDGE using Round 1 and 2. At the time of writing, the only training
14https://github.com/Georgetown-IR-Lab/covid-neural-ir/blob/master/

med-msmarco-train.txt

133

data available for the task was the Round 1 data. of the TREC-COVID Informa-

tion Retrieval Benchmark [166].15 TREC-COVID uses the CORD-19 document col-

lection [208] (2020-05-01 version, 59,943 articles), with a set of 35 topics related to

COVID-19. These topics include natural questions such as: what is the origin of

COVID-19 and how does the coronavirus respond to changes in the weather. The top

articles of participating systems in each round were judged by expert assessors, who

rated each article as non-relevant (0), partially-relevant (1), or fully-relevant (2) to

the topic. In total, 20,728 relevance judgments were collected (avg. 592 per topic),

with 74% non-relevant, 12% partially relevant, and 14% fully-relevant. These rates

remained nearly constant between rounds 1 and 2.

We use normalized Discounted Cumulative Gain with a cutoff of 10 (nDCG@10),

Precision at 5 of partially and fully-relevant documents (P@5), and Precision at 5

of only fully relevant documents (P@5 (F)). Both nDCG@10 and P@5 are official

task metrics; we include the P@5 filtered to only fully-relevance documents because

it exposed some interesting trends in our analysis. We also report the percentage of

the top 10 documents for each query that have relevance judgments (J@10). In an

additional evaluation, we measure the performance using only judged documents to

ensure that unjudged documents do not impact our findings. We used trec_eval16 for

all metrics. These measures represent a precision-focused evaluation; since re-ranking

methods like ours focus on improving precision, we leave recall-oriented evaluations

to future work.
15Round 2 uses residual collection evaluation, meaning that all documents judged in Round

1 are disregarded. Although this is an important setting for building up a dataset and
allows for approaches like manual relevance feedback, we feel that this setting does not
mimic an actual search engine, especially in the zero-shot setting. Thus, we evaluate on the
concatenation of Round 1 and 2 settings and mark the systems that use Round 1 judgments
for training or tuning of their system.

16https://github.com/usnistgov/trec_eval

134

Our initial ranking is conducted using BM25 with default settings over the full

document text to adhere to the zero-shot setting. Re-ranking is conducted over the

abstracts only, avoiding the need to perform score aggregation (since BERT models

are limited in the document length). We utilize only the natural-language question

(ignoring the keyword query and extended narrative). We conduct an ablation that

compares SLEDGE to versions using BERT (instead of SciBERT), and the full MS-

MARCO dataset (MSM) (rather than the Med-MARCO subset (MedM)). We com-

pare with several baselines under the same evaluation settings.

- BM25: the initial BM25 ranking.

- ConvKNRM: The convolutional KNRMmodel [37], trained on MS-MARCO data.

- CEDR KNRM: The KNRM model, augmented with contextualized embeddings,

as introduced in Section 3.2. The model is trained on MS-MARCO data. We use

the bert-base-uncased model for the contextualized embeddings.

- Seq2seq T5: The text-to-text-transformer (T5) model [159], tuned for ranking by

predicting true or false as the next term in a sequence consisting of the query and

document [139].

- Fusion: a reciprocal rank fusion method [30] of BM25 over the abstract, full text,

and individual paragraphs. Fusion1 uses a concatenation of the keywords and ques-

tion, and Fusion2 uses the entity extraction technique from the Round 1 udel

submission.17

Our work utilizes a variety of existing open-source tools: OpenNIR [107],

Anserini [217], and the HuggingFace Transformers library [211]. We utilize a held-

out subset of 200 queries from the MS-MARCO training set as a validation set

for the sole purpose of picking the optimal training epoch. The Vanilla BERT and
17https://github.com/castorini/anserini/blob/master/docs/experiments-covid.

md

135

Table 3.14 Ablation results and comparison of SLEDGE and other zero-
shot baselines on TREC-COVID Rounds 1 and 2.

Including Unjudged Judged Only

Model Training nDCG@10 P@5 P@5 (F) J@10 nDCG@10 P@5 P@5 (F)

BM25 - * 0.368 * 0.469 * 0.331 75% * 0.436 * 0.520 * 0.383
+ BERT MSM * 0.547 * 0.617 * 0.480 83% * 0.617 * 0.703 * 0.549
+ BERT MedM 0.625 * 0.697 * 0.571 92% 0.657 * 0.737 * 0.606
+ SciBERT MSM 0.667 0.754 0.611 88% 0.724 * 0.789 0.646
+ SciBERT (SLEDGE) MedM 0.681 0.800 0.663 90% 0.719 0.846 0.697

+ ConvKNRM MSM 0.536 0.617 0.491 86% 0.580 0.645 0.508
+ ConvKNRM MedM 0.565 0.668 0.525 86% 0.621 0.714 0.565
+ CEDR-KNRM MSM 0.514 0.617 0.468 86% 0.524 0.628 0.474
+ CEDR-KNRM MedM 0.619 0.714 0.560 89% 0.649 0.742 0.582
+ Seq2seq T5 MSM 0.656 0.737 0.634 90% 0.685 0.765 0.651
+ Seq2seq T5 MedM 0.626 0.714 0.594 86% 0.678 0.754 0.628
Fusion1 - 0.519 0.640 0.457 94% 0.534 0.640 0.457
Fusion2 - 0.601 0.737 0.565 96% 0.605 0.737 0.565

The top results are shown in bold. SciBERT with MedM (SLEDGE) significantly
outperforms values in the top (ablation) section marked with * (p < 0.05, paired
t-test, Bonferroni correction).

SciBERT models take approximately 3 hours to train/validate, and inference on

TREC-COVID takes approximately 15 minutes on modern GPUs. The BERT model

has 157M parameters, and the SciBERT model has 158M parameters.

Results

Ranking effectiveness is presented in Table 3.14. We first compare the ablations of

our approach (top section). We note that SciBERT significantly (p < 0.05, paired

t-test, Boneferroni correction) outperforms BM25 and BERT trained on MSM across

all metrics. There is a less dramatic jump between BERT MSM and BERT MedM,

demonstrating the importance of filtering the training data properly. This is echoed

136

between SciBERTMSM and SciBERTMedM, though the difference is only significant

for P@5 when only considering the judged documents. These results demonstrate the

importance of both pre-training on appropriate data and fine-tuning using a proper

subset of the larger data. While both yield improvements (that can be additive), the

pre-training objective appears to be more impactful, based on the overall better scores

of SciBERT.

Compared to baseline systems (bottom section), we observe that SLEDGE offers

superior effectiveness. Specifically, we see that ConvKNRM, CEDR-KNRM, and

Seq2seq T5 all improve upon the initial BM25 ranking. Training on Med-MARCO

(rather than the full MS-MARCO) also improves each of the baselines, except, curi-

ously, Seq2seq T5. This model may benefit from the larger amount of training data

the full MS-MARCO dataset offers. Finally, both fusion methods outperform the

base BM25 model. However, we note that these models utilize two fields available for

each query: the keyword-based query and the full natural-language question text—a

luxury not available in practical search environments. (Recall that SLEDGE and the

other baselines in Table 3.14 only use the natural-language query.)

We now compare our approach with the top-performing submissions to the TREC

COVID shared task (many of which are not zero-shot methods) in Table 3.15. We note

that these experimental settings for these runs differ from our main experiments. For

instance, mpiid5_run3 [95] and SparseDenseSciBERT use relevant information from

Round 1 as training data, and covidex.t5 uses combined keyword query and natural-

language questions. Therefore, these performance metrics are not directly comparable

to our zero-shot runs. Despite this, SLEDGE still achieves competitive performance

compared to these models. For instance, it consistently scores comparably or higher

than covidex.t5 (includes a more powerful language model, a more effective ini-

tial ranking model, and multiple topic fields) and SparseDenseSciBert (which uses

137

Table 3.15 TREC COVID Round 1 and 2 comparison between SLEDGE
and other top official Round 2 submissions.

Including Unjudged Judged Only

Model Training nDCG@10 P@5 P@5 (F) J@10 nDCG@10 P@5 P@5 (F)

SLEDGE (ours) MedM 0.681 0.800 0.663 90% 0.719 0.846 0.697
covidex.t5† MSM, MedM 0.618 0.731 0.560 94% 0.643 0.731 0.560
with date filter 0.652 0.760 0.600 92% 0.680 0.777 0.611

SparseDenseSciBert† MedM 0.672 0.760 0.646 96% 0.692 0.760 0.646
with date filter 0.699 0.805 0.691 94% 0.724 0.811 0.691

mpiid5_run3† MSM, Rnd1 0.684 0.851 0.640 93% 0.719 0.851 0.640
with date filter 0.679 0.834 0.657 90% 0.722 0.834 0.657

We apply the date filter for a more complete comparison. Note that experimental
differences exist between our system and these submissions, including the use of mul-
tiple topic fields and the utilization of Round 1 training data for training or tuning.
The top result is marked in bold.

neural approaches for the initial ranking stage). Our method even performs com-

parably to the mpiid5.run3 model, which was trained directly on Round 1 judg-

ments. Interestingly, we observe that our simple baseline approach of re-ranking using

T5 strictly with the natural-language question against the paper title and abstract

(Seq2seq T5 in Table 3.14) is more effective than the more involved approach employed

by covidex.t5. When we apply the same date filtering to the official runs, we observe

that the differences narrow. We also present SLEDGE topping the Round 1 leader-

board in Table 3.16. We observe again that our model excels at finding highly-relevant

documents.

To gain a better understanding of the impact of filtering the document collection to

only articles published on or after January 1, 2020, we first compare the performance

of SLEDGE with and without the filter. Disregarding unjudged documents, it has an

nDCG@10 of 0.668 (−0.051), P@5 of 0.777 (−0.069) and P@5 (F) of 0.589 (−0.108).

138

Table 3.16 TREC-COVID Round 1 leaderboard (automatic systems).

System nDCG@10 P@5 P@5 (F)

SLEDGE (ours) 0.641 0.747 0.633
sab20.1.meta.docs 0.608 0.780 0.487
IRIT_marked_base 0.588 0.720 0.540
CSIROmedNIR 0.588 0.660 0.587

SLEDGE outperforms the highest-scoring run in terms of nDCG@10 and P@5 (F).

All these differences are statistically significant. By far the largest reduction is on fully-

relevant P@5, meaning that it can be more difficult to find highly relevant documents

when considering the full document collection. We observed similar trends for BM25,

with and without the 2020 filter. These trends also align with observations we made

from the judgments themselves; we find that only 16% of judged documents from

prior to 2020 were considered relevant (with only 5% fully relevant). Meanwhile, 32%

of judged documents after 2020 were considered relevant (19% fully relevant).

3.6.3 Summary

We demonstrated that relevance signals can be transferred across domains (from web

passages to scientific literature), providing further support for Hypothesis 1.1. We

showed that although naïve transfer approaches are reasonably effective, selecting

more proper training data and a better base model can significantly improve effec-

tiveness. This work also highlights the importance of this line of work, by showing

how this line of work can improve information access during a global crisis.

139

3.7 Discussion and Conclusions

In this chapter, I demonstrated the effectiveness of contextualized language models for

neural ranking. I first showed that utilizing the model’s classification mechanism alone

can produce effective neural ad-hoc ranking models. I then showed that token-level

signals from these models can be incorporated into existing neural ranking architec-

tures (such as PACRR, KNRM, and DRMM) effectively. A combination model of

both of these techniques also produces an effective ranking model, suggesting that

each captures different relevance notions. I also demonstrated how contextualized

language models can be adapted to another ranking task, namely the ranking of clin-

ical report versions by level of discrepancy. Together, these validate Hypothesis 1.3. I

also demonstrated that one can utilize multi-lingual contextualized language models

to overcome limited training data in languages other than English. This validates

Hypothesis 1.4. I then re-investigated Hypotheses 1.1 and 1.2 from Chapter 2 when

contextualized models are considered. I showed how ranking scores can be used to

augment the training process of these models, providing further evidence of Hypoth-

esis 1.2. And finally, I showed how relevance signals can be effectively transferred

across domains, providing further evidence of Hypothesis 1.1.

140

Chapter 4

Computational Efficiency of Contextualized Neural Ranking

Although neural ranking approaches that use contextualized language models can be

effective (as demonstrated in Chapter 3), the added computation has a detrimental

effect at query-time. Specifically, the need to compute the document scores for a given

query can be costly and add to the query-time latency. In this section, I first cover

prior work in efficiency of neural ranking (Section 4.1). I then show how pre-computing

partial contextualized representations at index-time can reduce the computational

cost at query-time with minimal effect on ranking effectiveness (Section 4.2). The pre-

computation approach is general and can be applied to a variety of contextualized

language models. Then, in Chapter 4.3, I show how a ranking architecture can be

designed specifically to take advantage of this quality while reducing storage costs

and query-time latency and improving model interpretability.

4.1 Background and Preliminaries

Scalability and computational efficiency are central challenges in information retrieval.

While the efficiency of learning to rank solutions for document re-ranking have been

extensively studied [41, 91, 197], computational efficiency concerns have largely be

ignored by prior work in neural ranking, prompting some to call for more atten-

tion to this matter [68, 98]. That being said, some efforts do exist. For instance,

Ji et al. [78] demonstrate that Locality-Sensitive Hashing (LSH) and other tricks

141

can be employed to improve the performance of interaction-focused methods such as

DRMM [56], KNRM [214], and ConvKNRM [37]. This approach does not work for

transformer models, however, because further processing of the term embeddings is

required (rather than only computing similarity scores between the query and docu-

ment).

As shown in Chapter 3, pretrained transformer networks, such as BERT, can

be very beneficial for ranking. However, they are usually characterized by a very

large numbers of parameters and very long inference times, making them unusable

in production-ready IR systems such as web search engines. Several approaches were

proposed to reduce the model size and the inference computation time in transformer

networks [59]. Most of them focus on the compression of the neural network to reduce

their complexity and, consequently, to reduce their inference time.

Neural network pruning consists of removing weights and activation functions in

a neural network to reduce the memory needed to store the network parameters.

The objective of pruning is to convert the weight matrix of a dense neural network

to a sparse structure, which can be stored and processed more efficiently. Pruning

techniques work both at learning time and as a post-learning step. In the first category,

Pan et al. propose regularization techniques focused at removing redundant neurons

at training time [145]. Alternatively, in the second category, Han et al. propose to

remove the smallest weights in terms of magnitude and their associated edges to

shrink the size of the network [58].

Another research line focuses on improving the efficiency of a network is weight

quantization. The techniques in this area aim at reducing the number of bits necessary

to represent the model weights: from the 32 bits necessary to represent a float to only

a few bits [74]. The state of the art network quantization techniques [5, 216] aims at

142

quantizing the network weights using just 2-3 bits per parameter. These approaches

proved effective on convolutional and recurrent neural networks.

A third research line employed to speed-up neural networks is knowledge distil-

lation [67]. It aims to transform the knowledge embedded in a large network (called

teacher) into a smaller network (called student). The student network is trained

to reproduce the results of the teacher networks using a simpler network struc-

ture, with less parameters than those used in the teacher network. Several strategies

have been proposed to distill knowledge in pretrained transformer networks such as

BERT [79, 191, 192].

Within the realm of transformer-based models for ad-hoc ranking, to my knowl-

edge only a few works have acknowledged that retrieval speed is substantially

impacted by using a deep transformer network [69, 136, 138]. Nogueira et al. use a

transformer-based model to expand document terms at index time, but it comes at a

great cost to ranking performance: a trade-off that they state can be worthwhile [138].

A recent extension to that work [136] suggests that the pretrained transformer itself

can have a substantial impact on the effectiveness. Hofstätter et al. [69] recently

demonstrated that a smaller non-pretrained transformer network can learn to cap-

ture content, though the approach does not benefit from the massive amount of

pre-training data that contextualized language models offer.

4.2 Pre-computing Representations

In this section, we explore a general technique for reducing the query-time com-

putational cost of trasnformer-based rankers, such as BERT. We exploit a primary

characteristic of ad-hoc ranking: an initial indexing phase can be employed to pre-

process documents in the collection to improve query-time performance. Specifically,

143

we observe that much of the term interaction at query time happens locally within

either the query or document, and only the last few layers of a deep transformer net-

work are required to produce effective ranking scores once these representations are

built. Thus, documents can be processed at index time through part of the network

without knowledge of the query. The output of this partial network computation is

a sequence of contextualised term representations. These representations can then be

stored and used at query time to finish the processing in conjunction with the query.

This approach can be trained end-to-end by masking the attention across the query

and document during training time (i.e., disallowing the document from attending to

the query and vice versa.) We call this approach PreTTR (Precomputing Transformer

Term Representations). An overview of this approach is shown in Figure 4.1.

At train time, a transformer network is fine-tuned for ad-hoc document ranking.

This transformer network masks attention scores in the first l layers, disallowing inter-

actions between the query and the document. At index time, each document in the

collection is processed through the first l layers, and the resulting term representa-

tions are stored. At query time, the query is processed through the first l layers, and

then combined with the document term representations to finish the ranking score

calculation.

Since term representations of each layer can be large (e.g., 768 float values per doc-

ument term in the base version of BERT), we also propose a compression approach.

This approach involves training an encoding layer between two transformer layers

that produces representations that can replicate the attention patterns exhibited by

the original model. We experimentally show that all these processes result in a much

faster network at query time, while having only a minimal impact on the ranking

performance and a reasonable change in index size. The settings of PreTTR (amount

of pre-computation, degree of compression) can be adjusted depending on the needs

144

[CLS] [tax] [evade] [world] [news] [for] [tax] [fraud][today] [SEP]…[SEP]

query document

embed.

layer 1

layer l

comp.

layer l+1

↦↤

layer n

…
…

…

…

Wcombine

ranking score

tokens

…
…

↦↤ ↦↤ ↦↤ ↦↤ ↦↤ ↦↤

↤↦ ↤↦ ↤↦ ↤↦ ↤↦ ↤↦ ↤↦…decomp.

↦↤ ↦↤ ↦↤ ↦↤

↤↦ ↤↦ ↤↦ ↤↦

Storage

Figure 4.1 Overview of PreTTR. Compressed term representations for document
layers 1 to l are computed and stored at index time (green segments) while term
representations for query layers 1 to l (orange segments) and joint query-document
representations for layers l + 1 to n (blue segments) are computed at query time to
produce the final ranking score. Compression and decompression can optionally be
applied between layers l and l+1 to reduce the storage needed for the document term
representations.

of the application. These are all critical findings that are required to allow trans-

former networks to be used in practical search environments. Specifically, the lower

computation overhead reduces query-time latency of using transformer networks for

ranking, all while still yielding the substantial improvements to ranking accuracy that

transformer-based rankers offer.

145

Table 4.1 Table of symbols for PreTTR.

Symbol(s) Definition
q Query
d Document

R(q,d) Neural ranking architecture
T (s) Transformer network
s a sequence of input tokens
E Embedding layer
Li Transformer encoding layer
si Transformer token representations after layer i
ai Attention weights used in layer i
c Classification representation
d Dimension of the classification representation
m Length of sequence s
h Number of attention heads per layer
n Number of layers in T

Wcombine Vanilla BERT weight combination
l

Layer number the transformer is executed for
precomputing document term vectors

e Compressed size
r Compressed representation after layer l

Wcomp, bcomp Compression parameters
Wdecomp, bdecomp De-compression parameters

ŝl De-compressed representation after layer l

4.2.1 Methodology

Preliminaries

We now introduce the notation used in this section (see Table 4.1 for a summary

of the notation). Let a generic transformer network T : s 7→ c map a sequence s of

m tokens (e.g., query and document terms) to a d-dimensional output representa-

tion c ∈ Rd. As depicted in Figure 4.1, the transformer network is composed by an

initial embedding layer E and by n layers L1, . . . , Ln. The embedding layer E maps

each of the m input tokens into the initial d-dimensional token representations matrix

s0 ∈ Rm×d. Each layer Li takes the token representations matrix si−1 ∈ Rm×d from the

previous layer Li−1 and produces a new representations matrix si ∈ Rm×d. The spe-

146

cific representation used and operations performed in E and Li depend on the specific

transformer architecture (e.g., BERT uses token, segment, and position embeddings

for the embedding layer E and self-attention, a feed-forward layer, and batch normal-

ization in each layer Li). However, the primary and common component of each layer

Li is the self-attention mechanism and associated procedure. When the transformer

network is trained, every layer produces a self-attention tensor ai ∈ Rh×m×m, where

h is the number of attention heads per layer, i.e., the number of attention “represen-

tation subspaces” per layer. A general description of this process is given by Vaswani

et al. [198], while different transformer architectures may have tweaks to this general

structure or pre-training procedure.

We assume a special output classification token, e.g., [CLS] in BERT, is included

as a token in c, and that the final representation of this token is used as the final

output of the transformer network, i.e., c = T (s). Without loss of generality, here we

only concern ourselves with the [CLS] output classification token, i.e., we ignore other

token representation outputs; this is the special token representation that models such

as BERT use to generate ranking scores.

We illustrate how neural transformer networks are used in a ranking scenario. We

follow and generalize the Vanilla BERT model from Section 3.2. Let a ranking function

R(q,d) ∈ R map a query q and a document d to a real-valued ranking score. Neural

rankers based on transformer networks such as Vanilla BERT compute the ranking

score by feeding the query-document pair into the transformer. Given a query q

and a document d, their tokens are concatenated into a suitable transformer input,

e.g., s = [CLS];q; [SEP];d; [SEP], where “;” represents the concatenation operator.1

The output of the transformer network corresponding to this input is then linearly
1We use the BERT convention of [CLS] and [SEP] to represent the classification and

separation tokens, respectively.

147

combined using a tuned weight matrix Wcombine ∈ Rd×1 to compute the final ranking

score as follows:

R(q,d) = T
(
[CLS];q; [SEP];d; [SEP]

)
Wcombine. (4.1)

The processing time of state-of-the-art neural rankers based on transformer net-

works is very high, e.g., approximately 50 documents ranked per second on a modern

GPU, making such rankers impractical for most ad-hoc retrieval tasks.

To gain an understanding of where are the most expensive components of a trans-

former network such as the Vanilla BERT model, we measure the run-times of the

main steps of the model. We find that most of the processing is performed in the

computations involving the transformer’s layers. In particular, about 50% of the total

time is spent performing attention-related tasks. Moreover, the feed-forward step of

the transformer (consisting of intermediate and output in diagram) accounts for about

48% of the total time, and is largely due to the large intermediate hidden representa-

tion size for each token. This breakdown motivates the investigation of possible solu-

tions to reduce the processing time of transformer networks, in particular in reducing

the time spent in traversing the transformer’s layers.

PreTTR: Precomputing Transformer Term Representations

We improve the query time performance of transformer models by precomputing doc-

ument term representations partially through the transformer network (up to trans-

former layer l). We then use these representations at query time to complete the

execution of the network when the query is known.

This is accomplished at model training time by applying an attention mask to

layers L1, L2, . . . , Ll, in which terms from the query are not permitted to attend

to terms from the document and vice versa. In layers Ll+1, . . . , Ln, this attention

148

mask is removed, permitting any token to attend to any other token. Once trained,

the model is used at both index and query time. At index time, documents are

encoded (including the trailing [SEP] token)2 by the transformer model through

layers L1, L2, . . . , Ll without a query present (Figure 4.1, green segments). The token

representations generated at index time at layer Ll are then stored to be reused at

query time (Figure 4.1, document storage between layers Ll and Ll+1). To answer a

query, candidate documents are selected, e.g., the top documents retrieved by a first-

stage simple ranking model [197], and precomputed term representations are loaded.

The query terms (including the leading [CLS] and training [SEP] tokens) are encoded

up to layer Ll without a document present (Figure 4.1, orange segments). Then, the

representations from the query and the document are joined, and the remainder of

the transformer network is executed over the entire sequence to produce a ranking

score (Figure 4.1, blue segments).

Since (1) the length of a query is typically much shorter than the length of a

document, (2) the query representations can be re-used for each document being

ranked, (3) each transformer layer takes about the same amount of time to execute,

and (4) the time needed to perform term embedding is comparatively low, PreTTR

decreases by about n−l
n

the cost of traversing the transformer network layers. With a

sufficiently large value of l, this results in considerable time savings. Note that this

reduction can be at most equal to 1
n
because, when l = n, no information about the

document ever contributes to the ranking score, resulting in identical scores for every

document. Moreover, we show experimentally that this can be further improved by

limiting the computation of the final layer to only the [CLS] representation.
2There is evidence that the separator token performs an important function for pretrained

transformer models, by acting as a no-op for the self-attention mechanism [23].

149

Token Representation Compression

Although PreTTR can reduce the run-time cost of traversing the first l layers of the

transformer network at query time, the solution proposed might be costly in terms

of storage requirements because the representation size d is quite large (e.g., 1024,

768 or 512 float values per token). To address this issue, we propose a new token

compression technique that involves pre-training a simple encoder-decoder network.

This network is able to considerably reduce the token representation size. We opt

for this approach because it can fit seamlessly into the transformer network, while

reducing the number of dimensions needed to represent each token. The compressor

is added as an additional component of the transformer network between layers Ll

and Ll+1. We compress the input by using a simple feed-forward and normalization

procedure, identical to the one used within a BERT layer to transform the output

(but with a smaller internal representation rather than a larger one). We optimize the

weights for the compression network in two stages: (1) an initial pre-training stage

on unlabeled data, and (2) a fine-tuning stage when optimizing for relevance.

For a compressed size of e values, a two-step procedure is used. First, the com-

pressed representations r ∈ Rm×e are built using r = gelu(slWcomp + bcomp), where

gelu(·) is a Gaussian Error Linear Unit [66], and Wcomp ∈ Rd×e and bcomp ∈ Re are

the new learned weight parameters. These compressed representations r can be stored

in place of sl. Second, the compressed representations r are then expanded back out

to ŝl ∈ Rm×d via a second linear transformation involving the learned weight parame-

ters Wdecomp, bdecomp, and batch normalization. The decompressed representations ŝl

are then used in place of the original representation sl for the remaining layers of the

transformer.

150

In preliminary experiments, we found the compression and decompression param-

eters to be difficult to learn jointly with the ranker itself. Thus, we instead propose

a pre-training approach to provide an effective initialization of these parameters. We

want the transformer network with the compression mechanism to behave similarly

to that of the network without such compression: we do not necessarily care about

the exact representations themselves. Thus, we use an attention-based loss function.

More specifically, we optimize our compression/decompression network to reduce the

mean squared error of the attention scores in the last n− l layers of the compressed

transformer network and the original transformer network. Thus, the loss function we

use to train our compression and decompression network is:

L(al+1, . . . , an, âl+1, . . . , ân) =
1

n− l
n∑

i=l+1

MSE(ai, âi), (4.2)

where ai represents the attention scores at layer i from the unmodified transformer

network, âi represents the attention scores at layer i from the transformer network

with the compression unit, and MSE(·) is the mean squared error function. With this

loss function, the weights can be pre-trained on a massive amount of unlabeled text.

We use this procedure as an initial pre-training step; we further fine-tune the weights

when optimizing the entire ranking network for relevance.

4.2.2 Experiment

To test the effectivness of PreTTR, we use the Vanilla transformer model intro-

duced in Section 3.2. This model yields comparable performance to other leading

formulations, while being simpler, e.g., no paragraph segmentation required, as is

needed by FirstP/MaxP/SumP [36], or alternative training datasets and sentence seg-

mentation, as required by the system of Yang et al. [220]. Vanilla BERT encodes

as much of the document as possible (adhering to the transformer maximum input

151

length constraint), and averages the classification embeddings when multiple doc-

ument segments are required. We employ the same optimal hyper-parameters for

the model presented in [110]. For our primary experiments, we use the pretrained

bert-base-uncased [44]. We do not test with the large variants of BERT because

the larger model exhibits only marginal gains for ranking tasks, while being consider-

ably more expensive to run [135]. To show the generality of our approach we present

tests conducted also for other pretrained transformers: a version of BERT that was

more effectively pre-trained, i.e., RoBERTa [105] (roberta-base) and a smaller (dis-

tilled) version of BERT, i.e., DistilBERT [177] (distilbert-base-uncased).

We test our models using the TREC WEbTrack 2012 and TREC Robust 2004

datasets, introduced in Section 2.1.

Training

We train all transformer models using pairwise softmax loss [43] and the Adam opti-

mizer [86] with a learning rate of 2 × 10−5. We employ a batch size of 16 pairs of

relevant and non-relevant documents with gradient accumulation. Training pairs are

selected randomly from the top-ranked documents in the training set, where doc-

uments that are labeled as relevant are treated as positive, and other top-ranked

documents are considered negative. Every 32 batches, the model is validated, and

the model yielding the highest performance on the validation set is selected for final

evaluation.

For training the document term compressor/decompressor (as described in Sec-

tion 4.2.1), we use the Wikipedia text from the TREC Complex Answer Retrieval

(CAR) dataset [47] (version 2.0 release). This dataset was chosen because it overlaps

with the data on which BERT was originally trained on, i.e., Wikipedia, and was used

both for evaluation of passage ranking approaches [129] and as a weak supervision

152

dataset for training neural models [112]. We sample text pairs using combinations of

headings and paragraphs. Half the pairs use the heading associated with the para-

graph, and the other half use a random heading from a different article, akin to the

next sentence classification used in BERT pre-training. The compression and decom-

pression parameters (Wcomp, bcomp, Wdecomp, and bdecomp) are trained to minimize the

difference in attention scores, as formulated in Eq. (4.2). We found that the com-

pressor training process converged by 2M samples.

Evaluation

Since the transformer network is employed as a final-stage re-ranker, we evaluate the

performance of our approach on each dataset using two precision-oriented metrics. Our

primary metric for both datasets is P@20 (also used for model validation). Following

the evaluation convention from prior work [110], we use ERR@20 for TRECWebTrack

2012 and nDCG@20 for TREC Robust 2004 as secondary metrics.

We also evaluate the query-time latency of the models. We conduct these experi-

ments using commodity hardware: one GeForce GTX 1080 Ti GPU. To control for fac-

tors such as disk latency, we assume the model and term representations are already

loaded in the main memory. In other words, we focus on the impact of the model

computation itself. However, the time spent moving the data to and from the GPU

memory is included in the time.

Baselines

The focus of this work is to reduce the query-time latency of using Vanilla transformer

models, which are among the state-of-the-art neural ranking approaches. Thus, our

primary baseline is the unmodified Vanilla transformer network. To put the results

in context, we also include the BM25 results tuned on the same training data. We

153

tune BM25 using grid search with Anserini’s implementation [217], over k1 in the

range of 0.1–4.0 (by 0.1) and b in the range of 0.1–1.0 (by 0.1). We also report

results for CEDR-KNRM from Section 3.2, which outperform the Vanilla transformer

approaches. However, it come with its own query-time challenges. Specifically, since it

uses the term representations from every layer of the transformer, this would require

considerably more storage. To keep our focus on the typical approach, i.e., using

the [CLS] representation for ranking, we leave it to future work to investigate ways

in which to optimize the CEDR model.3 We also report results for Birch [3], which

exploits transfer learning from the TREC Microblog dataset. To keep the focus of

this work on the effect of pre-computation, we opt to evaluate in the single-domain

setting.

Results

We report the results of a comprehensive experimental evaluation of the proposed

PreTTR approach. In particular, we aim at investigating the following research ques-

tions:

RQ1 What is the impact of PreTTR on the effectiveness of the Vanilla BERT trans-

former network in ad-hoc ranking?

RQ2 What is the impact of the token representation compression on the effectiveness

of PreTTR?

RQ3 What is the impact of the proposed PreTTR approach on the efficiency of

Vanilla BERT when deployed as a second stage re-ranker?
3We note that techniques such as LSH hashing can reduce the storage requirements for

CEDR, as it uses the representations to compute query-document similarity matrices, as
demonstrated by [78].

154

Table 4.2 Breakdown of ranking performance when using a PreTTR-based
Vanilla BERT ranking.

WebTrack 2012 Robust 2004

Ranker P@20 ERR@20 P@20 nDCG@20

Base 0.3460 0.2767 0.3784 0.4357
l = 1 0.3270 0.2831 0.3851 0.4401
l = 2 0.3170 0.2497 0.3821 0.4374
l = 3 0.3440 0.2268 0.3859 0.4386
l = 4 0.3280 0.2399 0.3701 0.4212
l = 5 0.3180 0.2170 0.3731 0.4214
l = 6 0.3270 0.2563 0.3663 0.4156
l = 7 0.3180 0.2255 0.3656 0.4139
l = 8 0.3140 0.2344 0.3636 ↓ 0.4123
l = 9 0.3130 0.2297 0.3644 ↓ 0.4106
l = 10 0.3360 0.2295 0.3579 ↓ 0.4039
l = 11 0.3380 ↓ 0.1940 ↓ 0.2534 ↓ 0.2590
Tuned BM25 0.2370 0.1418 0.3123 0.4140

Vanilla BERT [110] - - 0.4042 0.4541
CEDR-KNRM [110] - - 0.4667 0.5381
Birch [3] - - 0.4669 0.5325

Query and document encodings are jointed at layer l. Statistically significant differ-
ences with the base model are indicated by ↓ (paired t-test by query, p < 0.01).

RQ4 What is the impact of PreTTR when applied to first n−1 layers of a transformer

network?

RQ5 What is the impact of PreTTR when applied to different transformer networks

such as RoBERTA and DistilBERT?

To answer RQ1 we first evaluate the effect of the precomputation of term represen-

tations. Table 4.2 provides a summary of the ranking performance of PreTTR-based

155

Vanilla BERT at layer l. At lower values of l, the ranking effectiveness remains rela-

tively stable, despite some minor fluctuations. We note that these fluctuations are not

statistically significant when compared with the base model (paired t-test, 99% confi-

dence interval) and remain considerably higher than the tuned BM25 model. We also

tested using a two one-sided equivalence (TOST) and found similar trends (i.e., typi-

cally the the significant differences did not exhibit significant equivalence.) In the case

of TREC WebTrack 2012, the model achieves comparable P@20 performance w.r.t.

the base model with only a single transformer layer (12), while the first 11 layers

are precomputed. Interestingly, the ERR@20 suffers more than P@20 as more layers

are precomputed. This suggests that the model is able to identify generally-relevant

documents very effectively with only a few transformer layers, but more are required

to be able to identify the subtleties that contribute to greater or lesser degrees of rel-

evance. Although it would ideally be best to have comparable ERR@20 performance

in addition to P@20, the substantial improvements that this approach offers in terms

of query-time latency may make the trade-off worth it, depending on the needs of the

application.

On the TREC Robust 2004 newswire collection, precomputing the first 10 layers

yields comparable P@20 performance w.r.t. the base model. Interestingly, although

l = 11 yields a relatively effective model for WebTrack, Robust performance signifi-

cantly suffers in this setting, falling well below the BM25 baseline. We also observe a

significant drop in nDCG@20 performance at l = 8, while P@20 performance remains

stable until l = 11. This is similar to the behavior observed on WebTrack: as more

layers are precomputed, the model has a more difficult time distinguishing graded

relevance.

156

Table 4.3 Ranking performance at various compression sizes.
TREC WebTrack 2012

Compression l = 7 l = 8 l = 9 l = 10 l = 11

P@20
(none) 0.3180 0.3140 0.3130 0.3360 0.3380
e = 384 (50%) 0.3430 0.3260 0.2980 0.3360 0.3090
e = 256 (67%) 0.3380 0.3120 ↑ 0.3440 0.3260 0.3250
e = 128 (83%) 0.3100 0.3210 0.3320 0.3220 0.3370

ERR@20
(none) 0.2255 0.2344 0.2297 0.2295 0.1940
e = 384 (50%) 0.2086 0.2338 0.1685 0.2233 0.2231
e = 256 (67%) ↑ 0.2716 0.2034 ↑ 0.2918 0.1909 0.2189
e = 128 (83%) 0.2114 0.2234 0.2519 0.2239 0.2130

TREC Robust 2004
Compression l = 7 l = 8 l = 9 l = 10 * l = 11

P@20
(none) 0.3656 0.3636 0.3644 0.3579 0.2534
e = 384 (50%) 0.3587 ↓ 0.3369 ↓ 0.3435 0.3522 0.2687
e = 256 (67%) ↓ 0.2950 0.3623 ↓ 0.2695 0.3535 0.2635
e = 128 (83%) ↓ 0.2461 ↓ 0.2530 ↓ 0.2499 ↓ 0.2607 0.2655

nDCG@20
(none) 0.4139 0.4123 0.4106 0.4039 0.2590
e = 384 (50%) 0.4098 ↓ 0.3720 ↓ 0.3812 0.3895 ↑ 0.2807
e = 256 (67%) ↓ 0.3130 0.4074 ↓ 0.2753 0.3983 0.2694
e = 128 (83%) ↓ 0.2454 ↓ 0.2568 ↓ 0.2533 ↓ 0.2608 0.2713

Statistically significant increases and decreases in ranking performance (compared to
the model without compression) are indicated with ↑ and ↓, respectively (paired t-test
by query, p < 0.01).

157

We observe that the highest-performing models (metric in bold) are not always the

base model. However, we note that these scores do not exhibit statistically significant

differences when compared to the base model.

In summary, we answer RQ1 by showing that Vanilla BERT can be successfully

trained by limiting the interaction between query terms and document terms, and

that this can have only a minimal impact on ranking effectiveness, particularly in

terms in the precision of top-ranked documents. This is an important result because

it shows that document term representations can be built independently of the query

at index time.

To answer RQ2, we run the Vanilla BERT model with varying sizes e of the com-

pressed embedding representations over the combination layers l that give the most

benefit to query latency time (i.e., l = 7, 8, 9, 10, 11). Layers l ≤ 6 are not considered

because they provide less computational benefit (taking about one second or more

per 100 documents. See Table 4.3 for a summary of the results on TREC WebTrack

2012 and Robust 2004. We find that the representations can usually be compressed

down to at least e = 256 (67% of the original dimension of 768) without substantial

loss in ranking effectiveness. In Robust, we observe a sharp drop in performance at

e = 128 (83% dimension compression) at layers 7–10. There is no clear pattern for

which compression size is most effective for WebTrack 2012. Note that these differ-

ences are generally not statistically significant. This table shows that, to a point, there

is a trade-off between the size of the stored representations and the effectiveness of

the ranker.

Without any intervention, approximately 112TB of storage would be required

to store the full term vectors for ClueWeb09-B (the document collection for TREC

WebTrack 2012). For web collections, this can be substantially reduced by eliminating

undesirable pages, such as spam. Using recommended settings for the spam filtering

158

approach proposed by Cormack et al. [31] for ClueWeb09-B, the size can be reduced

to about 34TB. Using our compression/decompression approach, the storage needed

can be further reduced, depending on the trade-off of storage, query-time latency, and

storage requirements. If using a dimension e = 128 for the compressed representation

(with no statistically significant differences in effectiveness on WebTrack), the size is

further reduced to 5.7TB, which yields a 95% of space reduction. We also observed

that there is little performance impact by using 16-bit floating point representations,

which further reduces the space to about 2.8TB. Although this is still a tall order, it

is only about 2.5% of the original size, and in the realm of reasonable possibilities. We

leave it to future work to investigate further compression techniques, such as kernel

density estimation-based quantization [184].

Since the size scales with the number of documents, the storage requirements are

far less for smaller document collections such as newswire. Document representations

for the TREC Disks 4 & 5 (the document collection for the Robust 2004) can be

stored in about 195GB, without any filtering and using the more effective e = 256 for

the dimension of the compressed representation.

In summary, regarding RQ2, we show that, through our compression technique,

one can reduce the storage requirements of PreTTR. With a well-trained compression

and decompression weights, this can have minimal impact on ranking effectiveness.

The reduction of the re-ranking latency achieved by our proposed PreTTR is con-

siderable. To answer RQ3, in Table 4.4 we report an analysis of the re-ranking latency

of PreTTR-based Vanilla BERT when precomputing the token representations at a

specific layer l and a comparison against the base model, i.e., Vanilla BERT. Without

our approach, re-ranking the top 100 results for a query using Vanilla BERT takes

around 2 seconds. Instead, when using PreTTR-based Vanilla BERT at layer l = 11,

which yields comparable P@20 performance to the base model on the TREC Web-

159

Table 4.4 Vanilla BERT query-time latency measurements for re-ranking
the top 100 documents on TREC WebTrack 2012 and TREC Robust 2004.

TREC WebTrack 2012 Robust04

Ranker Total Speedup Query Decom. Combine Total

Base 1.941s (1.0×) - - - 2.437s
l = 1 1.768s (1.1×) 2ms 10ms 1.756s 2.222s
l = 2 1.598s (1.2×) 3ms 10ms 1.585s 2.008s
l = 3 1.423s (1.4×) 5ms 10ms 1.409s 1.792s
l = 4 1.253s (1.5×) 6ms 10ms 1.238s 1.575s
l = 5 1.080s (1.8×) 7ms 10ms 1.063s 1.356s
l = 6 0.906s (2.1×) 9ms 10ms 0.887s 1.138s
l = 7 0.735s (2.6×) 10ms 10ms 0.715s 0.922s
l = 8 0.562s (3.5×) 11ms 10ms 0.541s 0.704s
l = 9 0.391s (5.0×) 12ms 10ms 0.368s 0.479s
l = 10 0.218s (8.9×) 14ms 10ms 0.194s 0.266s
l = 11 0.046s (42.2×) 15ms 10ms 0.021s 0.053s

The latency is broken down into time to compute query representations up through layer l,
the time to decompress document term representations, and the time to combine the query
and document representations from layer l + 1 to layer n. The l = 11 setting yields a 42×
speedup for TREC WebTrack, while not significantly reducing the ranking performance.

160

Track 2012 collection, the re-ranking process takes 46 milliseconds for 100 documents,

i.e., we achieve a 42.0× speedup. One reason this performance is achievable is because

the final layer of the transformer network does not need to compute the representa-

tions for each token; only the representations for the [CLS] token are needed, since

it is the only token used to compute the final ranking score. Thus, the calculation

of a full self-attention matrix is not required. Since the [CLS] representation is built

in conjunction with the query, it alone can contain a summary of the query terms.

Furthermore, since the query representation in the first l layers is independent of

the document, these representations are re-used among all the documents that are

re-ranked. Of the time spent during re-ranking for l = 11, 32% of the time is spent

building the query term representation, 21% of the time is spent decompressing the

document term representations, and the remainder of the time is spent combining the

query and document representations. Moreover, when using PreTTR-based Vanilla

BERT at layer l = 10, the transformer network needs to perform a round of computa-

tions on all the term representations. Nevertheless, in this case, our PreTTR approach

leads to a substantial speedup of 8.9× w.r.t. Vanilla BERT. We also observe that the

time to decompress the term representations (with e = 256) remains a constant over-

head, as expected. We observe a similar trend when timing the performance of Robust

2004, though we would recommend using l ≤ 10 for this dataset, as l = 11 performs

poorly in terms of ranking effectiveness. Nonetheless, at l = 10, Robust achieves a

9.2× speedup, as compared to the full model.

In summary, regarding RQ3, we show that the PreTTR approach can save a

considerable amount of time at query-time, as compared to the full Vanilla BERT

model. These time savings can make it practical to run transformer-based rankers in

a real-time query environment.

161

We answer RQ4 by highlighting a first interesting difference between the WebTrack

and the Robust ranking performance: the effectiveness at l = 11 (Table 4.2). For

WebTrack, the performance is comparable in terms of P@20, but suffers in terms

of ERR@20. For Robust, the performance suffers drastically. We attribute this to

differences in the dataset characteristics. First, let us consider what happens in the

l = 11 case. Since it is the final layer and only the representation of the [CLS]

token is used for ranking, the only attention comparisons that matter are between

the [CLS] token and every other token (not a full comparison between every pair

of tokens, as is done in other layers). Thus, a representation of the entire query

must be stored in the [CLS] representation from layer 11 to provide an effective

comparison with the remainder of the document, which will have no contribution

from the query. Furthermore, document token representations will need to have their

context be fully captured in a way that is effective for the matching of the [CLS]

representation. Interestingly, this setting blurs the line between representation-focused

and interaction-focused neural models.

Now we will consider the characteristics of each dataset. The queries in the TREC

WebTrack 2012 are typically shorter (mean: 2.0, median: 2, stdev: 0.8) than those

from Robust (mean: 2.7, median: 3, stdev: 0.7). This results in queries that are more

qualified, and may be more difficult to successfully represent in a single vector.

To answer RQ4, we observe that the ranking effectiveness when combining with

only a single transformer layer can vary depending on dataset characteristics. We find

that in web collections (an environment where query-time latency is very important),

it may be practical to use PreTTR in this way while maintaining high precision of

the top-ranked documents.

Numerous pre-trained transformer architectures exist. We now answer RQ5 by

showing that PreTTR is not only effective on BERT, but its ability of reducing

162

Table 4.5 WebTrack 2012 using two other Vanilla transformer architec-
tures: RoBERTa and DistilBERT.

RoBERTA [105] DistilBERT [177]

Ranker P@20 ERR@20 P@20 ERR@20

Base 0.3370 0.2609 0.3110 0.2293
l = 1 0.3380 0.2796 0.3220 0.1989
l = 2 0.3370 0.2207 0.3340 0.2771
l = 3 0.3530 0.2669 0.3070 0.1946
l = 4 0.3620 0.2647 0.3350 0.2281
l = 5 0.2950 0.1707 0.3350 0.2074
l = 6 0.3000 0.1928 - -
l = 7 0.3350 0.2130 - -
l = 8 0.3220 0.2460 - -
l = 9 0.3180 0.2256 - -
l = 10 0.3140 0.1603 - -
l = 11 0.3210 0.2241 - -

Note that DistilBERT only has 6 layers; thus we only evaluate l ∈ [1, 5] for this model.
There are no statistically significant differences between the Base Model and any of
the PreTTR variants (paired t-test, p < 0.01).

163

ranking latency by preserving quality holds also on other transformer variants. We

investigate both the popular RoBERTa [105] model and the DistilBERT [177] model.

These represent a model that uses a more effective pre-training process, and a smaller

network size (via model distillation), respectively. Results for this experiment are

shown in Table 4.5. We first observe that the unmodified RoBERTa model performs

comparably with the BERT model, while the DistilBERT model performs slightly

worse. This suggests that model distillation alone may not be a suitable solution

to address the poor query-time ranking latency of transformer networks. With each

value of l, we observe similar behavior to BERT: P@20 remains relatively stable, while

ERR@20 tends to degrade. Interestingly, at l = 2 DistilBERT’s ERR@20 performance

peaks at 0.2771. However, this difference is not statistically significant, and thus we

cannot assume it is not due to noise.

We also tested the query-time latency of RoBERTa and DistilBERT. With 12

layers and a similar neural architecture, RoBERTa exhibited similar speedups as

BERT, with up to a 56.3× speedup at l = 11 (0.041s per 100 documents, down from

1.89s). With only 6 layers, the base DistilBERT model was faster (0.937s), and was

able to achieve a speedup of 24.1× with l = 5 (0.035s).

In summary, we show that the PreTTR approach can be successfully generalized to

other transformer networks (RQ5). We observed similar trends to those we observed

with BERT in two transformer variants, both in terms of ranking effectiveness and

efficiency.

4.2.3 Summary

As was shown in Chapter 3, transformer networks, such as BERT, present a consider-

able opportunity to improve ranking effectiveness. However, relatively little attention

has been paid to the effect that these approaches have on query execution time.

164

We showed that these networks can be trained in a way that is more suitable for

query-time latency demands. Specifically, we showed that query execution time can

be improved by up to 42× for web document ranking, with minimal impact on P@20.

Although this approach requires storing term representations for documents in the

collection, we proposed an approach to reduce this storage required by 97.5% by

pre-training a compression/decompression function and using reduced-precision (16

bits) floating point arithmetic. We experimentally showed that the approach works

across transformer architectures, and we demonstrated its effectiveness on both web

and news search. These findings are particularly important for large-scale search set-

tings, such as web search, where query-time latency is critical. These findings validate

Hypothesis 2.1.

4.3 Learning Efficient Sparse Representations for Ranking

Armed with the knowledge that document representations can be precomputed at

index time, we set out to build a ranking architecture that attempts to minimize

the cost at query time as much as possible. To this end, we propose a new ranking

architecture that performs modeling of term importance (i.e., salience) and expansion

over a contextualized language model to build query and document representations.

We call this approach EPIC (Expansion via Prediction of Importance with Contex-

tualization). At query time, EPIC can be employed as an inexpensive re-ranking

method because document representations can be pre-computed at index time. EPIC

improves upon the prior state of the art on the MS-MARCO passage ranking dataset

by substantially narrowing the effectiveness gap between practical approaches with

subsecond retrieval times and those that are considerably more expensive, e.g., those

using BERT as a re-ranker. Furthermore, the proposed representations are inter-

165

pretable because the dimensions of the representation directly correspond to the terms

in the lexicon. An overview is shown in Figure 4.2.

4.3.1 Methodology

Overview and notation. Our model follows the representation-focused neural

ranking paradigm. That is, we train a model to generate a query and document (or

passage)4 representation in a given fixed-length vector space, and produce a ranking

score by computing a similarity score between the two representations.

Assume that queries and documents are composed by sequences of terms taken

from a vocabulary V . Any sequence of terms, either a query or a document, is

firstly represented as a sequence of vectors using a contextualized language model

like BERT [44]. More formally, let f : V n → Rn×e denote such a function associating

an input sequence s of n terms t1, . . . , tn to their n embeddings f1(s), . . . , fn(s), where

fi(s) ∈ Re and e is the size of the embedding. So, a n-term query q is represented with

the n embeddings f1(q), . . . , fn(q), and a m-term document d is represented with m

embeddings f1(d), . . . , fm(d). Given the embeddings for queries and documents, we

4For ease of notation, we refer to passages as documents.

| |Query Passage

(,)

(a) Query Importance (b) Passage Importance & Expansion

(c) Relevance Score

Figure 4.2 Overview of EPIC.

166

now illustrate the process for constructing query representations, document represen-

tations, the final query-document similarity score.

Query representation. A query q is represented as a sparse vector φq ∈ R|V |

(Figure 4.2 (a)). The elements of φq that correspond to to terms not in the query

are set to 0. For each term ti appearing in the t1, . . . , tn terms of the query q, the

corresponding element φq(ti) is equal to the importance wq(ti) of the term w.r.t. the

query

wq(ti) = ln
(

1 + softplus
(
θ>1 fi(q)

))
, (4.3)

where θ1 ∈ Re is a vector of learned parameters. The softplus(·) function is defined

as softplus(x) = ln(1 + ex). The use of softplus ensures that no terms have a negative

importance score, while imposing no upper bound. The logarithm prevents individual

terms from dominating. When a term appears more than once in a query, the cor-

responding value of φq sums up all contributions. The elements of the query repre-

sentation encode the importance of the terms w.r.t. the query. This approach allows

the query representation model to learn to assign higher weights to the query terms

that are most important to match given the textual context. Note that the number of

elements in the representation is equal to the number of query terms; thus the query

processing time is proportional to the number of query terms [197].

Document representation. A document d is represented as a dense vector φd ∈

R|V | (Figure 4.2 (b)). Firstly, to perform document expansion, each e-dimensional

term embedding fj(d) is projected into a |V |-dimensional vector space, i.e., ψj :

fj(d) 7→ Θ2fj(d), where Θ2 ∈ R|V |×e is a matrix of learned parameters. Note that

ψj ∈ R|V |, and let ψj(τ) denote the entry of this vector corresponding to term τ ∈ V .

Secondly, the importance wd(tj) of the terms w.r.t. the document is computed as in

167

Eq (4.3):

wd(tj) = ln
(

1 + softplus
(
θ>3 fj(d)

))
, (4.4)

where θ3 ∈ Re is a vector of learned parameters. Thirdly, we compute a factor repre-

senting the overall quality c(d) of the document

c(d) = sigmoid(θ>4 d[CLS]), (4.5)

where θ4 ∈ Re is a vector of learned parameters, and d[CLS] ∈ Re is the embedding

produced by the contextualized language model’s classification mechanism. We find

that this factor helps give poor-quality documents lower values overall. The sigmoid(·)

function is defined as: sigmoid(x) = 1
1+e−x . Finally, for each term τ appearing in

the vocabulary, the corresponding element of the document representation φd(τ) is

defined as:

φd(τ) = c(d) max
tj∈d

(
wd(tj)ψj(τ)

)
. (4.6)

This step takes the maximum score for each term in the vocabulary generated by any

term in the document. Since they do not rely on the query, these representations can

be computed at index time.

Similarity measure. We use the dot product to compute the similarity between

the query and document vectors (Figure 4.2 (c)), i.e.,

sim(q, d) = φ>q φd =
∑
τ∈V

φq(τ)φd(τ). (4.7)

4.3.2 Experiment

We conduct experiments using the MS-MARCO passage ranking dataset (full ranking

setting).5 This dataset consists of approximately 1 million natural-language questions

gathered from a query log (average length: 7.5 terms, stddev: 3.1), and 8.8 million

5https://microsoft.github.io/msmarco/

168

candidate answer passages (avg length: 73.1, stddev: 28.4). The dataset is shallowly-

annotated. Annotators were asked to write a natural-language answer to the given

question using a set of candidate answers from a commercial search engine. The

annotators were asked to indicate which (if any) of the passages contributed to their

answers, which are then treated as relevant to the question. This results in 0.7 judg-

ments per query on average (1.1 judgments per query of the 62% that have an answer).

Thus, this dataset has a lot of variation in queries, making it suitable for training

neural ranking methods. Although this dataset is limited by the method of construc-

tion, the performance on these shallow judgments correlate well with those conducted

on a deeply-judged subset [34].

Training. We train our model using the official MS-MARCO sequence of training

triples (query, relevant passage, presumed non-relevant passage) using cross-entropy

loss. We use BERT-base [44] as the contextualized language model, as it was shown

to be an effective foundation for various ranking techniques [35, 110, 135]. We set the

dimensionality |V | of our representations to the size of the BERT-base word-piece

vocabulary (d=30,522). The embedding size is instead e = 768. Θ2 is initialized to

the pre-trained masked language model prediction matrix; all other added parameters

are randomly initialized. Errors are back-propagated through the entire BERT model

with a learning rate of 2 × 10−5 with the Adam optimizer [86]. We train in batches

of 16 triples using gradient accumulation, and we evaluate the model on a validation

set of 200 random queries from the development set every 512 triples. The optimal

training iteration and re-ranking cutoff threshold is selected using this validation set.

We roll back to the top-performing model after 20 consecutive iterations (training

iteration 42) without improvement to Mean Reciprocal Rank at 10 (MRR@10).

Baselines and Evaluation. We test our approach by re-ranking the results from

several first-stage rankers. We report the performance using MRR@10, the official

169

Table 4.6 Effectiveness and efficiency of EPIC compared to a variety of
baselines..

MS-Marco Dev Latency
Method MRR@10 ms/query

Single-Stage Ranking
BM25 (from Anserini [217]) 0.198 21
doc2query [138] 0.218 48
DeepCT-Index [35] 0.243 15
docTTTTTquery [136] 0.277 63

Representation-based Re-Ranking
EPIC + BM25 (ours) 0.273 106
pruned r = 2000 0.273 104
pruned r = 1000 0.272 48

EPIC + docTTTTTquery (ours) 0.304 78
pruned r = 2000 0.304 77
pruned r = 1000 0.303 68

Other Re-Ranking
Duet (v2, ensemble) [126] 0.252 440
BM25 + TK (1 layer) [70] 0.303 445
BM25 + TK (3 layers) [70] 0.314 640
BM25 + BERT (large) [135] 0.365 3,500*

The values in italics represent a good trade-off between effectiveness and query
latency. The value marked with * was reported by [136].

170

evaluation metric, on the MS-MARCO passage ranking Dev set. We measure signifi-

cance using a paired t-test at p < 0.01. We compare the performance of our approach

with the following baselines:

- BM25 retrieval from a Porter-stemmed Anserini [217] index using default settings.6

- DeepCT-Index [35], a model which predicts document term importance scores,

and replaces the term frequency values with these importance scores for first-stage

retrieval.

- doc2query [138] and docTTTTTquery [136], document expansion approaches which

predict additional terms to add to the document via a sequence-to-sequence trans-

former model. These terms are then indexed and used for retrieval using BM25.

The docTTTTTquery model uses a pre-trained T5 model [159].

- Duet [126], a hybrid representation- and interaction-focused model. We include the

top Duet variant on the MS-MARCO leaderboard (version 2, ensemble) to compare

with another model that utilizes query and document representations.

- TK [70], a contextualized interaction-based model, focused on minimizing query

time. We report results from [70] with the optimal re-ranking threshold and measure

end-to-end latency on our hardware.

- BERT Large [135], an expensive contextualized language model-based re-ranker.

This approach differs from ours in that it models the query and passage jointly at

query time, and uses the model’s classification mechanism for ranking.

We also measure query latency over the entire retrieval and re-ranking process. The

experiments were conducted on commodity hardware equipped with an AMD Ryzen
6We observe that the default settings outperform the BM25 results reported elsewhere

and on the official leaderboard (e.g., [138]).

171

3.9GHz processor, 64GiB DDR4 memory, a GeForce GTX 1080ti GPU, and a SSD

drive. We report the latency of each method as the average execution time (in mil-

liseconds) of 1000 queries from the Dev set after an initial 1000 queries is used to

warm up the cache. First-stage retrieval is conducted with Anserini [217].

Ranking effectiveness. We report the effectiveness of our approach in terms

of MMR@10 in Table 4.6. When re-ranking BM25 results, our approach substan-

tially outperforms doc2query and DeepCT-Index. Moreover, it performs comparably

to docTTTTTquery (0.273 compared to 0.277, no statistically significant difference).

More importantly, we observe that the improvements of our approach and docTTTT-

Tquery are additive as we achieve a MRR@10 of 0.304 when used in combination.

This is a statistically significant improvement, and substantially narrows the gap

between approaches with low query-time latency and those that trade off latency of

effectiveness (e.g., BERT Large).

To test whether EPIC is effective on other passage ranking tasks as well, we test

on the TREC CAR passage ranking benchmark [46]. When trained and evaluated on

the 2017 dataset (automatic judgments) with BM25, the MRR increases from 0.235

to 0.353. This also outperforms the DeepCT performance reported by [35] of 0.332.

Effect of document representation pruning. For document vectors, we

observe that the vast majority of values are very low (approximately 74% have a

value of 0.1 or below, see Figure 4.3). This suggests that many of the values can

be pruned with little impact on the overall performance. This is desirable because

pruning can substantially reduce the storage required for the document represen-

tations. To test this, we apply our method keeping only the top r values for each

document. We show the effectiveness and efficiency of r = 2000 (reduces vocabulary

by 93.4%) and r = 1000 (96.7%) in Table 4.6. We observe that the vectors can be

pruned to r = 1000 with virtually no difference in ranking effectiveness (differences

172

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
�d values

100

10�1

10�2

10�3

10�4

10�5F
ra

ct
io

n
of

va
lu

es

Figure 4.3 Frequencies of EPIC document scores. Note that the values are in
log scale. In this figure, values are rounded up to the nearest decimal value.

not statistically significant). We also tested with lower values of r, but found that

the effectiveness drops off considerably by r = 100 (0.241 and 0.285 for BM25 and

docTTTTTquery, respectively).

Ranking efficiency. We find that EPIC can be implemented with a minimal

impact on query-time latency. On average, the computation of the query repre-

sentation takes 18ms on GPU and 51ms on CPU. Since this initial stage retrieval

does not use our query representation, it is computed in parallel with the initial

retrieval, which reduces the impact on latency. The similarity measure consistently

takes approximately 1ms per query (both on CPU and GPU), with the remainder

of the time spent retrieving document representations from disk. Interestingly, we

observe that the latency of EPIC BM25 is higher than EPIC docTTTTTquery. This is

because when re-ranking docTTTTTquery results, a lower re-ranking cutoff threshold

is needed than for BM25. This further underscores the importance of using an effective

first-stage ranker. When using pruning at r = 1000, the computational overhead can

be substantially reduced. Specifically, we find that EPIC only adds a 5ms overhead per

query to docTTTTTquery, while yielding a significant improvement in effectiveness.

173

(a) how far does aaa tow , in california
(b) coastal processes are located on what vertebrae
(c) cost of endless pools swim spa

Figure 4.4 Relative EPIC importance scores of sample queries. Darker colors
correspond to higher weightsin the query representation.

With pruning at r = 1000, EPIC BM25 performs comparably with docTTTTTquery

with a 1.3× speedup.

Cost of pre-computing. We find that document vectors can be pre-computed

for the MS-MARCO collection in approximately 14 hours on a single commodity

GPU (GeForce GTX 1080ti). This is considerably less expensive than docTTTTT-

query, which takes approximately 40 hours on a Google TPU (v3). When stored as

half-precision (16-bit) floating point values, the vector for each document uses approx-

imately 60KiB, regardless of the document length. This results in a total storage

burden of approximately 500GiB for the entire collection. Pruning the collection to

r = 1000 (which has minimal impact on ranking effectiveness) reduces the storage

burden of each document to 3.9KiB (using 16-bit integer indices) and total storage

to 34 GiB. The pruned document vectors use 34 GiB, when stored as 16-bit floating

point values.

Interpretability of representations. A benefit of our approach is that the

dimensions of the representation correspond to terms in the lexicon, allowing the

representations to be easily inspected. In Figure 4.4, we present the relative scores

for sample queries from MS-MARCO. We observe that the model is generally able

to pick up on the terms that match intuitions of term importance. For instance,

174

Document terms: endless pools and swim spa ##s are available in a number of different price brackets

. for the brand called ae ##nd ##less pools ##a prices start at $ 23 , 900 for their most

basic pool for other brands of endless pool (a . k . a swim spa ##s) prices can be as

low as $ 900 ##0 things that change the price prices change drastically depending upon location

, time of year , and property type .

Top expansion terms: pay paid cost paying much what fee costs thing spending

docTTTTquery: pool endless how cost much price doe swim build spa ...

Figure 4.5 Relative EPIC representation values of terms that appear in a
sample document. Alongside terms that appeared in the passage, the top ‘expan-
sion’ terms are also shown. For reference, the most frequent terms produces by
docTTTTTquery are also given, weighted by term frequency.

(a) gives highest scores to california, aaa (American Automobile Association), and

tow. These three terms are good candidates for a keyword-based query with the

same query intent. This approach does not necessarily just remove stop words; in (b)

what is assigned a relatively high score. We provide an example of document vector

importance scores in Figure 4.5. Because the document vector is dense, the figure only

shows the terms that appear directly in the document and other top-scoring terms.

Notice that terms related to price, endless, pool(s), and cost are assigned the highest

scores. In this case, the expansion of the term cost was critical for properly scoring

this document, as a relevant query is cost of endless pools/spas. Although the terms

that docTTTTTquery generate for this document are similar, the continuous values

generated by EPIC paid off in a higher MRR@10 score for the query “cost of endless

pools/swim spa” (a relevant question for this passage).

175

4.3.3 Summary

This section showed a design for an effective and inexpensive neural ranking architec-

ture. This technique advances the art by further approaching fully BERT-based re-

ranking performance, while providing low query-time latency and easy interpretability

of representations. We also find that pruning can be an effective technique for reducing

query latency without sacrificing effectiveness. This validates Hypothesis 2.2.

4.4 Discussion and Conclusions

In this chapter, I demonstrated that concerns surrounding the query-time efficiency of

these models can be mitigated. Specifically, I showed that one can offload much of the

computation to index-time in a way that substantially reduced the cost at query-time

(Section 4.2). This validates Hypothesis 2.1. I then showed that this characteristic

can be exploited to design a neural ranking architecture specifically designed with

efficiency in mind: EPIC (Section 4.3). This model reduces the query-time cost to

only query processing and a sparse dot product. Since the query processing can be

done in parallel with initial retrieval, this approach can add as low as 6ms to query-

time latency while still producing highly competitive ranking performance. This vali-

dates Hypothesis 2.2. Furthermore, the design of EPIC is interpretable, transparently

assigning importance scores to query and document terms.

176

Chapter 5

Understanding Neural Ranking Behaviors

As shown in Chapter 3, pre-trained contextualized language models such as BERT [44]

are effective at the task of ad-hoc retrieval. Despite this success, little is understood

about why pretrained language models are effective for ad-hoc ranking. Previous work

has shown that traditional IR axioms, e.g. that increased term frequency should cor-

respond to higher relevance, do not explain the behavior of recent neural models

[18]. Outside of IR, others have examined what characteristics contextualized lan-

guage models learn in general [103, 106, 168], but it remains unclear if these qualities

are valuable for ad-hoc ranking specifically. Thus, new approaches are necessary to

characterize the models.

We propose a new framework aimed at Analyzing the Behavior of Neural IR

ModeLs (ABNIRML), which aims to test the sensitivity of ranking models on specific

textual properties. Probes consist of samples comprised of a query and two contrastive

documents. We propose three strategies for building probes. The “measure and match”

strategy (akin to the diagnostic datasets proposed by Rennings et al. [163]) constructs

probing samples by controlling one measurement (e.g., term frequency) and varying

another (e.g., document length) using samples from an existing IR collection. The

“textual manipulation” strategy probes the effect that altering the text of a document

text has on its ranking. The “dataset transfer” strategy constructs probes from non-IR

datasets. The new probes allow us to isolate model characteristics—such as sensitivity

177

to word order, or preference for summarized rather than full documents—that cannot

be analyzed using other approaches.

Using our new framework, we perform the first large-scale analysis of neural

IR models. We compare today’s leading ranking techniques, including those using

BERT [44] and T5 [159], as well as methods focused on efficiency like DocT5Query [139]

and EPIC (from Section 4.3). We present evidence that neural models use linguistic

signals that are fundamentally different from classical term-matching metrics like

BM25: when controlling for term frequency match, the neural models detect doc-

ument relevance much more accurately than the BM25 baseline, and the effect is

more pronounced in larger neural models. Further, unlike prior approaches, rankers

based on BERT and T5 are heavily influenced by word order: shuffling the words in a

document consistently lowers the document’s score relative to the unmodified version,

and neural rankers show a sensitivity to sentence order that is completely absent in

classical models. We also find that the underlying pretrained language model alone

does not determine a system’s ad-hoc ranking behavior, and in particular the BERT-

based EPIC model differs in many probes from a vanilla BERT re-ranker. Our battery

of probes also uncover a variety of other findings, including that adding additional

text to documents can often exhibit adverse behavior in neural models—decreasing

the document’s score when the added text is relevant, and increasing score when the

added text is irrelevant.

In summary, we present a new framework (ABNIRML) for performing analysis of

ad-hoc ranking models. We then demonstrate how the framework can provide insights

into ranking model characteristics by providing the most comprehensive analysis of

neural ranking models to date. Our released software framework facilitates conducting

further analyses in future work (to be released upon acceptance).

178

5.1 Background and Preliminaries

Diagnostic datasets, proposed by Rennings et al. [163], reformulate traditional ranking

axioms—e.g., that documents with a higher term frequency should receive a higher

ranking score [50]—as empirical tests for analysing ranking models. Rennings et al.

studied neural ranking architectures that predate the rise of contextualized language

models for ranking, and focused on just four axioms. Câmara and Hauff [18] extended

this work by adding five more previously-proposed ranking axioms (e.g., term prox-

imity [194], and word semantics [49]) and evaluating on a distilled BERT model.

They found that the axioms are inadequate to explain the ranking effectiveness of

their model. Unlike these prior lines of work, we propose new probes that shed light

onto possible sources of effectiveness, and test against current leading neural ranking

architectures.

Although some insights about the effectiveness of contextualized language models

for ranking have been gained using existing datasets [36] and indirectly through var-

ious model architectures [35, 70, 84, 110, 118, 138], they only provide circumstantial

evidence. For instance, several works show how contextualized embedding similarity

can be effective, but this does not imply that vanilla models utilize these signals for

ranking. Rather than proposing new ranking models, in this work we analyze the

effectiveness of existing models using controlled diagnostic probes, which allow us to

gain insights into the particular behaviors and preferences of the ranking models.

Outside of the work in IR, others have developed techniques for investigating

the behavior of contextualized language models in general. Although probing tech-

niques [195] and attention analysis [185] can be beneficial for understanding model

capabilities, these techniques cannot help us characterize and quantify the behaviors

of neural ranking models. CheckList [164] and other challenge set techniques [124]

179

differ conceptually from our goals; we aim to characterize the behaviors to under-

stand the qualities of ranking models, rather than provide additional measures of

model quality.

5.2 Methodology

In order to characterize the behavior of ranking models we construct several diagnostic

probes. Each probe aims to evaluate specific properties of ranking models and probe

their behavior (e.g., if they are heavily influenced by term matching, discourse and

coherence, conciseness/verbosity, writing styles, etc). We formulate three different

approaches to construct probes (Measure and Match, Textual Manipulation, and

Dataset Transfer).

In ad-hoc ranking, a query (expressed in natural language) is submitted by a user

to a search engine, and a ranking function provides the user with a list of natural

language documents sorted by relevance to the query. More formally, let R(q, d) ∈ R

be a ranking function, which maps a given query q and document d (each being a

natural-language sequence of terms) to a real-valued ranking score. At query time,

documents in a collection D are scored using R(·) for a given query q, and ranked

by the scores (conventionally, sorted descending by score). Learning-to-rank models

optimize a set of parameters for the task of relevance ranking based on training data.

5.2.1 Document Pair Probing

We utilize a document pair probing strategy, in which probes are comprised of samples,

each of which consists of a query and two documents that differ primarily in some

characteristic of interest (e.g., textual elaboration). The ranking scores of the two

documents are then compared (with respect to the query). This allows the isolation

180

of particular model preferences. For instance, a probe could consist of summarized and

full texts of news articles; models that consistently rank full texts above summaries

prefer elaborative text.

More formally, each document pair probe consists of a collection of samples S,

where each 〈q, d1, d2〉 ∈ S is a 3-tuple consisting of a query (or query-like text, q),

and two documents (or document-like texts, d1 and d2). The relationship between d1

and d2 (with respect to q) for each sample defines the probe. For instance, a probe

testing summarization could be defined as: (1) d2 is a summary of d1, and (2) d1 is

relevant to the query q.1

Each sample in the probe is scored as: (+1) scoring d1 above d2 (a positive effect),

(−1) scoring d2 above d1 (a negative effect), or (0) a neutral effect. Formally, the

effect eff (·) of a given sample is defined as:

eff (q, d1, d2) =


1 R(q, d1)−R(q, d2) > δ

−1 R(q, d1)−R(q, d2) < −δ

0 −δ ≤ R(q, d1)−R(q, d2) ≤ δ

(5.1)

The parameter δ adjusts how large the score difference between the scores of d1 and

d2 must be in order to count as positive or negative effect. This allows us to disregard

small changes to the score that are unlikely to affect the final ranking. In practice, δ

depends on the ranking model because each model scores on different scales. Therefore

we tune δ for each model (see Section 5.3.3)

1Note that the relationship between d1 and d2 must be asymmetric, or the probe is
ill-defined. For example, paraphrasing is not a valid pair probe because both texts are para-
phrases of one another, and it would therefore be ambiguous which to assign to d1 and which
to assign to d2.

181

A model’s performance on a particular probe is summarized by a single score s

that averages the effect of all samples in the probe:

s =
1

|S|
∑

〈q,d1,d2〉∈S
eff (q, d1, d2) (5.2)

Note that this score is in the interval [−1, 1]. Positive scores indicate a stronger pref-

erence towards documents from group 1 (d1 documents), and negative scores indicate

a preference towards documents from group 2 (d2 documents). Scores near 0 indicate

no strong preference or preferences that are split roughly evenly; disentangling these

two cases requires analyzing individual effect scores.

There are several important differences between our setup and the “diagnostic

dataset” approach proposed by Rennings et al. [163]. First, by including the δ

threshold, we ensure that our probes measure differences that can affect the final

order in ranked lists. Second, by including the “neutral effect” case in our scoring

function, we distinguish between cases in which d1 or d2 are preferred and cases

where neither document is strongly preferred. And finally, our probes are aimed at

describing model behavior, rather than evaluating models.

5.2.2 Document Pair Probing Strategies

In this work, we explore three strategies for designing document pair probes. As

discussed below, the strategies have different strengths and weaknesses. When used

in concert, they allow our framework to characterize a wide variety of model behaviors.

Figure 5.1 provides an overview of the strategies.

Measure and Match Probes (MMPs). Some surface-level characteristics of

documents, such as its Term Frequency (TF) for a given query, are both easy to

182

Inferred

IR Dataset

MMPs (Measure and Match Probes)

Query Doc

Doc

Doc

Doc

Doc
…

Measurement
and Matching

Query

Query

Doc

Doc

Doc

Doc

Doc
…

TMPs (Textual Manipulation Probes)

M(Doc)

M(Doc)

M(Doc)

M(Doc)

M(Doc)

Doc

Doc

Doc

Doc

Doc
…

Doc

Doc

Doc

Doc

Doc
………

Query

Query

Query

Query

Query

DTPs (Dataset Transfer Probes)

= Manipulated()

IR Dataset Repurposed Dataset
Co

nt
ro

l
Va

ria
bl

e

Matches documents given a constant control
and differing variable.

Perform automatic manipulations to document text. Repurposes non-IR datasets to probe other characteristics.

Figure 5.1 Overview of strategies for constructing probes. Each probe in
ABNIRML is comprised of samples, each of which consists of a query (q) and two
documents (d1 and d2).

measure and valuable for characterizing models.2 By comparing the ranking scores of

two documents in which such a characteristic differs (but are otherwise similar), one

can gain empirical evidence into what factors influence a model. Measure and Match

Probes (MMPs) follow such an approach. MMPs involve first measuring the character-

istics of judged query-document pairs in an IR dataset. Then, the pairs are matched to

form probe samples based on a control (a characteristic that matches between the doc-

uments, such as document length), and a variable (which differs between documents,

such as TF). When matching control characteristics, a threshold can be employed

to allow for more potential matches. MMPs have been explored by others [18, 163]

by formulating existing ranking axioms3 into empirical probes. Our MMP strategy

generalizes the process for building such probes. Specifically, this encourages one to

consider all combinations of controls and variables, promoting a more comprehensive

analysis.
2In the case of TF, it has long been used as a core signal for ranking algorithms; a

departure from monotonically increasing the score of a document as TF increases would
represent a fundamental shift in the notion of relevance scoring [50].

3An example is TFC1 from [50], which suggests that higher TFs should be mapped to
higher relevance scores.

183

Textual Manipulation Probes (TMPs). Not all characteristics are easily cap-

tured with MMPs. For instance, it would be difficult to probe the sensitivity to word

order with MMPs; it is unlikely to find naturally-occurring documents that use the

same words but in a different order, and even if identified, it would be unclear how

to measure the quality of each word order. We overcome limitations like this by

proposing Textual Manipulation Probes (TMPs). These probes apply a manipulation

function to scored documents from an existing IR dataset. For probing word order,

a simple manipulation function that shuffles the order of the words in the sentence

can be used, which eliminates both the matching problem (all documents can be

manipulated) and the measurement problem (the proposed manipulation function is

destructive, almost certainly reducing the quality of the word order). Prior works that

use a similar approach for probing ranking methods include the collection perturba-

tion tests Fang et al. [51] (which perform operations like removing documents from

the collection and deleting individual terms from documents) and a diagnostic dataset

proposed by Rennings et al. [163] (which tests the effect of duplicating the document:

an adaptation of a traditional ranking axiom). Although TMPs allow probing a wider

variety of characteristics than MMPs, we note that they involve constructing artificial

data; d2 may not resemble documents seen in practice. Despite this, their versatility

make TMPs an attractive choice for a variety of characteristics.

Dataset Transfer Probes (DTPs). Even with MMPs and TMPs, some charac-

teristics may still be difficult to measure. For instance, if one wanted to probe the effect

of text fluency (the degree to which language sounds like a native speaker wrote it)

with a MMP, one would need an effective measure of text fluency and be able to match

it to documents that otherwise provide similar text, which is a tall order. To probe

fluency with a TMP, one would need a function that is able to consistently reduce

(or improve) textual fluency, which is difficult to accomplish with today’s techniques.

184

To probe characteristics like these, we propose Dataset Transfer Probes (DTPs). In

this setting, a dataset built for a purpose other than ranking is repurposed to probe a

ranking model’s behavior. By using a DTP, one could use a dataset of human-written

textual fluency pairs (e.g., from the JFLEG dataset [130]) to sidestep challenges in

both measurement and manipulation. Text pair datasets are abundant, allowing us

to probe a wide variety of characteristics, like fluency, formality, and summarization.

With these probes, d1 and d2 can be easily defined by the source dataset. In some

cases, external information can be used to infer a corresponding q, such as using the

title of the article as a query for news article summarization tasks, a technique that

has been studied before to train ranking models [112]. In other cases, queries can be

artificially generated.

5.3 Experiment

5.3.1 Datasets

We use the MS-MARCO passage dataset [19] to train the neural ranking models. The

training subset contains approximately 809k natural-language questions from a query

log (with an average length of 7.5 terms) and 8.8 million candidate answer passages

(with an average length of 73.1 terms). Due to its scale in number of queries, it is

shallowly annotated, almost always containing fewer than 3 positive judgments per

query. This dataset is frequently used for training neural ranking models, and has

been shown to effectively transfer relevance signals to other collections [136].

We build MMPs and TMPs using the TREC Deep Learning 2019 passage

dataset [34]. Although it uses the MS-MARCO passage collection, TREC DL has

fewer queries (containing only 43 queries with relevance judgments). However, it has

much deeper relevance judgments (on average, 215 per query). The judgments are

185

also graded as highly relevant (7%), relevant (19%), topical (17%), and non-relevant

(56%), allowing us to make more fine-grained comparisons. We opt to perform our

analysis in a passage ranking setting to eliminate effects of long document aggrega-

tion, an area with many model varieties that is still under active investigation [95].

5.3.2 Models

We compare a sample of several models covering a traditional lexical model (BM25),

a conventional learning-to-rank approach (LightGBM), and neural models with and

without contextualized language modeling components. We also include two models

that focus on query-time computational efficiency. The neural models represent a

sample of the recent state-of-the-art ranking models.

BM25. We use the Terrier [143] implementation of BM25 with default parame-

ters. BM25 is an unsupervised model that incorporates lexical the features of term

frequency (TF), inverse document frequency (IDF), and document length. (TREC

DL 2019 MRR: 0.7851.)

L-GBM [83]. We use the Light Gradient Boosting Machine model currently used

by the Semantic Scholar search engine [52].4 This public model was trained on click-

through data from this search engine, meaning that it services various information

needs (e.g., navigational and topical queries). A wide variety of features are used, not

all of which are available in our ranking setting (e.g., recency, in-links, etc.). Thus,

we only supply the text-based features L-GBM uses like lexical overlap and scores

from a light-weight language model [63]. This serves as a non-neural learning-to-rank

baseline. (TREC DL 2019 MRR: 0.7589.)

KNRM and C-KNRM [37, 214] are kernel-based ranking models that calculate

the cosine similarity between the word embeddings of query and document terms,
4https://github.com/allenai/s2search

186

aggregating the scores using Gaussian kernels. The Convolutional variant (C-KNRM)

applies 1-dimensional convolutions to build n-gram representations. For both models,

we use default settings (e.g., 11 buckets, 3-grams), and train the models using the

official training sequence of the MS-MARCO passage ranking dataset. (KNRM TREC

DL 2019 MRR: 0.6876; C-KNRM TREC DL 2019 MRR: 0.7392.)

BERT [44]. We use the Vanilla BERT model, introduced in Section 3.2. We fine-

tune the bert-base-uncased model for this task using the official training sequence

of the MS-MARCO passage ranking dataset. (TREC DL 2019 MRR: 0.9368.)

T5 [159]. The Text To Text Transformer ranking model [136] scores documents

by predicting whether the concatenated query, document, and control tokens is likely

to generate the term ‘true’ or ‘false’ as indication of relevance. We use the model

weights released by the authors, which were tuned on the MS-MARCO passage

ranking dataset. At the time of writing, T5 tops several ad-hoc ranking leaderboards.

(TREC DL 2019 MRR: 0.9671.)

EPIC, introduced in Section 4.3 We use the bert-base-uncased model, and

tune the model for ranking using the train split of the MS-MARCO passage ranking

dataset. (TREC DL 2019 MRR: 0.8891.)

DT5Q [136]. The T5 variant of the Doc2Query model (DT5Q) generates addi-

tional terms to add to documents based using a T5 model. The expanded document

can be efficiently indexed, boosting the weight of terms likely to match queries. We

use the model released by the authors, which was trained using the MS-MARCO

passage training dataset. For our probes, we generate four queries to add to each

document. As was done in the original paper, we use BM25 a a scoring function over

the expanded documents. (TREC DL 2019 MRR: 0.8631.)

187

Table 5.1 Results of Measure and Match Probes (MMPs) on TREC DL
2019.
Variable Control BM25 L-GBM DT5Q KNRM C-KNRM EPIC BERT T5 Samples

Relevance Length +0.40 +0.40 +0.47 +0.34 +0.39 +0.55 +0.58 +0.58 19,676
TF −0.03 +0.04 +0.08 +0.05 +0.13 +0.29 +0.34 +0.41 31,619
Overlap +0.41 +0.34 +0.45 +0.29 +0.35 +0.51 +0.55 +0.57 4,762

Length Relevance −0.05 +0.04 −0.08 −0.04 −0.02 +0.05 * −0.01 +0.06 515,401
TF −0.14 +0.02 −0.08 −0.10 * −0.02 +0.03 −0.09 +0.13 88,582
Overlap +0.51 +0.26 +0.22 +0.14 +0.15 +0.29 +0.20 +0.21 3,963

TF Relevance +0.88 +0.50 +0.74 +0.42 +0.43 +0.49 +0.41 +0.40 303,058
Length +1.00 +0.59 +0.84 +0.55 +0.56 +0.58 +0.54 +0.52 19,770
Overlap +0.80 +0.37 +0.32 +0.22 +0.23 +0.39 +0.26 +0.26 2,294

Overlap Relevance +0.70 +0.20 +0.53 +0.22 +0.22 +0.16 +0.19 +0.19 357,470
Length +0.75 +0.35 +0.59 +0.36 +0.36 +0.31 +0.31 +0.32 20,819
TF +0.88 −0.03 +0.48 * +0.06 * +0.02 * −0.01 +0.11 * +0.02 13,980

Positive scores indicate a preference towards a higher value of the variable. Score marked
with * are not statistically significant (see Section 5.3.4).

5.3.3 Choosing Delta

Recall that δ indicates the minimum absolute difference of scores in a document pair

probe to have a positive or negative effect. Since each model scores documents on a

different scale, we empirically choose a δ per model. We do this by first scoring the

top 100 documents retrieved by BM25 for the MS-MARCO dev collection. Among the

top 10 results, we calculate the differences between each adjacent pair of scores (i.e.,

{R(q, d1) − R(q, d2), R(q, d2) − R(q, d3), ..., R(q, d9) − R(q, d10)}, where di is the ith

highest scored document for q). We set δ to the median difference among all queries

in the dev collection. By setting the threshold this way, we can expect the differences

captured by the probes to have an effect on the final ranking score at least half the

time. In practice, we see relatively few differences when using alternative approaches

for choosing δ (e.g., using the mean difference).

188

5.3.4 Significance Testing

We use a two-sided paired T-Test to determine the significance (pairs of R(q, d1) and

R(q, d2)). We use a Bonferroni correction over each table to correct for multiple tests,

and test for p < 0.001.

5.3.5 Software and Libraries

We use the following software libraries and packages to conduct our analysis:

Anserini [217], PyTerrier [120], OpenNIR [107], and HuggingFace Transformers [211].

5.4 Analysis

5.4.1 Measure and Match Probes (MMPs)

Recall that MMPs measure a characteristic about a document and match them with

documents that have a differing characteristic given a control. We explore the fol-

lowing characteristics:

• Relevance: the human-assessed graded relevance score of a document to the

given query.

• Length: the document length, in total number of non-stopword tokens.

• TF: the individual Porter-stemmed Term Frequencies of non-stopword terms

from the query. To determine when the TF of two documents are different, we

use the condition that the TF of at least one query term in d1 must be greater

than the same term in d2, and that no term in d1 can have a lower TF than the

corresponding term in d2.

• Overlap: the proportion of non-stopword terms in the document that appear

in the query. Put another way, the total TF divided by the document length.

189

Each of these characteristics can be used as both a variable (matching based on

differing values) and a control (matching based on identical values). We examine

all pairs of these characteristics, greatly expanding upon IR axioms investigated in

prior work. The results using the TREC DL 2019 dataset are available in Table 5.1.

Positive scores indicate a preference for a higher variable, and negative scores indicate

a preference for a lower variable. We now highlight key findings.

EPIC, BERT, and T5 can distinguish relevance grades when TF is held

constant. It appears that the model’s capacity is related to its effectiveness in this

setting: T5 (+0.41) performs better than BERT (+0.34), which performs better than

EPIC (+0.29). Past models are not able to do make make these relevance distinctions

nearly as effectively (at best, +0.13 for C-KNRM). EPIC, BERT, and T5 also perform

better at distinguishing relevance grades than the other models when length and

overlap are held constant, though by a lesser margin.

Models generally have similar sensitivity to document length, TF, and

overlap.With the exception of models that use BM25 for scoring (BM25 and DT5Q),

all the models we explore have similar behaviors when varying length, TF, and overlap.

This suggests that although signals like TF are not required for EPIC, BERT, and

T5 to rank effectively, they still remain an important signal when available.

5.4.2 Textual Manipulation Probes (TMPs)

As we saw in Section 5.4.1, the ranking models that use contextualized language

models are able to effectively distinguish relevance when controlled for various tradi-

tional relevance signals. We now use TMPs to investigate alternative explanations for

the performance. Recall that TMPs perform automatic manipulations to document

text. We perform a variety of probes, presented in Table 5.2, with an overall score

190

Table 5.2 Results of Text Manipulation Probes (TMPs) on TREC DL
2019.

BM25 L-GBM DT5Q KNRM C-KNRM EPIC BERT T5 Samples

Remove Stops/Punct. * 0.00 −0.20 −0.08 −0.43 −0.60 −0.94 +0.18 −0.83 9,259
rel ∈ {0, 1} * 0.00 −0.19 −0.07 −0.44 −0.61 −0.93 +0.34 −0.83 6,758
rel ∈ {2, 3} * 0.00 −0.22 −0.10 −0.41 −0.58 −0.96 −0.26 −0.81 2,501

Lemmatize * 0.00 −0.02 * +0.02 * +0.01 −0.10 −0.10 −0.04 −0.59 9,259
rel ∈ {0, 1} * 0.00 −0.02 * +0.02 * 0.00 −0.11 −0.10 * −0.01 −0.59 6,758
rel ∈ {2, 3} * +0.01 −0.02 * +0.02 * +0.05 −0.06 −0.11 −0.14 −0.58 2,501

Shuf. Words * 0.00 −0.25 −0.10 * 0.00 −0.11 −0.82 −0.38 −0.72 9,260
rel ∈ {0, 1} * 0.00 −0.21 −0.06 * 0.00 −0.07 −0.78 −0.28 −0.67 6,759
rel ∈ {2, 3} * 0.00 −0.36 −0.20 * 0.00 −0.23 −0.90 −0.66 −0.85 2,501

Shuf. Prepositions +0.01 −0.02 * +0.03 −0.01 +0.03 −0.07 −0.01 −0.61 9,239
rel ∈ {0, 1} * 0.00 −0.01 * +0.04 −0.01 * +0.04 −0.06 * +0.01 −0.61 6,743
rel ∈ {2, 3} +0.05 −0.02 * 0.00 * −0.02 * +0.02 −0.08 −0.06 −0.60 2,496

Shuf. Sent. Order * 0.00 * 0.00 −0.04 * 0.00 +0.02 −0.18 −0.13 −0.16 7,295
rel ∈ {0, 1} * 0.00 * 0.00 * −0.04 * 0.00 * +0.03 −0.16 −0.10 −0.12 5,249
rel ∈ {2, 3} * 0.00 * 0.00 * −0.03 * 0.00 * +0.01 −0.24 −0.18 * −0.18 2,058

Replace with Query +0.99 +1.00 +1.00 +1.00 +1.00 +0.42 +0.98 +0.67 9,260
rel ∈ {0, 1} +0.99 +1.00 +1.00 +1.00 +1.00 +0.55 +0.99 +0.82 6,759
rel ∈ {2, 3} +0.99 +1.00 +1.00 +1.00 +1.00 +0.08 +0.96 +0.27 2,501

Add DocT5Query Terms +0.33 +0.41 +0.21 +0.37 −0.02 * −0.19 −0.22 −0.47 9,260
rel ∈ {0, 1} +0.32 +0.37 +0.20 +0.33 −0.05 −0.20 −0.26 −0.42 6,759
rel ∈ {2, 3} +0.34 +0.53 +0.22 +0.47 +0.09 * −0.15 * −0.11 −0.63 2,501

Add non-rel sent. −0.03 +0.20 +0.01 −0.02 +0.05 +0.46 +0.24 +0.43 9,260
rel ∈ {0, 1} +0.06 +0.23 +0.09 +0.04 +0.12 +0.52 +0.29 +0.51 6,759
rel ∈ {2, 3} −0.18 +0.15 * −0.11 −0.12 −0.08 +0.34 +0.13 +0.27 2,501

Positive scores indicate a preference for the manipulated document text; negative scores
prefer the original text. Score marked with * are not statistically significant (see Sec-
tion 5.3.4). rel ∈ {0, 1} are at best “topical”, and rel ∈ {2, 3} are relevant or highly relevant.

and scores broken down by non-relevant (rel ∈ {0, 1}) and relevant (rel = {2, 3})

documents. We now highlight our key findings.

EPIC, BERT, and T5 tend to be adversely affected by traditional pre-

processing steps. When removing stop words and punctuation from documents,

we find that this negatively impacts most models, with the largest effect seen on

EPIC and T5. The BERT model actually prefers this modification for non-relevant

documents, though it reduces the score of relevant documents. This behavior is also

particularly interesting because it is not exhibited by EPIC, even though it uses the

191

same contextualized model base. We note that in cases where there is a disparity

like this (i.e., scores for relevant documents and non-relevant documents differ), the

model is applying different behavior at different relevance grades. In this case, the

behavior suggests that the presence of stop words and punctuation are, at least in

part, used as a signal that distinguishes relevant grades by BERT. To probe the

effect of stemming, we use SpaCy’s [71] lemmatizer to remove word inflections, rather

than a stemmer, because the results from a stemming function like Porter are often

not found in the lexicon of models like BERT. T5 is most affected by this change

(-0.59). However, BERT exhibits different preferences for relevant and non-relevant

documents: there is no significant effect for non-relevant documents, and for relevant

documents, stemming yields a score of -0.14.

EPIC, BERT, and T5 are strongly affected by word and sentence order.

Many ranking models make a bag-of-words assumption; that is, that the order of the

terms in the query and document do not matter. We probe the effect of word order by

randomly shuffling the words in each document as our next TMP. As seen in Table 5.2,

shuffling the words in a document can have a substantial effect on the ranking scores

for EPIC, BERT, and T5. We see here again that the impact is larger for higher

relevance levels, suggesting that word order is an important signal for distinguishing

relevance. Note that the magnitude of these scores is higher than those for MMPs,

signaling that word order can have a larger impact on model scores than traditional

signals like TF.

To control for local word order (i.e., term adjacency), which is captured by n-

gram approaches, we conduct another TMP that shuffles the order of the sentences

in a document. (Documents containing only a single sentence are omitted from this

probe.) Here, we see that an effect remains for EPIC, BERT, and T5, though it is

substantially reduced (and not significant, in some cases for T5). This suggests that

192

discourse-level signals (e.g., what topics are discussed earlier in a document) have

some effect on the models, or the models encode some positional bias (e.g., preferring

answers at the start of documents). We also find that shuffling the prepositions in a

text has a large effect on T5, but not for other models, suggesting that the T5 models

uses the relation of terms to one another in the text as an important signal. Overall,

the shuffling results indicate that ranking models like EPIC, BERT, and T5 make use

of word order, and that the importance or word order is correlated with the degree

of relevance.

All models behave navigationally. In some applications, it is desirable to rank

exact query matches highly (e.g., navigational queries), but in other applications users

would expect further elaboration on the topic they are searching for (e.g., question

answering). To probe this behavior, our next TMP uses a manipulation function that

replaces the document with the query text itself. We observe that nearly all systems

are heavily biased towards these exact query matches. The exceptions are EPIC and

T5, which favor the query text less frequently (especially for relevant documents). We

note that although EPIC is close to a score of 0, this is mostly due to the positive

effects (1,321 of 2,501) and negative effects (1,129 of 2,501) cancelling one another

out, rather than neutral effects (i.e., falling within the δ range).

EPIC, BERT, and T5 behave unexpectedly when additional content

is introduced in documents. We conduct two TMPs that involve adding text

to documents: one that appends expansion terms from the DocT5Query model to

the document, one that appends non-relevant text to the document (by sampling a

sentence from a rel = 0 document). Models that rely heavily on unigram matching

(e.g., BM25) respond positively to the addition of DocT5Query terms. Even the

DocT5Query model itself sees an additional boost, suggesting that weighting the

expansion terms higher in the document may further improve the effectiveness of this

193

Table 5.3 Results of Dataset Transfer Probes (DTPs).
Probe Dataset BM25 L-GBM DT5Q KNRM C-KNRM EPIC BERT T5 Samples

Fluency JFLEG +0.03 * 0.00 * +0.04 * −0.01 −0.04 +0.19 +0.10 +0.12 5,069
spellchecked * +0.01 * 0.00 * −0.01 * −0.01 * +0.02 +0.16 +0.07 +0.21 5,183

Formality GYAFC −0.02 −0.09 −0.07 * +0.03 +0.13 +0.10 −0.05 +0.10 6,850
entertainment +0.04 −0.04 * 0.00 * +0.05 +0.17 +0.22 * +0.05 +0.19 3,149
family −0.08 −0.13 −0.13 * 0.00 +0.09 * 0.00 −0.13 * +0.03 3,701

Summ. XSum +0.66 +0.19 +0.66 +0.42 +0.45 +0.38 +0.49 −0.03 17,959
CNN +0.37 −0.43 +0.40 −0.22 −0.05 +0.45 +0.16 −0.64 7,254
Daily Mail * −0.02 −0.79 +0.06 −0.59 −0.45 +0.52 −0.15 −0.68 19,081

Positive scores indicate a preference for fluent, formal, and summarized text. Score marked
with * are not statistically significant (see Section 5.3.4).

model. However, EPIC, BERT, and T5 often respond negatively to these additions.

We also find that adding non-relevant sentences to the end of relevant documents often

increases the ranking score of EPIC, BERT, and T5. This is in contrast with models

like BM25, in which the scores of relevant documents decrease with the addition of

non-relevant information. From the variable length MMPs, we know that this increase

in score is likely not due to increasing the length alone. Such characteristics may pose

a risk to ranking systems based on EPIC, BERT, or T5, in which content sources

could aim to increase their ranking simply by adding non-relevant content to the end

of their documents.

5.4.3 Dataset Transfer Probes (DTPs)

We now explore model behaviors using DTPs. Recall that a DTP repurposes a non-IR

dataset as a diagnostic tool by using it to construct probes. In this work, we explore

three characteristics.

194

EPIC, BERT, and T5 slightly favor more fluent text. From the TMPs,

we found that models are highly influenced by word order and inflectional endings.

One possible explanation is that these models incorporate signals of textual fluency.

To test this hypothesis directly, we propose a DTP using the JFLEG dataset [130].

This dataset contains sentences from English-language fluency tests. Each non-fluent

sentence is corrected for fluency by four fluent English speakers to make the text sound

‘natural’ (changes include grammar and word usage changes). We treat each fluent

text as a d1 paired with the non-fluent d2. We generate q by randomly selecting a noun

chunk that appears in both versions of the text. (If no such chunk exists, we discard

the sample.) The results for this DTP are shown in Table 5.3. We observe that the

models most substantially impacted by shuffling words in a text (EPIC, BERT, and

T5) are also most affected here. However, the magnitude of the effect is much lower,

considering that the corrections are often rather minor. We see similar results when

controlling for spelling (i.e., when both versions use correct spelling). We note that

in this case, a large proportion of the effects are neutral (i.e., within δ, meaning that

they may not affect the ordering of ranked lists). The fluency experiments indicate

that the shuffling results from the TMPs may be partially explained by the fact that

they reduce the fluency of the text, and that fluency can have an effect on model

scores.

EIPC and BERT slightly favor formal text. The style of a text may also

have an influence on learning-to-rank models, perhaps due to bias in training data

labeling (an annotator may be more likely to select an answer that is written more

formally) or the pre-training objective (e.g., BERT is trained on books and Wikipedia

text, both of which are more formal than much other text online). We probe this by

building a DTP from the GYAFC dataset [161]. This dataset selects sentences from

Yahoo Answers and has four annotators make edits to the text that either improve the

195

formality (for text that is informal), or reduce the formality (for text that is already

formal). We treat formal text as d1 and informal text as d2. Since the text came

from Yahoo Answers, we can link the text back to the original questions using the

Yahoo L6 dataset5. We treat the question (title) as q. In cases where we cannot find

the original text or there are no overlapping non-stopword lemmas from q in both

d1 and d2, we discard the sample. Results from this DTP are shown in Table 5.3,

split by forum. Positive scores indicate a preference for formal text. We observe that

EPIC and T5 exhibit similar behaviors (preferring formal text from the entertainment

section, and having no style preference in the family section). This is in contrast with

BERT’s behavior, which has no significant impact on entertainment, but a preference

towards informal text for family. These probes show that these ranking methods can

be affected by the formality of the document, a quality usually not exhibited by prior

models.

Model behaviors vary considerably for summarization. Recall from the

MMPs in Section 5.4.1 that most models do not have strong biases for document

lengths. This raises the question: to what extent does the verbosity of the text matter

to ranking models? To probe this, we construct DTPs from summarization datasets.

Intuitively, a text’s summary will be less verbose than its full text. We utilize two

datasets to conduct this probe: XSum [131], and CNN/DailyMail [183]. The former

uses extremely concise summaries from BBC articles, usually consisting of a single

sentence. The CNN/DailyMail dataset uses slightly longer bullet point list summaries,

usually consisting of around 3 sentences. For these probes, we use the title of the

article as q, the summarized text as d1, and the article body as d2. When there is

no overlap between the non-stopword lemmas of q in both d1 and d2, we discard the

samples. We further sub-sample the dataset at 10% because the datasets are already
5https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=11

196

rather large. To handle the long full text in BERT and EPIC, we use the passage

aggregation strategy proposed by [110]. Results from the summarization DTPs are

shown in Table 5.3. Positive scores indicate a preference for the summarized text. Here,

we observe some interesting behaviors. First, BM25 has a strong (+0.66) preference

for the summaries in XSum, a moderate preference for summaries in CNN (+0.37),

and no significant preference for Daily Mail. This suggests different standards among

the various datasets, e.g., XSum (BBC) must use many of the same terms from the

titles in the summaries, and provide long documents (reducing the score) that may

not repeat terms from the title much. The preference for summaries in XSum can

be seen across all models except T5, which very slightly favors the full text. The

behaviors for the CNN and Daily Mail DTPs vary considerably across models. For

instance, EPIC prefers summaries for both (+0.45 and +0.52, respectively), and T5

prefers full text for both (-0.64 and -0.68). These discrepancies warrant exploration

in future work.

Correcting model biases may not be easy. To determine whether models

can overcome the biases we observe in our diagnostics, we conduct a test where we

augment the training process of a model by introducing additional training pairs.

We use the EPIC model and augment the training process with Daily Mail pairs

(favoring full text) from the 90% of articles not used in our evaluation. After testing

several ratios between MS-MARCO relevance pairs and Daily Mail pairs, we found

a 3:1 ratio to be a good balance between maintaining similar ranking performance

(MRR of 0.8795 on TREC DL 2019, down from 0.8891) and reducing the bias toward

summaries (+0.35 on Daily Mail down from +0.52). The training procedure also

reduced summarization bias on XSum (+0.16) and CNN (+0.40). This experiment

demonstrates that correcting biases identified by ABNIRML may not be easy, and

deserves future work.

197

5.5 Discussion and Conclusions

We presented a new framework (ABNIRML) for analyzing ranking models based

on three probing strategies. By using probes from each strategy, we demonstrated

that a variety of insights can be gained about the behaviors of recently-proposed

ranking models, such as those based on BERT and T5. Our analysis is, to date, the

most extensive analysis of the behaviors of neural ranking models, and sheds light

on several unexpected model behaviors. For instance, adding non-relevant text can

increase a document’s ranking score, even though the models are largely not biased

towards longer documents. We also see that the same base language model used

with a different ranking architecture can yield different behaviors, such as higher

sensitivity to shuffling a document’s text. Meanwhile, different language models can

be sensitive to different characteristics, such as the importance of prepositions. These

results validate Hypothesis 3. We also observed that correcting these biases may be

non-trivial.

198

Chapter 6

Conclusions

In this dissertation, I presented evidence that neural networks can be trained to per-

form ad-hoc search effectively, and they can do so with reasonable query-time latency.

This evidence is backed up by following scholarly publications [108, 109, 110, 111, 112,

113, 114, 115, 116, 117, 118, 119]. I first demonstrated that neural techniques can pro-

duce effective ranking models (Hypothesis 1). Neural models can be trained both in

cross-task (weak supervision) and cross-domain (web passage to scientific literature)

transfer settings (Hypothesis 1.1). Then I showed that dataset characteristics can be

easily incorporated into neural ranking as both features and in the training process

(Hypothesis 1.2). I also demonstrated that using contextualized language modeling

resources, such as BERT, can be beneficial for ranking, both when used directly as

a ranker and incorporated into existing models (Hypothesis 1.3). I then validated

Hypothesis 1.4 by showing that relevance signals can be effectively transferred across

languages, benefiting search for languages with fewer resources. To address query-

time latency concerns (Hypothesis 2), I showed that much of the computation for

contextualized language models can be offloaded to index-time (Hypothesis 2.1). I

also proposed and demonstrated a ranking model’s effectiveness that was specifically

designed to reduce the query-time computational cost (Hypothesis 2.2). I wrapped

up by presenting a new approach for probing the linguistic biases exhibited by these

new models. I found that although they provide superior ranking effectiveness, they

show some unexpected side-effects (Hypothesis 3).

199

The works covered in this dissertation came during a paradigm shift in ad-hoc

search. Specifically, the advent of contextualized language models has enabled much

more effective models while also introducing new challenges. Work in this dissertation

provided foundational explorations in a variety of directions. To name a few, CEDR

(Section 3.2) was among the first works to demonstrate the effectiveness of contex-

tualized language models for document (rather than passage) ranking, and it was

the first to use a representation-based passage aggregation strategy. Passage aggrega-

tion continues to be an active area of research, with representation-based approaches

being the most effective [95]. The cross-lingual ranking experiments demonstrated

in Section 3.4 were the first to show how neural ranking models trained on only

English relevance data can greatly benefit search in other languages, and ABNIRML

(Chapter 5) was the first work to identify several linguistic biases exhibited neural

ranking models. Finally, the works in Chapter 4 were among the first to explore com-

putational efficiency concerns of using these models for ranking. They provided both

an effective framework for reducing the cost of any transformer-based model and a

concrete model architecture that was able to exploit this framework.

Finally, the contributions of this dissertation extend also to several open-source

software tools. OpenNIR1 [107] provided an end-to-end system for performing neural

re-ranking experiments. And ir_datasets2 provides a fast and robust interface to

over a dozen standard IR datasets and benchmarks. Others in the community are

adopting these tools to run experiments and access data.

1https://opennir.net/
2https://ir-datasets.com/

200

Bibliography

[1] Google year in search. https://archive.google.com/trends/2014/, 2014.

Accessed: 2020-01-02.

[2] Google’s search algorithm and ranking system. https://www.google.com/

search/howsearchworks/algorithms/, 2020. Accessed: 2020-01-02.

[3] Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. Cross-

domain modeling of sentence-level evidence for document retrieval. In EMNLP,

2019.

[4] Gianni Amati and Cornelis Joost Van Rijsbergen. Probabilistic models of infor-

mation retrieval based on measuring the divergence from randomness. TOIS,

2002.

[5] Arash Ardakani, Zhengyun Ji, Sean C Smithson, Brett H Meyer, and Warren J

Gross. Learning recurrent binary/ternary weights. In ICLR, 2019.

[6] Nima Asadi, Donald Metzler, Tamer Elsayed, and Jimmy Lin. Pseudo test

collections for learning web search ranking functions. In SIGIR, 2011.

[7] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-

niak, and Zachary Ives. DBpedia: A nucleus for a web of open data. In The

Semantic Web, 2007.

201

[8] Leif Azzopardi, Maarten de Rijke, and Krisztian Balog. Building simulated

queries for known-item topics: An analysis using six european languages. In

SIGIR, 2007.

[9] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong

Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al.

Ms marco: A human generated machine reading comprehension dataset. CoRR,

abs/1611.09268, 2016.

[10] Iz Beltagy, Arman Cohan, and Kyle Lo. Scibert: Pretrained contextualized

embeddings for scientific text. CoRR, abs/1903.10676, 2019.

[11] Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Cur-

riculum learning. In ICML, 2009.

[12] Richard Berendsen, Manos Tsagkias, Wouter Weerkamp, and Maarten de Rijke.

Pseudo test collections for training and tuning microblog rankers. In SIGIR,

2013.

[13] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: a collaboratively created graph database for structuring

human knowledge. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, 2008.

[14] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and

Oksana Yakhnenko. Translating embeddings for modeling multi-relational data.

In NIPS, 2013.

[15] Martin Braschler. 2003–overview of results. InWorkshop of the Cross-Language

Evaluation Forum for European Languages, 2003.

202

[16] Martin Braschler, Peter Schäuble, and Carol Peters. Cross-language information

retrieval (clir) track overview. In TREC, 2000.

[17] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An

overview. Learning, 11(23-581), 2010.

[18] Arthur Câmara and Claudia Hauff. Diagnosing bert with retrieval heuristics.

In ECIR, 2020.

[19] Daniel Fernando Campos, T. Nguyen, M. Rosenberg, Xia Song, Jianfeng

Gao, Saurabh Tiwary, Rangan Majumder, L. Deng, and Bhaskar Mitra. Ms

marco: A human generated machine reading comprehension dataset. CoRR,

abs/1611.09268, 2016.

[20] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to

rank: from pairwise approach to listwise approach. In ICML, 2007.

[21] Claudio Carpineto and Giovanni Romano. A survey of automatic query expan-

sion in information retrieval. Acm Computing Surveys (CSUR), 2012.

[22] Xinlei Chen and Abhinav Gupta. Weakly Supervised Learning of Convolutional

Networks. In International Conference on Computer Vision, 2015.

[23] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning.

What Does BERT Look At? An Analysis of BERT’s Attention. In Black-

BoxNLP @ ACL, 2019.

[24] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. Overview of the TREC

2009 web track. In TREC, 2009.

[25] Arman Cohan, Luca Soldaini, Nazli Goharian, Allan Fong, Ross Filice, and Raj

Ratwani. Identifying significance of discrepancies in radiology reports. In SIAM

203

International Conference on Data Mining (SDM) - Workshop on Data Mining

for Medicine and Healthcare (DMMH), 2016.

[26] Thomas F. Coleman and Zhijun Wu. Parallel Continuation-based Global Opti-

mization for Molecular Conformation and Protein Folding. Journal of Global

Optimization, 8(1):49–65, January 1996.

[27] Kevyn Collins-Thompson, Craig Macdonald, Paul Bennett, Fernando Diaz,

and Ellen M Voorhees. TREC 2014 web track overview. Technical report,

MICHIGAN UNIV ANN ARBOR, 2015.

[28] Ronan Collobert, J. Weston, L. Bottou, Michael Karlen, K. Kavukcuoglu, and

P. Kuksa. Natural language processing (almost) from scratch. Machine Learning

Research, 12, 2011.

[29] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer,

and Hervé Jégou. Word translation without parallel data. CoRR,

abs/1710.04087, 2017.

[30] Gordon V. Cormack, Charles L. A. Clarke, and Stefan Büttcher. Reciprocal

rank fusion outperforms condorcet and individual rank learning methods. In

SIGIR, 2009.

[31] Gordon V. Cormack, Mark D. Smucker, and Charles L. A. Clarke. Efficient

and effective spam filtering and re-ranking for large web datasets. Information

Retrieval, 14, 2010.

[32] Nick Craswell, W Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten

de Rijke. Neu-IR: The SIGIR 2016 workshop on neural information retrieval.

In SIGIR, 2016.

204

[33] Nick Craswell, W Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar

Mitra. SIGIR 2017 workshop on neural information retrieval (Neu-IR’17). In

SIGIR, 2017.

[34] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M

Voorhees. Overview of the TREC 2019 deep learning track. In TREC, 2019.

[35] Zhuyun Dai and Jamie Callan. Context-aware sentence/passage term impor-

tance estimation for first stage retrieval. CoRR, abs/1910.10687, 2019.

[36] Zhuyun Dai and Jamie Callan. Deeper text understanding for ir with contextual

neural language modeling. In SIGIR, 2019.

[37] Zhuyun Dai, Chenyan Xiong, James P. Callan, and Zhiyuan Liu. Convolutional

neural networks for soft-matching n-grams in ad-hoc search. In WSDM, 2018.

[38] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and

Ruslan Salakhutdinov. Transformer-XL: Attentive language models beyond a

fixed-length context. In ACL, 2019.

[39] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N. Mendes. Improving

efficiency and accuracy in multilingual entity extraction. In Proceedings of the

9th International Conference on Semantic Systems, 2013.

[40] Jeffrey Dalton, Laura Dietz, and James Allan. Entity query feature expansion

using knowledge base links. In SIGIR, 2014.

[41] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,

Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. Fast ranking with

additive ensembles of oblivious and non-oblivious regression trees. ACM Trans-

actions on Information Systems, 35(2), 2016.

205

[42] Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, and Bernhard

Schölkopf. Fidelity-weighted learning. In ICLR, 2017.

[43] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and

W Bruce Croft. Neural ranking models with weak supervision. In SIGIR,

2017.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In

NAACL, 2019.

[45] Laura Dietz and Ben Gamari. TREC CAR: A data set for complex answer

retrieval (version 1.5), 2017. URL http://trec-car.cs.unh.edu.

[46] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. TREC com-

plex answer retrieval overview. In TREC, 2017.

[47] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. TREC com-

plex answer retrieval overview. In Proceedings of TREC, 2017.

[48] Benjamin Van Durme, Pushpendre Rastogi, Adam Poliak, and M. Patrick

Martin. Efficient, compositional, order-sensitive n-gram embeddings. In EACL,

2017.

[49] Hui Fang and ChengXiang Zhai. Semantic term matching in axiomatic

approaches to information retrieval. In SIGIR ’06, 2006.

[50] Hui Fang, T. Tao, and ChengXiang Zhai. A formal study of information retrieval

heuristics. In SIGIR, 2004.

[51] Hui Fang, T. Tao, and ChengXiang Zhai. Diagnostic evaluation of information

retrieval models. ACM Trans. Inf. Syst., 29, 2011.

206

[52] Sergey Feldman. Building a better search engine for semantic

scholar, Jul 2020. URL https://medium.com/ai2-blog/

building-a-better-search-engine-for-semantic-scholar-ea23a0b661e7.

[53] Nicola Ferro, Claudio Lucchese, Maria Maistro, and Raffaele Perego. Contin-

uation Methods and Curriculum Learning for Learning to Rank. In CIKM,

2018.

[54] Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He, and

Lawrence Carin. Learning generic sentence representations using convolutional

neural networks. In EMNLP, 2016.

[55] David A Grossman and Ophir Frieder. Information retrieval: Algorithms and

heuristics, volume 15. Springer Science & Business Media, 2012.

[56] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance

matching model for ad-hoc retrieval. In CIKM, 2016.

[57] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz,

Samuel R. Bowman, and Noah A. Smith. Annotation artifacts in natural lan-

guage inference data. In NAACL, 2018.

[58] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In NIPS, 2015.

[59] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing

deep neural network with pruning, trained quantization and huffman coding.

In ICLR, 2016.

[60] Donna Harman. Overview of the fourth text retrieval conference (TREC-4).

NIST, 1996.

207

[61] Donna K Harman. Overview of the third text retrieval conference (TREC-3).

DIANE Publishing, 1995.

[62] Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce

Croft. ANTIQUE: A non-factoid question answering benchmark. CoRR,

abs/1905.08957, 2019.

[63] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn.

Scalable modified Kneser-Ney language model estimation. In ACL, August

2013.

[64] Marti A. Hearst. Tilebars: Visualization of term distribution information in full

text information access. In CHI, 1995.

[65] James M Heilman and Andrew G West. Wikipedia and medicine: quantifying

readership, editors, and the significance of natural language. Journal of medical

Internet research, 17(3), 2015.

[66] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). CoRR,

abs/1606.08415, 2016.

[67] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge

in a neural network. CoRR, abs/1503.02531, 2015.

[68] Sebastian Hofstätter and Allan Hanbury. Let’s measure run time! extending

the IR replicability infrastructure to include performance aspects. In

OSIRRC@SIGIR, 2019.

[69] Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. TUWien @ TREC

deep learning ’19 – simple contextualization for re-ranking. In TREC, 2019.

208

[70] Sebastian Hofstätter, Markus Zlabinger, and A. Hanbury. Interpretable and

time-budget-constrained contextualization for re-ranking. In ECAI, 2020.

[71] Matthew Honnibal and Ines Montani. spaCy 2: Natural language under-

standing with Bloom embeddings, convolutional neural networks and incre-

mental parsing. To appear, 2017.

[72] Baotian Hu, Z. Lu, Hang Li, and Q. Chen. Convolutional neural network archi-

tectures for matching natural language sentences. In NIPS, 2014.

[73] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P.

Heck. Learning deep structured semantic models for web search using click-

through data. In CIKM, 2013.

[74] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Quantized neural networks: Training neural networks with low precision

weights and activations. The Journal of Machine Learning Research, 18(1),

2017.

[75] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. PACRR: A

position-aware neural ir model for relevance matching. In EMNLP, 2017.

[76] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. Co-PACRR: A

context-aware neural ir model for ad-hoc retrieval. In WSDM, 2018.

[77] Samuel Huston and W Bruce Croft. Parameters learned in the comparison of

retrieval models using term dependencies. Technical Report, 2014.

[78] Shiyu Ji, Jinjin Shao, and Tao Yang. Efficient Interaction-based Neural Ranking

with Locality Sensitive Hashing. In WWW, 2019.

209

[79] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang

Wang, and Qun Liu. TinyBERT: Distilling BERT for Natural Language Under-

standing. CoRR, abs/1909.10351, 2019.

[80] Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu,

Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Cor-

rado, Macduff Hughes, and Jeffrey Dean. Google’s multilingual neural machine

translation system: Enabling zero-shot translation. TACL, 2017.

[81] K Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic

model of information retrieval: development and comparative experiments: Part

2. Information processing & management, 36(6), 2000.

[82] Amit D Kalaria and Ross W Filice. Comparison-bot: an automated preliminary-

final report comparison system. Journal of digital imaging, 2015.

[83] Guolin Ke, Q. Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and T. Liu. Lightgbm: A highly efficient gradient boosting decision

tree. In NIPS, 2017.

[84] Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage

search via contextualized late interaction over BERT. In SIGIR, 2020.

[85] Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and Eric Fosler-Lussier.

Cross-lingual transfer learning for pos tagging without cross-lingual resources.

In EMNLP, 2017.

[86] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In ICLR, 2015.

210

[87] Bevan Koopman, Liam Cripwell, and Guido Zuccon. Generating clinical queries

from patient narratives: A comparison between machines and humans. In

SIGIR, 2017.

[88] Kui-Lam Kwok, Laszlo Grunfeld, H. L. Sun, and Peter Deng. TREC 2004

robust track experiments using PIRCS. In TREC, 2004.

[89] Guillaume Lample and Alexis Conneau. Cross-lingual language model pre-

training. CoRR, abs/1901.07291, 2019.

[90] Zhen-Zhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of

language representations. CoRR, abs/1909.11942, 2019.

[91] Francesco Lettich, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,

Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. Parallel traversal of

large ensembles of decision trees. IEEE Transactions on Parallel and Distributed

Systems, page 14, 2018. ISSN 1045-9219. doi: 10.1109/TPDS.2018.2860982.

[92] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In ACL,

volume 2, 2014.

[93] Bo Li, Ping Cheng, and Le Jia. Joint learning from labeled and unlabeled data

for information retrieval. In COLING, 2018.

[94] Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun, and

Jungang Xu. NPRF: A neural pseudo relevance feedback framework for ad-hoc

information retrieval. In EMNLP, 2018.

211

[95] Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun.

PARADE: Passage representation aggregation for document reranking. arXiv,

abs/2008.09093, 2020. URL https://arxiv.org/abs/2008.09093.

[96] Nut Limsopatham, Richard McCreadie, M-Dyaa Albakour, Craig MacDonald,

Rodrygo L. T. Santos, and Iadh Ounis. University of glasgow at TREC 2012:

Experiments with terrier. In TREC, 2012.

[97] Jimmy Lin. The neural hype and comparisons against weak baselines. In SIGIR

Forum, 2018.

[98] Jimmy Lin. The neural hype, justified! a recantation. In SIGIR Forum, 2019.

[99] Jimmy Lin and Peilin Yang. The Impact of Score Ties on Repeatability in

Document Ranking. In SIGIR, 2019. arXiv: 1807.05798.

[100] Xinshi Lin and Wai Lam. CUIS team for TREC 2017 CAR track. In TREC,

2017.

[101] Robert Litschko, Goran Glavaš, Simone Paolo Ponzetto, and Ivan Vulić. Unsu-

pervised cross-lingual information retrieval using monolingual data only. In

SIGIR, 2018.

[102] Linqing Liu, Wei Yang, Jinfeng Rao, Raphael Tang, and Jimmy Lin. Incorpo-

rating contextual and syntactic structures improves semantic similarity mod-

eling. In EMNLP, 2019.

[103] Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and

Noah A. Smith. Linguistic knowledge and transferability of contextual rep-

resentations. In NAACL, 2019.

212

[104] Xitong Liu, Peilin Yang, and Hui Fang. Entity came to rescue - leveraging

entities to minimize risks in web search. In TREC, 2014.

[105] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar S. Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke S. Zettlemoyer, and Veselin Stoyanov. Roberta:

A robustly optimized bert pretraining approach. CoRR, abs/1907.11692, 2019.

[106] Daniel Loureiro, Kiamehr Rezaee, Mohammad Taher Pilehvar, and José

Camacho-Collados. Language models and word sense disambiguation: An

overview and analysis. CoRR, abs/2008.11608, 2020.

[107] Sean MacAvaney. OpenNIR: A complete neural ad-hoc ranking pipeline. In

Proceedings of the Thirteenth ACM International Conference on Web Search

and Data Mining, pages 845–848, 2020. doi: 10.1145/3336191.3371864.

[108] Sean MacAvaney, Kai Hui, and Andrew Yates. An approach for weakly-

supervised deep information retrieval. In SIGIR 2017 Workshop on Neural

Information Retrieval, 2017. URL https://arxiv.org/abs/1707.00189v2.

[109] Sean MacAvaney, Andrew Yates, Arman Cohan, Luca Soldaini, Kai Hui, Nazli

Goharian, and Ophir Frieder. Characterizing question facets for complex answer

retrieval. In Proceedings of the 41st International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 1205–1208, 2018.

doi: 10.1145/3209978.3210135. URL https://arxiv.org/abs/1805.00791.

[110] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. CEDR:

Contextualized embeddings for document ranking. In Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, pages 1101–1104, 2019. doi: 10.1145/3331184.3331317. URL

https://arxiv.org/abs/1904.07094.

213

[111] Sean MacAvaney, Andrew Yates, Arman Cohan, Luca Soldaini, Kai Hui,

Nazli Goharian, and Ophir Frieder. Overcoming low-utility facets for com-

plex answer retrieval. Information Retrieval Journal, 22:395–418, 2019. doi:

10.1007/s10791-018-9343-0. URL https://link.springer.com/article/10.

1007/s10791-018-9343-0.

[112] Sean MacAvaney, Andrew Yates, Kai Hui, and Ophir Frieder. Content-based

weak supervision for ad-hoc re-ranking. In Proceedings of the 42nd Inter-

national ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval, pages 993–996, 2019. doi: 10.1145/3331184.3331316. URL

https://arxiv.org/abs/1707.00189.

[113] Sean MacAvaney, Arman Cohan, and Nazli Goharian. SLEDGE-Z: A zero-shot

baseline for COVID-19 literature search. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing, 2020. URL https:

//arxiv.org/abs/2010.05987.

[114] Sean MacAvaney, Arman Cohan, Nazli Goharian, and Ross Filice. Ranking

significant discrepancies in clinical reports. In Proceedings of the 42nd European

Conference on Information Retrieval Research, pages 238—-245, 2020. doi:

10.1007/978-3-030-45442-5_30. URL https://link.springer.com/chapter/

10.1007/978-3-030-45442-5_30.

[115] Sean MacAvaney, Sergey Feldman, Nazli Goharian, Doug Downey, and Arman

Cohan. ABNIRML: Analyzing the behavior of neural ir models. arXiv,

abs/2011.00696, 2020. URL https://arxiv.org/abs/2011.00696.

[116] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto,

Nazli Goharian, and Ophir Frieder. Training curricula for open domain answer

214

re-ranking. In Proceedings of the 43rd International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 529–538, 2020.

doi: 10.1145/3397271.3401094. URL https://arxiv.org/abs/2004.14269.

[117] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto,

Nazli Goharian, and Ophir Frieder. Efficient document re-ranking for trans-

formers by precomputing term representations. In Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, pages 49–58, 2020. doi: 10.1145/3397271.3401093. URL

https://arxiv.org/abs/2004.14255.

[118] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto,

Nazli Goharian, and Ophir Frieder. Expansion via prediction of importance

with contextualization. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 1573–

1576, 2020. doi: 10.1145/3397271.3401262. URL https://arxiv.org/abs/

2004.14245.

[119] Sean MacAvaney, Luca Soldaini, and Nazli Goharian. Teaching a new dog

old tricks: Resurrecting multilingual retrieval using zero-shot learning. In Pro-

ceedings of the 42nd European Conference on Information Retrieval Research,

pages 246–254, 2020. doi: 10.1007/978-3-030-45442-5_31. URL https://link.

springer.com/chapter/10.1007/978-3-030-45442-5_31.

[120] Craig MacDonald and Nicola Tonellotto. Declarative experimentation in infor-

mation retrieval using pyterrier. ICTIR, 2020.

[121] Martin A Makary and Michael Daniel. Medical error—the third leading cause

of death in the us. Bmj, 353, 2016.

215

[122] Ramon Maldonado, Stuart Taylor, and Sanda M. Harabagiu. UTD HLTRI at

TREC 2017: Complex answer retrieval track. In TREC, 2017.

[123] Irina Matveeva, Christopher J. C. Burges, Timo Burkard, Andy Laucius, and

Leon Wong. High accuracy retrieval with multiple nested ranker. In SIGIR,

2006.

[124] R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons:

Diagnosing syntactic heuristics in natural language inference. In ACL, 2019.

[125] Donald Metzler and W. Bruce Croft. A markov random field model for term

dependencies. In SIGIR, 2005.

[126] Bhaskar Mitra and Nick Craswell. An updated duet model for passage re-

ranking. CoRR, 2019.

[127] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using

local and distributed representations of text for web search. In WWW, 2017.

[128] Bhaskar Mitra, Nick Craswell, et al. An introduction to neural information

retrieval. Foundations and Trends® in Information Retrieval, 2018.

[129] Federico Nanni, Bhaskar Mitra, Matt Magnusson, and Laura Dietz. Benchmark

for complex answer retrieval. In ICTIR, 2017.

[130] Courtney Napoles, Keisuke Sakaguchi, and Joel Tetreault. Jfleg: A fluency

corpus and benchmark for grammatical error correction. In EACL, 2017.

[131] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details,

just the summary! Topic-aware convolutional neural networks for extreme sum-

marization. In EMNLP, 2018.

216

[132] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan

Majumder, and Li Deng. Ms marco: A human generated machine reading com-

prehension dataset. In NIPS, 2016.

[133] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic

embeddings of knowledge graphs. In AAAI, 2016.

[134] Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation with

reinforcement learning. In EMNLP, 2017.

[135] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. CoRR,

abs/1901.04085, 2019.

[136] Rodrigo Nogueira and Jimmy Lin. From doc2query to doctttttquery, 2019.

URL https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_

2019_docTTTTTquery.pdf.

[137] Rodrigo Nogueira, Kyunghyun Cho, Urjitkumar Patel, and Vincent Chabot.

New york university submission to TREC-CAR 2017. In TREC, 2017.

[138] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document

expansion by query prediction. CoRR, abs/1904.08375, 2019.

[139] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a

pretrained sequence-to-sequence model. CoRR, abs/2003.06713, 2020.

[140] Douglas W Oard and Fredric C Gey. The TREC 2002 arabic/english clir track.

In TREC, 2002.

[141] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur

Rahman, Pinar Karagoz, Alex Braylan, Brandon Dang, Heng-Lu Chang, Henna

217

Kim, Quinten McNamara, et al. Neural information retrieval: At the end of the

early years. Information Retrieval Journal, 2018.

[142] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. A survey of the usages

of deep learning in natural language processing. CoRR, abs/1807.10854, 2018.

[143] Iadh Ounis, Giambattista Amati, Vassilis Plachouras, Ben He, Craig Mac-

donald, and Christina Lioma. Terrier: A High Performance and Scalable Infor-

mation Retrieval Platform. In Proceedings of ACM SIGIR’06 Workshop on

Open Source Information Retrieval (OSIR 2006), 2006.

[144] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. In WWW, 1999.

[145] Wei Pan, Hao Dong, and Yike Guo. Dropneuron: Simplifying the structure of

deep neural networks. CoRR, abs/1606.07326, 2016.

[146] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. A study of

matchpyramid models on ad-hoc retrieval. In NeuIR workshop, 2016.

[147] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi

Cheng. Text matching as image recognition. In AAAI, 2016.

[148] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi

Cheng. Deeprank: A new deep architecture for relevance ranking in information

retrieval. In CIKM, 2017.

[149] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In

Proceedings of the 1st International Conference on Scalable Information Sys-

tems, 2006.

218

[150] Gustavo Penha and Claudia Hauff. Curriculum learning strategies for ir: An

empirical study on conversation response ranking. In ECIR, 2020.

[151] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In EMNLP, 2014.

[152] Carol Peters, Martin Braschler, and Paul Clough. Multilingual information

retrieval: From research to practice. Springer Science & Business Media, 2012.

[153] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-

tations. In NAACL, 2018.

[154] Jay Michael Ponte and W Bruce Croft. A language modeling approach to infor-

mation retrieval. PhD thesis, University of Massachusetts at Amherst, 1998.

[155] Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sarguna Padmanabhan, and

Graham Neubig. When and why are pre-trained word embeddings useful for

neural machine translation? In NAACL, 2018.

[156] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. Understanding

the behaviors of BERT in ranking. CoRR, abs/1904.07531, 2019.

[157] Meng Qu, Jian Tang, and Jiawei Han. Curriculum learning for heterogeneous

star network embedding via deep reinforcement learning. In WSDM, 2018.

[158] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. Language models are unsupervised multitask learners,

2019. URL https://cdn.openai.com/better-language-models/language_

models_are_unsupervised_multitask_learners.pdf.

219

[159] Colin Raffel, Noam Shazeer, Adam Kaleo Roberts, Katherine Lee, Sharan

Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring

the limits of transfer learning with a unified text-to-text transformer. CoRR,

abs/1910.10683, 2019.

[160] Fiana Raiber and Oren Kurland. The technion at TREC 2013 web track:

Cluster-based document retrieval. In TREC, 2013.

[161] Sudha Rao and J. Tetreault. Dear sir or madam, may i introduce the yafc corpus:

Corpus, benchmarks and metrics for formality style transfer. In NAACL, 2018.

[162] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. In EMNLP, 2019.

[163] D. Rennings, Felipe Moraes, and C. Hauff. An axiomatic approach to diagnosing

neural ir models. In ECIR, 2019.

[164] Marco Túlio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh.

Beyond accuracy: Behavioral testing of nlp models with checklist. In ACL,

2020.

[165] Kirk Roberts, Dina Demner-Fushman, Ellen M Voorhees, William R Hersh,

Steven Bedrick, Alexander J Lazar, and Shubham Pant. Overview of the TREC

2017 precision medicine track. NIST Special Publication, 2017.

[166] Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, Kyle Lo,

Ian Soboroff, Ellen Voorhees, Lucy Lu Wang, and William R Hersh. TREC-

COVID: Rationale and Structure of an Information Retrieval Shared Task for

COVID-19. Journal of the American Medical Informatics Association, 05 2020.

220

[167] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-

Beaulieu, Mike Gatford, et al. Okapi at TREC-3. NIST Special Publication,

109, 1995.

[168] Anna Rogers, O. Kovaleva, and Anna Rumshisky. A primer in bertology: What

we know about how bert works. TACL, 2020.

[169] Max Roser, Hannah Ritchie, and Esteban Ortiz-Ospina. Internet.

https://ourworldindata.org/internet, 2019. Last accessed: 2019/09/15.

[170] Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Tiwary.

Optimizing query evaluations using reinforcement learning for web search. In

SIGIR, 2018.

[171] Alexander T Ruutiainen, Mary H Scanlon, and Jason N Itri. Identifying bench-

marks for discrepancy rates in preliminary interpretations provided by radiology

trainees at an academic institution. Journal of the American College of Radi-

ology, 8(9), 2011.

[172] Mrinmaya Sachan and Eric P. Xing. Easy questions first? a case study on

curriculum learning for question answering. In ACL, 2016.

[173] Tetsuya Sakai and Noriko Kando. On information retrieval metrics designed

for evaluation with incomplete relevance assessments. Information Retrieval,

11(5), 2008.

[174] Shadi Saleh and Pavel Pecina. Term selection for query expansion in medical

cross-lingual information retrieval. In ECIR, 2019.

[175] Mark Sanderson. Word sense disambiguation and information retrieval. In

SIGIR, 1994.

221

[176] Evan Sandhaus. The new york times annotated corpus. Linguistic Data Con-

sortium, Philadelphia, 6(12), 2008.

[177] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,

a distilled version of bert: smaller, faster, cheaper and lighter. In Workshop on

Energy Efficient Machine Learning and Cognitive Computing @ NeuIPS, 2019.

[178] Jainisha Sankhavara. Biomedical document retrieval for clinical decision sup-

port system. In ACL, 2018.

[179] Shota Sasaki, Shuo Sun, Shigehiko Schamoni, Kevin Duh, and Kentaro Inui.

Cross-lingual learning-to-rank with shared representations. In NAACL, 2018.

[180] Michael Schuhmacher, Laura Dietz, and Simone Paolo Ponzetto. Ranking enti-

ties for web queries through text and knowledge. In CIKM, 2015.

[181] Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. Cross-lingual

transfer learning for multilingual task oriented dialog. In NAACL, 2019.

[182] David W Scott. Multivariate density estimation: theory, practice, and visual-

ization. John Wiley & Sons, 2015.

[183] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point:

Summarization with pointer-generator networks. In ACL, 2017.

[184] Sanghyun Seo and Juntae Kim. Efficient weights quantization of convolutional

neural networks using kernel density estimation based non-uniform quantizer.

Appl. Sci, 2019.

[185] Sofia Serrano and Noah A. Smith. Is attention interpretable? In ACL, 2019.

222

[186] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil.

Learning Semantic Representations Using Convolutional Neural Networks for

Web Search. In WWW, 2014.

[187] Amit Singh. Entity based Q&A retrieval. In EMNLP, 2012.

[188] Sameer Singh, Amarnag Subramanya, Fernando Pereira, and Andrew

McCallum. Wikilinks: A large-scale cross-document coreference corpus labeled

via links to wikipedia. University of Massachusetts, Amherst, Tech. Rep. UM-

CS-2012, 15, 2012.

[189] Luca Soldaini, Andrew Yates, and Nazli Goharian. Denoising clinical notes for

medical literature retrieval with convolutional neural model. In CIKM, 2017.

[190] Trevor Strohman, Donald Metzler, Howard Turtle, and W Bruce Croft. Indri:

A language model-based search engine for complex queries. In Proceedings of

the International Conference on Intelligent Analysis, 2005.

[191] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient Knowledge Distillation

for BERT Model Compression. CoRR, abs/1908.09355, 2019.

[192] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy

Lin. Distilling task-specific knowledge from BERT into simple neural networks.

CoRR, abs/1903.12136, 2019.

[193] Zhiwen Tang and Grace Hui Yang. Deeptilebars: Visualizing term distribution

for neural information retrieval. In AAAI, 2019.

[194] Tao Tao and ChengXiang Zhai. An exploration of proximity measures in infor-

mation retrieval. In SIGIR, 2007.

223

[195] Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical

NLP pipeline. In ACL, 2019.

[196] Huy Nguyen Tien, Minh Nguyen Le, Yamasaki Tomohiro, and Izuha Tatsuya.

Sentence modeling via multiple word embeddings and multi-level comparison

for semantic textual similarity. Information Processing and Management, 56,

2018.

[197] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. Efficient query processing

for scalable web search. Foundations and Trends in Information Retrieval, 12

(4–5), 2018. ISSN 1554-0669.

[198] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In NIPS, 2017.

[199] Ellen Voorhees, D Harman, and RWilkinson. The sixth text retrieval conference

(TREC-6). In TREC, 1998.

[200] Ellen M Voorhees. Using WordNet to disambiguate word senses for text

retrieval. In SIGIR, 1993.

[201] Ellen M. Voorhees. The TREC robust retrieval track. SIGIR Forum, 39, 2005.

[202] Ellen M Voorhees. Overview of the TREC 2005 Robust Retrieval Track. In

TREC, 2005.

[203] Ellen M Voorhees and Donna Harman. Overview of the fifth text retrieval

conference (TREC-5). In TREC, volume 97, 1996.

[204] Ivan Vulić and Marie-Francine Moens. Monolingual and cross-lingual informa-

tion retrieval models based on (bilingual) word embeddings. In SIGIR, 2015.

224

[205] Jessica Walls, Natalie Hunter, Penelope MA Brasher, and Stephen GF Ho. The

depictors study: discrepancies in preliminary interpretation of ct scans between

on-call residents and staff. Emergency radiology, 16(4), 2009.

[206] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,

Peng Zhang, and Dell Zhang. Irgan: A minimax game for unifying generative

and discriminative information retrieval models. In SIGIR, 2017.

[207] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for

efficient ranked retrieval. In SIGIR, 2011.

[208] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang

Yang, Darrin Eide, Kathryn Funk, Rodney Kinney, Ziyang Liu, William. Mer-

rill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong

Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Christopher Wilhelm,

Boya Xie, Douglas M. Raymond, Daniel S. Weld, Oren Etzioni, and Sebas-

tian Kohlmeier. CORD-19: The COVID-19 open research dataset. ArXiv,

abs/2004.10706, 2020.

[209] Shuohang Wang, Sheng Zhang, Yelong Shen, Xiaodong Liu, Jingjing Liu, Jian-

feng Gao, and Jing Jiang. Unsupervised Deep Structured Semantic Models for

Commonsense Reasoning. In NAACL, 2019.

[210] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph

embedding by translating on hyperplanes. In AAAI, 2014.

[211] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement

Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Fun-

towicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art natural

language processing. CoRR, abs/1910.03771, 2019.

225

[212] Chenyan Xiong and Jamie Callan. Query expansion with Freebase. In ICTIR,

2015.

[213] Chenyan Xiong, James P. Callan, and Tie-Yan Liu. Word-entity duet represen-

tations for document ranking. In SIGIR, 2017.

[214] Chenyan Xiong, Zhuyun Dai, James P. Callan, Zhiyuan Liu, and Russell Power.

End-to-end neural ad-hoc ranking with kernel pooling. In SIGIR, 2017.

[215] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, J. Liu, P. Bennett, Junaid

Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative con-

trastive learning for dense text retrieval. CoRR, abs/2007.00808, 2020.

[216] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong

Wang, and Hongbin Zha. Alternating multi-bit quantization for recurrent neural

networks. In ICLR, 2018.

[217] Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the use of lucene

for information retrieval research. In SIGIR, 2017.

[218] Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. Critically examining the

"neural hype": Weak baselines and the additivity of effectiveness gains from

neural ranking models. In SIGIR, 2019.

[219] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li,

and Jimmy Lin. End-to-end open-domain question answering with BERTserini.

CoRR, abs/1901.04085, 2019.

[220] Wei Yang, Haotian Zhang, and Jimmy Lin. Simple applications of BERT for

ad hoc document retrieval. CoRR, abs/1903.10972, 2019.

226

[221] Zhilin Yang, Ruslan Salakhutdinov, andWilliamWCohen. Transfer learning for

sequence tagging with hierarchical recurrent networks. CoRR, abs/1703.06345,

2017.

[222] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhut-

dinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for lan-

guage understanding. In NeurIPS, 2019.

[223] Andrew Yates and Nazli Goharian. ADRTrace: Detecting expected and unex-

pected adverse drug reactions from user reviews on social media sites. In ECIR,

2013.

[224] Andrew Yates and Kai Hui. DE-PACRR: Exploring layers inside the pacrr

model. In NeuIR, 2017.

[225] Andrew Yates, Nazli Goharian, and Ophir Frieder. Relevance-ranked domain-

specific synonym discovery. In ECIR, 2014.

[226] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic

parsing via staged query graph generation: Question answering with knowledge

base. In ACL, 2015.

[227] Holly Young. The digital language divide. http://labs.theguardian.com/digital-

language-divide/, 2015. Last accessed: 2019/09/15.

[228] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik G. Learned-Miller,

and Jaap Kamps. From neural re-ranking to neural ranking: Learning a sparse

representation for inverted indexing. In CIKM, 2018.

[229] Yukun Zheng, Zhen Fan, Yiqun Liu, Cheng Luo, Min Zhang, and Shaoping Ma.

Sogou-qcl: A new dataset with click relevance label. In The 41st International

227

ACM SIGIR Conference on Research & Development in Information Retrieval,

2018.

228

