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Abstract 
 

Accurate topical classification of user queries 
allows for increased effectiveness and efficiency in 
general-purpose web search systems.  Such 
classification becomes critical if the system is to return 
results not just from a general web collection but from 
topic-specific back-end databases as well.   
Maintaining sufficient classification recall is very 
difficult as web queries are typically short, yielding 
few features per query.  This feature sparseness 
coupled with the high query volumes typical for a 
large-scale search service makes manual and 
supervised learning approaches alone insufficient.  We 
use an application of computational linguistics to 
develop an approach for mining the vast amount of 
unlabeled data in web query logs to improve automatic 
topical web query classification.  We show that our 
approach in combination with manual matching and 
supervised learning allows us to classify a 
substantially larger proportion of queries than any 
single technique.  We examine the performance of each 
approach on a real web query stream and show that 
our combined method accurately classifies 46% of 
queries, outperforming the recall of best single 
approach by nearly 20%, with a 7% improvement in 
overall effectiveness.  

1. Introduction 
Understanding the topical sense of user queries is a 

problem at the heart of web search.  Successfully 
mapping incoming general user queries to topical 
categories, particularly those for which the search 
engine has domain-specific knowledge, can bring 
improvements in both the efficiency and the 
effectiveness of general web search.  Many existing 
web search engines must automatically route each 
incoming query to an appropriate set of topic-specific 
back-end databases and return a merged listing of 
results.  Correct routing decisions result in reduced 

computational and financial costs for the search service 
since it is impractical to send every query to every 
backend-database in the (possibly large) set.  Accurate 
topical classification of a query also has broad 
potential for improving the effectiveness of the result 
set, as results from topic-specific databases can be 
given preference in presentation. 

With the goal of automatically classifying a 
meaningful portion of the web query stream, 
techniques based solely on labeled data such as manual 
classification and supervised learning are too limited to 
be of much practical use, and vastly more data are 
required to make a significant impact on the problem.  
Our key contribution, introduced as an extended 
abstract in [1], is the use a very large web search 
engine query log as a source of unlabeled data to aid in 
automatic classification.  Large web query logs are a 
gold mine of potential information that is hard to 
utilize with simple techniques alone.  We develop a 
rule-based automatic classifier produced using 
selectional preferences mined from the linguistic 
analysis of an unlabeled query log containing hundreds 
of millions of queries.  This technique is used in 
combination with exact matching against a large set of 
manually classified queries and a weighted automatic 
classifier trained using supervised learning to achieve 
the most effective classification possible.  Our 
combined approach outperforms each individual 
method and achieves a high level of recall.  This 
mitigates the recall problem due to feature-sparseness 
encountered in prior query classification studies, and 
allows us to effectively classify a much larger portion 
of general web queries. 

2. Prior Work 
In the case of large-scale web search, building a 

classification system that can automatically classify a 
large portion of the general query stream with a 
reasonable degree of accuracy is particularly 
challenging.  The web’s content and user-base are 



constantly changing [2], web traffic at major search 
engines often reaches hundreds of millions of queries 
per day [3], and web queries are topically ambiguous 
and very short [4].  This complicates manual 
categorization of queries (for study, or to provide 
training data), and poses great challenges for 
automated query classification [5, 6]. 

In Table 1 we provide a topical breakdown based on 
a manually classified sample from one week’s worth of 
queries from the AOL web search service, which has a 
large number of backend databases with topic-specific 
information.  Accurate classification of queries into 
these categories (as well as more specific categories 
further down the hierarchy) would improve 
effectiveness of search results, reduce the 
computational and financial costs of system operation, 
and provide new opportunities for revenue. 
 

Table 1: Query Stream Breakdown 
Autos 3.46% Personal Fin. 1.63%
Business 6.07% Places 6.13%
Computing 5.38% Porn 7.19%
Entertainment 12.60% Research 6.77%
Games 2.38% Shopping 10.21%
Health 5.99% Sports 3.30%
Holidays 1.63% Travel 3.09%
Home&Garden 3.82% URL 6.78%
News&Society 5.85% Misspellings 6.53%
Orgs.&Insts. 4.46% Other 15.69%

 
There have been a number of studies involving 

topical query classification, but a common theme to all 
of them is their reliance on some form of labeled data 
for experimentation, often in the form of result 
documents for a query, clickthrough data from 
sessions, or manual, human-assessed classification 
efforts. 

Gravano, et al. used machine learning techniques in 
an automatic classifier to categorize queries by 
geographical locality [5].  They sampled small training, 
tuning, and testing sets of a few hundred queries each 
from a 2.4 million-query Excite™ log from December 
of 1999 and mined the result documents for 
classification features.  Their analysis revealed that 
data sparseness was a problem for their classifier, 
noting in particular that most queries were very short, 
and, specific to their geographical task, queries rarely 
contain key trigger words that are likely to identify 
whether or not a query is “local” or “global” in 
geographical scope.  They concluded by positing that 
for such an automatic classification system to be 
successful, it would have to draw on auxiliary sources 
of information, such as user feedback or supplemental 

databases, to compensate for the small number of 
available features in a single query.  This study does 
make use of a query log, but only a tiny fraction of its 
data is used, and several result documents from each 
query are required for the technique to be effective.  
Techniques of this kind are clearly insufficient for the 
task of general topical classification. 

An alternative to classifying queries into manually 
defined categories is to allow classes to emerge from a 
query set itself, through clustering or other 
unsupervised learning methods.  There is a long history 
of such approaches in Information Retrieval [7], with 
attempts in the past often stymied by the smaller query 
logs available.  In clustering web queries, the problem 
is no longer lack of queries, but lack of features in any 
individual query.  This is arguably an even greater 
problem for unsupervised than supervised approaches, 
which can at least latch on to individual features 
correlated with a class.   

Some query clustering methods have attacked this 
problem by clustering “session data”, containing 
multiple queries and click-through information from a 
single user interaction. Beeferman and Burger [8] 
mined a log of 500,000 click-through records from the 
Lycos™ search engine and used a bipartite-graph 
algorithm to discover latent relationships between 
queries based on common click-through documents 
linking them together.  Unfortunately, only anecdotal 
results were reported in the study. A similar approach 
was used by Wen, et al. [9-11], who also took into 
account terms from result documents that a set of 
queries has in common.  They concluded that the use 
of query keywords together with session data is the 
most effective method of performing query clustering.  
However, their test collection was an encyclopedia, so 
the applicability of their results to general web search 
is limited.  Studies of this nature are also limited in 
their application, as large quantities of continually 
refreshed session data and result documents, not to 
mention computationally expensive analysis, would be 
required to classify each query.  For a search service 
with a daily volume in the hundreds of millions, these 
approaches are computationally infeasible. 

3. Classification Approaches 
Prior efforts in classifying general web queries have 

included both manual and automatic techniques.  We 
now describe the manual and automatic classification 
approaches used in our experiments.  We also 
introduce a new rule-based automatic classification 
technique based on an application of computational 
linguistics for identifying selectional preferences by 
mining a very large unlabeled query log.  We 
demonstrate that a combination of these approaches 



allows us to develop an automatic web query 
classification system that covers a large portion of the 
query stream with a reasonable degree of precision. 

3.1 Exact Matching 
The simplest approach to query classification is 

looking the query up in a database of manually 
classified queries.  At any given time, certain queries 
(the reader can anticipate some of these) are much 
more popular than others. By combining manual 
classification of these queries with acquiring large 
databases of proper nouns in certain categories 
(personal names, products, geographic locations, etc.), 
non-trivial coverage of the query stream can be 
achieved.  

We explored this technique by using 18 lists of 
categorized queries produced in the above fashion by a 
team of editors at AOL.  We examined the coverage of 
these categories and found that even after considerable 
time and development effort, they only represented 
~12% of the general query stream.  In addition to poor 
coverage, a key weakness in this approach is that the 
query stream is in a constant state of flux [2].  Any 
manual classifications based on popular elements in a 
constantly changing query stream will become 
ineffective over time.  Additionally, manual 
classification is very expensive. It is infeasible to label 
enough queries, and to repeat this process often 
enough, to power an exact match classification system 
that covers a sufficient amount of the query stream.  
Many queries are ambiguous, making assessor 
disagreements inevitable.  Bulk loading of large lists of 
entities contributes to the problem, through 
mismatches in category definitions and introduction of 
possible but low frequency interpretations for queries.  
This approach is insufficient if the end goal is to 
develop a high-recall classification system for general 
web queries. 

3.2 Supervised Machine Learning 
A natural next approach is to leverage the labeled 

queries from the exact match system through 
supervised learning.  The idea is to train a classifier on 
the manual classifications with the goal of uncovering 
features that enable novel queries to be classified with 
respect to the categories. A challenge for this approach 
is that web queries are short, averaging between 2 and 
3 terms per query. This leaves a learner with very few 
features per example. 

For our experiments we use the Perceptron with 
Margins algorithm [12], shown to be competitive with 
state-of-the-art algorithms such as support vector 
machines in text categorization and computationally 
efficient. Our implementation normalizes the document 

feature vectors to unit length (Euclidean norm), which 
we have found to increase classification accuracy.   

To examine the effectiveness of the supervised 
learning approach we trained a perceptron for each 
category from the exact match system, using all queries 
in a given category as positive examples and all queries 
not in that category as negative examples.   

To realistically evaluate this approach, we 
developed a test collection that is representative of the 
general query stream.  To determine the number of 
queries required to achieve a representative sample of 
our query stream, we calculated the necessary sample 
size in queries according to the sample size formula 
given in [13].  By setting our confidence level to 99% 
and error rate to 1%, we require a sample of at least 
16,638 queries. 

To build the test set we had a team of human editors 
perform a manual classification of 20,000 queries 
randomly sampled from general query stream.  These 
20,000 queries were then used for testing our 
perceptron learner trained on the database from the 
exact match system.  (We use this test collection for all 
experiments in this paper. See section 4.1 Data Sets for 
a detailed description of this test collection.) 

In Figure 1, we show the DET curves (probability 
of false positive on x-axis, probability of false negative 
on y-axis) for five categories on the test set.  While the 
perceptron classifier substantially generalized beyond 
the coverage of the exact match system, we see it can 
achieve high coverage only at the cost of large 
numbers of false positives.  For the best of the 
categories shown, Porn, covering 90% of the positive 
examples leads to classifying around half of non-Porn 
queries as Porn.  

In Figure 3 (in Section 5. Results & Analysis), we 
illustrate the problem even more graphically.  For the 
category shown (Home & Garden) pushing attempting 
to cover more than 20% of positive examples leads to a 
catastrophic drop-off in precision, as the classifier is 
required to accept queries which match no good 
features.  

The fundamental problem is that the databases of 
the exact match system, partly by design and partly due 
to ongoing changes in the query stream, do not 
systematically cover the space of queries.  Important 
predictor features are inevitably missing or 
underrepresented.  Robust coverage requires an 
approach that can leverage both the labeled data that is 
available, and the vast amounts of unlabeled data 
present in query logs. We examine such an approach in 
the next section. 



 
Figure 1: DET Curve for Perceptron Learner on 5 

Example Categories 

3.3 Selectional Preferences 
Document classification typically relies on the 

weighted combination of evidence from many words.  
Queries have fewer words and a simpler structure than 
documents.  That suggested we might profitably view 
classifying a query as more like interpreting the 
meaning of a linguistic structure than like classifying a 
document. 

Computational linguists have studied many 
approaches to assigning meanings to linguistic entities.  
The technique we explored is based on selectional 
preferences [14]: the tendency for words to prefer that 
their syntactic arguments belong to particular semantic 
classes.  For instance, the verb eat requires (except in 
metaphorical uses) that its direct object be something 
edible.  Many techniques for learning selectional 
preferences from data are computationally efficient, 
use data in a form that can naturally be derived from 
query logs and, of particular interest, can make use of 
unlabeled data. 

We describe below how selectional preferences are 
typically approached in computational linguistics, and 
how we adapted this technique to query classification. 

 
3.3.1 Selectional Preferences in Computational 
Linguistics 
A selectional preference study begins by parsing a 
corpus to produce pairs, (x, y), of words that occur in 
particular syntactic relationships.  The verb-object 
relationship is most widely studied, but others such as 
adjective-noun have been used [15].  The interest is in 
finding how x, the context, constrains the meaning of 
y, its argument. 

Resnik [16] presented an influential information 
theoretic approach to selectional preference.  He 

defines the selectional preference strength S(x) of a 
word x, as Equation 1, where u ranges over a set U of 
semantic classes. P(U) is the probability distribution of 
semantic classes taken on by words in a particular 
syntactic position, while P(U|x) is that distributions for 
cases where a contextual syntactic position is occupied 
by x.  S(x) is simply the KL divergence [17] of P(U|x) 
from P(U). 
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Equation 1: Selectional Preference Strength 
 

The ideal approach to estimating the necessary 
probabilities would be to use a set of (x,y) pairs where 
each y has been tagged with its semantic class, perhaps 
produced by parsing a semantically tagged corpus.  
The maximum likelihood estimates (MLEs) are: 

/ˆ ˆ( )        ( | )
/

u xu xu

x x
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N n N n
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where N is the total number of queries, nu is number of 
queries with a word of class u in the syntactic position 
of interest, nx is the number of queries with x providing 
context for that position, and nxu is the number of 
queries where both are true.  Resnik ([16], Appendix 
A) discusses other estimates but says they seem to give 
similar results to the MLE. 

Large semantically tagged corpora are rare, 
however.  A more common approach is to use 
unlabeled data, plus a thesaurus specifying which 
semantic classes each y can belong to.  If a given y has 
only one class u it can belong to, we can replace each 
pair (x,y) with the pair (x,u).  Some y's will not appear 
in the thesaurus, and the corresponding (x,y)'s are 
usually discarded.  Conversely, some y's will be 
ambiguous (belong to multiple semantic classes) and 
so must be handled specially.  Resnik treats each 
occurrence of such a y as contributing fractionally to 
the count of each of its word senses, so that: 

     
| | | |

u u

y xy
u xu

y W y Wy y

n n
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where Wu is the set of words which have u as one of 
their classes, and Uy is the set of classes to which word 
y belongs.  So, for instance, if a word y belongs to two 
classes, an occurrence of the word contributes a count 
of 1/2 to each of the two classes. 

 
3.3.2 Selectional Preference in Query Logs. 

Selectional preferences can be used for 
disambiguation and semantic interpretation.  If x 
strongly favors y's that belong to class u, then u is a 
good prediction for the class of an ambiguous, or 
previously unknown, y in that context.  Indeed, many 



studies have evaluated the quality of learned 
selectional preferences by measuring the accuracy with 
which they can be used for disambiguation [18]. 

To take advantage of this disambiguation effect to 
classify queries, we do the following:  

 
1. Convert queries in the log to a set of head-tail 

(x,y) pairs. 
2. Convert the (x,y) pairs to weighted (x,u) pairs, 

discarding y’s for which we have no semantic 
information 

3. Mine the (x,u) pairs to find lexemes that prefer to 
be followed or preceded by lexemes in certain 
categories (preferences) 

4. Score each preference using Resnik’s Selectional 
Preference Strength and keep the strongest ones 

 
Step 1 is straightforward for queries, vw, of length 

2. We have only two possible "syntactic" relationships: 
the first token providing context for the second, or the 
second providing context for the first.  These produce 
the forward pair (_v,w) and the backward pair (w_,v), 
with the underscore indicates matching at the front or 
the back of the query, respectively.  We keep pairs of 
the two types separate, and call selectional preferences 
mined from (v,w) pairs forward preferences, and those 
from (w,v) pairs backward preferences. 

If all two token queries were simple noun phrases (a 
modifier followed by a noun), then forward 
preferences would capture the degree to which a 
particular modifier (noun or adjective) constrained the 
semantics of the head noun. Backward preferences 
would capture the reverse.  In practice, two token 
queries can arise from a variety of other syntactic 
sources: verb-object pairs, single words spelled with 
two tokens, non-compositional compounds, proper 
names, etc.  A user may also intend the query as a pairs 
of single words in no particular syntactic relation.  
Typographical errors and other anomalies are also 
possible.  Thus our forward and backward relations 
inevitably have a murky interpretation. 

Longer queries have more structural possibilities.  
Rather than attempting to parse them, we derived from 
a query abc...uvw all pairs corresponding to binary 
segmentations, i.e.: 

(a, bc...w), (ab, c...vw), ... (abc...v, w) 
and 
(bc...w, a), (c...w, ab), ... (w, abc...v). 
For any given query, most of these pairs get 

screened out in Step 2. 
In Step 2, we replace each pair (x,y) with one or 

more pairs (x,u), where u is a thesaurus class.  Pairs 
where y is not present in the thesaurus are discarded, 
and pairs where y is ambiguous yield multiple 
fractionally weighted pairs as discussed in the previous 

section.  Our "thesaurus" is simply our database of 
manually classified queries, with each query 
interpreted as a single (often multi-token) lexical item.  
The possible semantic classes for a lexical item are 
simply the set of categories it appears under as a query.   

In Step 3, we compute S(x) for each x, as well as the 
MLE of P(u|x) for each (x,u) pair seen in the data.  We 
then screen out pairs where S(x) < 0.5, a relatively low 
threshold on selectional preference strength determined 
by initial tests on our validation set.  From each 
remaining pair we form a rule [x→u:P(u|x)], which is 
interpreted as saying that a query matching x gets a 
minimum score of P(u|x) for category u.  If (x,u) was a 
forward pair (i.e. x is “_v”), we require x to match a  
prefix of the query for the rule to apply, while if (x,u) 
is a backward pair we require x to match a suffix of the 
rule to apply.  

Finally, in Step 4 we use selectional preferences to 
classify test queries.  We attempt to match each 
forward selectional preference against the initial tokens 
of the query, and each backward preference against the 
final tokens of the query.  We give the query a score 
for each category u corresponding to the maximum 
P(u|x) value of any rule that matches it. We then 
compare the maximum P(u|x) values for a query 
against a threshold tuned to optimize classification 
effectiveness (Section 3.4), and assign the query to all 
u’s with values that exceed the threshold.  Tuning is 
necessary since the P(u|x) values are estimates of the  
probability that a subpart of the query would be viewed 
as belonging to a category (with categories considered 
as mutually exclusive), not estimates of the probability 
that the whole query would be viewed as belonging to 
that category (with categories considered as 
overlapping).  

The above approach can be compared with 
conventional rule learning approaches in machine 
learning [19].  Like rule learning approaches it uses 
labeled data to learn logical relationships (in our case 
very simple ones) between predictor features and 
classes, and like some of these approaches uses 
weighted rules with conflict resolution by taking 
maximum score.  Our linguistic criterion for filtering 
rules, S(x), is somewhat different from those used for 
feature and rule selection in a typical rule learner, 
particularly since it implies a different view of 
category structure than the classifier itself uses. Our 
use of ambiguously labeled and structured training data 
is very atypical in rule learning. Finally, most rule 
learners incorporate an inductive bias toward 
producing small sets of rules, while the short length of 
queries requires that as many rules (of sufficient 
quality) be produced as possible.  With respect to this 
last point, our approach has similarities to association 
rule learning, which emphasizes producing all rules of 



sufficient quality.  The focus in association rule 
learning is usually not on predictive accuracy, nor are 
issues of ambiguity typically dealt with. 

3.4 Tuning and Combining Classifiers 
One ideally tunes a text classifier to the need of 
particular application [20]. Our exact match classifier 
either finds a query in its database or doesn’t, so no 
tuning is possible.   Our perceptron and SP classifiers, 
on the other hand, produce a score for a query on each 
category, and these scores must be converted to 
classification decisions.1  Therefore, for each 
experimental run we set the thresholds of these two 
classifiers to optimize the particular micro-averaged Fβ 
measure (Sec. 4.2) to be measures. Tuning was done 
on a sample (Sec. 4.1) distinct from the test set.  A 
single threshold was used for all categories on each 
classifier.  This helped avoid choosing extreme 
thresholds for categories with little training data, but 
may have hurt effectiveness to the degree that scores 
on different categories were not comparable.   

Simply tuning the threshold of a classifier cannot 
make it do well on queries whose important features 
were not present in the training data.  We found that 
the positive example overlap between each classifier 
was generally low, suggesting that a combination 
might lead to greater effectiveness.  We tested a simple 
combined classifier that assigned a query to each 
category that any of the above three classifiers 
predicted.  The component classifiers were individually 
tuned to optimize micro-averaged Fβ, but no tuning of 
the combined classifier as a whole was done.  More 
sophisticated approaches are certainly possible. 

4. Evaluation 
Evaluation in the context of an evolving real-world 

system is always a challenge.  In this section we 
discuss the choices we made in structuring controlled 
experiments with our data sets.  We give an overview 
of the datasets and effectiveness measures that we used 
to evaluate each individual approach, and our 
combined approach. 

4.1 Data Sets 
We used two primary data sets for our experiments.  
The first data set is composed of several hundred 
thousand queries that were manually classified by 
human editors into the set of 20 categories listed in 
Table 1, excepting “URLs” and “Misspellings”, as they 
are not likely to be classified with any accuracy by any 
                                                        
1 The perceptron algorithm itself sets a threshold on each 

linear model, but these thresholds implicitly minimize error 
rate, not F-measure.  

automatic method.  The queries in the 18 remaining 
categories provide exact-lookup matches for manual 
classification, are used as training data for the 
perceptron, and they define class memberships for 
lexeme’s when mining a query log for selectional 
preferences. 

The second data set is a random sample of 20,000 
queries out of the entire query stream for one week.  
These queries were manually classified into the same 
set of 18 categories by a team of human editors, and 
they are used for tuning and evaluating each individual 
approach.  As with our training data set, “URLs” and 
“Misspellings” were removed from consideration for 
these experiments. A tuning set was formed from 
approximately 25% of the remaining queries.  This set 
is used to tune the perceptron and selectional 
preference classifiers to optimal thresholds.  The 
remaining 75% of queries in this data set were used 
strictly for evaluation. 

4.2 Effectiveness Measures 
Overlap between our categories is low, but a query 

can belong to more than one category.  We therefore 
treat each category as a separate binary classification 
task.  We summarize a classifier’s effectiveness on a 
category k by the number of true positives (TPk), false 
positives (FPk), false negatives (FNk), and true 
negatives (TNk), where TPk +FPk + FNk + TNk equals 
the number of test documents.  Using these counts, we 
can define the usual measures recall, Rk = TPk 
/(TPk+FNk), precision, Pk = TPk /(TPk+FPk), and the F-
measure [21]: 

Fβ ,k =
(β 2 + 1) × TPk

(β 2 + 1) × TPk + FPk + β 2FNk

 

Equation 2: F-Measure 
where β lets us specify the relative importance of recall 
and precision. Values of β lower than 1.0 indicate 
precision is more important than recall, while values of 
β greater than 1.0 indicate the reverse. 
To summarize effectiveness across all categories we 
use the micro-averaged [22] values of recall, precision, 
and F over the set of categories.  Micro-averaging and 
macro-averaging give similar results on our data.  Note 
that the micro-averaged value of Fβ is not derived from 
the micro-averaged precision and recall values. 

5. Results & Analysis 
Table 2 shows the effectiveness, as measured by 

micro-averaged F1, of the three individual classification 
approaches and our disjunctive combination scheme. 
All three tunable methods (perceptron learner, 
selectional preferences, and our disjunctive combined 
approach) were tuned to optimize micro-averaged F1 



on the validation set.  To provide additional insight we 
also show micro-averaged recall and micro-averaged 
precision, though it is important to remember that 
averaged F1 values are not simple functions of 
averaged recall and precision values. 
 

Table 2: Classification Effectiveness for Each 
Technique 

 Micro F1 Micro Precision Micro Recall 

Exact Match .0749 .3079 .099 
Perceptron .1135 .1913 .279 
SP .1093 .1524 .3856 
Combined .1215 .1651 .4602 
Over Best 7.05% -46.38% 19.35% 
Over Worst 62.22% 8.33% 364.85% 
Over Mean 22.44% -23.99% 80.80% 

 
These results show that the combined approach 

outperforms all three individual techniques, and in 
particular it achieves approximately 20% higher recall 
than any single approach.  This large increase in recall 
suggests that the combined approach may in fact be a 
tenable solution to the recall problem that has hindered 
past efforts at query classification.  In order to examine 
the performance of each approach when precision and 
recall are not equally weighted, we must analyze each 
method’s performance for different values of β. 

As discussed, we can specify a different tradeoff 
between recall and precision by varying the value of β 
in the F-measure, and retuning the automatic 
classification approaches and the combined approach 
to optimize that measure on the validation set. 

Figure 2 plots values of β against the test set micro-
averaged Fβ value of a classifier tuned to optimize 
micro-averaged Fβ on the validation set.  We can see 
that the combined approach increasingly dominates the 
perceptron approach as higher levels of recall are 
desired (higher β).  This makes sense, since the 
disjunctive combination achieves recall at least as good 
(and almost certainly better) than that of its best 
component, but precision no better (and almost 
certainly worse) than that of its best component.  The 
combination also maintains a consistent edge over the 
selectional preferences for all values of β, and keeps 
pace with the machine learning approach when 
precision is more important (lower β). 

 

Figure 2: Fβ  vs. β for Each Classification Technique 
 

 Focusing on individual categories gives more 
insight into the properties of the various approaches.  
Figure 3 plots test set recall and precision for the 
perceptron and selectional preference classifiers on the 
Home category. We see that the two approaches are 
remarkably complementary.  The perceptron classifier 
(as trained on the database of the exact match system) 
can achieve high precision at low recall levels, but as 
discussed in Section 3.2 fails catastrophically if high 
recall is demanded. The selectional preference 
classifier never achieves very high precision, but can 
maintain some precision out to high recall levels.  
Additionally, selectional preference classifiers cannot 
make classification decisions on single-term queries.  
If evaluated over multi-term queries alone, higher 
recall is observed.  From this it is clear that mining 
large amounts of unlabeled data to achieve good 
coverage is at least partially successful.  Interestingly, 
it turned out that forward and backward preferences 
had similar precision, despite the fact that linguistically 
one might expect forward preferences to be more 
accurate. (Many queries are noun phrases, and English 
noun phrases are head-final.)  It was the case that more 
forward preferences than backward preferences were 
found, and so forward preferences contribute 
somewhat more to recall. Note that, counterintuitively, 
precision for the selectional preference classifier drops 
slightly as the required recall is decreased to very low 
levels.  This corresponds to using only the strongest 
selectional preferences in the classifier.  Apparently the 
strongest predictors that words in the query belong to a 
category are not necessarily the strongest predictors 
that the query as a whole would be viewed as 
belonging to the category.  We suspect that this 
anomaly can be fixed by more carefully choosing and 
combining measures of selectional preference strength. 
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Figure 3: Precision & Recall for Perceptron & SP Classifiers 
on category “Home” at various thresholds 

 

6. Conclusions & Future Work 
We develop an approach for mining the vast amount of 
unlabeled data in web query logs and using it to 
improve automatic topical web query classification.  
We show that using our approach in combination with 
manual matching and supervised learning allows us to 
classify a substantially larger proportion of queries 
than any single technique.  Moreover, our hope is that 
by leveraging unlabeled data we can minimize the need 
for periodically labeling new training data to keep up 
with changing trends in the query stream over time.  
There are several potential areas for future work.  Of 
particular importance is the need to compare our 
selectional preferences approach with other methods of 
utilizing unlabeled data, such as EM and co-training.  
Others include expanding the initial seed-manual 
classification using queries classified by the 
framework, improving the linguistic properties of our 
SP algorithm, incorporating ideas from traditional rule-
learning, examining the effectiveness of each approach 
on popular versus rare queries, and examining the 
performance of each approach on specific topical 
categories. 
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