
Improving Automatic Query Classification via Semi-supervised Learning

Steven M. Beitzel
Eric C. Jensen, Ophir Frieder

Information Retrieval Laboratory
Computer Science Department

{steve,ej,ophir}@ir.iit.edu

David D. Lewis
Abdur Chowdhury, Aleksander Kołcz

America Online, Inc.
davelewis@daviddlewis.com
{cabdur,arkolcz}@aol.com

Abstract

Accurate topical classification of user queries
allows for increased effectiveness and efficiency in
general-purpose web search systems. Such
classification becomes critical if the system is to return
results not just from a general web collection but from
topic-specific back-end databases as well.
Maintaining sufficient classification recall is very
difficult as web queries are typically short, yielding
few features per query. This feature sparseness
coupled with the high query volumes typical for a
large-scale search service makes manual and
supervised learning approaches alone insufficient. We
use an application of computational linguistics to
develop an approach for mining the vast amount of
unlabeled data in web query logs to improve automatic
topical web query classification. We show that our
approach in combination with manual matching and
supervised learning allows us to classify a
substantially larger proportion of queries than any
single technique. We examine the performance of each
approach on a real web query stream and show that
our combined method accurately classifies 46% of
queries, outperforming the recall of best single
approach by nearly 20%, with a 7% improvement in
overall effectiveness.

1. Introduction
Understanding the topical sense of user queries is a

problem at the heart of web search. Successfully
mapping incoming general user queries to topical
categories, particularly those for which the search
engine has domain-specific knowledge, can bring
improvements in both the efficiency and the
effectiveness of general web search. Many existing
web search engines must automatically route each
incoming query to an appropriate set of topic-specific
back-end databases and return a merged listing of
results. Correct routing decisions result in reduced

computational and financial costs for the search service
since it is impractical to send every query to every
backend-database in the (possibly large) set. Accurate
topical classification of a query also has broad
potential for improving the effectiveness of the result
set, as results from topic-specific databases can be
given preference in presentation.

With the goal of automatically classifying a
meaningful portion of the web query stream,
techniques based solely on labeled data such as manual
classification and supervised learning are too limited to
be of much practical use, and vastly more data are
required to make a significant impact on the problem.
Our key contribution, introduced as an extended
abstract in [1], is the use a very large web search
engine query log as a source of unlabeled data to aid in
automatic classification. Large web query logs are a
gold mine of potential information that is hard to
utilize with simple techniques alone. We develop a
rule-based automatic classifier produced using
selectional preferences mined from the linguistic
analysis of an unlabeled query log containing hundreds
of millions of queries. This technique is used in
combination with exact matching against a large set of
manually classified queries and a weighted automatic
classifier trained using supervised learning to achieve
the most effective classification possible. Our
combined approach outperforms each individual
method and achieves a high level of recall. This
mitigates the recall problem due to feature-sparseness
encountered in prior query classification studies, and
allows us to effectively classify a much larger portion
of general web queries.

2. Prior Work
In the case of large-scale web search, building a

classification system that can automatically classify a
large portion of the general query stream with a
reasonable degree of accuracy is particularly
challenging. The web’s content and user-base are

constantly changing [2], web traffic at major search
engines often reaches hundreds of millions of queries
per day [3], and web queries are topically ambiguous
and very short [4]. This complicates manual
categorization of queries (for study, or to provide
training data), and poses great challenges for
automated query classification [5, 6].

In Table 1 we provide a topical breakdown based on
a manually classified sample from one week’s worth of
queries from the AOL web search service, which has a
large number of backend databases with topic-specific
information. Accurate classification of queries into
these categories (as well as more specific categories
further down the hierarchy) would improve
effectiveness of search results, reduce the
computational and financial costs of system operation,
and provide new opportunities for revenue.

Table 1: Query Stream Breakdown
Autos 3.46% Personal Fin. 1.63%
Business 6.07% Places 6.13%
Computing 5.38% Porn 7.19%
Entertainment 12.60% Research 6.77%
Games 2.38% Shopping 10.21%
Health 5.99% Sports 3.30%
Holidays 1.63% Travel 3.09%
Home&Garden 3.82% URL 6.78%
News&Society 5.85% Misspellings 6.53%
Orgs.&Insts. 4.46% Other 15.69%

There have been a number of studies involving

topical query classification, but a common theme to all
of them is their reliance on some form of labeled data
for experimentation, often in the form of result
documents for a query, clickthrough data from
sessions, or manual, human-assessed classification
efforts.

Gravano, et al. used machine learning techniques in
an automatic classifier to categorize queries by
geographical locality [5]. They sampled small training,
tuning, and testing sets of a few hundred queries each
from a 2.4 million-query Excite™ log from December
of 1999 and mined the result documents for
classification features. Their analysis revealed that
data sparseness was a problem for their classifier,
noting in particular that most queries were very short,
and, specific to their geographical task, queries rarely
contain key trigger words that are likely to identify
whether or not a query is “local” or “global” in
geographical scope. They concluded by positing that
for such an automatic classification system to be
successful, it would have to draw on auxiliary sources
of information, such as user feedback or supplemental

databases, to compensate for the small number of
available features in a single query. This study does
make use of a query log, but only a tiny fraction of its
data is used, and several result documents from each
query are required for the technique to be effective.
Techniques of this kind are clearly insufficient for the
task of general topical classification.

An alternative to classifying queries into manually
defined categories is to allow classes to emerge from a
query set itself, through clustering or other
unsupervised learning methods. There is a long history
of such approaches in Information Retrieval [7], with
attempts in the past often stymied by the smaller query
logs available. In clustering web queries, the problem
is no longer lack of queries, but lack of features in any
individual query. This is arguably an even greater
problem for unsupervised than supervised approaches,
which can at least latch on to individual features
correlated with a class.

Some query clustering methods have attacked this
problem by clustering “session data”, containing
multiple queries and click-through information from a
single user interaction. Beeferman and Burger [8]
mined a log of 500,000 click-through records from the
Lycos™ search engine and used a bipartite-graph
algorithm to discover latent relationships between
queries based on common click-through documents
linking them together. Unfortunately, only anecdotal
results were reported in the study. A similar approach
was used by Wen, et al. [9-11], who also took into
account terms from result documents that a set of
queries has in common. They concluded that the use
of query keywords together with session data is the
most effective method of performing query clustering.
However, their test collection was an encyclopedia, so
the applicability of their results to general web search
is limited. Studies of this nature are also limited in
their application, as large quantities of continually
refreshed session data and result documents, not to
mention computationally expensive analysis, would be
required to classify each query. For a search service
with a daily volume in the hundreds of millions, these
approaches are computationally infeasible.

3. Classification Approaches
Prior efforts in classifying general web queries have

included both manual and automatic techniques. We
now describe the manual and automatic classification
approaches used in our experiments. We also
introduce a new rule-based automatic classification
technique based on an application of computational
linguistics for identifying selectional preferences by
mining a very large unlabeled query log. We
demonstrate that a combination of these approaches

allows us to develop an automatic web query
classification system that covers a large portion of the
query stream with a reasonable degree of precision.

3.1 Exact Matching
The simplest approach to query classification is

looking the query up in a database of manually
classified queries. At any given time, certain queries
(the reader can anticipate some of these) are much
more popular than others. By combining manual
classification of these queries with acquiring large
databases of proper nouns in certain categories
(personal names, products, geographic locations, etc.),
non-trivial coverage of the query stream can be
achieved.

We explored this technique by using 18 lists of
categorized queries produced in the above fashion by a
team of editors at AOL. We examined the coverage of
these categories and found that even after considerable
time and development effort, they only represented
~12% of the general query stream. In addition to poor
coverage, a key weakness in this approach is that the
query stream is in a constant state of flux [2]. Any
manual classifications based on popular elements in a
constantly changing query stream will become
ineffective over time. Additionally, manual
classification is very expensive. It is infeasible to label
enough queries, and to repeat this process often
enough, to power an exact match classification system
that covers a sufficient amount of the query stream.
Many queries are ambiguous, making assessor
disagreements inevitable. Bulk loading of large lists of
entities contributes to the problem, through
mismatches in category definitions and introduction of
possible but low frequency interpretations for queries.
This approach is insufficient if the end goal is to
develop a high-recall classification system for general
web queries.

3.2 Supervised Machine Learning
A natural next approach is to leverage the labeled

queries from the exact match system through
supervised learning. The idea is to train a classifier on
the manual classifications with the goal of uncovering
features that enable novel queries to be classified with
respect to the categories. A challenge for this approach
is that web queries are short, averaging between 2 and
3 terms per query. This leaves a learner with very few
features per example.

For our experiments we use the Perceptron with
Margins algorithm [12], shown to be competitive with
state-of-the-art algorithms such as support vector
machines in text categorization and computationally
efficient. Our implementation normalizes the document

feature vectors to unit length (Euclidean norm), which
we have found to increase classification accuracy.

To examine the effectiveness of the supervised
learning approach we trained a perceptron for each
category from the exact match system, using all queries
in a given category as positive examples and all queries
not in that category as negative examples.

To realistically evaluate this approach, we
developed a test collection that is representative of the
general query stream. To determine the number of
queries required to achieve a representative sample of
our query stream, we calculated the necessary sample
size in queries according to the sample size formula
given in [13]. By setting our confidence level to 99%
and error rate to 1%, we require a sample of at least
16,638 queries.

To build the test set we had a team of human editors
perform a manual classification of 20,000 queries
randomly sampled from general query stream. These
20,000 queries were then used for testing our
perceptron learner trained on the database from the
exact match system. (We use this test collection for all
experiments in this paper. See section 4.1 Data Sets for
a detailed description of this test collection.)

In Figure 1, we show the DET curves (probability
of false positive on x-axis, probability of false negative
on y-axis) for five categories on the test set. While the
perceptron classifier substantially generalized beyond
the coverage of the exact match system, we see it can
achieve high coverage only at the cost of large
numbers of false positives. For the best of the
categories shown, Porn, covering 90% of the positive
examples leads to classifying around half of non-Porn
queries as Porn.

In Figure 3 (in Section 5. Results & Analysis), we
illustrate the problem even more graphically. For the
category shown (Home & Garden) pushing attempting
to cover more than 20% of positive examples leads to a
catastrophic drop-off in precision, as the classifier is
required to accept queries which match no good
features.

The fundamental problem is that the databases of
the exact match system, partly by design and partly due
to ongoing changes in the query stream, do not
systematically cover the space of queries. Important
predictor features are inevitably missing or
underrepresented. Robust coverage requires an
approach that can leverage both the labeled data that is
available, and the vast amounts of unlabeled data
present in query logs. We examine such an approach in
the next section.

Figure 1: DET Curve for Perceptron Learner on 5

Example Categories

3.3 Selectional Preferences
Document classification typically relies on the

weighted combination of evidence from many words.
Queries have fewer words and a simpler structure than
documents. That suggested we might profitably view
classifying a query as more like interpreting the
meaning of a linguistic structure than like classifying a
document.

Computational linguists have studied many
approaches to assigning meanings to linguistic entities.
The technique we explored is based on selectional
preferences [14]: the tendency for words to prefer that
their syntactic arguments belong to particular semantic
classes. For instance, the verb eat requires (except in
metaphorical uses) that its direct object be something
edible. Many techniques for learning selectional
preferences from data are computationally efficient,
use data in a form that can naturally be derived from
query logs and, of particular interest, can make use of
unlabeled data.

We describe below how selectional preferences are
typically approached in computational linguistics, and
how we adapted this technique to query classification.

3.3.1 Selectional Preferences in Computational
Linguistics
A selectional preference study begins by parsing a
corpus to produce pairs, (x, y), of words that occur in
particular syntactic relationships. The verb-object
relationship is most widely studied, but others such as
adjective-noun have been used [15]. The interest is in
finding how x, the context, constrains the meaning of
y, its argument.

Resnik [16] presented an influential information
theoretic approach to selectional preference. He

defines the selectional preference strength S(x) of a
word x, as Equation 1, where u ranges over a set U of
semantic classes. P(U) is the probability distribution of
semantic classes taken on by words in a particular
syntactic position, while P(U|x) is that distributions for
cases where a contextual syntactic position is occupied
by x. S(x) is simply the KL divergence [17] of P(U|x)
from P(U).

2
u

S (x) = D (P (U |x) | | P (U))

P (u |x) = P (u |x) l o g
P (u)

 
 
 

∑

Equation 1: Selectional Preference Strength

The ideal approach to estimating the necessary
probabilities would be to use a set of (x,y) pairs where
each y has been tagged with its semantic class, perhaps
produced by parsing a semantically tagged corpus.
The maximum likelihood estimates (MLEs) are:

/ˆ ˆ() (|)
/

u xu xu

x x

n n N nP u P u x
N n N n

= = =

where N is the total number of queries, nu is number of
queries with a word of class u in the syntactic position
of interest, nx is the number of queries with x providing
context for that position, and nxu is the number of
queries where both are true. Resnik ([16], Appendix
A) discusses other estimates but says they seem to give
similar results to the MLE.

Large semantically tagged corpora are rare,
however. A more common approach is to use
unlabeled data, plus a thesaurus specifying which
semantic classes each y can belong to. If a given y has
only one class u it can belong to, we can replace each
pair (x,y) with the pair (x,u). Some y's will not appear
in the thesaurus, and the corresponding (x,y)'s are
usually discarded. Conversely, some y's will be
ambiguous (belong to multiple semantic classes) and
so must be handled specially. Resnik treats each
occurrence of such a y as contributing fractionally to
the count of each of its word senses, so that:

| | | |

u u

y xy
u xu

y W y Wy y

n n
n n

U U∈ ∈

= =∑ ∑

where Wu is the set of words which have u as one of
their classes, and Uy is the set of classes to which word
y belongs. So, for instance, if a word y belongs to two
classes, an occurrence of the word contributes a count
of 1/2 to each of the two classes.

3.3.2 Selectional Preference in Query Logs.

Selectional preferences can be used for
disambiguation and semantic interpretation. If x
strongly favors y's that belong to class u, then u is a
good prediction for the class of an ambiguous, or
previously unknown, y in that context. Indeed, many

studies have evaluated the quality of learned
selectional preferences by measuring the accuracy with
which they can be used for disambiguation [18].

To take advantage of this disambiguation effect to
classify queries, we do the following:

1. Convert queries in the log to a set of head-tail

(x,y) pairs.
2. Convert the (x,y) pairs to weighted (x,u) pairs,

discarding y’s for which we have no semantic
information

3. Mine the (x,u) pairs to find lexemes that prefer to
be followed or preceded by lexemes in certain
categories (preferences)

4. Score each preference using Resnik’s Selectional
Preference Strength and keep the strongest ones

Step 1 is straightforward for queries, vw, of length

2. We have only two possible "syntactic" relationships:
the first token providing context for the second, or the
second providing context for the first. These produce
the forward pair (_v,w) and the backward pair (w_,v),
with the underscore indicates matching at the front or
the back of the query, respectively. We keep pairs of
the two types separate, and call selectional preferences
mined from (v,w) pairs forward preferences, and those
from (w,v) pairs backward preferences.

If all two token queries were simple noun phrases (a
modifier followed by a noun), then forward
preferences would capture the degree to which a
particular modifier (noun or adjective) constrained the
semantics of the head noun. Backward preferences
would capture the reverse. In practice, two token
queries can arise from a variety of other syntactic
sources: verb-object pairs, single words spelled with
two tokens, non-compositional compounds, proper
names, etc. A user may also intend the query as a pairs
of single words in no particular syntactic relation.
Typographical errors and other anomalies are also
possible. Thus our forward and backward relations
inevitably have a murky interpretation.

Longer queries have more structural possibilities.
Rather than attempting to parse them, we derived from
a query abc...uvw all pairs corresponding to binary
segmentations, i.e.:

(a, bc...w), (ab, c...vw), ... (abc...v, w)
and
(bc...w, a), (c...w, ab), ... (w, abc...v).
For any given query, most of these pairs get

screened out in Step 2.
In Step 2, we replace each pair (x,y) with one or

more pairs (x,u), where u is a thesaurus class. Pairs
where y is not present in the thesaurus are discarded,
and pairs where y is ambiguous yield multiple
fractionally weighted pairs as discussed in the previous

section. Our "thesaurus" is simply our database of
manually classified queries, with each query
interpreted as a single (often multi-token) lexical item.
The possible semantic classes for a lexical item are
simply the set of categories it appears under as a query.

In Step 3, we compute S(x) for each x, as well as the
MLE of P(u|x) for each (x,u) pair seen in the data. We
then screen out pairs where S(x) < 0.5, a relatively low
threshold on selectional preference strength determined
by initial tests on our validation set. From each
remaining pair we form a rule [x→u:P(u|x)], which is
interpreted as saying that a query matching x gets a
minimum score of P(u|x) for category u. If (x,u) was a
forward pair (i.e. x is “_v”), we require x to match a
prefix of the query for the rule to apply, while if (x,u)
is a backward pair we require x to match a suffix of the
rule to apply.

Finally, in Step 4 we use selectional preferences to
classify test queries. We attempt to match each
forward selectional preference against the initial tokens
of the query, and each backward preference against the
final tokens of the query. We give the query a score
for each category u corresponding to the maximum
P(u|x) value of any rule that matches it. We then
compare the maximum P(u|x) values for a query
against a threshold tuned to optimize classification
effectiveness (Section 3.4), and assign the query to all
u’s with values that exceed the threshold. Tuning is
necessary since the P(u|x) values are estimates of the
probability that a subpart of the query would be viewed
as belonging to a category (with categories considered
as mutually exclusive), not estimates of the probability
that the whole query would be viewed as belonging to
that category (with categories considered as
overlapping).

The above approach can be compared with
conventional rule learning approaches in machine
learning [19]. Like rule learning approaches it uses
labeled data to learn logical relationships (in our case
very simple ones) between predictor features and
classes, and like some of these approaches uses
weighted rules with conflict resolution by taking
maximum score. Our linguistic criterion for filtering
rules, S(x), is somewhat different from those used for
feature and rule selection in a typical rule learner,
particularly since it implies a different view of
category structure than the classifier itself uses. Our
use of ambiguously labeled and structured training data
is very atypical in rule learning. Finally, most rule
learners incorporate an inductive bias toward
producing small sets of rules, while the short length of
queries requires that as many rules (of sufficient
quality) be produced as possible. With respect to this
last point, our approach has similarities to association
rule learning, which emphasizes producing all rules of

sufficient quality. The focus in association rule
learning is usually not on predictive accuracy, nor are
issues of ambiguity typically dealt with.

3.4 Tuning and Combining Classifiers
One ideally tunes a text classifier to the need of
particular application [20]. Our exact match classifier
either finds a query in its database or doesn’t, so no
tuning is possible. Our perceptron and SP classifiers,
on the other hand, produce a score for a query on each
category, and these scores must be converted to
classification decisions.1 Therefore, for each
experimental run we set the thresholds of these two
classifiers to optimize the particular micro-averaged Fβ
measure (Sec. 4.2) to be measures. Tuning was done
on a sample (Sec. 4.1) distinct from the test set. A
single threshold was used for all categories on each
classifier. This helped avoid choosing extreme
thresholds for categories with little training data, but
may have hurt effectiveness to the degree that scores
on different categories were not comparable.

Simply tuning the threshold of a classifier cannot
make it do well on queries whose important features
were not present in the training data. We found that
the positive example overlap between each classifier
was generally low, suggesting that a combination
might lead to greater effectiveness. We tested a simple
combined classifier that assigned a query to each
category that any of the above three classifiers
predicted. The component classifiers were individually
tuned to optimize micro-averaged Fβ, but no tuning of
the combined classifier as a whole was done. More
sophisticated approaches are certainly possible.

4. Evaluation
Evaluation in the context of an evolving real-world

system is always a challenge. In this section we
discuss the choices we made in structuring controlled
experiments with our data sets. We give an overview
of the datasets and effectiveness measures that we used
to evaluate each individual approach, and our
combined approach.

4.1 Data Sets
We used two primary data sets for our experiments.
The first data set is composed of several hundred
thousand queries that were manually classified by
human editors into the set of 20 categories listed in
Table 1, excepting “URLs” and “Misspellings”, as they
are not likely to be classified with any accuracy by any

1 The perceptron algorithm itself sets a threshold on each

linear model, but these thresholds implicitly minimize error
rate, not F-measure.

automatic method. The queries in the 18 remaining
categories provide exact-lookup matches for manual
classification, are used as training data for the
perceptron, and they define class memberships for
lexeme’s when mining a query log for selectional
preferences.

The second data set is a random sample of 20,000
queries out of the entire query stream for one week.
These queries were manually classified into the same
set of 18 categories by a team of human editors, and
they are used for tuning and evaluating each individual
approach. As with our training data set, “URLs” and
“Misspellings” were removed from consideration for
these experiments. A tuning set was formed from
approximately 25% of the remaining queries. This set
is used to tune the perceptron and selectional
preference classifiers to optimal thresholds. The
remaining 75% of queries in this data set were used
strictly for evaluation.

4.2 Effectiveness Measures
Overlap between our categories is low, but a query

can belong to more than one category. We therefore
treat each category as a separate binary classification
task. We summarize a classifier’s effectiveness on a
category k by the number of true positives (TPk), false
positives (FPk), false negatives (FNk), and true
negatives (TNk), where TPk +FPk + FNk + TNk equals
the number of test documents. Using these counts, we
can define the usual measures recall, Rk = TPk
/(TPk+FNk), precision, Pk = TPk /(TPk+FPk), and the F-
measure [21]:

Fβ ,k =
(β 2 + 1) × TPk

(β 2 + 1) × TPk + FPk + β 2FNk

Equation 2: F-Measure
where β lets us specify the relative importance of recall
and precision. Values of β lower than 1.0 indicate
precision is more important than recall, while values of
β greater than 1.0 indicate the reverse.
To summarize effectiveness across all categories we
use the micro-averaged [22] values of recall, precision,
and F over the set of categories. Micro-averaging and
macro-averaging give similar results on our data. Note
that the micro-averaged value of Fβ is not derived from
the micro-averaged precision and recall values.

5. Results & Analysis
Table 2 shows the effectiveness, as measured by

micro-averaged F1, of the three individual classification
approaches and our disjunctive combination scheme.
All three tunable methods (perceptron learner,
selectional preferences, and our disjunctive combined
approach) were tuned to optimize micro-averaged F1

on the validation set. To provide additional insight we
also show micro-averaged recall and micro-averaged
precision, though it is important to remember that
averaged F1 values are not simple functions of
averaged recall and precision values.

Table 2: Classification Effectiveness for Each
Technique

 Micro F1 Micro Precision Micro Recall

Exact Match .0749 .3079 .099
Perceptron .1135 .1913 .279
SP .1093 .1524 .3856
Combined .1215 .1651 .4602
Over Best 7.05% -46.38% 19.35%
Over Worst 62.22% 8.33% 364.85%
Over Mean 22.44% -23.99% 80.80%

These results show that the combined approach

outperforms all three individual techniques, and in
particular it achieves approximately 20% higher recall
than any single approach. This large increase in recall
suggests that the combined approach may in fact be a
tenable solution to the recall problem that has hindered
past efforts at query classification. In order to examine
the performance of each approach when precision and
recall are not equally weighted, we must analyze each
method’s performance for different values of β.

As discussed, we can specify a different tradeoff
between recall and precision by varying the value of β
in the F-measure, and retuning the automatic
classification approaches and the combined approach
to optimize that measure on the validation set.

Figure 2 plots values of β against the test set micro-
averaged Fβ value of a classifier tuned to optimize
micro-averaged Fβ on the validation set. We can see
that the combined approach increasingly dominates the
perceptron approach as higher levels of recall are
desired (higher β). This makes sense, since the
disjunctive combination achieves recall at least as good
(and almost certainly better) than that of its best
component, but precision no better (and almost
certainly worse) than that of its best component. The
combination also maintains a consistent edge over the
selectional preferences for all values of β, and keeps
pace with the machine learning approach when
precision is more important (lower β).

Figure 2: Fβ vs. β for Each Classification Technique

 Focusing on individual categories gives more
insight into the properties of the various approaches.
Figure 3 plots test set recall and precision for the
perceptron and selectional preference classifiers on the
Home category. We see that the two approaches are
remarkably complementary. The perceptron classifier
(as trained on the database of the exact match system)
can achieve high precision at low recall levels, but as
discussed in Section 3.2 fails catastrophically if high
recall is demanded. The selectional preference
classifier never achieves very high precision, but can
maintain some precision out to high recall levels.
Additionally, selectional preference classifiers cannot
make classification decisions on single-term queries.
If evaluated over multi-term queries alone, higher
recall is observed. From this it is clear that mining
large amounts of unlabeled data to achieve good
coverage is at least partially successful. Interestingly,
it turned out that forward and backward preferences
had similar precision, despite the fact that linguistically
one might expect forward preferences to be more
accurate. (Many queries are noun phrases, and English
noun phrases are head-final.) It was the case that more
forward preferences than backward preferences were
found, and so forward preferences contribute
somewhat more to recall. Note that, counterintuitively,
precision for the selectional preference classifier drops
slightly as the required recall is decreased to very low
levels. This corresponds to using only the strongest
selectional preferences in the classifier. Apparently the
strongest predictors that words in the query belong to a
category are not necessarily the strongest predictors
that the query as a whole would be viewed as
belonging to the category. We suspect that this
anomaly can be fixed by more carefully choosing and
combining measures of selectional preference strength.

Fbeta vs. Beta for Each Approach

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

Beta

Fb
et

a

Learner Fb
SelectPrefs Fb
Combined Fb

Figure 3: Precision & Recall for Perceptron & SP Classifiers
on category “Home” at various thresholds

6. Conclusions & Future Work
We develop an approach for mining the vast amount of
unlabeled data in web query logs and using it to
improve automatic topical web query classification.
We show that using our approach in combination with
manual matching and supervised learning allows us to
classify a substantially larger proportion of queries
than any single technique. Moreover, our hope is that
by leveraging unlabeled data we can minimize the need
for periodically labeling new training data to keep up
with changing trends in the query stream over time.
There are several potential areas for future work. Of
particular importance is the need to compare our
selectional preferences approach with other methods of
utilizing unlabeled data, such as EM and co-training.
Others include expanding the initial seed-manual
classification using queries classified by the
framework, improving the linguistic properties of our
SP algorithm, incorporating ideas from traditional rule-
learning, examining the effectiveness of each approach
on popular versus rare queries, and examining the
performance of each approach on specific topical
categories.

References
[1] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A.

Chowdhury, A. Kolcz, O. Frieder, and D.
Grossman, "Automatic Web Query Classification
Using Labeled and Unlabeled Training Data,"
presented at SIGIR-2005, Salvador, Brazil, 2005.

[2] S. Beitzel, E. Jensen, A. Chowdhury, D. Grossman,
and O. Frieder, "Hourly Analysis of a Very Large
Topically Categorized Web Query Log," presented
at ACM-SIGIR, 2004.

[3] D. Sullivan, "Searches Per Day," vol. 2003: Search
Engine Watch, 2003.

[4] B. Jansen, A. Spink, and T. Saracevic, "Real life,
Real Users, and Real Needs: A Study and Analysis
of User Queries on the Web.," Information

Processing & Management, vol. 36, pp. 207-227,
2000.

[5] L. Gravano, V. Hatzivassiloglou, and R.
Lichtenstein, "Categorizing Web Queries
According to Geographical Locality," presented at
ACM CIKM, 2003.

[6] I.-H. Kang and G. Kim, "Query Type Classification
for Web Document Retrieval," presented at ACM
SIGIR, 2003.

[7] G. Salton, C. S. Yang, and A. Wong, "A Vector-
Space Model for Automatic Indexing,"
Communications of the ACM, vol. 18, pp. 613-620,
1975.

[8] D. Beeferman and A. Berger, "Agglomerative
Clustering of a Search Engine Query Log,"
presented at ACM-SIGMOD, 2000.

[9] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, "Query
Clustering Using User Logs," ACM Transactions
on Information Systems, vol. 20, 2002.

[10] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, "Query
Clustering Using Content Words and User
Feedback," presented at ACM SIGIR, 2001.

[11] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, "Clustering
User Queries of a Search Engine," presented at
WWW 2001, 2001.

[12] W. Krauth and M. Mezard, "Learning Algorityms
with Optimal Stability in Neural Networks,"
Journal of Physics A, vol. 20, pp. pp. 745--752,
1987.

[13] L. L. Kupper and K. B. Hafner, "How Appropriate
are Popular Sample Size Formulas?" The American
Statistician, vol. 43, pp. pp. 101-105, 1989.

[14] C. D. Manning and H. Schutze, Foundations of
Statitical Natural Language Processing: MIT
Press, 1999.

[15] D. McCarthy and J. Carroll, "Disambiguating
Nouns, Verbs, and Adjectives using Automatically
Acquired Selectional Preferences," Computational
Linguistics, vol. 29, pp. pp. 639--654, 2003.

[16] P. Resnik, "Selection and Information: A Class-
Based Approach to Lexical Relationships,"
University of Pennsylvania, 1993.

[17] T. M. Cover and J. A. Thomas, Elements of
Information Theory: Wiley, 1991.

[18] M. Light and W. Greiff, "Statistical Models for the
Induction and Use of Selectional Preferences,"
Cognitive Science, vol. 87, pp. 1-13, 2002.

[19] T. M. Mitchell, Machine Learning. New York:
McGraw-Hill, 1997.

[20] D. D. Lewis, "Evaluating and Optimizing
Autonomous Text Classification Systems,"
presented at SIGIR 1995, Seatlle, WA, 1995.

[21] C. J. v. Rijsbergen, Information Retrieval, 2nd ed.
London: Butterworths, 1979.

[22] J. M. Tague, "The Pragmatics of Information
Retrieval Experimentation," in Information
Retrieval Experiment, K. S. Jones, Ed. London:
Butterworths, 1981, pp. pp. 59-102.

Home

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

Pr
ec

is
io

n

Perceptron

Selectional Preferences

