
Query Optimization for Vector Space Problems

K. Goda*, T. Tamura**, M. Kitsuregawa*, A. Chowdhury*** and 0. Frieder***
* Institute of Industrial Science, The University of Tokyo

** Mitsubishi Electric Corporation
*** The Illinois Institute of Technology

ABSTRACT
We present performance measurement results for a parallel
SQL based information retrieval system implemented on a
PC cluster system. We used the Web-TREC dataset under
a left-deep query execution plan. We achieved satisfactory
speed up.

1. INTRODUCTION
Digital text database are commonplace and searching these

database is a daily activity. The continued expansion of
these digital repositories necessitates supporting efficient re-
trieval to maintain acceptable response times. One approach
to meeting response time constraints is the use of paral-
lelism. We describe our approach to parallel information
retrieval.

naditional information retrieval systems rely on inverted
index implementations to store and retrieve data. While
such data structures are efficient, their development and
maintenance is difficult. Furthermore, frequent updating
of the data introduces processing complexity. Relational
database systems, however, are specifically developed to sup-
port frequent updates. Until relatively recently[l] [2] [3], how-
ever, the database and information retrieval community has
resisted the use of relational technology to support informa-
tion retrieval functionality. This resistance stemmed from
the vast overhead in storage and the lengthy response times
attributed to relational implementations due to the replica-
tion of the index for every entry in the posting list.

hcently, vendors like Oracle are adding index-organized
tables where values are stored along with the key in the
B+Tree index. These additional storage structures now
support the implementation of the vector space model in
a manner similar to traditional information retrieval imple-
mentations. Unlike traditional inverted index implementa-
tions, relational implementations benefit from the standard
advantages of database management systems including the
support for frequent updates and efficient parallel implemen-
tations. We demonstrate the use of our parallel database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
hear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’OI. September 9-12, New Orleans, Louisiana, USA..
Copyright 2001 ACM I-58113-331-6/01/0009 . ..$5.00.

approach[5] to provide scalable information retrieval.

2 . VECTOR SPACE CALCULATION USING
RELATIONS

DBMS packages do not provide full text search capabili-
ties. To address this shortfall, we parsed, stemmed, filtered
and loaded the TREC-S(WTlOGB) data into the schema
shown in Figure 1 (initially presented in [3]). Additionally,
the code segment above was used as our vector space ranking
model. The SQL implements the pivoted document length
normalization calculation[l] shown to be an effective text
ranking method.

Document

Figure 1: A Relational Design for an Information
Retrieval Application

3. PERFORMANCE EVALUATION WITHDIF-
FERENT QUERY PLANS ON DBKER-
NEL

We evaluated the query on our home-grown parallel re-
lational database engine, DBKernel[5], to demonstrate the
inlluence of query optimization methods on the performance
and the scalability. The DBKernel gives users full con-
trol over various query execution strategies including data
declustering(placement) methods and query plans. It was
designed to run on commodity-based PC clusters. Cur-
rently, the third generation system, which consists of 32 PCs
and 32 disks connected through SAN(storage area network),
is operating. Each PC node runs the Solaris 8 operating sys-
tem on an 8OOMHz Pentium III Processor with 128 MBytes
of RAM and interface cards for the lOOBase-TX Ethernet

and the Fibre Channel. Figure 2 depicts the hardware com-
ponents of the system.

Figure 2: An Overview of the PC Cluster System

We examined the performance of the Vector Space Flank-
ing query using one execution plan(LDh) in the hash declus-
tering and two plans(LDr and LDBr) in the round-robin
manner. LDr and LDBr are basically the same but differ
in the way the loaded records are distributed, which are
described later. These plans all join tables one by one,
fully generating intermediate results before proceeding to
the next join step. Namely, the order of joins can be denoted
as: (((Query W Term) W Index) W Document). Such plans
are called Left Deep plans in the database community. The
rank calculation, aggregation and sort phases follow the
joins. For the aggregation, we carried out a two-phase algo-
rithm, where local sums are calculated at each node before
being sent to a master node to produce the global results.

:..-..........; ,.........‘.“.,
: HaehTatb : j HashTaMe j

Figure 3: Hash ‘Igble Probe Operation in Each
Query Plan

Each join operation is based on the hash join algorithm,
where each record in one of the two tables is loaded to form
a hash table, which is then probed by the records in the
other table to produce the results. Usually, the hash tables
are fragmented and declustered among nodes just as the ta-
bles (relations). In this process, LDh, where there is little
data exchange, is theoretically the most efficient, but it is
difficult to avoid the data placement skew. Skew can sign&
cantly degrade the performance. On the other hand, for the
Index table, most of its records must be exchanged among
the nodes to probe the appropriate hash table fragments
in LDr and LDBr. To eliminate the communication over-
head involved in this exchange, an entire hash table built
from the results of the Query-Term join can be replicated
rather than declustered at the cost of an increased memory
requirement. In this case, all probe operations for Index
records can be done locally at each node. The differences of
these strategies are depicted in Figure 3, where the normal
LD plan(LDr) represents the former approach, and the LD
with broadcast(LDBr) plan the latter.

Figure 4 shows the elapsed times and speedup ratio of each
of the query plans with the number of nodes varying from 4

to 32. With more nodes, the sizes of the table fragments at
each node are decreased, resulting in smaller elapsed times.
How-ever, LDr suffers from the higher communication over-
head of the global data exchange, diminishing the effect of
reduced disk I/O times. In contrast, LDBr exhibits a much
better speedup due to its optimization in the hash table
placement, and its performance is almost equal to LDh.

200 32
LDr mal LD plan (rcunbmbin)

LDBr: LD wRh broadcast plan (mund-mMn

LDh: ~““al LD plan (hash dia.) 2 4

. = * .

0
0 6 16 24 32O

NUOlbWOfNodes

Figure 4: Evaluation Results with Different Query
Plans

Even the LDBr and LDh plans are inferior to the ideal
speedup. This is due to the overhead of gathering the fi-
nal results at the master node and transferring them to
the client. However, in the actual interactive environment,
where response times are significant, we can return only a
fraction of the whole query results dimishing the observed
transfer time.

4. CONCLUSIONS
We examined SQL based parallel information retrieval

over a 32-node PC cluster system. We achieved satisfac-
tory performance in the round-robin declustering manner
which was almost equal to the one in the hash distribution.
For systems larger than 32 nodes, skew is inevitable, so the
LDBr approach potentially is better than the LDr solu-
tion. These initial findings motivate us to experiment with
more complex queries under both larger datasets and larger
machine configurations comprising of greater than 64 nodes.

5.
PI

PI

(31

141

(51

REFERENCES
0. Frieder, A. Chowdhury, D. Grossman, and M. C.
McCabe. On the integration of structured data and
text: A review of the SIRE architecture. In DELOS
Workshop on Information Seeking, Searching, and
Querying in Digital Libraries, December 2000.
T. Grabs, K. Boehm, and H.-J. Schek. A parallel
document engine built on top of a cluster of databases -
design, implementation, and experiences. In IEEE Data
Engineering Conference, April 2001.
D. A. Grossman, 0. Frieder, D. 0. Holmes, and D. C.
Roberts. Integrating Structured Data and Text: A
Relational Approach. Journal of the American Society
of Information Science, 48(2), February 1997.
A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. In Pmt. of ACM
SIGIR, 19th, August 1996.
T. Tamura, M. Oguchi, and M. Kitsuregawa. Parallel
database processing on a 100 node PC cluster: Cases
for decision support query processing and data mining.
In SC97: High Performance Networking and
Comput ing , 1997.

