Publication: IE

Editor: Jeanette Perez

Overline: Analytic Solutions

Byline: David Grossman, Ophir Frieder, Edited by Erik Thomsen

Word count: 1639

Spellcheck:

Filename: G:\ie\ieedit\IEopenIssues\2001-10-24\Columns\Analytic Sol\AnalSol10-24A.doc
Issue: Oct. 24, 2001

Form:

Hed: Integrating Structured Data and Text: Part 2

Dek: Building relationally integrated systems to fully leverage your warehouse investments.

PQs: (Will add in proof as needed.)

Resources:

A. Chowdhury, O. Frieder, D. Grossman, M. McCabe, “Collection Statistics for Fast Duplicate Document Detection,” to appear in ACM Transactions on Information Systems (TOIS).
O. Frieder, A. Chowdhury, D. Grossman, M. C. McCabe, "On the Integration of Structured Data and Text: A Review of the SIRE Architecture," DELOS Workshop on Information Seeking, Searching, and Querying in Digital Libraries, Zurich, Switzerland, December 2000. Invited Paper.

D. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuristics. Kluwer Academic Press, 1998.

D. Grossman, D. Holmes, O. Frieder, D. Roberts. Integrating Structured Data and Text: A Relational Approach. Journal of the American Society of Information Science, February 1997.

Figures:

Figure Captions:

Tables:

Table Captions:

Sidebars:

IE Imperative:

Bio:

Text:

We expect that as portals grow, there will be a greater demand to integrate both structured data and text. The knee-jerk reaction is to buy two systems -- one for each – but our solution is to use a single relational system to attack the problem. The advantage is that you not only get text retrieval, but you can integrate easily with existing data in the warehouse. Yes, you pay a small price in overhead because you are using a general-purpose tool, but the benefits in integration and query functionality often outweigh the cost of computational resources.

Last month, we presented an approach to integrating structured data and text by modeling the text as a relational application. Our presentation was limited to only simple functionality such as a single keyword search. We now extend our discussion to include multiple keyword searches, threshold searches (TAND), and relevance ranking. Recall, our two sample documents and our ability to model the multi-valued relationship between terms and documents with a TERM, DOCUMENT, and INDEX relation. Essentially, a row is stored for each document in the DOCUMENT table, a row is stored for each term in the TERM table, and the INDEX table contains a row when a given term appears in a given document.

D1: The GDP increased two percent this quarter.

D2: The economic slowdown continued this quarter.

Multi-Term Queries

A query such as “Find all documents with the terms slowdown or recession” is an example of a multi-term query. A query that integrates both structured data and text would ask to “identify those documents with either slowdown or recession and occur in a year with a significant change in salaries. This requires a multiple term search of the unstructured document data as well as a structured search of the human resource (HR) data. To show how the text part of this is done (the structured portion is just a straightforward join on year to the HR tables) you would place all query terms in a QUERY table with a single column, term. You can accomplish an OR query, namely the selection of all documents that contain ANY of the terms, as follows.

SELECT docid

 FROM index

 WHERE term IN (SELECT term FROM QUERY)

Although you could construct an AND query like the following by defining a self-join on the index relation, you would need to compute a self-join for each of the query terms (actually N-1 of them where N is the number of terms). Such a computation is expensive and eventually exceeds the limits of existing commercial systems.

A two-term query using this approach looks like:

SELECT a.docid

 FROM Index a, Index b

 WHERE a.docid = b.docid AND

 a.term = ‘economic’ AND

 b.term = ‘slowdown’

Thus, we use the following alternative:

SELECT a.docid

 FROM index a, query b

 WHERE a.term = b.term

 GROUP BY a.docid

 HAVING COUNT(*) = (SELECT COUNT(*) FROM QUERY)

For many queries, when a clustered index on the INDEX relation is maintained, the performance is quite reasonable. The trick is counting the number of matches between a document and the query, ensuring that the number of matches equals the number of terms in the query. The key difference in this query and others is that you populate a new QUERY table with a row for each word in the query. The QUERY table for economic slowdown will appear as:

QUERY

	term

	economic

	slowdown

Note that this approach assumes that only one entry for an instance of a term in a document is stored in the INDEX relation. Terms in the INDEX relations include a term frequency attribute, so if a term appears multiple times, only a single row exists in the INDEX relation. For a query with 100 words, the same SQL is used. Instead of two rows in the QUERY table, there would now be 100 rows. This certainly is better than the 99 self-joins that would otherwise be required.

TAND

At times users want a threshold AND in a search system. This can improve selectivity. Consider a case where the user identifies numerous terms associated with recession such as slowdown, unemployment, bankruptcy, etc. A TAND query lets the user enter the entire list and then specify that only a percentage of this list must exist in a document for that document to be retrieved. A requirement that ANY term must appear is too broad and a requirement that all terms must appear is too stringent. A TAND query offers a middle ground. This functionality is provided as follows.

SELECT a.docid

 FROM index a, query b

 WHERE a.term = b.term

 GROUP BY a.docid

 HAVING COUNT(*) >= <tand_value>

As we said earlier, any of these queries may be joined with structured data. If we want to find documents only written by employees, we can easily join the selected document list with the employee table. Assume that we have an Employee table with columns last_name and first_name. We also add last name and first name to the DOCUMENT table to identify the first author of the document (yes, we are simplifying and we know that document-author is really a multi-valued relationship).

SELECT a.docid

 FROM index a, query b, employee c, document d

WHERE a.term = b.term AND

 a.docid = d.docid AND

 d.last_name = c.last_name AND

 d.first_name = c.first_name

GROUP BY a.docid

HAVING COUNT(*) >= <tand value>

Relevance Ranking

Multi-term queries work, and existing search engines use them, but they lack the incorporation of term weights. Some terms are simply more important than others. To ensure that unimportant terms do not dominate retrieval, most Web search engines use queries with term weights.

Search engines rank documents based on a relevance measure that computes the relevance of a given document to a given query. A common document ranking strategy, known as the vector space model, represents each document and query as a vector and ranks the documents according to the distance between the vectors. A means of computing this distance is to take the inner product of the two vectors. Various weights may be used for each term; assume each term has a weight that is stored in the TERM table. This weight indicates the strength/frequency of the term across the entire collection. Also assume that another weight attribute exists in the INDEX relation. This weight identifies the strength/frequency of a term in a given document. The following query implements the inner product measure:

SELECT a.docid, SUM(a.weight * b.weight)

 FROM index a, query b

 WHERE a.term = b.term

 GROUP BY a.docid

 ORDER BY 2 DESC

This is a very simplistic similarity measure. For a survey of other ranking strategies and SQL to support them check out our book: Information Retrieval: Algorithms and Heuristic (Kluwer Academic Publishers, 1998) or our web site at http://www.ir.iit.edu/.

Tuning

As with any other kind of application, getting it to run correctly is not the same as getting it to run well. So expect to spend some time tuning your text applications once you have them running.

Database management systems that permit a clustered index on term in the INDEX relation provide better performance. A clustered index almost precisely simulates an inverted index, as only one entry exists for a term followed by a pointer to a list of documents that contain the term. General optimization approaches are likewise supported by the relational approach. For example, this approach filters long documents -- otherwise, it is highly likely that a long document will be ranked as relevant for any query. It also removes duplicate documents; many algorithms exist for removing exact or near duplicates (see the paper by Chowdhury, et al. in Resources). Finally, for a given term, the list of documents that contain the term can be truncated in instances of very common terms. Consider the term “near”; it will occur in millions of documents and is unlikely to be very useful. By removing occurrences below a frequency threshold, you will also remove numerous rows from the INDEX relation. We have shown that this will not have a significant effect on retrieval accuracy, but does have a dramatic effect on performance.

