
4/23/2013

1

CHAPTER 9
DEFINING CLASSES & CREATING OBJECTS

Introduction to Computer Science Using Ruby

(c) 2012 Ophir Frieder et al

Creating Classes

� Ruby has built-in classes, but you can
create your own

� Imagine organizing a database for
bank accounts

� Create a class describing the properties
and behaviors of “all” bank accounts

(c) 2012 Ophir Frieder et al

Defining Classes

� The next example shows you how to
define your own class

� This is the way you create a new class

(c) 2012 Ophir Frieder et al

Example 9.1: Class Definition Syntax

1 class Classname
2 def initialize (var1, var2, ..., varn)
3 @variable_1 = var1
4 @variable_2 = var2
5 ...
6 @variable_n = varn
7 end
8
9 def method_1

10 # code
11 end
12
13 def method_2
14 # code
15 end
16 end (c) 2012 Ophir Frieder et al

4/23/2013

2

Class Definition: Example 9.2

� We will explain class generation and object
instantiation(s) using an example of a bank
account management system

� First, create a Class called Account

� Note the Capital letter!!

Example 9.2: Account Version #1
1 class Account
2 def initialize (balance)
3 @balance = balance
4 end
5 end

(c) 2012 Ophir Frieder et al

Class Definition

� The variables inside the parenthesis after initialize
are the parameters that are assigned when
instantiating an object

1 class Account
2 def initialize (balance)
3 @balance = balance
4 end
5 end

constructor

(c) 2012 Ophir Frieder et al

Properties of an Instantiation

� An object will have a variable called “balance”
with an initial value which you have to assign using
a parameter

1 class Account
2 def initialize (balance)
3 @balance = balance
4 end
5 end

(c) 2012 Ophir Frieder et al

Class Instantiation

� The special character, @, is used to indicate that it
is a parameter available to all methods of the class
that are used by the object

� Variables starting with @ are called Instance
Variables

� They are available to ALL methods within the class

1 class Account
2 def initialize (balance)
3 @balance = balance
4 end
5 end

(c) 2012 Ophir Frieder et al

4/23/2013

3

Class Instantiation

� You can instantiate an object of the
Account class the same way you create
new strings and arrays:

bob = Account.new(10.00)

(Note: You did NOT have to define a Method
called “new”. That is done for you by Ruby.)

(c) 2012 Ophir Frieder et al

Class Instantiation

� The parameter passed in the
parenthesis will become the initial
balance of Bob’s account

bob = Account.new(10.00)

(c) 2012 Ophir Frieder et al

Data and Methods

� Now that we know how
to define the Account
class, we should consider
its functionality:

� What variables do we
need?

� What methods would be
useful?

� No class needs
particular variables and
methods

� The constructor is the
exception to this rule

� Classes are used to
group functionality and
data associated with it in
one compartmentalized
structure

� Methods and variables
are dictated by this goal

(c) 2012 Ophir Frieder et al

Data and Methods

� The Account class could use more
variables to store information such as:

� Name

� Phone number

� Social security number

� Minimum required balance

(c) 2012 Ophir Frieder et al

4/23/2013

4

Example 9.3: Account Version #2

1 class Account
2 def initialize (balance,name,phone_number)
3 @balance = balance
4 @name= name
5 @phone_number = phone_number
6 end
7 end

We insert two new
variables to the class constructor

(c) 2012 Ophir Frieder et al

Example 9.3: Account Version #2

1 class Account
2 def initialize (balance, name, phone_number)
3 @balance = balance
4 @name= name
5 @phone_number = phone_number
6 end
7 end

nameand
phone_number will

help make each
instantiation unique

(c) 2012 Ophir Frieder et al

Data and Methods

� New instantiation of an object from the Account class:

bob = Account.new(10.00, "Bob", 7166349483)

� Regretfully, there is absolutely nothing we can do with
this class, except for instantiating new objects

� It would be useful to have some real functionality (i.e.,
being able to withdraw and deposit)

(c) 2012 Ophir Frieder et al

Example 9.4: Account Version #3

1 class Account
2 def initialize (balance, name, phone_number)
3 @balance = balance
4 @name= name
5 @phone_number = phone_number
6 end
7
8 def deposit (amount)
9 # code

10 end
11
12 def withdraw (amount)
13 # code
14 end
15 end (c) 2012 Ophir Frieder et al

4/23/2013

5

Data and Methods: Implementing Methods

� Once the details of the Account class
are finalized, a programmer can use it
without knowing the code

� They only need to know:

� Data needed to initialize the class

� Data needed for each method in the class

(c) 2012 Ophir Frieder et al

Example 9.5: Account Version #4

1 class Account
2 def initialize (balance, name, phone_number)
3 @balance = balance
4 @name= name
5 @phone_number = phone_number
6 end
7
8 def deposit (amount)
9 @balance += amount

10 end
11
12 def withdraw (amount)
13 @balance -= amount
14 end
15 end (c) 2012 Ophir Frieder et al

Now, initialize the classes to use these methods:

irb(main):003:0> require ’account_4.rb’

=> true

irb(main):004:0> mary_account =
Account.new(500, "Mary", 8181000000)

=> #<Account:0x3dfa68 @balance=500,
@name="Mary", @phone_number=8181000000>

irb(main):005:0> mary_account.deposit(200)

=> 700

irb(main):006:0> mary_account

=> #<Account:0x3dfa68 @balance=700,
@name="Mary", @phone_number=8181000000>

(c) 2012 Ophir Frieder et al

Data and Methods: Implementing Methods

Now, let’s create a method to make the output simple:

Example 9.6: Display method
1 def display ()
2 puts "Name: " + @name
3 puts "Phone Number: " + @phone_number.to_s
4 puts "Balance: " + @balance .to_s
5 end

(c) 2012 Ophir Frieder et al

4/23/2013

6

Data and Methods: Implementing Methods

� Let’s use the new display method to output the
account data in the objects:

bob_account = Account.new(500, "Bob",
8181000000)

mary_account = Account.new(500, "Mary",
8881234567)

bob_account.withdraw(200)

mary_account.deposit(200)

bob_account.display()

mary_account.display()

(c) 2012 Ophir Frieder et al

Data and Methods: Implementing Methods

� We will move money from Bob to Mary’s account:

� Two methods are called: withdraw & deposit

bob_account = Account.new(500, "Bob",
8181000000)

mary_account = Account.new(500, "Mary",
8881234567)

bob_account.withdraw(200)

mary_account.deposit(200)

bob_account.display()

mary_account.display()

(c) 2012 Ophir Frieder et al

Data and Methods: Implementing Methods

� We could make a method that does
both at the same time, but this would
mean the method calls two different
instances (objects) of the same class

� A method can call multiple different
instances of the same class by passing
objects as parameters into the method

� In our case, we need two instances of the
same class, so we will transfer one as a
parameter

(c) 2012 Ophir Frieder et al

Example 9.7: Transfer Method

How to pass in the object:

1 def transfer (amount, target_account)
2 @balance -= amount
3 target_account. deposit (amount)
4 end

None of our defined methods returned
a value to the invoking statement. To
obtain this value, a method must be
defined that returns a value.

(c) 2012 Ophir Frieder et al

4/23/2013

7

Example 9.8: Status Method

The implementation for our method:

1 def status
2 return @balance
3 end

The return construct returns the value of
@balance to the invoking statement.

Because there is no local overriding
parameter called @balance , the
global value for @balance is

accessed.

(c) 2012 Ophir Frieder et al

Summary

� Classes can be created by a definition
process via the constructor

� Classes are meant to group data and
methods together

� The process of instantiating objects creates
compartmentalized objects with their data

� Once an object has been created, it
abstracts the details away from the
program that uses it

� You can use an object without seeing the
details of that object directly

(c) 2012 Ophir Frieder et al

