

Popular Sorting Algorithms

Computers spend a tremendous amount of time sorting
The sorting problem: given a list of elements in any order, reorder them from lowest to highest
\square Elements have an established ordinal value

- Characters have a collating sequence

Popular Sorting Algorithms

Given Input:	Sorting Algorithm will Output:
$5,3,7,5,2,9$	$2,3,5,5,7,9$

\square Three comparison-based sorting algorithms are selection sort, insertion sort, and bubble sort
\square One very different approach: radix sort
\square These algorithms are simple, but none are efficient - It is, however, possible to compare their efficiency

Selection Sort

One way to sort is to select the smallest value in the group and bring it to the top of the list \square Continue this process until the entire list is selected

Step 1 Start with the entire list marked as unprocessed.
Step 2 Find the smallest element in the yet unprocessed list. Swap it with the element that is in the first position of the unprocessed list.
Step 3 Repeat Step 2 for an additional $n-2$ times for the remaining $n-1$ numbers in the list. After $n-1$ iterations, the $n^{\text {th }}$ element, by definition, is the largest and is in the correct location.

Example 7.1: Code for Selection Sort

```
1 # Selection Sort example
2 # 35 students in our class
3 NUM_STUDENTS = 35
# Max grade of 100%
5 MAX_GRADE = 100
6 num_compare = 0
7 arr = Array.new (NUM_STUDENTS)
8
9 # Randomly populate arr
10 for i in O..(NUM_STUDENTS - 1)
11 # Maximum possible grade is 100%, keep in
    mind that rand(5)returns possible values 0-4
    mind that rand(5)returns poss
    12 arr[i] = rand(MAX_GRADE + 1)
end
```

14

Example 7.1 Cont'd

```
15 # Output current values of arr
1 6 \text { puts "Input list:"}
17 for i in 0..(NUM_STUDENTS - 1)
puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
end
20
# Now let's use a selection sort
22 # We first find the lowest number in the array and
hen we move it to the beginning of the list
23 for i in 0..(NUM_STUDENTS - 2)
    min_pos = i
    for j in (i + 1)..(NUM_STUDENTS - 1)
        num_compare = num_compare + 1
        if (arr[j] < arr[min_pos])
            min_pos = j
        end
        end

\section*{Example 7.1: Cont'd}

31 \# Now that we know the min, swap it with the
current first element (at position i)
temp \(=\operatorname{arr}[i]\)
\(\operatorname{arr}[i]=\operatorname{arr}\left[m i n \_p o s\right]\)
arr[min_pos] = temp
end
\# Now output the sorted array
puts "Sorted list:"
for i in 0..(NUM_STUDENTS - 1)
puts "arr[" + i.to_s + "] ==> " +
rr[i].to_s
41 end
42
43 puts "Number of Comparisons ==> " +
num_compare.to_s
```

31 \# Now that we know the min, swap it with the

```
current first element (at position i)
```

current first element (at position i)
temp = arr[i]
temp = arr[i]
arr[i] = arr[min_pos]
arr[i] = arr[min_pos]
arr[min_pos] = temp
arr[min_pos] = temp
35 end
35 end
3 7 \# Now output the sorted array
3 7 \# Now output the sorted array
38 puts "Sorted list:"
38 puts "Sorted list:"
38 puts "Sorted list:"
38 puts "Sorted list:"
puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
41 end
41 end
4 2
4 2
4 3 puts "Number of Comparisons ==> " + num_compare.to_s

```
4 3 \text { puts "Number of Comparisons ==> " + num_compare.to_s}
```

```
36
```

36
end

```
end
```


Another way to sort is to start with a

new list

- Place each element into the list in order one at a time
- The new list is always sorted

Popular Sorting Algorithms: Insertion Sort

Insertion sort algorithm:
\square Step 1:

- Consider only the first element, and thus, our list is sorted
\square Step 2:
- Insert the next element into the proper position in the already sorted list
\square Step 3:
- Repeat this process of adding one new number for all n numbers

Example 7.2: Code for Insertion Sort

```
# Now let's use an insertion sort
# Insert lowest number in the array at the right
lace in the array
for i in 0..NUM_STUDENTS - 1
    # Now start at current bottom and move toward arr[i]
    j = i
    done = false
    while ((j > 0) and (! done))
        num_compare = num_compare + 1
    # If the bottom value is lower than values above
    it, swap it until it lands in a
# place where it is not lower than the next item
    above it 
    above it 
            temp = arr[j - 1]
                arr[j-1] = arc[c) Ophir [fieder ot al 2012
                arr[j-1] = (c) arr [ [j] [] ophir rieder al 2012
```


Example 7.2 Cont'd

```
else
            done = true
            end
            j = j - 1
end
```

0 end

Popular Sorting Algorithms: Bubble Sort

Bubble sort algorithm:
\square Step 1:

- Loop through all entries of the list
- Step 2:
- For each entry, compare it to all successive entries
- Swap if they are out of order

Example 7.3: Code for Bubble Sort

\# Now let's use bubble sort. Swap pairs iteratively
\# From the beginning of the array to the second to
ast value
for i in 0..NUM_STUDENTS - 2
\# From arr[i + 1] to the end of the array
for j in (i + 1)..NUM_STUDENTS - 1
num_compare $=$ num_compare +1
\# If the first value is greater than the second
swap them
if (arr[i] > arr[j])
temp $=\operatorname{arr}[j]$
$\operatorname{arr}[j]=\operatorname{arr}[i]$
$\operatorname{arr}[i]=$ temp
end
end

```
1 # Now let's use bubble sort. Swap pairs iteratively
```

1 \# Now let's use bubble sort. Swap pairs iteratively
s we loop through the array
last value
last value
st value
st value
\# From arr[i + 1] to the end of the arral
\# From arr[i + 1] to the end of the arral
for j in (i + 1)..NUM_STUDENTS - 1
for j in (i + 1)..NUM_STUDENTS - 1
num_compare = num_compare + 1
num_compare = num_compare + 1
\# If the first value is greater than the second
\# If the first value is greater than the second
value, swap them
value, swap them
if (arr[i] > arr[j])
if (arr[i] > arr[j])
temp = arr[j]
temp = arr[j]
arr[j] = arr[i
arr[j] = arr[i
arr[i] = temp
arr[i] = temp
end
end
end
end
nd

```
    nd
```


Complexity Analysis

To evaluate an algorithm, analyze its complexity

- Count the number of steps involved in executing the algorithm
How many units of time are involved in processing n elements of input?
- Need to determine the number of logical steps in a given algorithm

Complexity Analysis: Family of Steps

\square Addition and subtraction
\square Multiplication and division

- Nature and number of loops controls

Complexity Analysis: Family of Steps

Count how many steps of each family are required for n operations like $a^{2}+a b+b^{2}$
\square This statement has $3 n$ multiplications and $2 n$ additions

Can compute the same expression using
$(a+b)^{2}-a b$

- This has $2 n$ multiplications and $2 n$ additions
- This expression is better than the original
\square For very large values of n, this may make a significant difference in computation

Complexity Analysis

For complexity analysis, forgo

constants

$\square(n-1)$ and n have no difference in terms of complexity
Assume that all computations are of the same family of operations

Complexity Analysis

The first step is n, the next $n-1$, and so forth
\square Add 1 to the sum, and it becomes an arithmetic
series: $\frac{n(n+1)}{2}$

Complexity Analysis

The total number of steps for these algorithms are:

$$
\frac{n(n+1)}{2}-1
$$

\square Complexity is considered $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- It is not exact, but simply an approximation
- The dominant portion of this sum is n^{2}

Complexity Analysis

\square There is a best, average, and worst case analysis for computations

For Selection and Bubble Sort algorithms, all cases are the same; the processing is identical
For Insertion Sort, processing an already sorted list will be $\mathrm{O}(n) \rightarrow$ best case scenario
\square A list needing to be completely reversed will require $O\left(n^{2}\right)$ steps \rightarrow worst case scenario \square Average case is the same

Complexity Analysis
Radix Sort works in O(dn) ad is the number of digits that need processing $\square n$ is the number of entries that need sorting \square Radix Sort works faster than the other examples Other algorithms that run in O(nlog(n)): - quicksort - mergesort - heapsort

Searching

Searching is common task computers perform
\square Two parameters that affect search algorithm selection:

1. Whether the list is sorted
2. Whether all the elements in the list are unique or have duplicate values
For now, our implementations will assume there are no duplicates in the list
We will use two types of searches:

- Linear search for unsorted lists
- Binary search for sorted lists

Searching: Linear Search

 searched

Searching: Linear Search

The average case requires searching half of the list
The best case occurs when the value is in the first element in the list
\square Worst case: the entire list must be linearly

- This occurs when the value is in the last position or not found

Searching: Linear Search

Linear Search Algorithm:

for all elements in the list do
if element $=$ = value_to_find then return position_of (element)
end \# if
end \# for
Consider using this search on a list that has duplicate

elements

- You cannot assume that once one element is found, the search is done
- Thus, you need to continue searching through the entire list

Example 7.5: Code for Linear Search

```
1 # Example Linear Search
2 NUM_STUDENTS = 35
MAX_GRADE = 100
arr = Array.new (NUM_STUDENTS)
value_to_find = 8
i = 1
found = false
8
9 # Randomly put some student grades into arr
for i in 0..NUM STUDENTS - 1
    arr[i] = rand(MAX_GRADE + 1)
    end
3
14 puts "Input List:"
for i in 0..NUM_STUDENTS - 1
    puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
end
1 8
```


Searching: Binary Search

For binary search, begin searching at the middle of the list

- If the item is less than the middle, check the middle item between the first item and the middle
- If it is more than the middle item, check the middle item of the section between the middle and the last section
\square The process stops when the value is found or when the remaining list of elements to search consists of one value


```
```

1 9 \# Loop over the list until it ends, or we have found

```
```

1 9 \# Loop over the list until it ends, or we have found
\# We found it :
\# We found it :
if (arr[i] == value_to_find)
if (arr[i] == value_to_find)
puts "Found " + value_to_find.to_s + " at position " +
puts "Found " + value_to_find.to_s + " at position " +
.to_s + " of the list."
.to_s + " of the list."
found = true
found = true
end
end
i
i
*
*
2 9 \# If we haven't found the value at this point, it doesn't
2 9 \# If we haven't found the value at this point, it doesn't
exist in our list
exist in our list
30 if (not found)
30 if (not found)
31 puts "There is no " + value_to_find.to_s + " in the
31 puts "There is no " + value_to_find.to_s + " in the
list."
list."
list.

```
list.
```

```
while ((i < NUM_STUDENTS) && (not found))
```

while ((i < NUM_STUDENTS) \&\& (not found))
i = i + 1

```
    i = i + 1
```


Example 7.5 Cont'd

Searching: Binary Search
\square Following this process reduces half the search space
\square The algorithm is an $\mathrm{O}\left(\log _{2}(n)\right)$
\square Equivalent to $\mathbf{O}(\log (n))$
\square This is the same for the average and worst cases
(c) Ophir Frieder ot ol 2012

Searching: Binary Search

Keep in mind that a binary search requires an ordered list
\square An unsorted list needs to be sorted before the search

- If the search occurs rarely, you should not sort the list
- If the list is updated infrequently, sort and then search the list
\square Check values immediately preceding and following the current position to modify the search to work with duplicates

Binary Search Example

Binary Search Example

Create an ordered list

Divide entries into 2 halves
3. Locate midpoint(s) and determine if number is below or above midpoint(s)
4. Repeat steps 2 and 3 until search is completed

Example 7.6: Code for Binary Search

```
value_to find = 7
l value_to
3 high = NUM_STUDENTS - 1
4 middle = (low + high) / 2
found = false
7
7 \text { \# Randomly put some exam grades into the array}
for i in O..NUM_STUDENTS - 1
    new_value = rand (MAX_GRADE + 1)
    # make sure the new value is unique
    while (arr.include?(new_value))
        new_value = rand(MAX_GRADE + 1)
        end
        arr[i] = new_value
    end
# Sort the array (with Ruby's built-in sort)
arr.sort!
```


Example 7.6 Cont'd

18
9 print "Input List: "
for i in 0..NUM_STUDENTS - 1
puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
end
while ((low <= high) \&\& (not found))
middle $=($ low + high $) / 2$
\# We found it :)
if arr[middle] == value_to_find
puts "Found grade " + value_to_find.to_s + "\% at
position " + middle.to_s
found = true
end
\# If the value shollophir rieder at on 20f2 than middle, search
the lower half

Example 7.6 Cont'd

```
```


otherwise, search the upper half

```
```


otherwise, search the upper half

 if (arr[middle] < value_to_find)
 if (arr[middle] < value_to_find)
 low = middle + 1
 low = middle + 1
 high = middle - 1
 high = middle - 1
 n
 n
 end

```
end
```

end

```


\section*{Summary}
\(\square\) Sorting is a problem that occurs in many applications in computer science
\(\square\) Comparison-based sorting simply compares the items to determine the order
\(\square\) Radix Sort sorts without directly comparing

\section*{Summary}
\(\square\) Computer scientists use complexity analysis to discuss algorithm performance
\(\square\) Searching can be done by linear search
\(\square\) Binary search can be used if the list is sorted
\(\square\) Know the difference in complexity between linear and binary searches```

