
4/23/2013

1

CHAPTER 7:
SORTING & SEARCHING

Introduction to Computer Science Using Ruby

(c) Ophir Frieder at al 2012

Popular Sorting Algorithms

� Computers spend a tremendous amount
of time sorting

� The sorting problem: given a list of
elements in any order, reorder them
from lowest to highest

� Elements have an established ordinal
value

� Characters have a collating sequence

(c) Ophir Frieder at al 2012

Popular Sorting Algorithms

� Three comparison-based sorting algorithms are
selection sort, insertion sort, and bubble sort

� One very different approach: radix sort

� These algorithms are simple, but none are efficient

� It is, however, possible to compare their efficiency

Given Input: Sorting Algorithm will Output:

5,3,7,5,2,9 2,3,5,5,7,9

(c) Ophir Frieder at al 2012

Selection Sort

� One way to sort is to select the smallest value in
the group and bring it to the top of the list

� Continue this process until the entire list is selected

Step 1 Start with the entire list marked as unprocessed.

Step 2 Find the smallest element in the yet unprocessed list.
Swap it with the element that is in the first position of the
unprocessed list.

Step 3 Repeat Step 2 for an additional n – 2 times for the
remaining n – 1 numbers in the list.
After n – 1 iterations, the nth element, by definition, is the
largest and is in the correct location.

(c) Ophir Frieder at al 2012

4/23/2013

2

Example 7.1: Code for Selection Sort

1 # Selection Sort example

2 # 35 students in our class
3 NUM_STUDENTS = 35

4 # Max grade of 100%
5 MAX_GRADE = 100

6 num_compare = 0
7 arr = Array.new(NUM_STUDENTS)

8
9 # Randomly populate arr

10 for i in 0..(NUM_STUDENTS - 1)
11 # Maximum possible grade is 100%, keep in

mind that rand(5)returns possible values 0-4,
so we must add 1 to MAX_GRADE

12 arr[i] = rand(MAX_GRADE + 1)
13 end

14 (c) Ophir Frieder at al 2012

Example 7.1 Cont’d

15 # Output current values of arr

16 puts "Input list:"

17 for i in 0..(NUM_STUDENTS - 1)

18 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s

19 end

20

21 # Now let's use a selection sort.

22 # We first find the lowest number in the array and

then we move it to the beginning of the list

23 for i in 0..(NUM_STUDENTS - 2)

24 min_pos = i

25 for j in (i + 1)..(NUM_STUDENTS - 1)

26 num_compare = num_compare + 1

27 if (arr[j] < arr[min_pos])

28 min_pos = j

29 end

30 end (c) Ophir Frieder at al 2012

Example 7.1: Cont’d

31 # Now that we know the min, swap it with the

current first element (at position i)
32 temp = arr[i]

33 arr[i] = arr[min_pos]
34 arr[min_pos] = temp

35 end
36

37 # Now output the sorted array
38 puts "Sorted list:"

39 for i in 0..(NUM_STUDENTS - 1)
40 puts "arr[" + i.to_s + "] ==> " +
arr[i].to_s

41 end
42

43 puts "Number of Comparisons ==> " +
num_compare.to_s (c) Ophir Frieder at al 2012

31 # Now that we know the min, swap it with the
current first element (at position i)
32 temp = arr[i]
33 arr[i] = arr[min_pos]
34 arr[min_pos] = temp
35 end
36
37 # Now output the sorted array
38 puts "Sorted list:"
39 for i in 0..(NUM_STUDENTS - 1)
40 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
41 end
42
43 puts "Number of Comparisons ==> " + num_compare.to_s

(c) Ophir Frieder at al 2012

4/23/2013

3

Popular Sorting Algorithms: Insertion Sort

� Another way to sort is to start with a
new list

� Place each element into the list in order
one at a time

� The new list is always sorted

(c) Ophir Frieder at al 2012

Popular Sorting Algorithms: Insertion Sort

Insertion sort algorithm:

� Step 1:

� Consider only the first element, and thus, our list is sorted

� Step 2:

� Insert the next element into the proper position in the already
sorted list

� Step 3:

� Repeat this process of adding one new number for all n
numbers

(c) Ophir Frieder at al 2012

Example 7.2: Code for Insertion Sort

1 # Now let's use an insertion sort
2 # Insert lowest number in the array at the right
place in the array
3 for i in 0..NUM_STUDENTS - 1
4 # Now start at current bottom and move toward arr[i]
5 j = i
6 done = false
7 while ((j > 0) and (! done))
8 num_compare = num_compare + 1
9 # If the bottom value is lower than values above

it, swap it until it lands in a
10 # place where it is not lower than the next item

above it
11 if (arr[j] < arr[j - 1])
12 temp = arr[j - 1]
13 arr[j - 1] = arr[j]
14 arr[j] = temp

(c) Ophir Frieder at al 2012

Example 7.2 Cont’d

15 else
16 done = true
17 end
18 j = j - 1
19 end
20 end

(c) Ophir Frieder at al 2012

4/23/2013

4

Popular Sorting Algorithms: Bubble Sort

� Elements can be sorted based on
percolation

� Elements percolate to the right order by
swapping neighboring elements

� If the value is greater than the next, swap
them

� Small values “bubble” to the top of the list

(c) Ophir Frieder at al 2012

Popular Sorting Algorithms: Bubble Sort

Bubble sort algorithm:
� Step 1:

� Loop through all entries of the list

� Step 2:

� For each entry, compare it to all successive entries

� Swap if they are out of order

(c) Ophir Frieder at al 2012

Example 7.3: Code for Bubble Sort

1 # Now let's use bubble sort. Swap pairs iteratively
as we loop through the array
2 # From the beginning of the array to the second to

last value
3 for i in 0..NUM_STUDENTS - 2
4 # From arr[i + 1] to the end of the array
5 for j in (i + 1)..NUM_STUDENTS - 1
6 num_compare = num_compare + 1
7 # If the first value is greater than the second

value, swap them
8 if (arr[i] > arr[j])
9 temp = arr[j]

10 arr[j] = arr[i]
11 arr[i] = temp
12 end
13 end
end (c) Ophir Frieder at al 2012

1 # Now let's use bubble sort. Swap pairs iteratively
as we loop through the array
2 # From the beginning of the array to the second to

last value
3 for i in 0..NUM_STUDENTS - 2
4 # From arr[i + 1] to the end of the array
5 for j in (i + 1)..NUM_STUDENTS - 1
6 num_compare = num_compare + 1
7 # If the first value is greater than the second

value, swap them
8 if (arr[i] > arr[j])
9 temp = arr[j]

10 arr[j] = arr[i]
11 arr[i] = temp
12 end
13 end
end

(c) Ophir Frieder at al 2012

4/23/2013

5

Complexity Analysis

� To evaluate an algorithm, analyze its complexity

� Count the number of steps involved in executing the
algorithm

� How many units of time are involved in processing n
elements of input?

� Need to determine the number of logical steps in a
given algorithm

(c) Ophir Frieder at al 2012

Complexity Analysis: Family of Steps

�Addition and subtraction

�Multiplication and division

�Nature and number of loops controls

(c) Ophir Frieder at al 2012

Complexity Analysis: Family of Steps

� Count how many steps of each family are required
for n operations like a2 + ab + b2

� This statement has 3n multiplications and 2n additions

� Can compute the same expression using
(a + b)2 – ab

� This has 2n multiplications and 2n additions

� This expression is better than the original

� For very large values of n, this may make a significant
difference in computation

(c) Ophir Frieder at al 2012

Complexity Analysis

� For complexity analysis, forgo
constants

� (n – 1) and n have no difference in terms
of complexity

� Assume that all computations are of the
same family of operations

(c) Ophir Frieder at al 2012

4/23/2013

6

Complexity Analysis

� Consider the three comparison-based
sorting algorithms

� For all, the outer loop has n steps

� For the inner loop, the size of the list
shrinks or increases, by one with each
pass.

(c) Ophir Frieder at al 2012

Complexity Analysis

� The first step is n, the next n – 1, and so forth

� Add 1 to the sum, and it becomes an arithmetic
series: n(n + 1)

2

(c) Ophir Frieder at al 2012

Complexity Analysis

� The total number of steps for these algorithms are:

n(n + 1) – 1

2

� Complexity is considered O(n2)

� It is not exact, but simply an approximation

� The dominant portion of this sum is n2

(c) Ophir Frieder at al 2012

Complexity Analysis

� There is a best, average, and worst case analysis
for computations

� For Selection and Bubble Sort algorithms, all cases
are the same; the processing is identical

� For Insertion Sort, processing an already sorted list
will be O(n) � best case scenario

� A list needing to be completely reversed will
require O(n2) steps � worst case scenario

� Average case is the same

(c) Ophir Frieder at al 2012

4/23/2013

7

Complexity Analysis

� Radix Sort works in O(dn)

� d is the number of digits that need
processing

� n is the number of entries that need sorting

� Radix Sort works faster than the other
examples

� Other algorithms that run in
O(nlog(n)):

� quicksort

� mergesort

� heapsort
(c) Ophir Frieder at al 2012

Searching

� Searching is common task computers perform

� Two parameters that affect search algorithm
selection:
1. Whether the list is sorted

2. Whether all the elements in the list are unique or
have duplicate values

� For now, our implementations will assume there
are no duplicates in the list

� We will use two types of searches:
� Linear search for unsorted lists

� Binary search for sorted lists
(c) Ophir Frieder at al 2012

Searching: Linear Search

� The simplest way to find an element in a
list is to check if it matches the sought
after value

�Worst case: the entire list must be linearly
searched

� This occurs when the value is in the last
position or not found

(c) Ophir Frieder at al 2012

Searching: Linear Search

� The average case requires searching
half of the list

� The best case occurs when the value is in
the first element in the list

(c) Ophir Frieder at al 2012

4/23/2013

8

Searching: Linear Search

Linear Search Algorithm:

for all elements in the list do

if element == value_to_find then return position_of (element)

end # if

end # for

Consider using this search on a list that has duplicate
elements

� You cannot assume that once one element is found, the search is
done

� Thus, you need to continue searching through the entire list

(c) Ophir Frieder at al 2012

Example 7.5: Code for Linear Search

1 # Example Linear Search
2 NUM_STUDENTS = 35
3 MAX_GRADE = 100
4 arr = Array.new(NUM_STUDENTS)
5 value_to_find = 8
6 i = 1
7 found = false
8
9 # Randomly put some student grades into arr

10 for i in 0..NUM_STUDENTS - 1
11 arr[i] = rand(MAX_GRADE + 1)
12 end
13
14 puts "Input List:"
15 for i in 0..NUM_STUDENTS - 1
16 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
17 end
18

(c) Ophir Frieder at al 2012

Example 7.5 Cont’d

19 # Loop over the list until it ends, or we have foun d
our value
20 while ((i < NUM_STUDENTS) && (not found))
21 # We found it :)
22 if (arr[i] == value_to_find)
23 puts "Found " + value_to_find.to_s + " at position " +
i.to_s + " of the list."
24 found = true
25 end
26 i = i + 1
27 end
28
29 # If we haven't found the value at this point, it d oesn ’t
exist in our list
30 if (not found)
31 puts "There is no " + value_to_find.to_s + " in the
list."
32 end

(c) Ophir Frieder at al 2012

Searching: Binary Search

� For binary search, begin searching at the
middle of the list

� If the item is less than the middle, check the
middle item between the first item and the
middle

� If it is more than the middle item, check the
middle item of the section between the
middle and the last section

� The process stops when the value is found
or when the remaining list of elements to
search consists of one value

(c) Ophir Frieder at al 2012

4/23/2013

9

Searching: Binary Search

� Following this process reduces half the search space

� The algorithm is an O(log2(n))

� Equivalent to O(log(n))

� This is the same for the average and worst cases

(c) Ophir Frieder at al 2012

Searching: Binary Search

� Keep in mind that a binary search requires an
ordered list

� An unsorted list needs to be sorted before the search

� If the search occurs rarely, you should not sort the list

� If the list is updated infrequently, sort and then search the
list

� Check values immediately preceding and following
the current position to modify the search to work
with duplicates

(c) Ophir Frieder at al 2012

Binary Search Example

1. Create an ordered list

2. Divide entries into 2 halves

3. Locate midpoint(s) and determine if number is
below or above midpoint(s)

4. Repeat steps 2 and 3 until search is completed

(c) Ophir Frieder at al 2012

Binary Search Example

205, 176, 2, 300, 60, 98, 210, 7, 105, 190
2
7
60
98
105
176
190
205
210
300

2
7
60
98
105

176
190
205
210
300

Search: 98

Midpoints

(c) Ophir Frieder at al 2012

4/23/2013

10

Binary Search Example Cont’d

2
7
60
98
105

176
190
205
210
300

Select the lower half
because 98 < 105

2 7 60 98 105

Midpoint

Select the upper half because
98 > 60. Repeat process until
search is completed.

(c) Ophir Frieder at al 2012

Example 7.6: Code for Binary Search

1 value_to_find = 7
2 low = 0
3 high = NUM_STUDENTS - 1
4 middle = (low + high) / 2
5 found = false
6
7 # Randomly put some exam grades into the array
8 for i in 0..NUM_STUDENTS - 1
9 new_value = rand(MAX_GRADE + 1)

10 # make sure the new value is unique
11 while (arr.include?(new_value))
12 new_value = rand(MAX_GRADE + 1)
13 end
14 arr[i] = new_value
15 end
16 # Sort the array (with Ruby's built-in sort)
17 arr.sort!

(c) Ophir Frieder at al 2012

Example 7.6 Cont’d

18
19 print "Input List: "
20 for i in 0..NUM_STUDENTS - 1
21 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
22 end
23
24 while ((low <= high) && (not found))
25 middle = (low + high) / 2
26 # We found it :)
27 if arr[middle] == value_to_find
28 puts "Found grade " + value_to_find.to_s + "% at

position " + middle.to_s
29 found = true
30 end
31
32 # If the value should be lower than middle, search

the lower half
(c) Ophir Frieder at al 2012

Example 7.6 Cont’d

33 # otherwise, search the upper half
34 if (arr[middle] < value_to_find)
35 low = middle + 1
36 else
37 high = middle - 1
38 end
39 end

(c) Ophir Frieder at al 2012

4/23/2013

11

33 # otherwise, search the upper half
34 if (arr[middle] < value_to_find)
35 low = middle + 1
36 else
37 high = middle - 1
38 end
39 end

(c) Ophir Frieder at al 2012

Summary

� Sorting is a problem that occurs in many
applications in computer science

� Comparison-based sorting simply compares the
items to determine the order

� Radix Sort sorts without directly comparing

(c) Ophir Frieder at al 2012

Summary

� Computer scientists use complexity analysis to
discuss algorithm performance

� Searching can be done by linear search

� Binary search can be used if the list is sorted

� Know the difference in complexity between linear
and binary searches

(c) Ophir Frieder at al 2012

